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Abstract

We consider finite mixtures of generalized linear models with binary output. We prove
that cross moments till order 3 are sufficient to identify all parameters of the model. We
propose a least squares estimation method and we prove the consistency and the Gaussian
asymptotic behavior of the estimator. An R-package is developed to apply our method,
we give numerical experiments to compare with likelihood methods. We then provide new
identifiability results for several finite mixtures of generalized linear models with binary
output and unknown link function including both continuous and categorical covariates, and
possibly longitudinal data.

1 Introduction

Logistic models, or more generally multinomial regression models that fit covariates to dis-
crete responses through a link function, are very popular for use in various application fields.
When the data under study come from several groups that have different characteristics,
using mixture models is also a very popular way to handle heterogeneity. Thus, many algo-
rithms were developed to deal with various mixtures models, see for instance the book [5].
Most of them use likelihood methods or Bayesian methods that are likelihood dependent.
Indeed, the now well known expectation-maximization (EM) methodology or its randomized
versions makes it often easy to build algorithms. However one problem of such methods is
that they can converge to local spurious maxima so that it is necessary to explore many
enough initial points. Recently, spectral methods were developed to bypass EM algorithms
and they were proved able to recover the directions of the regression parameter in models
with known link function and random covariates, see [9].

One aim of this paper is to extend such moment methods using least squares to get es-
timators of the whole parameters, and to provide theoretical guarantees of this estimation
method. The setting is that of regression models with binary outputs, random covariates
and known link function, detailed in Section 2. We first prove that cross moments up to
order 3 between the output and the regression variables are enough to recover all the pa-
rameters of the model, see Theorem 1 for the probit link function and Theorem 2 for general
link functions. We then obtain consistency and asymptotic normality of our least squares
estimators as usual, see Theorem 3. The algorithm is described at the end of Section 3,
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and to apply it, we developed the R-package morpheus available on the CRAN ([3]). We
then compare experimentally our method to the maximum likelihood estimator computed
using the R-package flexmix ([6]). We show that our estimator may be better for the probit
link function with finite samples when the dimension increases, though keeping very small
computation times when that of flexmix increases with dimension. The experiments are
presented in Section 4.

Another aim of this paper is to investigate identifiability in various mixture of non linear
regression models with binary outputs. Indeed, identifiability results for such models are
still few and not enough to give theoretical guarantees of available algorithms. Let us review
what is known up to our knowledge. In [4], the identifiability is proved for finite mixtures
of logistic regression models where only the intercept varies with the population [11]. In [7],
finite mixtures of multinomial logit models with varying and fixed effects are investigated,
the proofs of identifability results use the explicit form of the logit function. In [11], further
non parametric identifiability of the link function is proved, but only for models where the
base exponential models are identifiable for mixtures, which does not apply to binary data
(Bernoulli models).

We provide in Section 5 several identifiability results, that for example are useful to
get theoretical guarantees in applications such as the one in [8]. We prove that with known
smooth enough link function, the directions of the covariates may be recovered under the only
assumption that they are distinct, see Theorem 4. Then, under the strengthened assumption
that they are linearly independent, we prove that the link function may be non parametrically
recovered, see Theorem 5. We then study the simultaneous use of continuous and categorical
covariates and further give assumptions under which parameters and link function may be
recovered, see Theorem 6. We finally prove that, with longitudinal data having at least 3
repetitions for each individual, the whole model is identifiable under the weakest assumption
that the regression directions are distinct, see Theorem 7.

2 Model and notations

Let us denote [n] the set {1, 2, . . . , n} and ei ∈ Rd, the i-th canonical basis vector of Rd.
Denote also Id ∈ Rd×d the identity matrix in Rd. The tensor product of p euclidean spaces
Rdi , i ∈ [p] is noted

⊗p
i=1 Rdi . T is called a real p-th order tensor if T ∈

⊗p
i=1 Rdi . For

p = 1, T is a vector in Rd and for p = 2, T is a d × d real matrix. The (i1, i2, . . . , ip)-th
coordinate of T with respect the canonical basis is denoted T [i1, i2, . . . , ip], i1, i2, . . . , ip ∈ [d].

Let X ∈ Rd be the vector of covariates and Y ∈ {0, 1} be the binary output.

A binary regression model assumes that for some link function g, the probability that Y = 1
conditionally to X = x is given by g(〈β, x〉 + b), where β ∈ Rd is the vector of regression
coefficients and b ∈ R is the intercept. Popular examples of link functions are the logit
link function where for any real z, g(z) = ez/(1 + ez) and the probit link function where
g(z) = Φ(z), with Φ the cumulative distribution function of the standard normal N (0, 1).
If now we want to modelise heterogeneous populations, let K be the number of populations
and ω = (ω1, · · · , ωK) their weights such that ωj ≥ 0, j = 1, . . . ,K and

∑K
j=1 ωj = 1.

Define, for j = 1, . . . ,K, the regression coefficients in the j-th population by βj ∈ Rd and
the intercept in the j-th population by bj ∈ R. Let ω = (ω1, . . . , ωK), b = (b1, · · · , bK),
β = [β1| · · · , |βK ] the d ×K matrix of regression coefficients and denote θ = (ω, β, b). The
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model of population mixture of binary regressions is given by:

Pθ(Y = 1|X = x) =

K∑
k=1

ωkg(< βk, x > +bk). (1)

We assume that the random variable X has a Gaussian distribution. We now focus on the
situation where X ∼ N (0, Id), Id being the identity d×d matrix. All results may be easily ex-
tended to the situation where X ∼ N (m,Σ), m ∈ Rd, Σ a positive and symetric d×d matrix.

Define the cross moments between the response Y and the covariable X, up to order 3:

– M1(θ) := Eθ[Y.X], first-order moment,

– M2(θ) := Eθ
[
Y.
(
X ⊗X −

∑
j∈[d] Y.ej ⊗ ej

)]
, second-order moment and

– M3(θ) := Eθ
[
Y
(
X ⊗ X ⊗ X −

∑
j∈[d]

[
X ⊗ ej ⊗ ej + ej ⊗ X ⊗ ej + ej ⊗ ej ⊗ X

])]
third-order moment.

