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Introduction

About the AMNS (Adapted Modular Number System):

Goal: Perform efficiently and safely arithmetic operations with
big integers for cryptographic algorithms.

Main feature: Uses polynomial representation for its elements.

Our contribution:

Generalisation of some works done by Nadia El-Mrabet,
Christophe Negre, Thomas Plantard, and al.

Implementation and comparison to classical methods like
Montgomery modular multiplication.
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Definition: AMNS (Adapted Modular Number System)

Let p be a prime integer.

Definition

An AMNS for p is defined by the tuple B = (p, n, γ, ρ) such that
for every integer 0 6 y < p, there exists a polynomial
V (X ) = v0 + v1.X + · · ·+ vn−1.X

n−1 which satisfies:

|vi | < ρ

y ≡ V (γ) (mod p)

where 0 < γ < p and ρ ≈ n
√

p
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Example of AMNS

0 1 2 3 4

0 1 −X 2 1− X 2 −1 + X + X 2

5 6 7 8 9 10

X + X 2 −1 + X X 1 + X −X − 1 −X

11 12 13 14 15 16

−X + 1 −X − X 2 1− X − X 2 −1 + X 2 X 2 −1

Table: The elements of Z/17Z in B = (p, n, γ, ρ) = (17, 3, 7, 2)
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Arithmetic operations

Main operations:

Addition: a simple polynomial addition.
But, the infinity norm of the result can be greater than ρ. (1)

Multiplication: a simple polynomial multiplication.
But, the infinity norm of the result can be greater than ρ (1)
and the degree of the result can be greater than n − 1. (2)

In case 1, an iternal reduction must be done.

In case 2, an external reduction must be done.

6 / 19



Adapted modular number system
Generation of an AMNS

Implementation, results and comparison

Definition and example
Arithmetic operations in the AMNS

Arithmetic operation: the external reduction

Let B = (p, n, γ, ρ) be an AMNS and A,B ∈ B.
Let C = A.B be a polynomial, then deg(C )6 2n − 2.

Goal: Compute a polynomial R such that: R(γ) ≡ C (γ)
(mod p) and deg(R)< n.

Let E (X ) be a polynomial, such that: E (X ) = X n − λ and
E(γ) ≡ 0 (mod p), (i.e: γ is a nth-root modulo p of λ).

Then, there exists Q and R such that: C = Q.E + R, where
deg(R)< n and R(γ) ≡ C (γ) (mod p).

E (X ) = X n − λ, with λ“small” (i.e: ±1, 2, 3, 4, ...)

External reduction: R = C (mod E )
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Arithmetic operation: the internal reduction

Depends on the generation process of the AMNS.

There are two main classes of AMNS:

Optimal AMNS: internal reduction is done use vector-matrix
multiplication. Matrix is chosen very sparse, but the
generation process allows to choose only the size of the prime.

General AMNS: internal reduction can be done in many
ways. The generation process allows to choose the prime but
the reduction is generally less efficient than that of the other
class.
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The internal reduction: a Montgomery-like method

Let B = (p, n, γ, ρ,E ), this method uses a polynomial M, such
that : M ∈ B and M(γ) ≡ 0 (mod p).
Let M ′ = −M−1 mod(E , φ), where φ ∈ N∗.

Algorithm: RedCoeff

1: Input: a polynomial V , such that: deg(V ) ≤ n − 1

2: Ensure: S(γ) = V (γ)φ−1 mod p

3: Q ← V ×M ′mod (E , φ)

4: R ← (V + Q ×M mod E )

5: S ← R/φ

6: return S
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Parameters set

The complete set of parameters for an AMNS is:

p: a prime integer.

n: the number of coefficients of elements in the AMNS.

λ: a “small” integer.

γ: a nth-root of λ modulo p.

ρ: the upper-bound on the ‖.‖∞ of the elements of B.

E : the external reduction polynomial (E (X ) = X n − λ).

φ: the integer used in RedCoeff.

M: the internal reduction polynomial.

M ′: a polynomial such that M ′ = −M−1 mod (E , φ).
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The internal reduction polynomial

The polynomial M is such that:

M(γ) ≡ 0 (mod p) and deg(M) < n.

ρ > 2|λ|n‖M‖∞ (i.e: ‖M‖∞ is small)

M ′ = −M−1 mod (E , φ) exists.

Remarks:

M−1 mod (E , φ) exists iff gcd(resultant(E, M), φ) = 1.

We choose: φ = 2k .
So, M−1 mod (E , φ) exists iff resultant(E, M) is odd.
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The internal reduction polynomial

If E (X ) = X n − λ and M(X ) = m0 + · · ·+ mn−1X n−1,
then resultant(E, M) = det(SM,E ), where:

SM,E =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1

−λ 0 . . . 0 0 m0 . . . mn−3 mn−2

...
...

. . .
...

0 0 . . . 0 0 0 . . . m0 m1

0 0 . . . −λ 0 0 . . . 0 m0


Let L be a lattice such that:
L = {v(X ) ∈ Z[X ], such that: deg(v) < n and v(γ) ≡ 0 mod (p)}.
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The internal reduction polynomial

1 M(γ) ≡ 0 (mod p) and deg(M) < n.

2 ‖M‖∞ is small.

