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Abstract

For applications in worst-case execution time analysis and in security,
it is desirable to statically classify memory accesses into those that result
in cache hits, and those that result in cache misses. Among cache replace-
ment policies, the least recently used (LRU) policy has been studied the
most and is considered to be the most predictable.

The state-of-the-art in LRU cache analysis presents a tradeoff between
precision and analysis efficiency: The classical approach to analyzing pro-
grams running on LRU caches, an abstract interpretation based on a range
abstraction, is very fast but can be imprecise. An exact analysis was re-
cently presented, but, as a last resort, it calls a model checker, which is
expensive.

In this paper, we develop an analysis based on abstract interpretation
that comes close to the efficiency of the classical approach, while achieving
exact classification of all memory accesses as the model-checking approach.
Compared with the model-checking approach we observe speedups of sev-
eral orders of magnitude. As a secondary contribution we show that LRU
cache analysis problems are in general NP-complete.

∗This work was partially supported by the European Research Council under the European
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1 Introduction

1.1 Motivation

Due to technological developments, the latency of an access to DRAM-based
main memory has long been much higher than the latency of an individual
computation on the CPU. The most common solution to bridge this “memory
gap” is to include a hierarchy of cache memories between the CPU and main
memory, meant to speed up accesses to frequently required code and operands.

In the presence of caches, the latency of an individual memory access may
vary considerably depending on whether the access is a cache hit, i.e., it can be
served from an on-chip cache memory, or a cache miss1, i.e., it has to be fetched
from the next level cache or DRAM-based main memory.

The purpose of cache analysis is to statically classify every memory access
at every machine-code instruction in a program into one of the following three
classes:

1. “always hit”: each dynamic instance of the memory access results in a
cache hit;

2. “always miss”: each dynamic instance of the memory access results in a
cache miss;

3. there exist dynamic instances that result in a cache hit and others that
result in a cache miss.

This is of course, in general, an undecidable question; so all analyses involve
some form of abstraction, and may classify some accesses as “unknown”. An
analysis is deemed more precise than another if it produces fewer unknowns.

For the certification of safety-critical real-time applications, it is often neces-
sary to bound a program’s worst-case execution time (WCET). For instance, if
a control loop runs at 100 Hz, then it is imperative to show that the program’s
WCET is less than 0.01 seconds. In architectures involving caches, i.e., any mod-
ern architecture except the lowest-performance ones, such WCET analysis [39]2

must thus take into account caches. For pipelined and superscalar architectures,
it is very important to have precise information about the cache behavior, since
pipeline analysis must consider the two cases “cache hit” and “cache miss” for
any memory access that cannot be shown to “always hit” or “always miss” [28,
34], leading to a state explosion. Thus, imprecise cache analysis may have two
adverse effects on WCET analysis: (a) excessive overestimation of the WCET

1An often quoted figure is that a cache miss is 100 times slower than a cache hit. We
have a simple program whose memory access pattern can be changed by a numeric parameter
while keeping exactly the same computations; we timed it with a cache-favorable sequential
access pattern compared to a cache-unfavorable one. Depending on the machine and processor
clocking configuration, the ratio of the two timings varies between 13 and 40 if one core is
used, up to 50 with two cores.

2WCET static analysis tools include, among others, aiT, an industrial tool from Absint
GmbH, and Otawa, an academic tool.
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compared to the true WCET3 (b) excessively high analysis time due to state
explosion. Improvements to cache analysis precision are thus of high importance
in this respect; but they must come at reasonable cost.

Caches also give rise to side channels that can be used to extract or transmit
sensitive information. For example, cache timing attacks on software imple-
mentations of the Advanced Encryption Standard [3] were one motivation for
adding specific hardware support for that cipher to the x86 instruction set [32].
Cache analysis may help identify possibilities for such side-channel attacks and
quantify the amount of information leakage [11, 10]; improved precision in cache
analysis translates into fewer false alarms and tighter leakage bounds.

1.2 Cache Organization, Cache Analysis, and the State-
of-the-Art

Instruction and data caches are usually set-associative and thus partitioned into
cache sets. Each memory block may reside in exactly one of these cache sets,
determined by a simple computation from its address. Each cache set consists
of multiple cache lines, which may each be used to store a single memory block.
The number of cache lines N in each cache set is known as the number of ways
or the associativity of the cache. Upon a cache miss to a memory block that
maps into a full cache set, one of the N cached memory blocks must be evicted
from the set. There exist several policies for choosing which memory block
to evict. In this article, we focus on the least recently used policy (LRU): the
least recently used memory block within a cache set is evicted. LRU has been
extensively studied in the literature and is frequently used in practice, e.g., in
processors such as the MPC603E, the TriCore17xx, or the TMS320C3x.

As noted before, cache analysis is in general undecidable; so all analyses
involve some form of abstraction. Most work on cache analysis separates the
concerns of

(a) control-flow analysis, determining which execution paths can be taken,

(b) pointer analysis, determining which memory locations may be accessed by
instructions, and

(c) cache analysis proper.

Concerns (a) and (b) are in general undecidable, so safe and terminating
analyses use some form of over-approximation — they may consider some paths
to be feasible when actually they are not, or that pointers may point to memory
locations when actually they cannot. In our case, as in many other works, we
assume we are given a control-flow graph G of the program decorated with the
memory locations that are possibly accessed by the program, but without the

3An industrial user may suspect this when the upper bound on WCET given by the tools
is far from experimental timings. This may discourage the user from using static analysis
tools.
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functional semantics (arithmetic, guards etc.); the executions of this control-
flow graph are thus a superset of those of the program. This is what we will
consider as a concrete semantics — though we shall sketch, as future work, in
Section 10, how to recover some of the precision lost by using that semantics by
reintroducing information about infeasible paths.

In this paper, we focus on (c) cache analysis proper for LRU caches. When it
comes to LRU cache analysis, the state-of-the-art currently presents a tradeoff
between precision and analysis efficiency :

The classical approach to the static analysis of LRU caches [14] is a highly-
efficient abstract interpretation that essentially keeps for each block a range of
how many other blocks have been used more recently. This analysis is exact for
straight-line programs, but loses precision in general when tests are involved:
the join operation adds spurious states, which may translate into classification of
memory accesses as “unknown,” whereas, with respect to the concrete semantics
of G, they should be classified as “always hit” or “always miss”.

Recently, Touzeau et al. [38] proposed an exact analysis, i.e., it exactly clas-
sifies memory accesses with respect to the concrete semantics, into “always hit”,
“always miss”, or “hits or misses depending on the execution”. Their approach
encodes the concrete cache state transitions into a reachability problem, fed to
a symbolic model checker. Since that approach was slow, they also proposed a
fast abstract pre-analysis able to detect cases where an access “hits or misses de-
pending on the execution”. The model-checking algorithm is then only applied
to the relatively infrequent cases where accesses are still classified as “unknown”
by their new analysis and the classical ones by Ferdinand and Wilhelm.

1.3 Contributions

In this paper, we develop an analysis based on abstract interpretation that
comes close to the efficiency of the classical approach by Ferdinand and Wilhelm
[14] while achieving exact classification of all memory accesses as the model-
checking approach by Touzeau et al. [38]. In other terms, we introduce an exact
and scalable analysis by carefully refining the abstraction and using suitable
algorithms and data structures.

Our main contribution is the introduction of a new exact abstraction for LRU
caches that is based on a partial order of cache states. To classify cache misses
(cache hits), it is sufficient to only keep minimal (maximal) elements w.r.t. this
partial order. As a consequence, the abstraction may be exponentially more
succinct than the model-checking approach followed by Touzeau et al. [38].

We improve the focused semantics of Touzeau et al. [38] by removing sub-
sumed elements with upward and downward closures. This form of convergence
acceleration preserves the precision of the final classification.

We discuss a suitable data structure for this abstraction based on zero-
suppressed binary decision diagrams (ZDDs), and an implementation on top
of Otawa [1] and Cudd [37]. Our experimental evaluation shows an analysis
speedup of up to 950 compared with the prior exact approach by Touzeau et
al. [38]. The geometric mean of the speedup across all studied benchmarks
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(a) Original control-flow graph for two
cache sets: {a, e} and {b, c, d}.
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(b) The same control-flow graph fo-
cused for cache set {a, e}.

Figure 1: Slicing of a control-flow graph according to a cache set

is at least 94. On the other hand, compared with the imprecise age-based
analysis of Ferdinand and Wilhelm [14] we observe an average slowdown across
all benchmarks of only 3.46.

Our secondary contribution is a proof that both of the problems that we
address (existence of a trace leading to a cache hit, existence of a trace leading
to a cache miss) are NP-complete. To the best of our knowledge, this was not
known previously, whereas it justifies using imprecise abstractions, as in the
traditional age-based analyses, and/or algorithms with non-polynomial worst-
case complexity, as in our analysis.

