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 by showing that any affine language can be recognized by an AfA with certain limitation on the entries of affine states and transition matrices. Lastly, we present the first languages shown to be not recognized by AfAs with bounded-error.

Introduction

Finite automata are interesting computational models because of their simplicity, compared to more complex models like pushdown automata or Turing machines. They also represent a very concrete restriction on computation: they only have a finite memory. A lot of different automata models have been studied during the years, such as deterministic [START_REF] Sipser | Introduction to the Theory of Computation, 3rd edition[END_REF], probabilistic [START_REF] Paz | Introduction to Probabilistic Automata[END_REF] and quantum [START_REF] Ambainis | Automata: From Mathematics to Applications, chap[END_REF] ones. All these models share two common features: the state vector set is compact and the acceptance function can be interpreted as linear. The linearity is desirable because of mathematical simplicity, but on the other hand, it may represent a limitation on the computational power.

Jeandel [START_REF] Jeandel | Topological automata[END_REF] demonstrated that in the bounded-error acceptance model the finite automata with compact state set accept only regular languages. Hence the compactness property of the state set may be one very important limiting the computational power, but since most known models have a compact state set, it remains open how much the compactness of the state set actually contributes.

Recently, A. Díaz-Caro and A. Yakaryılmaz introduced a new model, called affine automata [START_REF] Díaz-Caro | Affine computation and affine automaton[END_REF], also investigated in [START_REF] Villagra | Language recognition power and succintness of affine automata[END_REF] and [START_REF] Belovs | Can one quantum bit separate any pair of words with zero-error?[END_REF]. It is a purely theoretical model, which means that it cannot be implemented by a physical device like quantum automata. But it allows us to investigate on the power of interference caused by negatives amplitudes in the computation, like in the quantum case. Moreover, this model allows us to study the effect of state set compactness, since unlike quantum automata, affine ones have an unbounded state set. In addition, the final operation corresponding to quantum measurement cannot be interpreted as linear, but it is analogous to renormalization in Kondacs-Watrous [START_REF] Kondacs | On the power of quantum finite state automata[END_REF] and Latvian [START_REF] Ambainis | Algebraic results on quantum automata[END_REF] quantum automata models.

In this paper, we present some stability results (Section 3): we show how to obtain a new AfA from two AfAs by tensoring and direct sum. Then, we present a simpler proof for how to change the cutpoint for any affine language and an error reduction method in bounded error case.

Any entry of an affine state or a transition matrix can be arbitrarily away from zero. Here, by addressing to the question of [START_REF] Díaz-Caro | Affine computation and affine automaton[END_REF], we show that (Section 4) any affine language can be recognized by an AfA with the restriction that all the entries of transition matrices are in the interval [-1, 1]. We also show that by an additional state we can guarantee that any AfA can start its computation from the first deterministic state.

Finally, we present (Section 5) the first languages shown not to be recognized by any bounded-error AfA.

Preliminaries

We denote the input alphabet Σ and the empty string ε.

Probabilistic automata are a generalization of deterministic finite automata that can make random choices [START_REF] Rabin | Probabilistic automata[END_REF]. Formally, a probabilistic finite automaton (PFA) P is a 5-tuple P = (E, Σ, {M x | x ∈ Σ}, e s , E a ), where E = {e 1 , . . . , e k } is the finite set of states of P , {M x | x ∈ Σ} is the set of stochastic transition matrices (all their coefficients are real numbers in [0, 1] and their columns sums up to 1), v 0 is the initial probabilistic state (the probability distribution on the states), and E a ⊆ E is the set of accepting states. The computation starts in v 0 , and then the given input, say w = w 1 • • • w n ∈ Σ * for some n > 0, is read once from left to right symbol by symbol. For each symbol the corresponding transition matrix is applied:

v f = M w v 0 = M wn • • • M w1 v 0 . Remark that if w = ε, v f = v 0 .
The accepting probability of P on w is given by

f P (w) = pM w v 0 , ( 1 
)
where

p = δ 1 • • • δ k and δ i = 1 if e i ∈ E a and 0 if e i / ∈ E a .
Affine automata are a generalization of PFAs allowing negative transition values. Only allowing negative values in the transition matrices does not add any power (generalized probabilistic automata are equivalent to usual ones [START_REF] Turakainen | Generalized automata and stochastic languages[END_REF]), but affine automata introduces also a non-linear behaviour. The automaton acts like usual generalized probabilistic automaton until the last operation, a non-linear operation called weighting.