3 M−1 mod (E , φ) must exist.

For (1) and (2), a small elements of L can be computed using
a lattice reduction algorithm like LLL algorithm.

For (3), Nadia EL MRABET and Nicolas GAMA show how
construct a reduced base of L with at least one element M for
which M−1 exists in the special case of λ = −1 (and φ = 2k).

Our contribution here: For any nonzero integer λ,

we proved that there exists at least one polynomial M which
satisfies points (1), (2) and (3).
we described how to compute such M.
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The internal reduction polynomial: case |λ| even

Let L = {v(X ) ∈ Z[X ], such that: deg(v) < n and
v(γ) ≡ 0 mod (p)}.

If M(X ) = m0 + · · ·+ mn−1X n−1 and φ = 2k ,

We proved that:

M−1 mod (E , φ) exists iff m0 is odd.

Any reduced base of L contains at least one valid vector to be
chosen as M.
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The internal reduction polynomial: case |λ| odd

Let L = {v(X ) ∈ Z[X ], such that: deg(v) < n and
v(γ) ≡ 0 mod (p)}.

If M(X ) = m0 + · · ·+ mn−1X n−1 and φ = 2k ,

We proved that:

M−1 mod (E , φ) exists iff gcd(M, X n − 1) = 1

where M = m0 + · · ·+ mn−1X n−1 and mi = mi (mod 2).
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The internal reduction polynomial: case |λ| odd

Let M2 be a base of the L, such that:

M2 =



p 0 0 . . . 0 0
s1 1 0 . . . 0 0
s2 0 1 . . . 0 0
...

. . .
...

sn−2 0 0 . . . 1 0
sn−1 0 0 . . . 0 1


with: si = ti + ki .p, where ti = (−γ)i (mod p), ki = ti (mod 2).

We proved that:

For any reduced base R of L computed from M2, there exists at
least one binary linear combination of the vectors of R which leads
to a valid vector to be chosen as M.

16 / 19



Adapted modular number system
Generation of an AMNS

Implementation, results and comparison

Implementation
Results

Implementation

Computer spec: Intel Core i7-6700 (3.40GHz × 8) , Ubuntu
16.04.4 LTS 64 bits, 32GB RAM.

Implementation done using SageMath library.

We wrote a C codes generator.

We didn’t use parallelization.

About performance and memory consumption

The smaller n is, the better performances and memory
consumption are.

Let k be the computer word size and p a prime number.
Then, the optimal value for n is: b log2 p

k c+ 1
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Number of AMNS and performances ratio

p size 192 224 256

n 4 5 6 4 5 6 5 6 7
ratio 1 0.86 1.41 2.04 0.57 0.98 1.41 0.98 1.42 1.84

ratio 2 0.10 0.17 0.24 0.08 0.14 0.19 0.14 0.20 0.26

ratio 3 0.21 0.34 0.49 0.16 0.27 0.39 0.30 0.43 0.55

p size 384 521

n 7 8 9 10 11 12
ratio 1 0.98 1.34 1.67 0.95 1.18 1.36

ratio 2 0.19 0.25 0.31 0.25 0.29 0.34

ratio 3 0.43 0.58 0.73 0.56 0.69 0.80

ratio 1 : AMNS / OpenSSL Montgomery modular mult. method

ratio 2 : AMNS / OpenSSL default modular multiplication method

ratio 3 : AMNS / GNU MP multiplication + modular reduction
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Conclusion

We have shown that:

For any prime integer, it is possible to generate many AMNS.

AMNS can be an interesting alternative to classical methods
like Montgomery modular multiplication, for arithmetic
operations.

It is always possible to find an internal reduction polynomial
for any nonzero λ. We explained how to compute it.

Some perspectives:

Implement AMNS using its high parallelization capability.

Make experiments with AMNS for protection against side
channel attacks.
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Thank you for your attention.

Questions ?
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The internal reduction polynomial

M−1 mod (E , φ) exists iff gcd(resultant(E, M), φ) = 1.

We choose: φ = 2k .
So, gcd(resultant(E, M), φ) = 1 iff resultant(E, M) is odd.

resultant(E, M) = det(SM,E ), where:

SM,E =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0

.

.

.
. . .

.

.

.

.

.

.
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1
−λ 0 . . . 0 0 m0 . . . mn−3 mn−2

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 0 0 0 . . . m0 m1
0 0 . . . −λ 0 0 . . . 0 m0


with: E(X ) = X n − λ and M(X ) = m0 + · · ·+mn−1X

n−1.
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Existence of the internal red. poly.: case |λ| even

If |λ| is even, then resultant(E, M) and the determinant of H have
the same parity; with:

H =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0
...

. . .
...

...
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1

0 0 . . . 0 0 m0 . . . mn−3 mn−2

...
...

. . .
...

0 0 . . . 0 0 0 . . . m0 m1

0 0 . . . 0 0 0 . . . 0 m0



So, M−1 mod (E , φ) exists iff m0 is odd.
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Computation of the internal red. poly.: case |λ| even

Let M1 be a base of the L, such that:

M1 =



p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1


with ti = (−γ)i (mod p).

