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Abstract— This paper is focused on the use of a filtering method 

with Telemac-Mascaret in order to calibrate the most influent 

modelling parameters to their optimal values when the 

observation data is acquired. Optimality remains an objective 

that tends to reduce uncertainty a posteriori by finding trade-

offs between model results and observations. This can be done 

by explicitly considering the uncertainties associated with the 

modelling process and the measurement chain. Two main 

families of mathematical methods are developed by the 

community of Data Assimilation to achieve this task. The first is 

a variational approach based on the mathematical minimization 

of a two parts error function. The second is a filtering approach 

where only linear algebra formula are used. The paper presents 

two real test cases with the Ensemble Kalman Filtering (EnKF) 

method for the error reduction of parameter estimation of the 

Telemac-Mascaret system. 

I. INTRODUCTION 

Data Assimilation (DA) is a family of mathematical 
methods for the state estimation of a physical dynamic system 
commonly used in geosciences [1][2]. Observations and prior 
information are optimally combined with the results of a 
numerical model in order to minimize the uncertainty on the 
state of a system. Different techniques can help to compensate 
for the errors. The two most popular are the variational 
approach and the filtering methods. In this paper, the DA-
based estimation relies on the Ensemble Kalman Filter (EnKF) 
[3]. This filter is close to a Monte Carlo sampling method but 
it does not require in practice a large number of state vectors 
to define a converging ensemble. It will apply to find the best 
estimations for some physical parameters of Telemac-
Mascaret during the calibration phase.  

The application of EnKF to Telemac-Mascaret is not new, 
see for instance [4] for a Telemac 2D application in the late 
2000s on twin experiments or more recently [5] for a 
Mascaret-based operational application. The objective of this 
paper is to show on two real test cases how the same EnKF 
algorithm [6] can successfully calibrate Telemac-Mascaret 
models with little implementation effort and a reasonable 
computational cost. After a short presentation of DA and 
EnkF, the paper introduces the Python tools [7] used for the 
implementation of this automatic filter-based calibration. 
These tools are open-source and easy to learn. 

A Mascaret test case is firstly presented and calibrated on 
the value of the friction coefficients of the Rhône River in 
France. As this test has a low computational cost, it is used for 
a small study of sensitivity in order to better understand the 
convergence of the filter with respect to some of its 
parameters. A Telemac 2D maritime case is also filtered with 

EnKF in order to calibrate some coefficients of a tidal wave. 
This case allowed us to compare the method with a variational 
approach and clearly demonstrates the interest of the filter as 
competitor for future real test cases using a complex 
representation. 

II. DATA ASSIMILATION 

A. Background 

The aim of a Data Assimilation (DA) method is to find the 
best estimation of a state using two sources of information, 
model results and observational data. These information 
sources are supposed to be complementary and recorded over 
time. Both have errors that can be seen as random variables 
and modeled as probability density functions. Applying the 
Bayes’ theorem: 

𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
                              (1) 

the estimation of an unknown state 𝑥 is the distribution 

𝑝(𝑥|𝑦) given a prior knowledge 𝑝(𝑥) on the state, the 

observations 𝑝(𝑦) not depending on 𝑥 and the probability 

𝑝(𝑦|𝑥) of having 𝑦 if 𝑥 was known, i.e. the likelihood. The 

uncertainty on 𝑥 is reduced with rule (1) compared to the 

observations and a-priori estimation, see Fig. 1. 

 
Figure 1. Coupling prediction and measurement 

In most applications involving DA, a Gaussian distribution 
is used for the probability density functions of errors of each 
information source. This hypothesis, although it may be far 
from reality, simplifies the definition of uncertainties and 
opens many perspectives in the theory of estimation. A 
discrete state space model can be written as: 
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𝑥𝑘+1 = 𝑀𝑘(𝑥𝑘) + 𝑤𝑘          𝑤𝑘~N(0, 𝑄𝑘)             (2) 
where 𝑥𝑘+1 is the predicted system state at time step 𝑘 + 1, 

𝑀𝑘 is a linear or non-linear model and 𝑤𝑘 a Gaussian noise 

representing the modelling errors with a covariance matrix 

𝑄𝑘. If 𝑥𝑘 stands for the parameters to calibrate then it is 

convenient to take 𝑀𝑘 = 𝐼. Similarly, the observations can be 

modelled as: 