A vector v ∈ R n is an affine vector if and only if its coordinates sums up to 1. A matrix M is an affine matrix if and only if all its columns are affine vectors. Remark that if M and N are affine matrices , then M N is also an affine matrix. In particular, if v is an affine vector, then M v is also an affine vector.

Formally, an affine finite automaton (AfA) A is a 5-tuple

A = (E, Σ, {M x | x ∈ Σ}, v 0 , E a )
where all components exactly the same as for probabilistic automata by replacing stochastic property with affine one in the initial state and transition matrices.

As in PFAs, after reading a word

w = w 1 • • • w n , the final state of A is v f = M w v 0 like in the probabilistic case, but the function f A : Σ * → [0, 1] computed by A is defined as f A (w) = ei∈Ea |(v f ) i | ei∈E |(v f ) i | , ( 2 
)
and referred as the accepting value of A on w. Similar to projective measurements, we can rewrite Eq. ( 2) as given below. First, we define a projection matrix based on E a :

PA = P =     δ1 δ2 . . . δn     , where δ i = 1 if e i ∈ E a 0 otherwise .
Then, we can denote f A (•) as

f A (w) = |P M w v 0 | |M w v 0 | . ( 3 
)
Notice that the final value for PFA P (1) is defined as matrix product v f → p.v f , which is a linear operation on v f . On the other hand, computing final value from

v f as in (3) involves nonlinear operations v f → |P v f | |v f |
due to absolute value and normalization of affine states having length greater than 1. Given a function f : Σ * → [0, 1] computed by an automaton (stochastic or affine), there are different ways of defining the language of an automaton. The natural one is as follows: A language L ⊆ Σ * is recognized by an automaton A with cutpoint λ if and only if

L = {w ∈ Σ * | f A (w) > λ}.
These languages are called cutpoint languages. In the case of probabilistic (resp. affine automata), the set of cut-point languages are called stochastic languages (resp. affine languages) and denoted by SL (resp. AfL).

A stronger condition is to impose that accepted and rejected words are separated by a gap: the cutpoint is said to be isolated: A language L is recognized by an automaton A with isolated cutpoint λ if and only if there exist δ > 0 such that ∀w ∈ L, f A (w) ≥ λ + δ, and ∀w / ∈ L, f A (w) ≤ λ -δ.

As we shall see, for affine automata it is always possible to shift the cutpoint λ ∈ (0, 1) to λ = 1 2 , and hence this notion of isolated cutpoint becomes equivalent to the bounded error recognition: Language L ⊆ Σ * is said to be recognized by an automaton A with bounded error if and only if there exists ε > 0 such that ∀w ∈ L, f A (w) ≥ 1 -ε, and ∀w / ∈ L, f A (w) ≤ ε. The set of languages recognized with bounded error (or isolated cutpoint) affine automata is denoted by BAfL.

A classical result by Rabin [START_REF] Rabin | Probabilistic automata[END_REF] shows that isolated cutpoint stochastic languages are regular (denoted REG). Rabin's proof essentially relies on two facts: 1) the function mapping the final vector into [0, 1] is a contraction, and 2) the state vector set is bounded.

By modifying Rabin's proof, it is possible to show that also many quantum variants of stochastic automata obey the same principle [START_REF] Li | Characterizations of one-way general quantum finite automata[END_REF] bounded-error property implies the regularity of the accepted languages. In fact, E. Jeandel generalized Rabin's proof by demonstrating that the compactness of the state vector set together with the continuity of the final function are sufficient to guarantee the regularity of the accepted language if the cutpoint is isolated [START_REF] Jeandel | Topological automata[END_REF].