1.4 Outline

In Section 2 we define the static analysis problem for LRU caches. In Section 3
we illustrate how the results of our analysis are more precise than those of clas-
sical analysis on a small example. In Section 4 we reformulate this problem
as a least fixpoint, then give two exact abstractions, one for “always hit”, the
other for “always miss” results, each of which can be implemented by com-
putations over antichains. In Section 5 we explain the algorithms and data
structures used for the upward and downward closures, using and extending
zero-suppressed binary decision diagrams (ZDDs). In Section 6 we describe a
few possible extensions and variants of our approach. In Section 7 we discuss
complexity issues and show that the analysis problems we solve are NP-hard,
thus justifying the use of potentially exponentially large ZDDs. In Section 8 we
describe our implementation and our experimental results. In Section 9 we dis-
cuss related work. We conclude the paper sketching possible avenues for future
work in Section 10.
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Figure 2: At v2, two cache states are possible, according to the path of arrival.
In both of them a is present, so a is a “must hit” on edges going out of v2. b
is present in one of them, so it is a “may hit”. d is present in neither, so it is a
“must miss”.

2 Problem Setting

As is common in cache analysis, we assume the following analyses have already
been performed:

(a) A control-flow graph has been reconstructed from the machine code of the
program under analysis (perhaps with some knowledge about the compiler
and/or dumps of its intermediate representation).

(b) For instruction cache analysis, all code addresses are known. This is the
normal situation for embedded software running on platforms with no op-
erating system or a lightweight one; it also applies to logical addresses5 for
non-relocatable programs running in full-fledged operating systems.

(c) For data cache analysis, a points-to analysis has been run to obtain, for all
memory accesses, a superset of the memory locations that may be affected.
In programs using pointer arithmetic or array accesses, this points-to anal-
ysis may need a value analysis. Note that our analysis gives exact results
for write-through write-allocate data caches, and that adaptation for other
write policies is future work.

(d) For mixed instruction/data caches, both of the above must have been done.

(e) For caches addressed by physical addresses, the mapping from logical (vir-
tual) to physical addresses must be known.6

The result is a control-flow graph G with vertices representing program lo-
cations. An edge from v1 to v2 is labeled with the address of the memory block
accessed when control steps from v1 to v2, or with ε if no access is made (e.g.

4On a number of benchmarks the prior exact approach timed out at 12 hours. For these
benchmarks, we conservatively assume an analysis time of 12 hours, and may thus underesti-
mate the actual speedup, had the analysis been run to completion.

5For systems with a memory management unit (MMU) and “virtual memory” we distin-
guish the logical addresses, as seen from the program, and the physical addresses, as seen from
RAM.

6This is impossible for general operating systems with dynamic memory paging, but is
possible for embedded systems: one may have a MMU to isolate processes from each other,
e.g. high criticality from low criticality, with a fixed memory layout.
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we are analyzing the data cache and the instruction corresponding to the edge
accesses no data). Note that this is not, in general, the same thing as the ad-
dress of the memory access: for instance, with 64-byte lines, an access to a byte
at address 127 is considered to be an address to the line at address 64. One
memory access can extend over several cache lines: for instance, if instead of a
byte we access a 4-byte word at address 127, on a processor allowing unaligned
accesses, then we access successively two lines at addresses 64 and 128. More
generally, if several memory accesses are performed at the same program loca-
tion, this location must be split into several sub-locations according to the order
of the accesses.

Furthermore, this graph may actually be a multigraph, with several edges,
labeled differently, between the same pair of vertices: if points-to analysis re-
turns a set of several possible addresses for one access, there is one edge per
address.

In our examples, for instance in Figure 1a, lowercase letters a, b. . . denote
such addresses. G has special start vertices labeled with either ∅, meaning
that program execution is assumed to start with an empty cache, or >, mean-
ing that program execution may start with an arbitrary cache state (all legal
combinations of memory blocks and empty lines are possible); other classes of
initial vertices may be added if needed. All program executions must start at a
start vertex. Without loss of generality, we assume all vertices and edges to be
reachable from start vertices, and the start vertices not to be endpoints of any
edges.

In an LRU cache, as with almost all replacement policies, each cache set
is treated independently. One can thus analyze the behavior of the program
completely independently on each cache set S: G is sliced according to cache
set S by replacing each address not in S by ε (see Figure 1). In the rest of the
article, unless noted otherwise, we shall thus assume a single cache set, without
loss of generality. For efficiency, an implementation may wish to collapse vertices
and edges making ε transitions only.

An LRU cache encountering an access to memory block a loads a into the
cache, for instance, after an access to a the cache state of a 4-way LRU cache
is (a, x, y, z) where a is the most recently used and z the least recently used.
Two cases may occur: (Hit) a is already in the cache and is “rejuvenated”, i.e.,
cache-internal status bits are updated to record that a is the most-recently-used
memory block; for instance, from the cache state (x, y, a, z) and access to a leads
to the cache state (a, x, y, z) and from the cache state (a, x, y, z) an access to a
does not change the cache state7. (Miss) a is not in the cache and the “oldest”
memory block is evicted from a’s cache set, for instance, from a cache state
(w, x, y, z) an access to a evicts block z and leads to the cache state (a,w, x, y).

As a consequence, along a program execution E, assuming an initially empty
cache, an access to a is a hit if and only if at most N−1 distinct memory blocks
have been accessed along E since the last access to a (several accesses to the
same memory block count as one).

7In FIFO caches, there is no rejuvenation: a “hit” does not change the cache.
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An edge is said to be “always hit” if all executions passing through this
edge encounter a cache hit at this edge; otherwise it is said to be “may miss”.
An edge is said to be “always miss” if all executions passing through this edge
encounter a cache miss at this edge; otherwise it is said to be “may hit”. See
Figure 2 for an example. We shall propose two analyses, one for classifying
edges as either “always hit” or “may miss”, the other for classifying edges as
“always miss” or “may hit”.

3 Motivating Examples

3.1 Age-based Analysis vs Precise Analysis

σ0 : ∅ σ1

σ2 σ3 σ4

σ5

σ6 σ7 σ8

σ9 σ10 σ11

a

c

b d

c a

ε

b ε

a

e c

Figure 3: Example of control-flow graph where classical age-based “must-hit”
analysis yields suboptimal results.

Table 1: Concrete and abstract states in the analysis of the control-flow graph
in Figure 3. To avoid too wide a table we omit the analysis results for e. A
means “absent”.

Reachable cache states Age-based analysis Block-focused analysis

a b c d a b c d

σ0 (ε, ε, ε, ε) ∞ ∞ ∞ ∞ A A A A
σ1 (a, ε, ε, ε) 0 ∞ ∞ ∞ ∅ A A A
σ2 (c, a, ε, ε) 1 ∞ 0 ∞ {c} A ∅ A
σ3 (b, c, a, ε) 2 0 1 ∞ {b, c} ∅ {b} A
σ4 (d, b, c, a) 3 1 2 0 {b, c, d} {d} {b, d} ∅
σ5 (b, a, ε, ε) 1 0 ∞ ∞ {b} ∅ A A
σ6 (d, b, c, a), (b, a, ε, ε) [1, 3] [0, 1] [2,∞] [0,∞] {b, c, d}, {b} {d}, ∅ {b, d}, A ∅, A
σ7 (c, d, b, a), (c, b, a, ε) [2,∞] [1, 2] 0 [1,∞] {b, c, d}, {b, c} {c, d}, {c} ∅ {c}, A
σ8 (a, c, d, b), (a, c, b, ε) 0 [2, 3] 1 [2,∞] ∅ {a, c, d}, {a, c} {a} {a, c}, A
σ9 (a, d, b, c), (a, b, ε, ε) 0 [1, 2] [2,∞] [1,∞] ∅ {a, d}, {a} {a, b, d}, A {a}, A
σ10 (e, a, d, b), (e, a, b, ε) 1 [2, 3] [3,∞] [2,∞] {e} {a, d, e}, {a, e} A {a, e}, A
σ11 (c, e, a, d), (c, e, a, b) 2 [3,∞] 0 [3,∞] {c, e} A, {a, c, e} A {a, c, e}, A

To analyze LRU caches, it is convenient to introduce the following notion
of the age of a memory block: The age of a block x in a concrete cache state
is the number of blocks younger than x, i.e., the number of blocks that have
been accessed more recently than x, or ∞ if x is not in the cache. For instance,
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assuming a cache of associativity 4, in the cache state (c, b, a, ε), from youngest
to oldest, c has age 0, b has age 1, a has age 2, d has age ∞.