Let, for k = 1, . . . ,K, λk = ‖βk‖ and µk = βk/‖βk‖. Using Stein’s identity, Anandkumar et
al. ([9]) prove the following lemma:

Lemma 1 ([9]). Under enough smoothness and integrability of the link function (which hold
for the logit and probit link functions, or under our assumption (H3) below) the moments
can be rewritten:

M1(θ) =

K∑
k=1

ωkλkE[g′
(
λk〈X,µk〉+ bk

)
] µk,

M2(θ) =

K∑
k=1

ωkλ
2
kE[g′′

(
λk < X,µk > +bk

)
] µk ⊗ µk,

M3(θ) =

K∑
k=1

ωkλ
3
kE[g(3)

(
λk < X,µk > +bk

)
] µk ⊗ µk ⊗ µk.

It is proved in [9] that the knowledge of M3(θ) leads to the knowledge of µ1, . . . , µK up
to their sign as soon as they are linearly independent. In the next section, we prove that the
knowledge of all cross moments till order 3 allows to recover all parameters for the probit link
function under the same assumption on the regression coefficients. We also prove that for a
general link function satisfying some weak assumption, the knowledge of all cross moments
till order 3 allows to recover all parameters provided they are not too far from 0.

3 Moment identifiability and estimation

To prove our moment identifiability result, we shall use the following assumptions:

– (H1) The vectors β1, . . . , βK are linearly independent and the weights are positive:
ωk > 0, k = 1, . . . ,K.

– (H2) The link function g is strictly increasing from 0 at −∞ to 1 at +∞, it has
continuous derivatives till order 4, decreasing first derivative on [0,+∞[, and it satisfies

∀z ∈ R, g(z) + g(−z) = 1.
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– (H3) There exists a neighborhood O of (0, 0) in R?+×R and any functions Ls, s = 1, 2, 3,
such that ∀ z ∈ R, ∀ (λ, b) ∈ O, we have

(|z|+ 1)

∣∣∣∣∂g(s+1)

∂λ
(λz + b)

∣∣∣∣ ≤ Ls(z)
and further for s = 1, 2, 3, ∫

R
Ls(z)e

−z2/2dz < +∞.

Notice that (H1) implies that d ≥ K, and that (H2) and (H3) hold in particular for the
logistic link function and the probit link function.
From (H2), one gets that

• (P1) The function g′ is positive and satisfies g′(x) = g′(−x) for all x ∈ R,

• (P2) The function g” satisfies g”(x) = −g”(−x) for all x ∈ R and g”(x) < 0 for x > 0.

To prove the limiting Gaussian distribution of our moment estimator, we shall need more as-
sumptions. For j = 1, . . . , 5, letGj be theK×K diagonal matrix having the E[g(j) (〈βk, X〉+ bk)]’s
on the diagonal.

– (H4) All diagonal coefficients of G3 are non zero.

– (H5) All diagonal coefficients of G1G3 −G2
2 are non zero.

3.1 Identifiability results

In the whole section we assume that (H1) holds. Under (H1), we see by Lemma 1 that K is
the rank of M2(θ).
It is proved in [9] we can recover the µk’s up to sign from the knowledge of M2(θ) and M3(θ),
but since under (H1) M1(θ) is a linear combination of the µk’s with positive coefficients, the
knowledge of M1(θ) allows to recover the signs. It is then seen that using M1(θ), M2(θ) and
M3(θ), one may recover the 3-uples(

ωkE[g′ (〈βk, X〉+ bk)]λk;ωkE[g” (〈βk, X〉+ bk)]λ2
k;ωkE[g(3) (〈βk, X〉+ bk)]λ3

k

)
,

k = 1, . . . ,K. Thus, one gets identifiability as soon as the function from ]0,+∞[×]0,+∞[×R
to its image that associates (ω, λ, b) to(

ωλ

∫
g′(λz + b)e−z

2/2dz;ωλ2

∫
g”(λz + b)e−z

2/2dz;ωλ3

∫
g(3)(λz + b)e−z

2/2dz

)
is one-to-one. Using integration by parts this is equivalent to the fact that the function from
]0,+∞[×]0,+∞[×R to its image that associates (ω, λ, b) to

λ

(
ω

∫
g′(λz + b)e−z

2/2dz;ω

∫
zg′(λz + b)e−z

2/2dz;ω

∫
z2g′(λz + b)e−z

2/2dz

)
is one-to-one. This is again equivalent to the fact that the function from ]0,+∞[×R to its
image that associates (λ, b) to(∫

zg′(λz + b)e−z
2/2dz∫

g′(λz + b)e−z2/2dz
;

∫
z2g′(λz + b)e−z

2/2dz∫
g′(λz + b)e−z2/2dz

)
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is one-to-one. For any (b, λ) ∈ R×]0,+∞[, define

dQ(b,λ)(z) =
g′(λz + b)e−z

2/2∫
g′(λz + b)e−z2/2dz

dz. (2)

Then it is equivalent to prove that the knowledge of(
E(b,λ)(Z);E(b,λ)(Z

2)
)

:=

(∫
zdQ(b,λ)(z);

∫
z2dQ(b,λ)(z)

)
(3)

implies the knowledge of (b, λ). When g is the probit link function, Q(b,λ) is a Gaussian
distribution and computations detailed in Section 6.1 leads to the following identifiability
result.

Theorem 1 (Probit identifiability). If (H1) holds and if g is the probit link function, one
may recover K and θ = (ω, β, b) from the knowledge of M1(θ), M2(θ) and M3(θ).

In the general situation, identifiability holds at least in an open set. To prove it, one just
has to prove that for some B > and L > 0, if (H2) holds, then, the function that associates
(b, λ) ∈] − B,B[×]0, L[ to

(
E(b,λ)(Z);E(b,λ)(Z

2)
)

is one-to-one on its image. This leads to
the following identifiability result whose proof is postponed to Section 6.2.

Theorem 2 (General identifiability). If (H1), (H2), (H3) hold and g(3)(0) 6= 0, there exist
L > 0 and B > 0 such that as soon as ‖βk‖ < L and |bk| < B for all k = 1, . . . ,K, then one
may recover K and θ = (ω, β, b) from the knowledge of M1(θ), M2(θ) and M3(θ).

Since the proof uses Taylor expansions, it only proves the existence of small enough
positive L and B such that the result holds. However, numerical study of the function
(b, λ) 7→

(
E(b,λ)(Z);E(b,λ)(Z

2)
)

when the link function g is the logit function shows that
identifiability seems to hold at least with L = 8 and B = 8.

3.2 The least squares moment estimator

In the previous section we showed that the parameters can be recovered by matching the
cross-moments till order 3. Those moments are unknown, so that we estimate them empiri-
cally using:

M̂1 =
1

n

n∑
i=1

YiXi

M̂2 =
1

n

n∑
i=1

[
Yi(Xi ⊗Xi −

∑
j∈[d]

ej ⊗ ej)
]

M̂3 =
1

n

n∑
i=1

[
Yi(Xi ⊗Xi ⊗Xi −

∑
j∈[d]

[
Xi ⊗ ej ⊗ ej + ej ⊗Xi ⊗ ej + ej ⊗ ej ⊗Xi

]
)
]
.