In the affine case however, the vector states do not lie in a compact set, we cannot prove that BAfL = REG like in the probabilistic (or even quantum) case [START_REF] Jeandel | Topological automata[END_REF]. In fact, it is even the contrary: REG BAfL [START_REF] Díaz-Caro | Affine computation and affine automaton[END_REF].

We close this section by three basic facts. The following three operations on the state sets will be useful, when constructing new automata from the existing ones:

-

E = {e i | e i / ∈ E} the complement of E, -E a × E b = {(e i , e j ) | e i ∈ E a , e j ∈ E b } the Cartesian product of E a and E b , -E a ∪ E b = {e i | e i ∈ E a or e i ∈ E b } the union of E a and E b .
The following lemma shows how to formulate the above operations by using the formalism of projection matrices. 

Stability Results

The main results of this section are stability results. The first are about the functions of affine automata. They provide a way to prove an error reduction theorem. We then use this theorem to show the stability of bounded-error affine languages under intersection and union.

Proposition 4. Let f , g be functions computed by affine automata, then there exists an affine automaton C such that f C = f × g.

Proof. The proof is the same as the stochastic case and essentially relies on the property of tensor product of Lemma 3.

It is easy to design a 2-state PFA P such that f P : Σ * → α for α ∈ [0, 1]. Thus:

Corollary 5 Let f be a function computed by an AfA and α ∈ [0, 1], then there exists an AfA C such that f C = αf . Proposition 6. Let f , g be functions computed by some AfAs and α, β ≥ 0 such that α + β = 1, then there exists an AfA C such that f C = αf + βg.

Proof. Let A = (E A , Σ, {A x }, v A 0 , E A a ) and B = (E B , Σ, {B x }, v B 0 , E B a ) two automata such that f = f A and g = f B .
The idea here is to make two copies of A ⊗ B working in parallel, one having the final states of A, the other the final states of B. We define

C = (E C , Σ, {C x }, v C 0 , E C a ) by: Cx =        Ax ⊗ Bx 0 0 Ax ⊗ Bx        , v C 0 =        α(v A 0 ⊗ v B 0 ) β(v A 0 ⊗ v B 0 )        , P C =        P A ⊗ In 0 0 I k ⊗ P B       
, with P A , P B and P C be the projections on E A a , E B a and E C a . Thus,

f C (w) = α|(P A ⊗ I n )(A x ⊗ B x )(v A 0 ⊗ v B 0 )| + β|(I k ⊗ P B )(A x ⊗ B x )(v A 0 ⊗ v B 0 )| (α + β)|(A x ⊗ B x )(v A 0 ⊗ v B 0 )| = α |P A A w v A 0 | |A w v A 0 | + β |P B B w v B 0 | |B w v B 0 | = αf (w) + βg(w).
The first consequence of these stability results is a really short proof for shifting the cutpoint of an affine automaton. Although the construction in [START_REF] Díaz-Caro | Affine computation and affine automaton[END_REF] gives a much more compact automata in term of number of states, our construction is simpler, and does not require as many specific cases.

Proposition 7.

Let A be an affine automaton and λ 1 , λ 2 ∈ [0, 1]. There exists an affine automaton B such that

-f A (w) > λ 1 ⇔ f B (w) > λ 2 and -f A (w) = λ 1 ⇔ f B (w) = λ 2 .
Proof. First we suppose λ 1 = 1. Let B the automaton such that

f B = αf A + (1 - α)1, with α = 1-λ2 1-λ1 . Then f A > λ 1 ⇒ f B > (1-λ2)λ1+λ2-λ1 1-λ1 = λ 2 .
And one has the same with = or <.

For λ 1 = 1 it is even simpler, one has just to "resize" the function by taking B such that f B = λ 2 f A . And then, f A = 1 ⇒ f B = λ 2 , and same for <.