The classical age-based analysis [14] abstracts the set of possible cache states
as follows: to each block x it attaches a range of possible ages in the cache. This
abstraction may lead to imprecise results, that is, it may fail to conclude that
an access is always a hit (respectively, a miss) whereas it is truly always a
hit (respectively, a miss) in all executions. Consider the control-flow graph in
Figure 3, and the corresponding concrete and abstract cache states in Table 1.
At σ4, the age of a is 3 and at σ5 it is 1, so at σ6 it is known to be in [1, 3];

similarly the age of c is known to be in [2,∞]. When analyzing σ6
c−→ σ7, it is

thus unknown whether c is younger or older than a in the cache at σ6: in the
former case a’s age does not change, whereas in the latter case a’s age increases
by one. The age-based analysis concludes that at σ7, the age of a is in [2,∞],
whereas the exact range is [2, 3]. The age-based analysis thus cannot conclude

that σ7
a−→ σ8 is a hit, which is the case in reality.

Instead of abstracting a concrete state with respect to a block x by the
number of blocks younger than x, we abstract it by the set of these blocks; thus
a set of concrete states is abstracted by a set of sets of blocks. For instance, at
σ7, we consider the possible sets of blocks younger than a in the cache: {b, c, d}
and {b, c}. This analysis is exact, in the sense that no precision is lost by
performing analysis steps on the abstract states compared to performing the
steps concretely and then abstracting the final result.

Note that the second set is included in the first. If a is a hit after executing
a sequence of steps from σ7, from a cache state where a is preceded by {b, c, d},
then a fortiori the same sequence of steps also results in a hit if started in a cache
state where a is preceded by {b, c}. We can thus discard {b, c, d} from an analysis
aimed at discovering the existence of hits (“may hit” analysis). Similarly, we
can discard {b, c} from an analysis aimed at discovering the existence of misses
(the complement of an “always hit” analysis). Again, doing this does not impact
precision.

Similarly, in the age-based analysis, when analyzing σ6
a−→ σ9, it is unknown

whether c is younger or older than a in the cache at σ6: in the former case c’s
age does not change, whereas in the latter case c ages by one. The age-based
analysis concludes that at σ9, the age of c is in [2,∞], whereas the exact range

is [3,∞]. The step σ9
e−→ σ10, with a fresh letter e, results in an increase of

the ages of all other blocks. The age-based analysis thus cannot conclude that
σ10

c−→ σ11 is a miss, which is the case in reality.
Note that the “definitely-unknown” abstract analysis proposed by Touzeau

et al. [38] would not help in any way: it resolves some of the cases where there
are execution traces leading both to a hit and a miss at the same location, which
is not the case here. Their approach would then have to call a model checker
to establish that σ7

a−→ σ8 is a “must hit” and σ10
c−→ σ11 a “must miss”. The

purpose of our analysis is to replace this expensive call to a model checker by
an abstract interpretation that yields the same result.
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3.2 Collecting Semantics vs Focused Semantics vs An-
tichain

σ0 : ∅ σ1 σ2 . . . . . . σn σn+1
a

b1

ε

b2

ε

bn−1

ε

bn

ε

Figure 4: Example where collecting and focused semantics are unnecessarily
detailed and inefficient. ε means “no access”.

Consider the control-flow graph of Figure 4, with an associativity N > n,
and an empty initial cache. At the last control location σn+1, the possible cache
states are all subsequences of bn, . . . , b1 followed by a and possibly empty lines,
e.g. (b5, b3, b1, a, ε, ε). There are therefore 2n reachable cache states at σn+1, all
of which appear in the collecting semantics of the program composed with the
cache.

The “block-focused” abstraction, which was also applied by Touzeau et al.
[38] when encoding cache problems into model-checking reachability problems,
records only the set of blocks younger than the block of interest. Here, if our
block of interest is a, this abstraction thus yields at σn+1 the set of subsets
of {b1, . . . , bn}. Of course, symbolic set representation techniques may have a
compact representation for such a set, but the main issue is that this set keeps
too much information.

If our goal is to prove the existence of a “hit” on an access to memory
block a further down the execution, then it is sufficient to keep, in this set, ∅,
corresponding to a path composed of the access to a followed by a sequence of
no accesses ε. More generally, it is sufficient to keep only the minimal elements
(with respect to the inclusion ordering) from this set, which can be exponentially
more succinct, as in this example. Similarly, if our goal is to prove the existence
of a “miss” on a further down the execution, then it is sufficient to keep, in this
set, {b1, . . . , bn}, corresponding to a path composed of the access to a followed
by a sequence of accesses to b1, . . . , bn. More generally, it is sufficient to keep
only the maximal elements from this set.

This is the main difference between our analysis and the “focused” model
that Touzeau et al. [38] fed into the model checker: the “focused” model con-
tains unnecessary information (non-minimal elements for the Always-miss anal-
ysis, non-maximal elements for the Always-hit analysis), which increases model-
checking times. We discard these in our analysis.

The following section formally defines the collecting and focused semantics,
and our new Always-hit and Always-miss analyses. The Always-hit analysis
(respectively Always-miss) computes the antichain of maximal elements (re-
spectively minimal elements) i.e. the downward (respectively upward) closure
of reachable states.
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4 Analyses as Fixed-Point Problems

4.1 Collecting Semantics

To each vertex l we attach a set Cl of possible cache states. Each cache state s
is a sequence (s1, . . . , sN ) of addresses, from youngest to oldest, possibly ending
with one or more special values ε, meaning that this cache line is empty, and
without repetition of addresses except for ε. Let S be the set of cache states.

Example 4.1. If N = 4, (ε, ε, ε, ε) (empty cache), (a, b, ε, ε), and (a, d, c, b) are
valid cache states; (a, b, ε, d) and (a, d, a, b) are not.

To any start vertex l labeled ∅, we attach Cl = {(ε, . . . , ε)}, meaning that
the only possible cache state at this location is empty. To any start vertex l
labeled >, we attach Cl = S, meaning that any cache state is possible at this
location. The rest of the cache states are obtained as the least solution of:

Miss: if (s1, . . . , sN ) ∈ Cl, none of the si is a, and there is an edge l
a−→ l′, then

(a, s1, . . . , sN−1) ∈ Cl′ : the oldest line is evicted;

Hit: if (s1, . . . , sN ) ∈ Cl, a occurs at position i (si = a), and there is an

edge l
a−→ l′, then (a, s1, . . . , si−1, si+1, . . . , sN ) ∈ Cl′ (if i = N , that is

(a, s1, . . . , si−1) ∈ Cl′): block a is “rejuvenated”.

Example 4.2. If the cache contains (a, b, c, d) and b is accessed, then b is rejuve-
nated and the cache then contains (b, a, c, d). If instead e is accessed, then d is
evicted and the cache then contains (e, a, b, c).

4.2 Focused Semantics

We reuse the “focused semantics” proposed by Touzeau et al. [38], as well as
their proof of exactness.

Let a ∈ A be some address; we are interested in classifying accesses to a.
We can focus the behavior of the cache with respect to a as follows. A cache
state s1, . . . , sN such that si = a will be abstracted as the set {s1, . . . , si−1} (∅
if i = 1) of blocks present in the cache before a, i.e., younger than a. A cache
state not containing a is abstracted as the special value A.

Example 4.3. When focusing on block a, cache states (c, b, a, ε) and (b, c, a, d)
are both abstracted as the set {b, c}, and (c, b, e, ε) as A.

One can easily show that this focused semantics can be directly computed
as follows. To each vertex l we attach a set Cl,a of a-focused states. These sets
are ordered by inclusion. To any start vertex l labeled ∅, we attach Cl,a = {A}.
To any start vertex l labeled >, we attach Cl,a = {A}∪{S | S ⊆ A\{a}∧ |S| ≤
N − 1}. The rest of the cache states are obtained as the least solution of:

• if there is an edge l
a−→ l′, then ∅ ∈ Cl′,a.

• if A ∈ Cl,a and there is an edge l
b−→ l′, b 6= a then A ∈ Cl′,a;

11



• if S ∈ Cl,a, S 6= A, |S ∪ {b}| < N and there is an edge l
b−→ l′, b 6= a then

S ∪ {b} ∈ Cl′,a;

• if S ∈ Cl,a, S 6= A, |S ∪ {b}| = N and there is an edge l
b−→ l′, b 6= a then

A ∈ Cl′,a;

An edge l
a−→ l′ may result in a miss if and only if A ∈ Cl,a. An edge l

a−→ l′

may result in a hit if and only if there exists S ∈ Cl,a, S 6= A.
Another intuitive characterization is that Cl,a is the collection of the sets of

addresses found along the paths from the nearest preceding occurrences of a,
truncated at associativity; sets of cardinality greater than or equal to associa-
tivity are all abstracted to the special value A.

4.3 Always-Hit Analysis

To get a better idea of what the Always-hit analysis computes let us first recall
the definitions of antichain and upper set, and illustrate this analysis with an
example.