𝑦𝑘 = 𝐻𝑘(𝑥𝑘) + 𝑣𝑘          𝑣𝑘~N(0, 𝑅𝑘)               (3) 
where 𝐻𝑘 is the observation model (shallow water) that 

relates the values of parameters 𝑥𝑘 to the measurements 𝑦𝑘  

and 𝑣𝑘 the observational noise with the covariance 𝑅𝑘. 
DA aims to estimate 𝑥̂ as a solution of a mismatch problem 

to the observations. If the observations are simultaneously 
considered for a prescribed time window, the solution is a 
global model trajectory 𝑥̂0:𝑁 = (𝑥̂0, 𝑥̂1, . . , 𝑥̂𝑁)

𝑇where 𝑥̂𝑘 is for 
the time 𝑡𝑘 ∈ [𝑡0, 𝑡𝑁] a local solution influenced by all the 
observations 𝑦0:𝑁. By supposing identical time steps for the 
model and the availability of observations, the DA problem in 
a variational approach can be written as the minimization of 
the error function 𝐽(𝑥̂0:𝑁): 

𝐽(𝑥̂0:𝑁) =
1

2
‖𝑥̂0 − 𝑥𝑏‖𝐵−1

2 +
1

2
∑‖𝑥̂𝑘 −𝑀𝑘−1(𝑥̂𝑘−1)‖𝑄𝑘

−1
2

𝑁

𝑘=1

+
1

2
∑‖𝑦𝑘 − 𝐻𝑘(𝑥̂𝑘)‖𝑅𝑘

−1
2

𝑁

𝑘=0

                      (4) 

The first two terms in (4) penalize the gaps to the prior 
(background) solution 𝑥𝑏 at 𝑡0 and to modelling solutions 
from 𝑡1 to 𝑡𝑁. The third term is the penalization to 
observations. All terms are weighted by the error covariance 
matrices 𝐵, 𝑄 and 𝑅. 

B. Ensemble Kalman Filtering 

The Kalman filters are not global but sequential DA 
techniques where observations are gradually assimilated by 
evolving the uncertainty in the state from one observation time 
to the next. The original version of Kalman filter [8] assumes 
that operators 𝑀 and 𝐻 are linear. To work around this 
problem, the extended Kalman filter (EKF) has been 
developed but it still needs a linearization part that can pose 
computational cost and/or convergence problems (tangent 
linear and adjoint models required). 

 
Figure 2. Sketch of KF and EKF algorithms 

EnKF is an alternative method to estimate the covariance 
matrix using as a first approximation a sample of random 

states (ensemble). Each state (member) evolves forward in 
time using 𝑀𝑘 and the covariance is approximated with the 
new ensemble (prediction step). Then the ensemble is updated 
using perturbed observations (filtering step). In practice for 
most applications EnKF does not require a large number of 
members to converge. 

 
Figure 3. Sketch of EnKF algorithm 

Prediction step 

 Propagation of each member 𝑖 of ensemble 𝑁𝑒 from 

time 𝑡𝑘 to 𝑡𝑘 + 𝑡𝑜𝑏𝑠 where 𝑡𝑜𝑏𝑠 is the period of 

observations: 

𝑥𝑘+𝑜𝑏𝑠
𝑖 = 𝑀𝑘:𝑘+𝑜𝑏𝑠(𝑥𝑘

𝑖 ) + 𝑤𝑘
𝑖               (5) 

 Estimation of the covariance matrix: 

𝑃𝑘+𝑜𝑏𝑠 =
1

𝑁𝑒 − 1
∑(𝑥𝑘+𝑜𝑏𝑠

𝑖 − 𝑥𝑘+𝑜𝑏𝑠)(𝑥𝑘+𝑜𝑏𝑠
𝑖 − 𝑥𝑘+𝑜𝑏𝑠)

𝑇

𝑁𝑒

𝑖=1

with the mean ensemble:     𝑥𝑘+𝑜𝑏𝑠 =
1

𝑁𝑒
∑𝑥𝑘+𝑜𝑏𝑠

𝑖            (6)

𝑁𝑒

𝑖=1

 

Filtering step 

 Computation of the Kalman gain: 

𝐾𝑘+𝑜𝑏𝑠 = 𝑃𝑘+𝑜𝑏𝑠𝐻
𝑇(𝐻𝑃𝑘+𝑜𝑏𝑠𝐻

𝑇 + 𝑂𝑘+𝑜𝑏𝑠)
−1       (7) 

where 𝑂𝑘+𝑜𝑏𝑠 is the covariance computed from the 

perturbed observations. 