Any reduced base of M1 contains at least one valid vector to be
chosen as M.
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The internal reduction polynomial: case |λ| odd

If |λ| is odd, then resultant(E, M) and the determinants of H1 and
H2 have the same parity; with:

H1 =



1 0 . . . 0 mn−1 0 . . . 0 0
0 1 . . . 0 mn−2 mn−1 . . . 0 0

.

.

.
. . .

.

.

.

.

.

.
0 0 . . . 1 m1 m2 . . . mn−1 0
0 0 . . . 0 m0 m1 . . . mn−2 mn−1
−1 0 . . . 0 0 m0 . . . mn−3 mn−2

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 0 0 0 . . . m0 m1
0 0 . . . −1 0 0 . . . 0 m0



H2 =


m0 m1 . . . mn−2 mn−1

mn−1 m0 . . . mn−3 mn−2

...
. . .

...
m2 m3 . . . m0 m1

m1 m2 . . . mn−1 m0

 with: mi = mi (mod 2).

So, M−1 mod (E , φ) exists iff gcd(M, X n − 1) = 1.
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Generation of the internal red. poly.: case |λ| odd

Proposition

Let Rn = F2[X ]/(X n − 1) be the algebra of all polynomials modulo
(X n − 1) over F2. Let Cn be the ring of n × n binary circulant
matrices.
Let Ω be the application defined as follows:

Ω : Rn → Cn

a0 + · · ·+ an−1X n−1 7→


a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2

...
. . .

...
a2 a3 . . . a0 a1

a1 a2 . . . an−1 a0


Then, Rn is isomorphic to Cn and Ω(Rn) = Cn.
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Computation of the internal red. poly.: case |λ| odd

Let M2 be a base of the L, such that:

M2 =



p 0 0 . . . 0 0
s1 1 0 . . . 0 0
s2 0 1 . . . 0 0
...

. . .
...

sn−2 0 0 . . . 1 0
sn−1 0 0 . . . 0 1


with: si = ti + ki .p, where ti = (−γ)i (mod p) and ki = ti
(mod 2).

For any reduced base R of M2, there exists at least one binary
linear combination of the vectors of R which leads to a valid
vector to be chosen as M.
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The internal reduction: a Montgomery-like method

Let B = (p, n, γ, ρ,E ).

Let A,B ∈ B, and C = RedCoeff (A.B (mod E )).

Then, C ∈ B if:

ρ > 2|λ|n‖M‖∞

φ > 2|λ|nρ
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Conversion from binary to AMNS : an algorithm

Let B = (p, n, γ, ρ, E , M, φ) be an AMNS.

First precompute representatives Pi (X ) of ρ powers in B, i.e
Pi ≡ (ρi )B, for i = 1, . . . , n − 1.

The algorithm:

1 Input: a ∈ Z/pZ
2 Ensure: A ≡ (a.φ)B
3 b = (a.φ2) mod p

4 b = (bn−1, ..., b0)ρ

5 U ←
n−1∑
i=0

bi .Pi (X )

6 A← RedCoeff(U)

7 return A
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Existence of AMNS

Proposition

Let E (X ) = X n − λ, for λ ∈ Z \ {0}. Let g be a generator of
(Z/pZ)× and y such that g y ≡ λmod p. If gcd(n, p − 1) | y , then
there exists gcd(n, p − 1) roots γ of E (X ) in Z/pZ.

Corollary 1

If gcd(n, p − 1) = 1 then there exists a unique nth-root γ of λ in
Z/pZ, for any λ ∈ Z\{1}.

Corollary 2

If gcd(n, p − 1) > 1 then there exists at least one non-trivial
nth-root γ of 1. So, one can take λ = 1.
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Existence of M proof

Proposition

Let G = {G1, . . . ,Gn} be a reduced basis of the lattice L obtained
from the basis M2. Then, there exists a linear combination
(β1, . . . , βn) with βi ∈ {0, 1} such that M =

∑n
i=1 βiGi satisfies

gcd(M,X n − 1) = 1.
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Existence of M proof

Proof.

First, we have that:

M2 =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1


where M2ij =M2ij (mod 2).
Each line i of M2 corresponds to the polynomial X i ∈ Rn, for
0 6 i < n. This means that M2 is a basis of Rn.
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Existence of M proof

Proof.

Let U ∈ Rn be a polynomial such that gcd(U,X n − 1) = 1.
As M2 is a basis of Rn, it exists T = (t1, . . . , tn) ∈ Fn

2 such that
U = T .M2. As T .M2 = T .M2, we obtain that U = T .M2.
We have T .M2 ∈ L, so there exists V = (v1, . . . , vn) ∈ Zn such
that V .G = T .M2, as G is a basis of L. Thus, U = V .G.
Let β = (β1, . . . , βn) ∈ Fn

2 such that βi = vi (mod 2), then we
have U = β.G.
Let M ∈ L be a polynomial such that M =

∑n
i=1 βiGi , then

M = U, hence gcd(M,X n − 1) = 1.
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