Definition 4.4. An antichain is a subset of an ordered set such that no two
distinct elements of that subset are comparable. An upper set (respectively
lower set) is a set such that if an element is in this set, then all elements larger
(respectively, smaller) than it are also in the set.

Example 4.5. Assume that a node l may be reached with cache states Cl =
{(c, b, e, a), (b, c, d, a), (b, a, ε, ε)}. The possible a-focused states are: Cl,a =
{{b, c, e}, {b, c, d}, {b}}. Since {b} is strictly included in {b, c, e} (and in {b, c, d}),
it may not contribute to cache misses that would not also occur following {b, c, e}
(and {b, c, d}) and can be removed without affecting soundness; the antichain of
the maximal elements of Cl,a is {{b, c, e}, {b, c, d}}, which will be called Cmax

l,a .

In all that follows, the ordering will be the inclusion ordering ⊂.
Recall that S ∈ Cl,a, S 6= A means that at position l, there is a reachable

cache state of the form (s1, . . . , s|S|, a, . . . ) where S = {s1, . . . , s|S|}. An edge

l
a−→ l′ “always hits” if and only if it “may not miss”, that is, if there is no

execution trace leading to a miss at this location, i.e. A /∈ Cl,a.

Definition 4.6. Let x
b−→ y denote the transition “upon an access to block b,

b 6= a, the cache may move from an a-focused state x to an a-focused state y”.
Recall that x may be A (a is not in the cache) or a subset of cache blocks, not
containing a, of cardinality at most N−1. This deterministic transition relation
is defined as follows:

• A b−→ A;

• x b−→ x ∪ {b} for |x ∪ {b}| < N ;

• x b−→ A for |x ∪ {b}| = N .

12



Definition 4.7. For x, y ⊆ A \ {a}, let x
↓−→ y denote a downward closure step:

• A ↓−→ y for any y;

• x ↓−→ y for any x, y 6= A, y ⊆ x.

Example 4.8. {b, c, e} ↓−→ y for any y ∈ {∅, {b}, {c}, {e}, {b, c}, {b, e}, {c, e}, {b, c, e}}

Lemma 4.9. Assume there are x, y, z, and b such that x
↓−→ y

b−→ z. Then there

exists y′ such that x
b−→ y′

↓−→ z.

Proof. As the transition relation is deterministic, y′ is uniquely determined by
x and b.

We distinguish two cases based on the value of y′:

1. If y′ = A, then the results follows immediately, as A ↓−→ z for any z.

2. If y′ 6= A, then y′ = x ∪ {b} with |y′| < N . Then x 6= A and y ⊆ x, and
so z = y ∪ {b} ⊆ x ∪ {b} = y′.

Corollary 4.10. There exists a sequence of the form u0
b0−→ v0

↓−→ u1
b1−→

v1
↓−→ . . . un

bn−→ vn
↓−→ un+1 if and only if there exists a sequence of the form

u0
b0−→ u′1

b1−→ u′2 . . .
bn−→ u′n

↓−→ un+1.

It is thus equivalent to compute the reachable states of the a-focused se-
mantics (for transitions different from a), then apply downward closure, and
to apply downward closure at every step during the computation of reachable
states. In addition, it is obvious that A is in a set if and only if it is in its down-
ward closure. It is thus equivalent to test for a “may miss” on the reachable
states of the a-focused semantics and on their downward closure.

This suggests two possible (and equivalent, in a sense) simplifications to the
focused semantics if our goal is to find places where an access to a may be a
miss:

Closure Replace Cl,a by its down-closure C↓l,a: S′ ∈ C↓l,a if and only if there exists
S ∈ Cl,a such that S′ ⊆ S.

Subsumption removal Replace Cl,a by the antichain of its maximal elements:
S ∈ Cmax

l,a if and only if S ∈ Cl,a and there is no S′ ∈ Cl,a such that
S ( S′.

Note that C↓l,a is the down-closure of Cmax
l,a , and that Cmax

l,a is the antichain of

maximal elements of C↓l,a; thus Cmax
l,a is just an alternative representation for

C↓l,a. Our idea is to directly compute Cmax
l,a .
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4.4 Always-Miss Analysis

This subsection presents the Always-miss analysis which is the dual of the
Always-hit analysis of Section 4.3. A control location “always misses” if and
only if it “may not hit”, that is, if there is no execution trace leading to a hit
at this location.

Definition 4.11. For x, y ⊆ A \ {a}, let x
↑−→ y denote an upward closure step:

• x ↑−→ A for any x;

• x ↑−→ y for any x, y 6= A, x ⊆ y.

Lemma 4.12. Assume there are x, y, z, and b such that x
↑−→ y

b−→ z. Then

there exists y′ such that x
b−→ y′

↑−→ z.

Proof. We distinguish two cases based on the value of z:

1. If z = A, then the results follows immediately, as y′
↑−→ A for any y′.

2. If z 6= A, then z = y ∪ {b} with |z| < N . Then y 6= A and x ⊆ y, and so
y′ = x ∪ {b} ⊆ y ∪ {b} = z.

Corollary 4.13. There exists a sequence of the form u0
b0−→ v0

↑−→ u1
b1−→

v1
↑−→ . . . un

bn−→ vn
↑−→ un+1 if and only if there exists a sequence of the form

u0
b0−→ u′1

b1−→ u′2 . . .
bn−→ u′n

↑−→ un+1.

It is thus equivalent to compute the reachable states of the a-focused seman-
tics (for transitions different from a), then apply upward closure, and to apply
upward closure at every step during the computation of reachable states. In
addition, it is obvious that there exists x in X, x 6= A, if and only if there exists
y in the upward closure of X such that y 6= A. It is thus equivalent to test
for a “may hit” on the reachable states of the a-focused semantics and on their
upward closure.

This again suggests two possible simplifications to the focused semantics if
our goal is to find places where an access to a may be a hit:

Closure Replace Cl,a by its up-closure C↑l,a: S′ ∈ C↑l,a if and only if there exists
S ∈ Cl,a such that S ⊆ S′.

Subsumption removal Replace Cl,a by the antichain of its minimal elements: S ∈
Cmin

l,a if and only if S ∈ Cl,a and there is no S′ ∈ Cl,a such that S′ ( S.

Note that C↑l,a is the up-closure of Cmin
l,a , and that Cmin

l,a is the antichain of

minimal elements of C↑l,a; thus Cmin
l,a is just an alternative representation for

C↑l,a. Our idea is to directly compute Cmin
l,a .
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4.5 A Remark on Lattice Height

We replace the focused semantics by its upward or downward closure; this is a
form of convergence acceleration, albeit one that preserves the precision of the
final result. We shall see in Section 8 that this improves practical performance
considerably compared to a version that checks the focused semantics in a model
checker. It is however unlikely that this improvement translates to the worst
case; let us see why.

The number of iterations of a data-flow or abstract interpretation analysis
is bounded by the height of the analysis lattice, that is, the maximal length of a
strictly increasing sequence. However, this height does not change by imposing
that the sets should be lower (respectively upper) closed: just apply the following
lemma to T , the set of subsets of A of cardinality at most N−1 (plus A) ordered
by inclusion (respectively, reverse inclusion).

Lemma 4.14. Let (T,≤) be a partially ordered finite set. The lattice of lower
subsets of T , ordered by inclusion, has height |T |, the same height as the lattice
of subsets of T .

Proof. Order T topologically: t1, . . . , t|T |, such that ∀i, j : ti ≤ tj =⇒ i ≤
j. The sequence (ui)i=0,...,|T |, with ui = {t1, . . . , ti}, is a strictly ascending
sequence of lower sets.

5 Data Structures and Algorithms

In Section 4 we defined a collecting semantics for concrete cache states, then,
in two steps (1. focused semantics, 2. closures), showed that there is a cache
hit (respectively, a cache miss) in the concrete semantics if and only if there
is a cache hit (respectively, a cache miss) in an upward-closed (respectively,
downward-closed) semantics, and that upward-closed (respectively, downward-
closed) sets may be represented by the antichains of their minimal (respectively,
maximal) elements.

5.1 Computation by Abstract Interpretation

The abstracted semantics in upward-closed (or, downward-closed) sets may be
computed by a standard data-flow/abstract interpretation algorithm, by upward
iterations, as follows.

To each initial control point we initially attach an initialization value (see
below). For a semantics focused on accesses to a, we consider that each edge

x
a−→ y is replaced by an initial edge ∅ a−→ y, pushing {∅} as the value associated

to the control state y. Then, we iterate in the usual abstract interpretation
fashion: we maintain a “working set”, initially containing the initial locations
and the targets of the

a−→ edge; we take a control point x from the working
set, update the abstract values at the end point of edges going out of x (using
the union operation on upper or lower sets), and add these end points to the
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working set if their value has changed (equality testing). The iterations stop
when the working set becomes empty. It is a classical result [9, §2.9] that the
final result of such iterations does not depend on the iteration ordering, and in
fact several elements from the working set may be treated in parallel; the only
requirement is that all elements from the working set are eventually treated.