 Update the ensemble: 

𝑥𝑘+𝑜𝑏𝑠
𝑖∗ = 𝑥𝑘+𝑜𝑏𝑠

𝑖 + 𝐾𝑘+𝑜𝑏𝑠(𝑦𝑘+𝑜𝑏𝑠 + 𝑣𝑘
𝑖 − 𝐻𝑥𝑘+𝑜𝑏𝑠

𝑖 )     (8) 

III. IMPLEMENTATION 

A. FilterPy 

FilterPy is an open source (MIT License) Python module 
that implements some Kalman and Bayesian filters [9]. The 
module is rather oriented for engineering studies and offers 
documentation and basic examples for each filter. See [6] for 
the EnKF algorithm implemented in FilterPy as there exits 
many versions of this filter. In this program there is no 
particular improvement of the classic algorithm based on (5)-
(8). Most advanced algorithms can implement for instance 
methods like localisation and/or inflation to make EnKF 
working in high dimension or being less cost computational. 
For the time being, these techniques have not been considered 
for solving data assimilation problems with the Telemac-
Mascaret examples of this paper. 



  

 

 

B. TelApy 

All the computations with the modules of the Telemac-
Mascaret system can now be done directly in Python with 
TelApy [7]. TelApy is a package for using APIs of the system. 
It allows a fine interaction with the code while running. For 
instance it is possible to ask for values of variables or set some 
new values for parameters at any time of the simulation.  The 
list of variable names and functions that can be used with 
TelApy are documented and tutorials exist in the source of the 
system [10].  

TelApy is generic enough to not restrict the use of 
Telemac-Mascaret to some use cases or simulation platform. 
In particular it allows to easily couple Telemac-Mascaret with 
an optimizer or a filter like FilterPy for the DA. 

C. Coupling 

The coupling between FilterPy and TelApy is quite easy. 
The user has only to write a supervisor script to firstly initialize 
the two modules and then call TelApy for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑡𝑜𝑏𝑠] 
followed by a call to FilterPy. 

 
Figure 4. Python example for EnKF with Telemac-Mascaret 

Pseudo code 
algorithm telemac-enkf is 

    input: the size of the ensemble Ne 
               the Telemac steering file cname 

               initial values p0 for the parameters  

               model covariance matrix Q 
               observation covariance matrix R 

               observation operator H 

    output: ensemble of optimal Telemac states Topt 
                 optimal values for parameters Popt 

 

    define an ensemble of parameters pf from (p0, Ne) 
    define an ensemble of Telemac states S from (cname, pf) 

    while the time t is in the assimilation window do 

        if observation is available: 
            pf  ← FilterPy(S, pf, H, R) # filtering 

        else: 

            S ←  TelApy(S, pf) # prediction 
            pf  ←  pf + Q 

        t ←  t + 1 

 
    return (Topt = S, Popt = pf) 

D. Parallelism 

Since each member 𝑖 of 𝑁𝑒 is an independent hydraulic 
state, the ensemble can be predicted in parallel. As Telemac is 
also a MPI-based parallel code, different configurations for 
parallelism are possible. TelApy requires the mpi4py module 
for solving the physics and one can add in the user script the 
support of the multiprocessing if needed for predictions. For 
the filtering equations (7)-(8), FilterPy is sequential. This is 
not an issue when 𝑁𝑒 and 𝑑𝑖𝑚(𝑥) are low values. 

IV. RESULTS AND DISCUSSION 

A. Mascaret 

EnKF is used to calibrate nine friction coefficients of the 
Rhône river in France on a reach of 22 km long. The geometry 
is not described as it is not the purpose of the present study. 
The mesh is made of 1,259 1D nodes. The boundary 
conditions are an imposed flow rate of 156 m3/s at the 
upstream and an imposed water level of 187.3 m at 
downstream. One observation of the water level per friction 
zone is available for this non-overtopping flow regime. 

The background 𝑥𝑏 is a vector of nine Strickler coefficients 
of 40 m1/3/s. The initial ensemble will be a normal distribution 
around this mean value. The initial error (L2-norm) on the 
water levels computed by Mascaret and corresponding to 𝑥𝑏 
is equal to 0.6125 m. 

As a reference for the appreciation of EnKF results, a 
variational approach has been tested for the minimization of 
(4) by an L-BFGS algorithm [11]. This has given a solution 
𝑥̂𝐿−𝐵𝐹𝐺𝑆 corresponding to an error of 0.0894 m. 