It is not possible to match the empirical moments exactly, so that we use a least-squares
estimator. Define for all θ:

Qn(θ) =
∑
j∈[d]

{
M̂1[j]−M1(θ)[j]

}2

+
∑
j,k∈[d]

{
M̂2[j, k]−M2(θ)[j, k]

}2

+
∑

j,k,l∈[d]

{
M̂3[j, k, l]−M3(θ)[j, k, l]

}2

and the estimator

θ̂n = argmin
θ∈Θ

Qn(θ). (4)
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Theorem 3. Assume that (H1), (H2), (H3) hold, and that Θ is compact and included in

the set of identifiable parameters. Then θ̂n is consistent.

If moreover (H4) and (H5) hold, then
√
n
(
θ̂n − θ?

)
converges in distribution under Pθ? to

a centered Gaussian distribution.

The proof of Theorem 3 is detailed in Section 6.3 and follows the usual analysis of the
asymptotic behavior of Z-estimators, the more delicate part of the proof being to prove that
the Hessian of Qn(θ) has an invertible limiting value.

3.3 Algorithm

The estimator θ̂n is computed by using the representation of the regression vectors βk through
their direction µk and norm λk, k = 1, . . . ,K. In a first step, we compute a preliminary
estimate of [µ1, . . . , µK ] using a spectral method. In a second step, we search the minimizer
of Qn using usual optimization methods. The preliminary estimator for the directions is
used as initial point for the directions in the optimization procedure.

Algorithm M3LS: Estimation of all parameters

input: X, Y, K, g
1 : Estimate the directions µ1, . . . , µK using Algorithm InitDir
2 : Optimize Qn(θ) using the estimators of 1. as initial directions

Output: The estimated parameter θ̂

The preliminary estimation of the directions is based on the spectral method. For any
vector z ∈ Rp, define B(z) the d× d matrix such that

B(z)[i, j] :=

d∑
s=1

M3(θ)[i, j, s]zs,

so that, using Lemma 1, we get

B(z) =

K∑
k=1

r(3)ωkλ
3
kE[g(3)

(
λk < X,µk > +bk

)
]〈µk, z〉µ⊗2

k .

It is proved in [1] that it is possible to recover the directions by joint diagonalisation of
B(z1), . . . B(zP ) for distinct vectors z1, . . . , zP , P ≥ 2. Joint diagonalisation ofB(z1), . . . B(zP )
means finding a matrix V such that the matrices V B(zp)V

T are the most diagonal possible.
The normalized vectors µ1, . . . , µK are obtained up to sign and label switching by taking the
first K vectors of V −1. Let us denote U the matrix of these K vectors. Let O = U−1

∗ M1(θ) ∈
RK , with U−1

∗ the general inverse of U. The real numbers ωkλkE[g′
(
λk〈X,µk〉 + bk

)
], k =

1, . . . ,K, are given up to sign by the elements of O. Since they are positive, the sign of the
µk’s are obtained by multiplying −1 all the vectors associated to the negative values of O.
In pratice, the vectors µ1, . . . , µK are estimated using the joint diagonalisation method ap-
plied to the matrices B̂(zp), p = 1, . . . , P , computed using M̂3.

4 Simulations

4.1 R package

The developed R-package is called morpheus [3] and divided into two main parts:

6



Algorithm InitDir: Joint diagonalisation algorithm to estimate the directions

input: X, Y,K

1 : Estimate the cross moments M̂1, M̂2 and M̂3 as explained in section 3.2
2 : Choose vectors {z1, z2 . . . , zP } ⊆ Rd (for instance: the canonical basis
e1, e2, . . . , eP of Rd)

3 : Compute B̂(zp) for all p ∈ {1, 2, . . . , P}
4 : Joint diagonalisation: compute V such that V B̂(zp)V

T are the most diagonal
possible
5 : Compute U = V −1[1 : K] the K-first vectors of V −1 (by ordering the diagonal
values in decreasing absolute value)

6 : Compute O = ginv(U)M̂1

7: Multiply by −1 all the vectors of U corresponding to the negative values of O
U [, O < 0] = −U [, O < 0]
Output: The preliminar estimators of µ1, . . . , µK

1. the computation of the directions matrix µ, based on the empirical cross-moments as
described in the previous sections;

2. the optimization of all parameters (including µ), using the initially estimated directions
as a starting point.

The former is a straightforward translation of the mathematical formulas (file R/computeMu.R),
while the latter calls R constrOptim() method on the objective function expression and its
derivative (file R/optimParams.R). For usage examples, please refer to the package help.

4.2 Experiments

In this section, we evaluate our algorithm in a first step using mean squared error (MSE).
In a second step, we compare experimentally our moments method (morpheus package [3])
and the likelihood method (with felxmix package [6]). We arbitrarily choose the parameters
for the simulations, which should be discovered by the algorithms (ours, and the likelihood
algorithm).

Experiment 1 (dimension 2):

K = 2

p = (0.5, 0.5)

b = (−0.2, 0.5)

β =

(
1 3
−2 1

)
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Experiment 2 (dimension 5):

K = 2

p = (0.5, 0.5)

b = (−0.2, 0.5)

β =


1 2
2 −3
−1 0
0 1
3 0


Experiment 3 (dimension 10):

K = 3

p = (0.3, 0.3, 0.4)

b = (−0.2, 0, 0.5)

β =



1 2 −1
2 −3 1
−1 0 3
0 1 −1
3 0 0
4 −1 0
−1 −4 2
−3 3 0
0 2 1
2 0 −2


For all three experiments we use both logit and probit links. Computations are always

run on the same data both for our package and flexmix − which is a reference for this kind
of estimation, using an iterative algorithm to maximize the log-likelihood. Results are ag-
gregated over N = 1000 Monte-Carlo runs.

Mean squared error (MSE). Graphical representations of the MSE versus the sample size
(n) are given in figures 1, 2 and 3. In each figure, we represent the MSE associated with each
parameter vector versus the sample size. We can see that the goodness of the estimation
depends on the sample size and that enough observations is needed to properly estimate
the parameters. We have from figure 1 and figure 2 that for our moment method, with
dimension less or equal to 5, the necessary sample size is around of 105. For large dimension,
figures 3 show that 106 is not enough to estimate the parameters vectors β. Indeed our es-
timation method use the spectral estimator, which need more enough data, as starting point.