The sequence of updates to the set decorating a given control location is
strictly ascending, in a finite lattice; thus its length is bounded by the height
h of that lattice. If V is the set of control locations, then the total number of
updates is bounded by |V | · h. Recall that the height of the lattice of subsets of
a set X is |X|.

If we implement the focused semantics directly, then we compute over sets
of subsets of size at most N − 1 of A \ {a}, completed with A; the number of

such subsets is bounded by
∑N−1

k=0 (|A|−1)k and thus h ≤ (|A|−1)N
|A|−2 +1. The cost

could thus be exponential in the associativity; we shall see in Section 7 that a
polynomial-time algorithm is unlikely, since the problems are NP-complete.

5.2 Closed Sets Implementation

We initially attempted adding closure steps to the focused semantics, and run-
ning a model checker on the resulting systems. The performance was however
disappointing, worse than model-checking the focused semantics itself as was
proposed by Touzeau et al. [38]. The model checker (nuXmv) was representing
its sets of sets of blocks using state-of-the-art binary decision diagrams; we thus
did not expect any gain by going to our own implementation of iterations over
the same structure. We thus moved from representing a closed set by its con-
tent to representing it by the antichain of its minimal (respectively, maximal)
elements. There remains the question of how to store and compute upon the
antichains representing those sets.

We then tried storing an antichain simply as a sorted set of subsets of A,
each subset being represented as the list of its elements. Experimentally, this
approach was inefficient; let us explain why, algorithmically. For once, when
computing the antichain for the union of two upward or downward closed sets S
and S′, one takes the antichains W and W ′ representing S and S′ and eliminates
redundancies; if such a naive representation is used, one needs to enumerate all
pairs of items from W ×W ′ — there is no way to immediately identify which
parts of W and W ′ are subsumed, or even to identify which parts are identical.
Furthermore, there is no sharing of representation between related antichains.

Binary decision diagrams are one well-known data structure for represen-
tations of sets of states; they share identical subsets, and allow fast equality
testing. All operations over such diagrams can be “memoized”, meaning that
when an operation is run twice between identical subparts of existing diagrams,
the result may be cached. We store an antichain, a set S of sets of addresses,
as a zero-suppressed decision diagram (ZDD) [30, 31] [23, §7.1.4, p.249], a vari-
ant of binary decision diagrams optimized for representing sets of sparse sets of
items.
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5.3 Basic Functions for May-Hit and May-Miss Analyses

We assume that all control states are reachable (unreachable states are easily
discarded by a graph traversal). The starting points of the analyses focused on
a are the initial control points as well as all accesses to a.

The operations that we need for antichains defining upper sets, for the may-
hit analysis, are

Initialization to empty cache Return ∅.

Initialization to undefined cache state Return {∅}.

Initialization to unreachable state Return ∅.

Access to address b 6= a: return {s ∪ {b} | s ∈ S}.

Access to tracked block a: return {∅}

Limitation to associativity Return {s | s ∈ S ∧ |s| ≤ N − 1}.8

Union of upper sets represented by antichain of minimal elements of S and S′:
return {s | s ∈ S ∧ ¬∃s′ ∈ S′ s′ ( s} ∪ {s′ | s′ ∈ S′ ∧ ¬∃s ∈ S s ( s′}.

Equality testing given S and S′, return whether S = S′.

Example 5.1. Let S be the upper set generated by the antichain
{
{a}, {b, c}

}
,

and S′ the upper set generated by the antichain
{
{b}, {a, c}, {d}

}
. The union of

the two upper sets is an up-set generated by the union of these two antichains.
However, this union is not an antichain because it contains redundant items:
{a, c} is subsumed by {a}, {b, c} is subsumed by {b}. The antichain of minimal
elements of S ∪ S′ is thus

{
{a}, {b}, {d}

}
.

The operations that we need for antichains defining lower sets, for the may-
miss analysis, are

Initialization to empty or undefined cache state Return {A}.

Initialization to unreachable state Return ∅.

Accesses Same as with upper sets.

Test for eviction Returns whether there exists s ∈ S such that |s| ≥ N , in which
case S is replaced by {A} (again, this is an optimization).

Union of lower sets represented by antichains of maximal elements S and S′:
return {s | s ∈ S ∧ ¬∃s′ ∈ S′ s ( s′} ∪ {s′ | s′ ∈ S′ ∧ ¬∃s ∈ S s′ ( s}.

Equality testing Same as with upper sets.

8This means that execution traces that cannot lead to a “hit” on the next access to a
are discarded. This is correct since execution is assumed to start from all accesses to a as
well as initial control states. If one wishes to combine the analysis with others which need to
distinguish between “no hit at the next access to a” and “unreachable”, the special value A
may be added when elements of too large associativity are discarded.
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The union of antichains with subsumption removal was supported by an ex-
tension [31] of the ZDD library that we used. The only operations not supported
were the test for eviction and the limitation to associativity. We implemented
them by recursive descent over the structure of the ZDD, with an extra pa-
rameter for the current depth (number of items already seen in the set), and
memoization of the results. As in the Cudd library, we call “then” the branch
where the top variable is true (i.e. the branch that contains the cache block as-
sociated to the current node) and “else” the branch associated to value false (i.e.
the branch that does not contain that cache block). As shown in Algorithm 1,
the general case (case 3) of the algorithm simply consists in truncating the
“then” and “else” branches of the current nodes. When the number of “then”
branches taken reaches the associativity (case 2), we remove all further “then”
branches (they only lead to sets of cardinality greater than the associativity).
Finally, the algorithm may stop exploring a branch for two different reasons:
a) either the node treated is a leaf of the ZDD (case 0), or b) the result of the
truncate function has already been computed and memoized (case 1).

Algorithm 1 Truncate(zdd, n) as a recursive function

1: function Truncate(zdd, n)
2: if zdd = ∅ or zdd = {∅} then
3: return zdd . Case 0. Leaf of the ZDD DAG
4: end if
5: res← cacheLookup(Truncate, zdd, n) . Case 1. Already computed
6: if res then
7: return res
8: end if
9: if n = 0 then . Case 2. Associativity is reached

10: return Truncate(zdd.else, 0) . Case 2. Else branch recursion
11: else . Case 3. General case
12: then← Truncate(zdd.then, n− 1) . Case 3. Then branch recursion
13: else← Truncate(zdd.else, n) . Case 3. Else branch recursion
14: return ZDD(zdd.var, then, else)
15: end if
16: end function

6 Variants and Extensions

Combination with classical abstract interpretation When classical ab-
stract interpretation [14], or its combination with the “definitely unknown”
abstract analysis [38], can correctly classify all accesses to a given block a into
“always hit”, “always miss” and “definitely unknown”, there is no use in run-
ning our analysis for that block. We have implemented this combination, which
improves performance (see Section 8).
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Simultaneous computation We have explained our analyses for classifying
accesses to each address a separately. It is also possible to simultaneously classify
all addresses together, by updating the abstractions (e.g. Cmin

l,a ) for all a all
together when updating the abstract state at location l.

This simultaneous computation, including across cache sets, is likely to be
compulsory if the cache analysis is integrated with a microarchitectural anal-
ysis: if the sequence of memory accesses depends on whether some previous
accesses are hits or misses, e.g. due to out-of-order execution or opportunistic
prefetching.

On-demand backward analysis We have presented our analysis in a for-
ward fashion: to classify hits and misses to a, we compute at each location the
collection of the set of addresses found along path π for all paths π from the
nearest preceding occurrences of a (truncated at length N). We could formulate
our analysis in a backward fashion: given a specific location l in the control-flow
graph, we compute at each location l′ the collection of the set of addresses found
along path π for all paths π from l′ to l. This computation stops at other edges
labeled with a, start vertices, or when computing the special value A. Then, an
edge going out of l and labeled by a may result in a miss if and only if at least
one value A or an ∅ start vertex was reached during this backward propagation,
and it may result in a hit if and only if at least one edge a or a > start vertex
was reached during this backward propagation.