Many configurations with EnKF have been tested for 
different values of 𝑁𝑒 repeated 100 times over 10 assimilation 
cycles (filtering). The choice for 100 repetitive runs of EnKF 
is done for trying to get some basic but confident statistics on 
the behaviour of the filter. The choice to stop EnKF after only 
10 assimilation cycles is arbitrary but identical for all the 
values of 𝑁𝑒.  

Fig. 5 shows the statistics of these errors. The best solution 
(minimal error) was found for 𝑁𝑒 = 64 with a value equal to 
0.0159 m. This is an improvement corresponding to a ratio ≈
38 in comparison with the initial error (background solution) 
and to a ratio ≈ 5 in comparison with the reference solution 
(variational solution). It is noticeable that the reference 
solution in terms of error value can be reached by EnKF with 
a low value of 𝑁𝑒, typically 𝑁𝑒 = 8. To be certain to get the 
same performance as the reference solution it would be better 
to work with 𝑁𝑒 ≥ 64. 

 
Figure 5. Statistic errors for EnKF 

Python User 
Script
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The longitudinal profile of the river with the water levels 
corresponding to the background solution 𝑥𝑏 and to the EnKF 
best solution are depicted in Fig. 6. 

Figure 6. Results for the water levels (background and EnKF-based 
calibration) 

Tab. 1 and Fig. 7 presents the optimal values for the 
friction parameters in the different zones of the river for the 
variational and filtering approaches. Results in Tab. 1 are 
rounded with no decimal part for reading convenience. 

 TABLE 1. FRICTION COEFFICIENTS RESULTS (m1/3/s) 

 

Figure 7. Optimal parameters with two DA methods 

Calibrated parameters (Fig. 7) with variational and 
filtering approaches are not so far apart, although the resulting 
errors differ (0.0894 m vs 0.0159 m). Both results are in the 
same space where the filtering method was able to achieve a 
better accuracy. It is noticeable that if the convergence 

tolerance of the L-BFGS algorithm is decreased, the 
differences with EnKF vanish. 

Fig. 8 presents some convergences of EnKF for 100 
assimilation cycles and different values of 𝑁𝑒. Since EnKF is 
a stochastic algorithm, the curves in Fig. 8 may slightly change 
but not so much in practice for this Mascaret calibration 
problem. 

Anyway the EnKF convergence is clearly correlated with 
the value of 𝑁𝑒. It is not surprising to see how the errors are 
sensitive to the ensemble size. Too low values can lead to an 
undersampling of the search space of the parameters and 
consequently to the divergence of the filter.  As expected best 
results are obtained for the largest ensemble sizes. The 
difference between 𝑁𝑒 = 64 and 𝑁𝑒 = 128 is small and here 
the best ratio between the calculation cost and the convergence 
error lies between these two values. 

Whatever the tests here, the convergences have always 
been quite regular and monotonic. 

Figure 8. Typical convergence of EnKF for different values of 𝑁𝑒 

In this calibration problem the computational cost is 
extremely low as it is the steady state computational kernel of 
Mascaret that is used by TelApy. Consequently, the filtering 
with FilterPy is systematically done: 𝑡𝑘+𝑜𝑏𝑠 = 𝑡𝑘+1 for all 𝑘 
as Mascaret is able to compute the steady state in one step. 
Hence the number of Mascaret simulations needed by the 
EnKF calibration is equal to 𝑁𝑒 multiplied by the number of 
assimilation cycles. 

In order to see the relative importance of covariance 
matrices 𝑄 (2) and 𝑅 (3) on the convergence of EnKF, many 
calibrations have been tested considering those matrices as 
diagonal with an identical variance value for all the terms and 
ranging from 10−2 to 10−8 m2. Tests have been performed for 
𝑁𝑒 = 64 and the convergence was stopped after 10 
assimilation cycles. Fig. 9 shows the corresponding results 
with a representation of the error function in the variance space 
[10−2, 10−8] × [10−2, 10−8] for two levels of fine and coarse 
discretization. 