Algorithms performance. To evaluate algorithms performance, the total number of sam-
ple points is fixed to n = 105. This value still enough to observe correct performances, yet
small enough to remain realistic.

On the figures 4 and 5, all (true) parameters (p, b, β) are re-ordered in a real vector, of
size K × (d+ 2)− 1. This vector is plotted as a line to improve visualization experience, but
it must be noted that this does not represent any curve data. Dotted lines corresponds to
the computed values plus or minus one standard deviation, and computed values themselves
are represented with long dashed lines. The leftmost column corresponds to experiment 1
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Figure 1: Experiment 1; Top: logit link function
(

(a) MSE(β̂), (b) MSE(̂b,p̂)
)

, bottom: probit

link function:
(

(c) MSE(β̂), (d) MSE((̂b,p̂)
)

.

Figure 2: Experiment 2; Top: logit link function
(

(a) MSE(β̂), (b) MSE(̂b,p̂)
)

, bottom: probit

link function:
(

(c) MSE(β̂), (d) MSE((̂b,p̂)
)

.

(d = 2), the middle one to experiment 2 (d = 5), and the rightmost column corresponds to
experiment 3 (d = 10).
Figure 4: logit link. While most of the times flexmix finds a better solution than our proposed
algorithm (smaller variance), both methods are good on average for d ≤ 5. The case d = 10
is not handled well neither by the flexmix package nor by our package (the latter showing
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Figure 3: Experiment 3; Top: logit link function
(

(a) MSE(β̂), (b) MSE(̂b,p̂)
)

, bottom: probit

link function:
(

(c) MSE(β̂), (d) MSE((̂b,p̂)
)

.

even poorer accuracy). Indeed in this relatively high dimension the number of observations
should be much higher.

Figure 4: Logit link function. Top: our package, bottom: flexmix. From left to right: experiment
1, 2 and 3 respectively

Figure 5: probit link. In this case our algorithm performs slightly better than its flexmix
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counterpart for d ≤ 5. However, again, the variance in the case d = 10 is way too high −
in fact even the average value is generally wrong, when coefficients are non-zero. We can
increase n by a factor 100 to obtain more accurate results.

Figure 5: Probit link function. Top: our package, bottom: flexmix. From left to right: experi-
ment 1, 2 and 3 respectively

Considering both links with d ≤ 5, the algorithms performances are comparable with a
global small advantage to our method. The case d = 10 is handled better by the flexmix
algorithm, although clearly not well. Finally, concerning our method we observe a tendancy
to overestimate large parameters while underestimating small ones. This observation is in-
versed for flexmix.

Computational time. It must be noted that our algorithm timing does not depend on n,
since it operates on matrices of size O(d ×K). Thus it can be more suitable for very large
datasets, where the variability is clearly reduced. Figure 6 (time by seconds versus log10 n)
illustrate this fact: the timings clearly favor our package − because increasing n has almost
no impact on the running time. However, flexmix timings are not that high: just a few
minutes for the longest run, on average, on one million sample points. To obtain the data
shown on the figure we averaged 1000 runs on random parameters.

5 Some other identifiability results

In this section, we provide several further identifiability results for mixtures of generalized
linear models (GLMs) under various assumptions.
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Figure 6: Timings versus sample size. Dotted lines: flexmix; others: our algorithm. Black for
d = 2, red for d = 5 and blue for d = 10.

5.1 Continuous covariates

We first consider the setting where the random vector (X,Y ), X ∈ Rd, Y ∈ R is such that

E (Y |X) =

K∑
k=1

ωkg(〈βk, X〉+ bk).

We assume that for all k, ωk ≥ 0, that
∑K
k=1 ωk = 1, and that g takes value in (0, 1). In case

Y takes binary values, this is exactly the model we considered in the previous sections. We
show below that the directions of the regression vectors may be recovered as soon as they
are distinct, even if the link function is unknown.
Denote Pg,ω,β,b the probability distribution of (X,Y ), with ω = (ω1, · · · , ωK), β = [β1|, · · · , |βK ] ∈
Rd×K , and b = (b1, · · · , bK) ∈ RK . When g is unknown obviously it is needed to fix origin
and scale, we chioose to fix g(0) and g(1) (with no loss of generality). Denot µk = βk/‖βk‖
and λk = ‖βk‖, k = 1, . . . ,K, so that βk = λkµk.
We introduce the assumptions:

– (S1) The support of the law of X is Rd.
– (S2) For all j 6= k, µj 6= µk and µj 6= −µk.

– (S3) The function g : R →]0, 1[ is increasing, has limit 0 in −∞, limit 1 in +∞, and
it is continuously derivable with derivative having limit 0 in −∞ and in +∞. Also,
g(0) < g(1) are fixed.

Remark: There is no assumption on K with respect to d.

Theorem 4. Under assumptions (S1), (S2) and (S3), knowledge of Pg,ω,β,b allows to recover
K and µ1, . . . , µK .
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Proof.
If one knows the law of (Y,X) then the function

x 7→ H(x) =

K∑
k=1

ωkg(λk〈µk, x〉+ bk)

is known on the support of X, thus on Rd. Then the function

DH(x) =

K∑
k=1

ωkg
′(λk〈µk, x〉+ bk)µk

is known, and if V ∈ Rd, limt→+∞ ‖DH(tV )‖ = 0 except in case V is orthogonal to at least
one of the µk’s. The set of V ∈ Rd such that limt→+∞ ‖DH(tV )‖ 6= 0 is then ∪Kk=1〈µk〉⊥,
union of disjoint vectorial spaces of dimension d− 1, which allows to recover the orthogonal
space of 〈µk〉⊥ for all k, thus to recover Kand all one dimensional spaces 〈µk〉. Since for all
k, ωkg

′(bk) > 0, this allows to recover the µk’s.

Under the more stringent assumption that the regression vectors are linearly independent,
it is possible to recover all parameters and the link function.

– (S2bis) The vectors µ1, . . . , µK are linearly independent.

Remark: (H2bis) implies that K ≤ d.

Theorem 5. Under assumptions (S1), (S2bis) and (S3), the mixture model is identifiable:
the knowledge of Pg,ω,β,b allows to recover K, g, ω, β and b.

Proof.
Using Theorem 4, one knows K and the µk’s. Since the µk’s are linearly independent, by
considering the spaces that are orthogonal to all Uk’s except one, we see that the following
functions are known: h1, . . . , hK given for j = 1, . . . ,K by:

t 7→ hj(t) = ωjg(λjt+ bj) +

K∑
k=1,k 6=j

ωkg(bk).