7 Complexity and NP-Hardness

The cache contains at most N cache lines chosen among |A| memory blocks;

the number of cache states is thus bounded by
∑N

k=0 |A|k = |A|N+1−1
|A|−1 . Conse-

quently, the total number of program states is bounded by |V | |A|
N+1−1
|A|−1 where

V is the set of vertices. Recall that A is the set of possible addresses, which
are used to label the edges E; thus |A| ≤ |E|. For a fixed associativity N , an
explicit model-checking approach, enumerating all cache states, thus has poly-
nomial complexity in the size of the control-flow graph under analysis; however
its complexity is exponential in the cache’s associativity. Furthermore, for pro-
gram analysis, any effective complexity beyond almost-linear in the size of the
program is generally considered prohibitive. This explains the development of
abstract interpretation, with some imprecision [14], as well as clever pre-analyses
and model reductions before applying symbolic model checking [38]. We shall
now see that cache analysis problems for LRU caches are NP-hard, even if the
control-flow graph is acyclic.

We here assume an empty initial cache. The may-hit (respectively, may-
miss) problem is: given a control-flow multigraph and a designated edge e, does
there exist a path through the graph such that the access on edge e is a hit
(respectively, a miss)? The always hit (respectively, always miss) problem is its
complement: is a given access in a control-flow graph always a hit (respectively,
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Figure 5: Reduction from Theorem 7.1. There is a path from σs to σe with at
most N − 1 = 3 different labels if and only if the formula (c̄ ∨ b ∨ a) ∧ (c̄ ∨ b̄ ∨
ā) ∧ (c ∨ b ∨ ā) has a model. This is equivalent to the existence of a path with
a “hit” at the last w edge for associativity N = 4.

a miss) irrespective of how it is reached?
The input problem is given as (a) as in preceding sections, the control-flow

multigraph, with edges labeled with the addresses of the data being accessed,
(b) the designated edge to classify, and (c) the cache’s associativity9.

Theorem 7.1. The may-hit problem is NP-complete for acyclic control-flow
graphs.

Proof. Obviously, the problem is in NP: a path may be chosen nondeterminis-
tically, then checked in polynomial time.

Now consider the following reduction from CNF-SAT (see Figure 5 for an
example). To each variable v in the SAT problem we associate two memory
blocks v and v̄. The control-flow graph is a sequence of switches:

• For all variables v in the SAT problem, a switch between two edges labeled
with v and v̄, respectively.

• For each clause in the SAT problem, a switch between edges labeled with
the literals present in the clause.

Let n be the number of variables in the SAT problem. Each path through the
sequence of switches with at most n different labels corresponds to a satisfying
assignment. Such a path exists if and only if the input formula is satisfiable.

Now add to the control-flow graph an incoming edge into the first node and
an outgoing edge from the last node, both labeled with the same fresh letter w.
The outgoing edge is the designated edge to classify. If the associativity of the
cache is n + 1, then the final access to w may be a hit if and only if the SAT
problem is satisfiable.

Theorem 7.2. The may-miss problem is NP-complete for acyclic control-flow
graphs.

9Note that if the associativity is larger than the set of possible edge labels, the two prob-
lems reduce to simple reachability problems in a directed graph. We can thus assume the
associativity to be less than the number of edge labels. Whether the associativity is written
in unary or binary form then is of no importance for the complexity of the problem.
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(thick) Hamiltonian
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v32
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v40 end
w w

(b) Acyclic control flow graph obtained by the
reduction. Edge labels not shown. Path corre-
sponding to the Hamiltonian cycle (thick).

Figure 6: Reduction from Theorem 7.2.

Proof. Obviously, the problem is in NP: a path may be chosen nondeterminis-
tically, then checked in polynomial time.

We reduce the Hamiltonian circuit problem to the may-miss problem (see
Figure 6 for an example). Let (V,E) be a graph, let n = |V |, v = {v0, . . . , vn−1}
(the ordering is arbitrary). Let us construct an acyclic control-flow graph G
suitable for cache analysis as follows:

• two copies v00 and vn0 of v0

• for each vi, i ≥ 1, |V |−1 = n−1 copies vji , 1 ≤ j < n (this arranges these
vertices in layers indexed by j)

• for each pair vji , vj+1
i′ of nodes in consecutive layers, an edge, labeled by

the address i′, if and only if there is an edge (i, i′) in E.

There is a Hamiltonian circuit in (V,E) if and only if there is a path in G from
v00 to vn0 such that no edge label is repeated, thus if and only if there exists a
path from v00 to vn0 with at least n distinct edge labels.

Now assume an edge going from a start node into v00 , and an edge going
from vn0 into an end node, both labeled with the same fresh letter w. The edge
going from vn0 is the designated edge to classify. For associativity n there exists
an access missing the cache at that last edge if and only if there is a path from
v00 to vn0 with at least n distinct edge labels.

We have shown in this section how to construct CFGs for which solving
the exist-miss and exist-hit problems is hard. Note that this implies that both
problems are NP-complete in the general case, but not that there is no algorithm
for efficiently dealing with ordinary CFGs.

8 Implementation and Experiments

We have implemented our antichain-based analysis, as well as the classical age-
based analysis [14], and the “definitely unknown” (DU) and “focused” model-
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Figure 7: Size of the analyzed binary code.

checking analyses proposed by Touzeau et al. [38]. We did not implement the
naive collecting semantics approach (model checking with “unfocused” cache
states) since Touzeau et al. [38, §6.3] note that then the models become so large
and complex that the model checker timed out on all of their examples. Further-
more, initial experiments with concretely represented antichains (an antichain
being represented as a concrete set of arrays of block identifiers) scaled very
poorly, so we did not pursue that direction further and pursued a fully symbolic
representation using ZDDs.

Our experiments are performed on a server with 64 GB of memory, and an
Intel Xeon CPU E5-2650 (32 logical cores running at 2.0 GHz). The tested
implementation is fully sequential, and thus does not benefit from the high
number of cores available. Note that the approach could however easily be
implemented in parallel, by analyzing a different cache block on each core10.
We analyze a 4 KB cache with 32 cache sets, 8 ways11 and cache lines holding
16-byte-sized memory blocks.

We evaluate our approach on all sequential benchmarks, i.e., excluding par-

10Using threads if the ZDD library is capable of dealing with one different ZDD manager
per thread, or separate processes.

11Note that associativities of 8 or even 16 are common in modern microarchitectures. For
instance, in the AMD Ryzen microarchitecture [36], the L1 data cache and the unified L2
cache are 8-way set-associative, while the shared L3 cache even consists of 16 ways. Similarly,
in the Intel Skylake microarchitecture [22], the L1 data and instruction caches are both 8-way
set-associative and, depending on the specific model, the shared L3 cache consists of up to 16
ways.
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allel benchmarks, from the TacleBench12 [12] suite, which is also used by
Touzeau et al. [38]. The benchmarks vary in size from 70 to 13000 lines of
C code, and the size of the binary files obtained when compiling for ARM 5
(supported by Otawa) are shown in Figure 7. Sizes are given in the number of
memory blocks, and range from 20 blocks for the smallest benchmark to 3348
blocks for the biggest benchmark. When measuring the time and memory con-
sumption of analyses, we use a timeout of 12 hours. Consequently, when this
timeout is reached (i.e. the approach did not finish classifying accesses in the
available amount of time), the associated point is plotted as if the corresponding
analysis had terminated after 12 hours.

We have implemented our analyses on top of Otawa [1], an open-source
WCET analysis tool.13 Computations over ZDDs are performed by Cudd 2.3.1
[37] together with an extension [31] for computing over antichains14. In order
to compare our new analysis to the previous analysis by Touzeau et al. [38], we
reimplemented it within Otawa, as our previous experiments were conducted at
the level of the intermediate representation of the LLVM compiler suite rather
than on machine code, as our present analysis. Recall that our analyses and
theirs compute exactly the same classifications and differ only in memory and
time consumption; this enabled us to test and debug our implementation.

There are several comparisons that the interested reader would have perhaps
appreciated, but that we were unable to perform. We are not able to directly
confront our implementation to Touzeau et al.’s because theirs operates, as a
proof of concept, upon LLVM’s intermediate representation, using a fake mem-
ory mapping, while ours operate upon machine code with the true memory
mapping. We were not able to measure the precision gained on the WCET
upper bound computed by Otawa by replacing the imprecise age-based static
analysis [14] by our precise analysis, due to engineering issues — our analysis
is implemented on top of Otawa version 2, which is under development and
constantly evolving. We expect to be able to connect our analysis to the WCET
computation in Otawa in a matter of months. Moreover, our experiments are
performed on an instruction cache. As mentioned in Section 2, analyzing data
caches is possible but would require further engineering effort to connect to
Otawa’s pointer analyses.