Zone 1 2 3 4 5 6 7 8 9 

𝒙𝒃 40 40 40 40 40 40 40 40 40 
𝒙𝑳−𝑩𝑭𝑮𝑺 32 25 36 39 29 32 33 27 40 
𝒙𝑬𝒏𝑲𝑭 31 26 35 42 28 34 32 25 45 



  

 

 

The two graphs in Fig. 9 give concordant information. One 
striking feature is that EnKF is almost independent on the 
values of 𝑑𝑖𝑎𝑔(𝑄) and 𝑑𝑖𝑎𝑔(𝑅) in a wide range extending 
from 10−3 to 10−8 . The interaction effects between 𝑄 and 𝑅 
on the error function are practically non-existent. 𝑄 only 
increases the error function for a large variance value and only 
when 𝑑𝑖𝑎𝑔(𝑅) is small. As complement, large values for 𝑅 
have always the same impact whatever 𝑄 covariance is. 

 
Figure 9. EnKF errors as a function of diagonal elements of 𝑄 and 𝑅 

The rapid convergence and the relatively low importance 
of the prediction model error indicate that the physics of the 
case while being non-linear is not so difficult to capture with 
the basic version of the EnKF algorithm. However, as the best 
solutions are only reached for the largest 𝑁𝑒 values, the 
ensemble spread might be increased by a covariance inflation 
to mitigate the undersampling of low 𝑁𝑒  values. Inflation or 
localisation techniques are not implemented in the actual 
version of FilterPy but they could be tested in the future with 
minimal changes in the module. 

The covariance matrix for the convergence of the 
ensemble 𝑁𝑒 = 128 after 100 assimilation cycles is presented 
in Fig. 10.  As expected the matrix is diagonal dominant with 
few interactions except for the three last zones where a 
negative covariance appears. Actually, this part of the river is 
the most difficult one to calibrate as the flow regime is sub-
critical and constrained by an imposed water level at the end 
of the reach. Other off-diagonal elements are negligible 
indicating that there is no spurious correlation. 

Figure 10. Covariance matrix for the Strickler’s coefficients 𝐾𝑠 

B. Telemac 

Any model using the Telemac-Mascaret system can be 
calibrated according to Fig. 4. The implementation is 
relatively easy. The reader is invited to test the approach on a 
simple Telemac 2D case if interested [12]. 

To perform on a real test case, EnKF is used to calibrate 
three tidal parameters of a maritime configuration. The study 
concerns the Alderney Race that is located between the island 
of Alderney, UK, and the western tip of the Cotentin peninsula 
in Normandy, France. Details of this Telemac study are 
presented in [13]. The modelling covers an area of roughly 55 
km × 35 km and the finite element discretization is composed 
of a triangular mesh with 17,983 nodes and 35,361 elements. 
The mesh size varies from 100 m on the shoreline and within 
the areas of interest to 1.8 km offshore, western and northern 
sectors. 

 

Figure 11. Model mesh 

The boundary conditions of the model have been set up 
using depth-averaged velocities and water levels from the 
TPXO dataset (8 primary, 2 long-period and 3 nonlinear 



  

 

 

constituents). The TPXO dataset is an accurate global models 
of ocean tides based on a best-fit of tidal levels measured along 
remote sensing tracks from the TOPEX/POSEIDON satellite 
project in operation since 2002. Moreover, velocities and 
water depths are imposed along the marine borders of the 
model using Thompson-type boundary conditions that allows 
internal waves to leave the domain with little or no reflection. 

Several measurement campaigns were carried out to the 
west of Cap de la Hague. For this study, only the results of one 
of these (a campaign lasting six months) are used over a 5 days 
period from October 15th to 20th. This six-month campaign 
was carried out during summer of 2009 (from the end of July 
to the end of January). Two ADCPs were deployed to measure 
flow velocity (magnitude and direction) and water depth with 
1 measurement every 10 minutes and one hour respectively. 

The model calibration is done by estimating three tidal 
parameters that were proved to be the most influent ones on 
the Telemac results after a sensitivity analysis [13]. Tidal 
characteristics are imposed using a database of harmonic 
constituents to force the open boundary conditions. For each 
harmonic constituent, the water depth ℎ and horizontal 
components of velocity 𝑢 and 𝑣 are calculated, at point 𝑀 and 
time 𝑡 by: 

{
 
 

 
 𝐹(𝑀, 𝑡) = ∑𝐹𝑖(𝑀, 𝑡)

𝑖

                                                           (9)

𝐹𝑖(𝑀, 𝑡) = 𝑓𝑖(𝑡)𝐴𝐹𝑖(𝑀) cos (
2𝜋𝑡

𝑇𝑖
− 𝜑𝐹𝑖(𝑀) + 𝑢𝑖

0 + 𝑣𝑖(𝑡))