Using the same kind of construction we can prove that bounded-error mode, it is always possible to reduce the error. Reducing the error means increasing the gap between accepted and rejected words. The error probability could even be made as close to zero as one wants.

Lemma 8. Let f be a function computed by affine automaton, then there exists an affine automaton B such that

f B = f 2 (3 -2f ). Proof. Let A = (E, Σ, {A x }, v 0 , E a ) such that f = f A .
The automaton B will run 3 copies of A in parallel, and its final states are made to accept if 2 or 3 copies of A accept and reject otherwise (i.e. taking the majority answer). Formally,

B = (E ⊗ E ⊗ E, Σ, {B x }, v 0 , E a ) with B x = A x ⊗ A x ⊗ A x , v 0 = v 0 ⊗ v 0 ⊗ v 0 , E a = (E a × E a × E a ) ∪ E a × E a × E a ∪ E a × E a × E a ∪ E a × E a × E a .
Note that the four sets in parenthesis are all pairwise disjoints. Let P and P be the projections associated to E a and E a . Then, P = P ⊗ P ⊗ P + (I -P ) ⊗ P ⊗ P + P ⊗ (I -P ) ⊗ P + P ⊗ P ⊗ (I -P ).

And by Lemma 1,

f B (w) = |P B w v 0 | |B w v 0 | = |P A w v 0 | 3 + 3|P A w v 0 | (|A w v 0 | -|P A w v 0 |) |A w v 0 | 3 = f (w) 3 + 3f (w) 2 (1 -f (w)) = f (w) 2 (3 -2f (w)).

Proposition 9 (error reduction). Let L ∈ BAfL.

There exists an affine automaton A such that:

-∀w ∈ L, f A (w) ≥ 3 4 -∀w / ∈ L, f A (w) ≤ 1 4
Proof. We do not detail the proof, but the idea is simple: mapping x → x 2 (3-2x) has attracting points at x = 0 and x = 1. Iterating the mapping, any point = 1 2 will tend to 0 or 1.

This technique could be applied to get any constant instead of 1 4 , to have an error bound as small as one wants.

This error reduction theorem also applies to probabilistic automata, but is not very interesting because in the probabilistic case it is known that bounded-error languages are exactly regular languages [START_REF] Jeandel | Topological automata[END_REF], and hence the error probability could always be 0. In our case, bounded-error languages are more complex than regular languages. But thanks to this error reduction, they are stable under union, intersection, and complement, just like regular languages.

Proposition 10. Let L

A , L B ∈ BAfL. Then -L A ∪ L B ∈ BAfL, -L A ∩ L B ∈ BAfL, -L A ∈ BAfL.
Proof. Let A and B be automata recognizing L A and L B with error bound ε at most 1 4 (thanks to Theorem 9). We define C and D such that

f C = 1 2 (f A + f B ) and f D = f A f B . Let w ∈ Σ * .
We study the 4 possible options depending on the membership of w to L A and L B .

- For the complement one has just to make a copy of A with accepting states E a . The resulting function will be 1 -f A , leading to accept the rejected words of A and vice-versa.

w ∈ L A , w ∈ L B (i.e. w ∈ LA ∪ LB, w ∈ LA ∩ LB) ⇒ f C ≥ 3 4 and f D ≥ 9 16 , -w ∈ L A , w / ∈ L B (i.e. w ∈ LA ∪ LB, w / ∈ LA ∩ LB) ⇒ f C ≥ 3 8 and f D ≤ 1 4 , -w / ∈ L A , w ∈ L B (i.e. w ∈ LA ∪ LB, w / ∈ LA ∩ LB) ⇒ f C ≥ 3 8 and f D ≤ 1 4 , -w / ∈ L A , w / ∈ L B (i.e. w / ∈ LA ∪ LB, w / ∈ LA ∩ LB) ⇒ f C ≤

Equivalent Forms of Affine Automata

General affine automata are hard to study because of the lack of structure of their transition matrices and state vectors. We provide here some equivalent forms which have more restrictive properties. These equivalent forms are useful not only because it provides simpler equivalent models but also because they provide a way understand the power of affine computation.