Then:

hj(0) =

K∑
k=1

ωkg(bk),

lim
t→+∞

hj(t) = ωj +

K∑
k=1,k 6=j

ωkg(bk),

lim
t→−∞

hj(t) =

K∑
k=1,k 6=j

ωkg(bk).

This allows to recover ωj and g(bj) for j = 1, . . . ,K. Thus the functions

t 7→ `j(t) = g(λjt+ bj)

are known. Since g(0) = `j(−bj/λj) and g(1) = `j((1 − bj)/λj) are fixed, one can find λj
and bj , and then the function g.

13



5.2 Continuous and categorical covariates

We now consider the situation where part of the covariates are catergorical, we denote them
Z, and {z1, . . . , zm} ⊂ Rd′ their possible values. We still denote X ∈ Rd the continuous
covariates. Now

E (Y |X,Z) =

K∑
k=1

ωkg(〈βk, X〉+ 〈γk, Z〉+ bk),

and we denote Pg,ω,β,γ,b the probability distribution of (X,Y ), with ω = (ω1, · · · , ωK),

β = [β1|, · · · , |βK ] ∈ Rd×K , γ = [γ1|, · · · , |γK ] ∈ Rd′×K , and b = (b1, · · · , bK) ∈ RK . We
introduce

– (S4) The matrix


1 zT1
1 zT2
...

...
1 zTm

 is full rank.

Remark: (S4) implies that d′ + 1 ≤ m.

It is the continuous covariates that allow to identify g.

Theorem 6. Under assumptions (S1), (S2bis), (S3) and (S4), the model is identifiable: the
knowledge of Pg,ω,β,γ,b allows to recover K, g, ω, β, γ et b.

Proof.
Using Theorem 4 applied to the distributions of Y conditional to X and Z = z for all z ∈
{z1, . . . , zm}, the knowledge of Pg,ω,β,γ,b allows to recover K, g, ω, β, and Ak = (ak,i)1≤i≤m,
k = 1, . . . ,K, with

ak,i = bk + 〈γk, zi〉.

We then know for all k

Ak =


1 zT1
1 zT2
...

...
1 zTm


(
bk
γk

)

which allows to recover the bk’s and γk’s when (S4) holds.

5.3 Longitudinal observations

We now consider the situation where for each individual Y , conditional to the membership of
a population, we have p independent experiments with several covariates X1, . . . , Xp. Thus
the random variable Y has dimension m, and

E (Y |X,Z) =

K∑
k=1

ωk (g(〈βk, Xj〉+ 〈γk, Zj〉+ bk))1≤j≤p .

As soon as the number of experiments is at least 3, we do not need the linear independence
of the regression vectors to get identifiability.

Theorem 7. Assume that p ≥ 3. If (S1), (S2), (S3) and (S4) hold, then the model is
identifiable: the knowledge of Pg,ω,β,γ,b allows to recover K, g, ω, β, γ and b.
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Proof.
If one knows the law of Y , then, for all fixed z ∈ {z1, . . . , zm}, one knows the function
H : (Rd)p → (0, 1)p given by

H(x1, . . . , xp) =

K∑
k=1

ωk

(
g(〈βk, xj〉+ b̃k(z))

)
1≤j≤p

with b̃k(z) = bk + 〈γk, zi〉. Let us firts prove that for all z, the functions g(〈βk, ·〉+ b̃k(z)) are
linearly independent. Indeed, if α1, . . . , αKare such that for all x ∈ Rd,

K∑
k=1

αkg(〈βk, x〉+ b̃k(z)) = 0,

then by taking the derivative, for all x ∈ Rd,

K∑
k=1

αkg
′(〈βk, x〉+ b̃k(z))βk = 0.

Since (S2) holds, there exists V ∈ 〈βk〉⊥ such that V /∈ 〈βj〉⊥, j 6= k. Then taking x = tV

and t tending to infiny, we get that αkg
′(b̃k(z))βk = 0, and then αk = 0.

Now, following the spectral method of proof developed in [2] to prove that multidimensional
mixtures are identifiable, we see that the knowledge of H allows to recover K, the ωk’s and,
for all z, the functions g(〈βk, ·〉+ b̃k(z)).
Then, if one knows the function x 7→ g(λk〈µk, x〉+ b̃k(z)) one can recover µk by taking the
derivative, then g and the b̃k(z))’s as in the proof of Theorem 5 then the γk’s and the bk’s
as in the proof of Theorem 6.

5.4 Some perspectives

Identifiability of a model is a first step to obtain theoretical guarantees for practical estima-
tion procedures. In this paper, we proposed one moment method as an estimation strategy
in the particular case of binary outcomes and gaussian covariates, for which we proved the
asymptotic Gaussian behaviour. As soon as the identifiability of a model is known, any rea-
sonable estimation strategy leads to consistent estimators. Considering the non parametric
estimation of the link function, model selection methods should lead to well behaved esti-
mators. Our identifiability results open the way to build estimators for which theoretical
guarantees could be obtained. In particular, for parametric maximum likelihood estimators
in mixture models for which algorithms already exist, consistency is a consequence of our
identifiability theorems by applying the usual theory.

6 Proofs

6.1 Proof of Theorem 1

When the link function g is probit, then g′(z) = 1√
2π
e−z

2/2. Replacing in equation (2), we

have

dQ(b,λ)(z) =
e−

1
2 ((λz+b)2+z2)∫

e−
1
2 ((λz+b)2+z2)dz

dz,
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which after some computations leads to

Q(b,λ) = N
(
− λb

λ2 + 1
;

1

λ2 + 1

)
.

Its first two moments are then given by

(α1, α2) :=
(
E(b,λ)(Z);E(b,λ)(Z

2)
)

=

(
− λb

λ2 + 1
;
λ2b2 + λ2 + 1

(λ2 + 1)2

)
.

We can then recover b and λ by

b = −α1
(λ2 + 1)

λ

and

λ =
√

(α2 − α2
1)−1 − 1.