 

where 𝐹 is either the water level (referenced to mean sea 

level) 𝑧𝑠 or one of the horizontal components of velocity 𝑢 

or 𝑣, 𝑖 refers to the considered constituent, 𝑇𝑖  is the period of 

the constituent, 𝐴𝐹𝑖  is the amplitude of the water level or one 

of the horizontal components of velocity, 𝜙𝐹𝑖  is the phase, 

𝑓𝑖(𝑡) and 𝑣𝑖(𝑡) are the nodal factors and 𝑢𝑖
0 is the phase at the 

original time of the simulation. 
The water level and velocities of each constituent are then 

summed to obtain the water depths and velocities for the open 
boundary conditions: 

{
  
 

  
 ℎ = 𝛼∑𝑧𝑠𝑖 − 𝑧𝑓 + 𝑧𝑚𝑒𝑎𝑛

𝑖

                                 

𝑢 = 𝛽∑𝑢𝑖
𝑖

                                                  (10)

𝑣 = 𝛽∑𝑣𝑖                                                             

𝑖

 

where 𝑧𝑓 is the bottom elevation and 𝑧𝑚𝑒𝑎𝑛 the mean 

reference level. 
In (10), the multiplier coefficients of the tidal range and 

velocity, respectively 𝛼 and 𝛽, at boundary locations and the 
sea level 𝑧𝑚𝑒𝑎𝑛 are the tidal parameters to be calibrated with 
EnKF. 

 
Figure 12. Example of the velocity distribution (magnitude) 

 

The initial mean values for the ensemble of tidal 
parameters are set to 𝑧𝑚𝑒𝑎𝑛 = −1.6, 𝛼 = 1 and 𝛽 = 1 as 
prescribed by the original study of this model [13]. Fig. 13 
shows the water depths on 24 hours (the first day of a five-day 
period) and at a point of observation, calculated before and 
after the calibration of tidal parameters by EnKF. 

 
Figure 13. Water depths before and after EnKF convergence 

 

The results on the water depth in Fig. 13 match very well 
with the observations. The error between the simulation and 
the observation is approximately four times lower than that 
obtained with a variational approach [13]. Indeed, the error 2-
norm for the optimal solution of 3D-VAR is 0.83 m (𝑧𝑚𝑒𝑎𝑛 =
−0.995, 𝛼 = 1.112, 𝛽 = 1.106) and 0.22 m for the EnKF 
(𝑧𝑚𝑒𝑎𝑛 = −1.149, 𝛼 = 1.112, 𝛽 = 1.106). Except for the 
seal level 𝑧𝑚𝑒𝑎𝑛  the two others solutions on the tidal range and 
velocity are identical. 

The number of members 𝑁𝑒  required to obtain the best 
EnKF estimate was only 5. In practice, the solution was not 
found the first time but it required few tests. In total the 
computational cost was less important than working with a 
much larger ensemble. 



  

 

 

The filtering step was applied every hour all along the five-
day period. Fig. 14 presents the convergence for the three tidal 
parameters (mean values) together with the decrease of the 
error norm between observations and estimations 

 
Figure 14. Convergence reached in 24 hours 

 

It should be noted that only 24 assimilations (24 hours with 
one assimilation per hour) are necessary to reach the best 
estimates. For the remainder of the period, no further changes 
are identified. The entire five-day window is not necessary in 
this example, but that does not mean that the parameters can 
not change over time beyond this period. This will surely 
depend on the time of year and weather conditions. 

The computational cost here is very acceptable and less 
important than those of the variational approach [13]. For 
example on a standard PC workstation of four cores (Intel® 
Xeon® CPU E3-1240@3.4 GHz), the time required to lead the 
assimilation in Fig. 14 to its end was about 40 minutes. 

V. CONCLUSIONS 

This article presents a Python-based framework for data 
assimilation with the Telemac system. The data assimilation 
technique studied is the Ensemble Kalman Filter. It is shown 
how this filter can work well with the Telemac system for 
optimal model calibration with a small number of parameters. 
The filter is also considered competitive compared to other 
methods for its ease of implementation and its quick 
convergence on fairly simple problems.  

In perspective, this first use of EnKF with the Telemac 
system at EDF R&D will certainly be continued on more 
complex models, that is to say with a greater dimensionality 
or a different physics. This will be an opportunity to test filter 
improvement techniques such as localisation and inflation, to 
use HPC as EnKF is easily parallelisable, or to compare the 
performance on surrogate models. 
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