The first result is that assuming the initial affine (probabilistic) state as the first deterministic state does not change the power of AfAs (PFAs).

Proposition 11.

Let A be an affine automaton with n states, there exist B with n + 1 states with the initial state (1, 0, . . . , 0) and such that

f A = f B . Proof. Let A = (E, Σ, {A x }, v 0 , E a ). Then, B = (E ∪{e }, Σ, {B x }, v 0 , E a ), with v 0 = (1, 0, . . . , 0) T and B x =     0 0 • • • 0 A x v 0 A x     . Thus we can deduce f B = f A from B w v 0 = B wn . . . B w2 B w1 v 0 =     0 0 • • • 0 A w v 0 A w          1 0 . . . 0      =     0 A w v 0     .
Then we prove that one could also assume that all state vectors and transition matrices have coefficients only in [-1, 1]. Proof. Let A = (E = {e 1 , . . . , e k }, Σ, {A x }, v 0 = (1, 0, . . . , 0) T , E a ) be an AfA such that w ∈ L ⇔ f A (w) > 1 2 , and C = max x,i,j |(A x ) i,j |. Then, B is as follows:

Proposition 12. Any language in AfL can be recognized by a AfA B with cutpoint

B = (E ∪ {e n+1 , e n+2 }, Σ, {B x }, v 0 , E a ∪ {e n+1 }) with B x = 1 2kC        0 0 2A x . . . . . . 0 0 kC -1 . . . kC -1 2kC 0 kC -1 . . . kC -1 0 2kC        and v 0 = (1, 0, . . . , 0) T . Then, with w = w 1 • • • w n , we can deduce that Bw = Bw n • • • Bw 2 Bw 1 = 1 2(kC) n       0 0 2Aw . . . . . . 0 0 (kC) n -1 . . . (kC) n -1 2(kC) n 0 (kC) n -1 . . . (kC) n -1 0 2(kC) n      
, which gives the final values of the states: [START_REF] Ambainis | Algebraic results on quantum automata[END_REF]: the values of the states are bounded. Now, one has

v f = B w v 0 = 1 (kC) n            . . . v f . . . (kC) n -1 2 (kC) n -1 2            . Since |(v f ) i | ≤ k n-1 C n , it is clear that |(v f ) i | ≤ [-1,
f B = |P A w v 0 | + (kC) n -1 2 |A w v 0 | + (kC) n -1 ,
and so,

w ∈ L ⇔ f A > 1 2 ⇔ |P A w v 0 | > 1 2 |A w v 0 | ⇔ |P A w v 0 | + (kC) n -1 2 > 1 2 (|A w v 0 | + (kC) n -1) ⇔ f B > 1 2 .

The first languages shown to be not in BAfL

This part is dedicated to prove that some languages are not recognizable by affine automata. This is an adaptation of the proof of Turakainen [START_REF] Turakainen | On nonstochastic languages and homomorphic images of stochastic languages[END_REF] for non-stochastic languages. All the difficulty of exhibiting a non-affine language relies in the fact that a large majority of non-stochasticity proof are based on the linearity of the automaton, which is not the case in the affine case. This proof however, is more based on some "regularity" induced by the matrix-based operations, and number theoretic properties of languages like P rime. Hence it was possible to adapt it for the affine case, where the only non-linear operation is the final projection.

Let L ⊆ a * be a unary language. We call lower density of L the limit

dens(L) = lim inf n→∞ {a k ∈ L | k ≤ n} n + 1 . Let (x n ) be a sequence of vectors in R k and I = [a 1 , b 1 ) × • • • × [a k , b k ) be an "interval". We define C(I, n) as C(I, n) = |{x i mod 1 ∈ I | 1 ≤ i ≤ n}|.
We say that (x n ) is uniformly distributed mod 1 if and only if for any I of such type,

lim n→∞ C(I, n) n = (b 1 -a 1 ) • • • (b k -a k ).
Proposition 13. If L ⊆ a * satisfies the following conditions:

1. dens(L) = 0.