6.2 Proof of Theorem 2

Using (H3) and integration by parts, we get that for (λ, b) in a neighborhood of (0, 0)

(
E(b,λ)(Z);E(b,λ)(Z

2)
)

=

(
λ
∫
g′′(λz + b)e−z

2/2dz∫
g′(λz + b)e−z2/2dz

; 1 +
λ2
∫
g(3)(λz + b)e−z

2/2dz∫
g′(λz + b)e−z2/2dz

)
. (5)

Using (H2),

– (P3) g′(0) > 0

– (P4) g′′(0) = g(4)(0) = 0

Let us define the functions Ks, s = 1, 2, 3 such that

Ks : R?+ × R → R
(λ, b) 7→ Ks(λ, b) =

∫
g(s)(λz + b)e−z

2/2dz

Using (H3), the functions Ks, s = 1, 2, 3, are differentiable in a neighborhood of (0, 0) and
Taylor expansion writes:

Ks(λ, b) = Ks(0, 0) + 〈∇Ks(0, 0), (λ, b)〉+ o(λ2 + b2). (6)

Now

∂Ks

∂λ
(0, 0) =

∫
zg(s+1)(0)e−z

2/2dz (7)

and

∂Ks

∂b
(0, 0) =

∫
g(s+1)(0)e−z

2/2dz (8)

so that

Ks(λ, b) = g(s)(0)

∫
e−z

2/2dz + g(s+1)(0)

∫
(λz + b)e−z

2/2dz + o(λ2 + b2). (9)

Using (P4) and (9), we have∫
g′(λz + b)e−z

2/2dz =
√

2πg′(0) + o(λ2 + b2), (10)

16



∫
g′′(λz + b)e−z

2/2dz =
√

2πg(3)(0)b+ o(λ2 + b2), (11)

and ∫
g(3)(λz + b)e−z

2/2dz =
√

2πg(3)(0) + o(λ2 + b2). (12)

Therefore, replacing (10) to (12) in (5), we get

E(b,λ)(Z) =
g(3)(0)

g′(0)
λb+ o(λ2 + b2)

and

E(b,λ)(Z
2) = 1 +

g(3)(0)

g′(0)
λ2 + o(λ2 + b2),

which easily leads to

λ2 =
g′(0)

g(3)(0)

(
E(b,λ)(Z)2 − 1

)
+ o(|E(b,λ)(Z)2 − 1|+ |E(b,λ)(Z)|)

and

λb =
g′(0)

g(3)(0)
E(b,λ)(Z) + o(|E(b,λ)(Z)2 − 1|+ |E(b,λ)(Z)|).

This proves that the function (λ, b) 7→ (E(b,λ)(Z), E(b,λ)(Z
2)) is invertible in a neighborhood

of (0, 0).

6.3 Proof of Theorem 3

Let θ∗ be the true value of the parameter. For each θ, by the law of large numbers, Qn(θ)
converges to

Q(θ) :=
∑
j∈[d]

{
M1(θ∗)[j]−M1(θ)[j]

}2

+
∑
j,k∈[d]

{
M2(θ∗)[j, k]−M2(θ)[j, k]

}2

+
∑

j,k,l∈[d]

{
M3(θ∗)[j, k, l]−M3(θ)[j, k, l]

}2

.

Define
S = sup

θ∈Θ

∣∣∣Qn(θ)−Q(θ)
∣∣∣.

Since Q(θ) has θ∗ as unique minimum (up to label switching), to prove the consistency of

θ̂n, it is enough to prove that S converges to 0 in probability, see Theorem 5.7 in [10]. We
easily get

S ≤
∑
j∈[d]

(∣∣∣M̂1[j]−M1(θ?)[j]
∣∣∣)(∣∣M̂1[j]

∣∣+
∣∣M1(θ∗)[j]

∣∣+ 2 sup
θ∈Θ

∣∣M1(θ)[j]
∣∣)

+
∑
j,k∈[d]

(∣∣∣M̂2[j, k]−M2(θ?)[j, k]
∣∣∣)(∣∣M̂2[j, k]

∣∣+
∣∣M2(θ∗)[j, k]

∣∣+ 2 sup
θ∈Θ

∣∣M2(θ)[j, k]
∣∣)

+
∑

j,k,l∈[d]

(∣∣∣M̂3[j, k, l]−M3(θ?)[j, k, l]
∣∣∣)(∣∣M̂3[j, k, l]

∣∣+
∣∣M3(θ∗)[j, k, l]

∣∣+ 2 sup
θ∈Θ

∣∣M3(θ)[j, k, l]
∣∣),
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and since the functions θ 7→ Mr(θ), r = 1, 2, 3 are continuous and Θ is compact, then there
exist c1, c2 and c3 such that

S ≤
∑
j∈[d]

(
c1 +

∣∣M̂1[j]
∣∣)(∣∣∣M̂1[j]−M1(θ?)[j]

∣∣∣)
+

∑
j,k∈[d]

(
c2 +

∣∣M̂2[j, k]
∣∣)(∣∣∣M̂2[j, k]−M2(θ?)[j, k]

∣∣∣)
+

∑
j,k,l∈[d]

(
c3 +

∣∣M̂3[j, k, l]
∣∣)(∣∣∣M̂3[j, k, l]−M3(θ?)[j, k, l]

∣∣∣)
which converges to 0 by the law of large numbers, which ends the proof of the consistency
of θ̂n.

Let us define Zn as Zn(θ) = ∇θQn(θ). The r − th coordinate of Zn(θ) can be obtained
by

∂Qn(θ)

∂θr
= −2

{ ∑
j∈[d]

∂M1(θ)[j]

∂θr

[
M̂1[j]−M1(θ)[j]

]
+

∑
j,k∈[d]

∂M2(θ)[j, k]

∂θr

[
M̂2[j, k]−M2(θ)[j, k]

]
+

∑
j,k,l∈[d]

∂M3(θ)[j, k, l]

∂θr

[
M̂3[j, k, l]−M3(θ)[j, k, l]

]}
Using Taylor expansion, we get

Zn(θ̂n) = Zn(θ∗) +

∫ 1

0

D1Zn
[
θ∗ + t(θ̂n − θ∗)

](
θ̂n − θ∗

)
dt (13)

where D1Zn is the first derivative matrix of Zn. Since Zn(θ̂n) = 0, we have

−
√
nZn(θ∗) =

[∫ 1

0

D1Zn
[
θ∗ + t(θ̂n − θ∗)

]
dt

]√
n
(
θ̂n − θ∗

)
(14)

Let us set
M̂ =

(
M̂1[j], M̂2[j, k], M̂3[j, k, l]

)
1≤j,k,l≤d

and
M(θ?) =

(
M1(θ?)[j],M2(θ?)[j, k],M3(θ?)[j, k, l]

)
1≤j,k,l≤d

Aplying the central limit theorem and the delta method we get that
√
nZn(θ∗) is asymptot-

ically Gaussian.
The (r1, r2)− th coordinate of D1Zn(θ) = ∇2

θQn(θ) are given by

∂2Qn(θ)