8.1 Implementation and Evaluation of our Analysis

Figure 8 shows how we integrated our analyses into the Otawa framework, and
how the operations described in Section 5 interact with each other. The main
component of our Otawa plugin is the “ZDD Analysis” box, which classifies
accesses by abstract interpretation by calling the generic abstract interpreta-
tion engine provided by Otawa. This iterates on the CFG and calls the update
and join operation we provide when needed. The join operation is realized by

12TacleBench is available at https://github.com/tacle/tacle-bench.git.
13We have used the version 2 obtained at https://www.tracesgroup.net/otawa/download/

otawa-v2/.
14This extension has not been ported to more recent versions of Cudd.
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AI Engine

ZDD Analysis

Truncate ZDD
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Join

Cudd ZDD Primitives

Min/Max Union

Min/Max Dot Product

Otawa Our plugin Cudd

libextra

Figure 8: Overview of our framework. Edges represent dependencies (u → v
means that code in u calls some methods in v).

computing the union of a given pair of ZDDs, and then removing the subsumed
sets (as explained in section Section 5). This is done by using the MinUnion
(respectively MaxUnion) function provided by libextra, which compute the
minimal elements of the union of two ZDDs. The update function models the
effect of accessing a block: to this end, the accessed block is added to all sets
represented by the current ZDD. This operation could be performed by the Dot-
Product function of libextra which, given two ZDDs S1 and S2, computes
the set S = {s1 ∪ s2, s1 ∈ S1, s2 ∈ S2}. In practice, we use the MaxDot-
Product provided by libextra which only keeps the maximal elements of
S. However, libextra does not provide the dual MinDotProduct, whose
implementation we added. Once the new block is added to the current ZDD, we
truncate the ZDD, keeping only those sets whose size is below the associativity.
This is achieved by the Truncate algorithm described in Section 5.

We implemented two different versions of our analysis:

• ZDD : The version described in Section 5. One analysis is performed for
every memory block in the program to classify all accesses to this block.
When an analysis terminates, all the structures it used are freed and Cudd
cache and memoization tables are flushed. This approach is referred to as
ZDD in the following.

• Age-based + DU + ZDD : The last version uses the Age-based + DU analy-
ses to classify memory accesses, and refines the accesses left “unknown” by
running the associated ZDD analysis. In other words, this approach is the
same as Touzeau et al. [38], where the model-checking phase is replaced
by our ZDD approach.
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Figure 9: ZDD vs. Age-based + DU + ZDD.

8.1.1 Comparison of the two Variants of our Analysis

Remember that the two versions of our analysis obtain the same access classi-
fications. They differ only in the way the classification is obtained. Figure 9
shows that the approach combining ZDDs with a pre-analysis based on the age-
based and DU analyses, is more efficient in terms of analysis execution time
and memory consumption than the ZDD approach alone. The pre-analysis is
performed using a single pass over the whole program for all memory blocks. As
it successfully classifies most accesses as “always hit”, “always miss”, or “defi-
nitely unknown”, the ZDD approach needs to be run only on a relatively small
subset of all memory blocks. We will keep this Age-based + DU + ZDD variant
as a basis for the following experiments.

8.1.2 Scalability with Respect to the Associativity

As mentioned in Section 7, the may-hit and may-miss problems are NP-complete,
when the cache’s associativity is considered an input parameter. In practice,
however, repeated accesses to the same block are infrequent and the CFGs’
branching structures are simple. We thus evaluate the running time of our
analysis when increasing the associativity of the cache, while keeping the same
cache size (thus decreasing the number of cache sets). Figure 10 shows that our
analysis scales well for usual values of associativity; the increase in analysis time
is usually proportional to the increase in associativity.

In the next section we experimentally evaluate how our approach compares
with previous work. Using a first set of experiments, we compare our approaches
to the model-checking approach described in Touzeau et al. [38]. Then, we show
that our analysis is similarly efficient as the age-based analysis of Ferdinand and
Wilhelm [14] and the DU analysis of Touzeau et al. [38] in terms of memory
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Figure 10: Evolution of execution time of our analysis when increasing associa-
tivity.

26



May Analysis

AI Engine

Must Analysis

Exists-miss Update

Exists-miss Join

Exists-miss Analysis

Exists-hit Analysis

Exists-hit Join

Exists-hit Update

DU Analysis

MC Analysis nuXmv

Otawa Our plugin Model Checker

Figure 11: Integration of Touzeau et al. [38] in Otawa.

usage and analysis time.

8.2 Comparison with Prior Work

Among the existing cache analyses, the approach of Touzeau et al. [38] is the
closest to our work. It consists of the following three steps:

• First, the usual analysis of Ferdinand and Wilhelm [14] (which we refer to
as Age-based analysis in following) is performed and classifies accesses as
“always hit”, “always miss” or “unknown”.

• Then, a second analysis, called definitely unknown, classifies a subset of
the “unknown” accesses as “definitely unknown” when it finds both a path
leading to hit and a path leading to a miss for a given access (this is an
approximated analysis — it may fail to identify such paths).

• Finally, the remaining unknown accesses are classified using a model checker
(MC) and marked as “always hit”, “always miss” or “definitely unknown”.

Our implementation of this approach in Otawa is illustrated in Figure 11.
Note that the DU analysis is based on two approximate analyses: an ”exists
hit” analysis, which determines whether a path leading to a hit exists, and an
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Figure 12: ZDD approach vs. model-checking approach from [38].

“exists miss” analysis which determines whether a path leading to a miss ex-
ists. Note that the DU analysis reuses the abstract cache states from Age-based
May/Must analyses: in our implementation, Age-based analysis is provided by
Otawa. Finally, the accesses that are not classified precisely by the two ab-
stract interpretation phases are refined using a call to the nuXmv model checker,
which processes a model focussed on the memory block under analysis.

8.2.1 Comparison to Touzeau et al. [38]

As the prior work of Touzeau et al. and ours provide the same classification of
memory accesses, we compare the analyses according to two criteria:

a) The full analysis time, including every analysis step from CFG reconstruction
to memory-access classification, is compared in Figure 12a.

b) The peak memory usage of the two approaches is compared in Figure 12b.

The scatter plots are both on a log. scale. Each dot corresponds to the resource
consumption of one benchmark from TacleBench under the two analysis ap-
proaches.

The figures clearly show that the ZDD approach is significantly faster than
the model-checking approach (more than a hundred times faster for the largest
benchmarks) and that the benefits increase with the size of the benchmarks.
The peak memory usage is also generally smaller with our ZDD approach than
with model checking.

8.2.2 Overhead of ZDD over Age-based + DU

We evaluate the scalability of our approach comparing it to the usual Age-based
analysis and DU analysis. Figure 13 and Figure 14 show the execution time
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Figure 13: Execution time overhead.
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Figure 15: Execution time overhead.

of our approach compared to Age-based and Age-based + DU on a logarithmic
scale. The vertical distance between two points can be interpreted as the slow-
down due to the additional analysis15. On average, our approach is 3.46 times
more costly than the usual Age-based analysis, and only adds a 4.6% overhead
over the Age-based + DU analysis, as shown in Figure 15.

To conclude, the ZDD approach is significantly faster than the exact analysis
by Touzeau et al. [38]. This validates our choice of algorithms and data struc-
tures. The results demonstrate that the ZDD approach offers good scalability
that could lead to an industrial use.

8.2.3 Scalability Comparison with Other Previous Work

The approaches of Chattopadhyay and Roychoudhury [7] and Chu, Jaffar, and
Maghareh [8] analyze programs at the source code level and are thus not directly
comparable to our work (which analyzes binary code), if only because we map
statements to cache blocks differently.

The only common benchmark with ours is statemate: for this benchmark
their analysis stops after 100 calls to the model checker and the analysis spends
195 seconds, where we analyze the whole benchmark in less than 2 seconds.
Similarly, in Chu, Jaffar, and Maghareh [8] the paper states an analysis time of
350 seconds for statemate and 38 seconds for the benchmark ndes where we
analyze them in less than 2 seconds and less than 1 second.

Unfortunately, there are no other common benchmarks; it however seems
our analysis scales much better than these two previous works.

15Note that for very small benchmarks the time measurements are not very reliable, as
the reported values correspond to single measurements. Experiments with countnegative
showed variations of up to 30% from one measurement to another.

30



9 Related Work

Cache analysis for the verification of real-time systems Static cache
analysis was first studied in the context of real-time systems [29]. Mueller and
Whalley [33] introduced a data-flow analysis for direct-mapped caches, i.e., for
caches with associativity 1. Based on abstract interpretation (AI), Ferdinand
and Wilhelm [14] proposed the classical age-based analysis for set-associative
caches with LRU replacement. Their analysis is still in widespread use in com-
mercial and academic WCET analysis tools, e.g. [21, 1].