2. For all Q ∈ N * , there exist h ∈ N and an infinite sequence (n i ) ∈ N N such that a h+niQ ⊆ L and for any irrational number α, the sequence

((h + n i Q)α) i∈N is uniformly distributed mod 1.
Then L is non-affine (L / ∈ BAfL).

Proof. Let's assume for contradiction that L ∈ BAfL. Then there exists an affine automaton A with s states such that

f A (a n ) = |P M n v| |M n v|
and there exists ε > 0 such that

-∀w ∈ L, f A (w) ≥ 1 -ε, -∀w / ∈ L, f A (w) ≤ ε. Note that |M n v| = s i=1 |(M n v) i | ≥ s i=1 (M n v) i = 1 (triangle inequality).
Hence the denominator of f A is never 0, and so f A is continuous.

Using the Jordan decomposition M = P JP -1 , one has M n = P J n P -1 . So the coordinates v i of M n v have the form

v i = s k=1 p ik (n)λ n k (4)
where λ i are the eigenvalues of M and p ik are polynomials of degree less than the degree of the corresponding eigenvalue. Let λ i = |λ i |e 2iπθi , we assume

|λ 1 | = • • • = |λ s | > |λ s +1 | • • • . Let λ = |λ 1 |
be the largest module of all eigenvalues and r be the maximum degree of all polynomials p ik , where k ≤ s . Then, one can use (4) to write

|M n v| = i∈E |v i | = λ n n r   i∈E s k=1 a ik e 2iπnθ k + g E (n)  
where a ik is the coefficient of degree r of p ik (note that one can have a ik = 0 for some a, k), and g E a function such that lim n→∞ g E (n) = 0. Similarly,

|P M n v| = i∈Ea |v i | = λ n n r   i∈Ea s k=1 a ik e 2iπnθ k + g Ea (n)   . Now let F (n) = f (a n ).
Using the previous equations, one has

F (n) = |P M n v| |M n v| = λ n n r i∈Ea s k=1 a ik e 2iπnθ k + g Ea (n) λ n n r i∈E s k=1 a ik e 2iπnθ k + g E (n) = i∈Ea s k=1 a ik e 2iπnθ k + g Ea (n) i∈E s k=1 a ik e 2iπnθ k + g E (n)
.

We define

G(n) = i∈Ea s k=1 a ik e 2iπnθ k i∈E s k=1 a ik e 2iπnθ k .
As lim n→∞ g Ea (n) = 0 and lim n→∞ g E (n) = 0, one has G(n) ∼ F (n), and so,

lim n→∞ |F (n) -G(n)| = 0. (5) 
We define A = {k | 1 ≤ k ≤ s , θ k / ∈ Q} the indices of the "first" eigenvalue angles that are not rational. Let Q, h and the sequence (n i ) be as in the statement. Using the periodic behaviour induced by rational angle of eigenvalues, and by taking a subsequence of the initial one, one can also assume that (n i ) is such that

G(h + n i Q) = i∈Ea k∈A a ik e 2iπ(h+niQ)θ k + c i∈E k∈A a ik e 2iπ(h+niQ)θ k + d with c, d some constants.
By assumption, for all k ∈ A, the sequence ((h + n i Q)θ k ) i is uniformly distributed modulo 1. The consequence is that the values e 2iπ(h+niQ)θ k are dense in the unit circle. If for some n, G(h + nQ) < 1 2 , there exists ε > 0 such that G(h + nQ) ≤ 1 2 -ε. Then, thanks to the density argument, there are arbitrarily large values of i for which G(h

+ n i Q) ≤ 1 2 -ε 2 . Since for i sufficiently large, |F (h + n i Q) -G(h + n i Q)| ≤ ε 2 (using (5)), one has F (h + n i Q) ≤ 1 2
, and so a h+niQ / ∈ L, contradicting condition 2 of the statement.