∂θr1∂θr2
= −2

∑
j∈[d]

∂2M1(θ)[j]

∂θr1∂θr2
×
[
M̂1[j]−M1(θ)[j]

]
− 2

∑
j,k∈[d]

∂2M2(θ)[j, k]

∂θr1∂θr2
×
[
M̂2[j, k]−M2(θ)[j, k]

]
− 2

∑
j,k,l∈[d]

∂2M3(θ)[j, k, l]

∂θr1∂θr2
×
[
M̂3[j, k, l]−M3(θ)[j, k, l]

]
+ Vr1r2(θ)
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with

Vr1r2(θ) = 2
∑
j∈[d]

∂M1(θ)[j]

∂θr1
× ∂M1(θ)[j]

∂θr2
+ 2

∑
j,k∈[d]

∂M2(θ)[j, k]

∂θr1
× ∂M2(θ)[j, k]

∂θr2

+ 2
∑

j,k,l∈[d]

∂M3(θ)[j, k, l]

∂θr1
× ∂M3(θ)[j, k, l]

∂θr2
.

It is not difficult to prove that
∫ 1

0
D1Zn

[
θ∗+ t(θ̂n− θ∗)

]
dt converges in probability to V (θ∗)

so that the proof is completed by showing that the matrix V = V (θ?) is invertible.
V is a q× q matrix with q = K(2 + d)− 1. Let U ∈ Rq. We shall denote the coordinates

of U according to the parameters. Using the form of V we get that UTV U = 0 if and only
if:

UTDM1(θ)[j] = 0, j = 1, . . . , q, (15)

and

UTDM2(θ)[j, l] = 0, j, l = 1, . . . , q, (16)

and

UTDM3(θ)[j, l,m] = 0, j, l,m = 1, . . . , q. (17)

Here, DM·[] is the gradient vector of the involved coordinate of M·. Denote U(βk) the
d-dimensional vector involving the coordinates of U according to parameter βk. Denote 0
the d-dimensional zero vector, 0 ⊗ 0 the d × d-dimensional zero matrix and 0 ⊗ 0 ⊗ 0 the
d× d× d-dimensional zero third order tensor. Then, the equation (15) can be rewritten as:

UTDM1(θ)[j] =

K−1∑
k=1

U(ωk)
∂M1(θ)[j]

∂ωk
+

K∑
k=1

U(bk)
∂M1(θ)[j]

∂bk
+

K∑
k=1

d∑
m=1

U(βmk)
∂M1(θ)[j]

∂βmk
,

(18)
the equation (16) can be rewritten as

UTDM2(θ)[j, l] =

K−1∑
k=1

U(ωk)
∂M2(θ)[j, l]

∂ωk
+

K∑
k=1

U(bk)
∂M2(θ)[j, l]

∂bk
+

K∑
k=1

d∑
m=1

U(βmk)
∂M2(θ)[j, l]

∂βmk
,

(19)
and the equation (17) can be rewritten as

UTDM3(θ)[j, l,m] =

K−1∑
k=1

U(ωk)
∂M3(θ)[j, l,m]

∂ωk
+

K∑
k=1

U(bk)
∂M3(θ)[j, l,m]

∂bk
+

K∑
k=1

d∑
s=1

U(βsk)
∂M3(θ)[j, l,m]

∂βsk
.

(20)

Using the fact that
∑d
k=1 ωk = 1, the first terms of the equations (18) to (20) are rewritten

as:

K−1∑
k=1

U(ωk)
∂M1(θ)[j]

∂ωk
=

K−1∑
k=1

U(ωk)
{
E [g′ (〈x, βk〉+ bk)] .βk(j)

− E [g′ (〈x, βK〉+ bK)] .βK(j)
}
, (21)
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K−1∑
k=1

U(ωk)
∂M2(θ)[j, l]

∂ωk
=

K−1∑
k=1

U(ωk)
{
E [g′′ (〈x, βk〉+ bk)] .βk(j)βk(l)

− E [g′′ (〈x, βK〉+ bK)] .βK(j)βK(l)
}

(22)

and
K−1∑
k=1

U(ωk)
∂M3(θ)[j, l,m]

∂ωk
=

K−1∑
k=1

U(ωk)
{
E
[
g(3) (〈x, βk〉+ bk)

]
.βk(j)βk(l)βk(m)

− E
[
g(3) (〈x, βK〉+ bK)

]
.βK(j)βK(l)βK(m)

}
(23)

respectively. Likewise the seconds terms of equations (18) to (20) are rewritten as:

K∑
k=1

U(bk)
∂M1(θ)[j]

∂bk
=

K∑
k=1

ωkU(bk)E [g′′ (〈x, βk〉+ bk)] .β(j), (24)

K∑
k=1

U(bk)
∂M2(θ)[j, l]

∂bk
=

K∑
k=1

ωkU(bk)E
[
g(3) (〈x, βk〉+ bk)

]
.β(j)β(l) (25)

and
K∑
k=1

U(bk)
∂M3(θ)[j, l,m]

∂bk
=

K∑
k=1

ωkU(bk)E
[
g(4) (〈x, βk〉+ bk)

]
.βk(j)β(l)kβk(m) (26)

respectively. Derivating with respect to the βk’s coordinates and using Stein’s identity, the
last terms of equations (18) to (20) are rewritten as:

K∑
k=1

d∑
m=1

U(βmk)
∂M1(θ)[j]

∂βmk
=

K∑
k=1

ωkE
[
g(3) (〈x, βk〉+ bk)

]
〈βk, U(bk)〉βk(j)

+

K∑
k=1

ωkE [g′ (〈x, βk〉+ bk)]U(βk(j)), (27)

K∑
k=1

d∑
m=1

U(βmk)
∂M2(θ)[j, l]

∂βmk
=

K∑
k=1

ωkE
[
g(4) (〈x, βk〉+ bk)

]
〈βk, U(bk)〉βk(j)βk(l)

+

K∑
k=1

ωkE [g′′ (〈x, βk〉+ bk)]
{
βk(j)U(βk(l))

+ βk(l)U(βk(j))
}
, (28)

and

K∑
k=1

d∑
s=1

U(βsk)
∂M3(θ)[j, l,m]

∂βsk
=

K∑
k=1

ωkE
[
g(5) (〈x, βk〉+ bk)

]
〈βk, U(bk)〉βk(j)βk(l)βk(s)