As discussed in Section 3, Ferdinand and Wilhelm’s analysis can be seen as
computing a range of possible ages for each memory block in a given program.
On straight-line code this analysis is exact. However, at control-flow joins the
relation between ages of different blocks may be lost. As a consequence, the
analysis may classify some accesses as “unknown” that are in fact always hits or
always misses. There have been several attempts to improve upon the precision
of the classical AI-based cache analysis:

Chattopadhyay and Roychoudhury [7] refines memory accesses classified as
“unknown” by AI using a software model-checking step: when abstract inter-
pretation cannot classify an access, the source program is enriched with annota-
tions for counting conflicting accesses and run through a software model checker.
Their approach, in contrast to ours, takes into account program semantics dur-
ing the refinement step; it is thus likely to be more precise on programs where
many paths are infeasible for semantic reasons. Our approach however scales
considerably better, as shown in Section 8. (Our approach can also be combined
with analyses for checking the feasibility of paths, as sketched in Section 10; we
however have not experimented with it yet). They advocated applying their
method with a time bound. Accesses classified as “unknown” by AI are refined
until the time bound is reached. Chu, Jaffar, and Maghareh [8] present a WCET
analysis framework based on symbolic execution, where an SMT solver is used
to prune infeasible paths. They employ the age-based abstraction of Ferdinand
and Wilhelm within symbolic execution, but never join states, thus avoiding
any imprecision. See Section 8.2.3 for a performance comparison of these two
analyses with ours.

Touzeau et al. [38] refine accesses classified as “unknown” by AI using model
checking similarly to Chattopadhyay and Roychoudhury [7]. In order to reduce
the number of calls to the model checker, they introduce an AI-based analysis
that can classify accesses as “definitely-unknown”. For a “definitely-unknown”
access both a hit and a miss are possible depending on the path taken through
the control flow graph to reach the access. The classification of such accesses
cannot be refined by model checking. To reduce the effort of the model checker
in classifying a particular access, they also introduce a “focused semantics”,
which we reuse and extend in this paper, as discussed in Section 4. We compare
the efficiency of their approach with ours in Section 8.

Abstract interpretation has also been applied to the analysis of caches with
other popular replacement policies found in modern microarchitectures, such
as first-in, first-out (FIFO) [16, 17, 19], not most-recently-used (NMRU) [20],
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and pseudo-LRU (PLRU) [18]. No exact analysis has been proposed for these
policies, which are considered to be harder to analyze than LRU [35]. It is
doubtful whether our approach can be extended to these policies, as they do
not seem to exhibit any useful monotonicity properties as LRU does.

Compiler optimizations Optimizing compilers may apply loop transforma-
tions to maximize parallelism and data locality [13, 25]. To support such opti-
mizations, various approaches have been proposed to compute or approximate
the number of cache misses of a given loop nest [15, 6, 5, 4, 2]. This line of
work is limited to restricted classes of programs, usually affine loop nests with
no input-dependent control flow or input-dependent memory accesses. The ad-
vantage of such methods is that they distinguish each dynamic instance of an
instruction in a loop nest, while our approach classifies all dynamic instances
together, thereby introducing pessimism. It would be interesting to investigate
whether the exact abstraction developed in this paper could be combined with
analytical approaches such as [2] to support input-dependent program behavior.

Cache side-channel analysis Caches can be exploited as covert channels [24,
26] and in side-channel attacks [3, 32, 27, 42]. Static cache analysis has been
applied to quantify the vulnerability of implementations of cryptographic pro-
tocols [11, 10] to cache side-channel attacks. More accurate cache analyses,
such as the one developed in this paper, may yield more accurate vulnerability
quantifications. Applying our analysis in this context is future work.

Antichains Antichains have been used in verification to represent lower and
upper sets, which occur in many contexts (automata, LTL satisfiability, games,
etc.). Wulf et al. [41, 40] proposed two succinct representations: (i) fully sym-
bolic: a binary decision diagram (BDD) represents sets of sets of states: each
automaton state is mapped to a BDD variable, a set of states is thus a valua-
tion; this representation is thus similar to ours except that they use BDDs and
not ZDDs; (ii) semi symbolic: a state is encoded as an integer, thus as a vector
of bits, a set of states is thus encoded as a BDD, and an antichain is thus a
sequence of BDDs; this representation is thus similar to our explicit list of sets
of blocks, which we tried then discarded due to inefficiency.

They report that, on their examples, the fully symbolic representation is
less efficient than the semi symbolic one, particularly on large automata; the
explain this by the linear growth of the number of variables in the BDDs for
the fully symbolic representation with respect to automaton size, as opposed
to logarithmic growth in the semi symbolic representation. We explain this
difference with our own findings as follows: (1) Their sets of states correspond
to sets of blocks in our problem. We limit the cardinality of the sets we handle
to associativity, whereas, as far as we understand, their sets can be very large.
(2) We use ZDDs, which are more compact than BDDs for sets of small sets
(no need for nodes “this element is not in the set”). (3) Their antichains are
smaller than ours. Our ZDD approach thus seems efficient for large, often similar
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antichains of small sets, whereas their semi symbolic approach seems efficient
for small antichains of large sets.

10 Conclusion and Future Work

For decades, it was believed that only rough abstractions (Ferdinand’s analysis)
could scale up for cache analyses. We show here that it is actually possible to
perform an exact analysis by carefully refining the abstraction and using good
algorithms and data structures.

We have demonstrated how it is possible to obtain a cache analysis as pre-
cise as one obtained by analyzing the cache replacement policy using a model
checker, but at a much lower cost (hundreds of times faster). The main dif-
ference between the two analysis is that we abstract the problem further while
preserving the exact same results.

Our results are the strongest possible (exactly classifying accesses as “always
hit”, “always miss”, “hits or misses depending on the execution”) with respect
to a model where all paths inside the control-flow graph may be taken. This
includes paths that cannot be taken inside the program, e.g. ones with conflict-
ing tests x < 1 and x > 2 with no change to x in between. It is impossible
to remove all spurious paths: this is an undecidable question. We can however
combine our analysis with others to improve the precision in this respect.

Our analysis computes an abstract state, as opposed to encoding everything
in a model checker. As such, it can be combined simultaneously with other ab-
stract interpretations (program variables, pointers, micro-architecture. . . ) and
approaches such as the abstract reachability graph, with nodes adorned by pairs
(location, abstract state), edges adorned by instructions and where each test, at
least up to a certain depth, is split into two branches; two nodes may be merged,
as in a directed acyclic graph, if one abstract state is subsumed by the other;
cycles in the graph may be introduced, perhaps after widening operations, to
account for loops. Such an analysis would exclude some infeasible paths.

Our approach applies both to instruction and data caches. If the address of
a data fetch or write is only known to lie within a set of addresses {a1, . . . , an},
then we consider n parallel edges labeled with a1, . . . , an in the analysis graph.
As future work, trace partitioning may be used to improve the precision of such
an approach, and can be implemented as a layer above our analysis.
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[9] Patrick Cousot. “Méthodes itératives de construction et d’approximation
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A Sharing ZDD implementation

BDD (or ZDD) libraries intensively use hash tables for hash-consing the BDD
nodes: when the library wishes to create a node isomorphic to one that already
exists in the system, that one is used instead; memoizing the BDD operations:
during a recursive operation f on n-tuples of BDDs nodes, the computed values
of f are stored into a hash table and are retrieved if the same n-tuple is encoun-
tered instead of recursing; this ensures that an operation of BDDs D1, . . . , Dn

is (roughly) in time
∏

i |Di|. The requirements are that all currently reachable
BDD nodes should be retained in the hash-consing table (but other nodes may
be retained), and that (at least for ensuring polynomial computations) during
one BDD operation the memoizing hash tables should not be flushed (but they
may be retained longer). Depending on the BDD library in use and its param-
eters, “garbage” in these tables may be collected eagerly (at the risk of having
to recreate or recompute collected data) or late (at the risk of storing useless
data).

In our initial implementation, the analyses for various focus blocks a were run
completely separately; all ZDD tables were flushed in between. We implemented
a variation of the ZDD approach that does not free all structures and Cudd’s
data between two analysis runs for different memory blocks. Doing so, the
analysis may benefit from computations done in a previous analysis run if the
result of a particular computation has been memoized.
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Figure 16: ZDD vs. Sharing ZDD

Comparing the ZDD and Sharing ZDD variants, we observe that sharing
of ZDDs between analysis runs is not very beneficial in our case (Figure 16):
Sharing ZDD does not significantly improve the analysis execution time but is
more costly in terms of peak memory usage. It seems that there is not much
sharing between successive analyses and that the library just fills the memory
up to a certain threshold before collecting garbage; our knowledge of Cudd’s
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internals is however insufficient to check whether this explanation is correct.
This motivates our yet unimplemented idea of parallelizing the analysis by

running it for different values of a on different cores, completely separate from
each other. Note that this is much easier than running analyses sharing a single
ZDD manager, due to contention on the hash tables.
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B Comparison of all exact analyses
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Figure 17: Execution time of all exact analyses.

Figures Figure 17 and Figure 18 show the execution time and memory con-
sumption all fully-precise analyses we have implemented.
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Figure 18: Memory consumption of all exact analyses.
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