Therefore, G(h + nQ) ≥ 1 2 for large enough n. Because G is not identically equal to 1 2 (if it is the case, F would be as close to 1 2 as one wants, which is impossible since L ∈ BAfL), again using density, there must be some ε > 0 and

k 0 such that G(h + k 0 Q) ≥ 1 2 + . First if A = ∅, it
means that all the angles of the eigenvalues θ 1 , . . . , θ s are rational. We can then write them as θ k = l k m k . Then G(n) takes a finite number of values, and these values only depend on (n mod m 1 ), . . . , (n mod m s ). Let's call k 1 = h + k 0 Q the number where G is larger than 1 2 : G(n 1 ) > 1 2 . G has the same value for all n ∈ Z = {k 1 + km 1 • • • m s |k ∈ N} (because for n in this set, the values of all (n mod m 1 ), . . . , (n mod m s ) are the same). Then, thanks to (5), one has, for n ∈ Z sufficiently large, Note that G(h + n i Q) = R((e 2iπ(h+niQ)θ k ) k∈A ). Then, because the sequences ((h + n i Q)θ k ) i are uniformly distributed modulo 1, it follows that any value obtained by the function R((e 2iπy k ) k∈A ) can be approximated by some G(h+n i Q) with arbitrary precision. The function R is continuous, therefore there exists an interval I = (x 1 , y 1 , ...) = ((x k , y k )) k∈A on which R((x k )) > 1 2 + ε 2 . So, if n i is large enough and satisfies ((h + n i Q)θ 1 mod 1, . . . ) = ((h + n i Q)θ k mod 1) k∈A ∈ I, then G(h + n i Q) > 1 2 + ε 2 , which implies F (h + n i Q) > 1 2 and hence a h+niQ ∈ L. Now we just have to prove that the sequence (h + n i Q) is "dense enough" to have dens(L) > 0, contradicting again condition 1. Because of uniform distribution imposed by condition 2, one has

F (n) > 1 2 , so {a n | n ∈ Z, n ≥ n 1 } ⊆ L. And because |{a n | n ∈ Z, n ≥ n 1 }| ∼ n m1•••m s
d = lim i→∞ C(I, h + n i Q) h + n i Q = k∈A (y k -x k )
And so for i large enough, C(I,h+niQ) h+niQ ≥ d 2 , with a h+niQ ∈ L, implying dens(L) > 0. We have proved that L cannot be affine.

Turakainen [START_REF] Turakainen | On nonstochastic languages and homomorphic images of stochastic languages[END_REF] proved that P rime = {a p | p is prime} and P oly(q) = {a q(n) | n ∈ N, q(n) ≥ 0} (where q is any polynomial of degree > 2 with nonnegative coefficients) both satisfy the two conditions of Theorem 13. Hence they are not in BAfL .

Corollary 14 P rime /

∈ BAfL and P oly(q) / ∈ BAfL.

Conclusion

In this paper we demonstrated that even if they are strictly more powerful, bounded-error languages of affine automata share stability properties with regular languages (which are bounded-error languages of stochastic automata). We also showed that the computational power of affine automata does not come alone from the unboundedness state vector set: the general model of unbounded state vector set can always be simulated with a bounded state vector set. Hence some of the computational power of affine automata comes from the nonlinear nature of the final projection, at least in the case of unbounded-error computation.

1 2

 1 such that each entry of affine states during the computation is always in [-1, 1].

,

  one has dens(L) > 0, which contradicts condition 1 of the statement.Next, ifA = ∅. Let R((x k ) k∈A ) = i∈Ea k∈A a ik x k + c i∈E k∈A a ik x k + d .

  C and D are deciding L A ∪ L B and L A ∩ L B with bounded error.

	Because 3 8 > 1 4 and 9 16 > 1 4 ,	1 4 and f D ≤ 1 16 .
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