+

K∑
k=1

ωkE
[
g(3) (〈x, βk〉+ bk)

]{
βk(j)βk(l)U(βk(s))

+ βk(j)U(βk(l))βk(s) + U(βk(j))βk(l)βk(s)
}

(29)
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respectively. Then using equations (18) to (29), we can rewrite equation (15) as:

0 =

K−1∑
k=1

U(ωk)
{
E
[
g′ (〈x, βk〉+ bk)

]
βk − E

[
g′ (〈x, βK〉+ bK)

]
βK

}
+

K∑
k=1

ωkU(bk)E
[
g′′ (〈x, βk〉+ bk)

]
βk +

K∑
k=1

ωkE
[
g(3) (〈x, βk〉+ bk)

]
〈U(βk), βk〉βk

+

K∑
k=1

ωkE
[
g′ (〈x, βk〉+ bk)

]
U(βk), (30)

rewrite equation (16) as:

0⊗ 0 =

K−1∑
k=1

U(ωk)
[
E
[
g′′ (〈x, βk〉+ bk)

]
βk ⊗ βk − E

[
g′′ (〈x, βK〉+ bK)

]
βK ⊗ βK

]
+

K∑
k=1

ωkU(bk)E
[
g(3) (〈x, βk〉+ bk)

]
βk ⊗ βk

+

K∑
k=1

ωkE
[
g(4) (〈x, βk〉+ bk)

]
〈U(βk), βk〉βk ⊗ βk

+

K∑
k=1

ωkE
[
g′′ (〈x, βk〉+ bk)

](
U(βk)⊗ βk + βk ⊗ U(βk)

)
, (31)

and rewrite equation (17) as:

0
⊗3

=

K−1∑
k=1

U(ωk)
[
E
[
g(3) (〈x, βk〉+ bk)

]
β⊗3
k − E

[
g(3) (〈x, βK〉+ bK)

]
β⊗3
K

]
(32)

+

K∑
k=1

ωkU(bk)E
[
g(4) (〈x, βk〉+ bk)

]
β⊗3
k +

K∑
k=1

ωkE
[
g(5) (〈x, βk〉+ bk)

]
〈U(βk), βk〉β⊗3

k

+

K∑
k=1

ωkE
[
g(3) (〈x, βk〉+ bk)

](
U(βk)⊗ βk ⊗ βk + βk ⊗ U(βk)⊗ βk + βk ⊗ βk ⊗ U(βk)

)
.

We shall first prove that the vectors U(β1), . . . , U(βK) all belong to the linear space spanned
by β1, . . . , βK .

Let W be any vector that is orthogonal to this linear space. By multiplying (32) on the
right by W , and by using the fact that β1, . . . , βK are linearly independent by (H1), we get
that

∀k = 1, . . . ,K, ωk(G3)k〈U(βk),W 〉 = 0.

Using (H1) we have ωk > 0, k = 1, . . . ,K so that we get

∀k = 1, . . . ,K, (G3)k〈U(βk),W 〉 = 0.

Then, if (H4) holds, we get that for any k and any W , 〈U(βk),W 〉 = 0, which proves that
the vectors U(β1), . . . , U(βK) all belong to the linear space spanned by β1, . . . , βK . Let B
be the d ×K matrix having β1, . . . , βK as colomn vectors. Let U(β) be the d ×K matrix
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having U(β1), . . . , U(βK) as colomn vectors. We thus have that there exists a K×K matrix
A = (A1, . . . , AK) such that UU(β) = BA.
Set

U(ω) =

(
U(ω1), . . . , U(ωK−1),−

K−1∑
k=1

U(ωk)

)
,

U(b) = (U(b1), . . . , U(bK))

and recall that

ω =

(
ω1, . . . , ωK−1, 1−

K−1∑
k=1

ωk

)
.

Whenever R is a K-dimensional vector, denote Diag(R) the K ×K diagonal matrix having
the Rk’s on the diagonal.
Let P, Q and ∆ be diagonal matrices such that P = Diag(U(ω)), Q = Diag(U(b)) and
∆ = Diag(ω). For W ∈ Rd, set, D = Diag (〈β1,W 〉, . . . , 〈βK ,W 〉) . Then using the fact that
B is full rank, (32) gives that

G3PD +G4∆QD +G5 +AG3∆D +G3∆DAT + ∆Diag (〈U(β1), β1〉, . . . , 〈U(βK), βK〉) , BAK〉)D
+G3Diag (〈U(β1), β1〉, . . . , 〈U(βK), βK〉) = 0⊗ 0. (33)

Since U(β) = BA, then U(βk) =
∑K
r=1 βrArk = BAk. This implies that

Diag(〈U(β1), β1〉, . . . , 〈U(βK), βK〉) = Diag(〈BA1, β1〉, . . . , 〈AK , βK〉) = D̃.

So (33) can be rewriten as

G3PD +G4∆QD +G5∆D̃D +AG3∆D +G3∆DAT +G3∆D̃ = 0⊗ 0, (34)

So that for all W ∈ Rd, W ∈ Rd, AG3∆D +G3∆DAT is a diagonal matrix. Since G3∆ has
no zero entries, this proves that, under (H1) and (H3), A is a diagonal matrix. In such a
case,

D̃ = AB̃ avec B̃ = Diag
(
‖β1‖2, . . . , ‖βK‖2

)
and (34) can be rewriten as

G3PD +G4∆QD +G5∆AB̃D +AG3∆D +G3∆DAT +G3∆AB̃ = 0⊗ 0. (35)

But by taking, for k = 1, . . . ,K, Wk such that βTkWk = 0, we have D = 0. In this case, (35)
is given by

G3∆AB̃ = 0⊗ 0,

and using the fact that we get that G3, ∆ and B̃ have no zero entries we get that A = 0.
This implies that U(βk) = 0, k = 1, 2, . . . ,K. Then using the fact that B is full rank, we
conclude from (30) and (31) that

G1P +G2∆Q = 0⊗ 0, (36)

and
G2P +G3∆Q = 0⊗ 0. (37)

Multipliying (36) by G3 and (37) by G2, we have

G1G3P +G2G3∆Q = 0⊗ 0, (38)
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and
G2

2P +G2G3∆Q = 0⊗ 0. (39)

Taking the difference (38)-(39), we get(
G1G3 −G2

2

)
P = 0⊗ 0,

and since G1G3 −G2
2 has no zero entries, this leads to P = 0. Moreover, since G3∆ has no

zero entries, this leads also Q = 0. Thus, under (H1), (H4) and (H5), the matrix V is full
rank.
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