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THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS
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We construct an explicit transitive free action of a Banach space of Hölder functions on the space of branched rough paths, which yields in particular a bijection between theses two spaces. This endows the space of branched rough paths with the structure of a principal homogeneous space over a Banach space and allows to characterize its automorphisms. The construction is based on the Baker-Campbell-Hausdorff formula, on a constructive version of the Lyons-Victoir extension theorem and on the Hairer-Kelly map, which allows to describe branched rough paths in terms of anisotropic geometric rough paths.

Introduction

The theory of Rough Paths has been introduced by Terry Lyons in the '90s with the aim of giving an alternative construction of stochastic integration and stochastic differential equations. More recently, it has been expanded by Martin Hairer to cover stochastic partial differential equations, with the invention of regularity structures.

A rough path and a model of a regularity structure are mathematical objects which must satisfy some algebraic and analytical constraints. For instance, a rough path can be described as a Hölder function defined on an interval and taking values in a non-linear finite-dimensional Lie group; models of regularity structures are a generalization of this idea. A crucial ingredient of regularity structures is the renormalisation procedure: given a family of regularized models, which fail to converge in an appropriate topology as the regularization is removed, one wants to modify it in a such a way that the algebraic and analytical constraints are still satisfied and the modified version converges. This procedure has been obtained in [START_REF] Bruned | Algebraic renormalisation of regularity structures[END_REF][START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF] for a general class of models with a stationary character.

The same question about rough paths has been asked recently in [START_REF] Bruned | Examples of renormalized SDEs[END_REF][START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF][START_REF] Bruned | Quasi-shuffle algebras and renormalisation of rough differential equations[END_REF], and indeed it could have been asked much earlier. Maybe this has not happened because the motivation was less compelling; although one can construct examples of rough paths depending on a positive parameter which do not converge as the parameter tends to 0, this phenomenon is the exception rather than the rule. However the problem of characterizing the automorphisms of the space of rough paths is clearly of interest; one example is the transformation from Itô to Stratonovich integration, see e.g. [START_REF] Zambotti | Flots et séries de Taylor stochastiques[END_REF][START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF][START_REF] Ebrahimi-Fard | Flows and stochastic Taylor series in Itô calculus[END_REF]. However our aim is to put this particular example in a much larger context.

We recall that there are several possible notions of rough paths; in particular we have geometric RPs and branched RPs, two notions defined respectively by Terry Lyons [START_REF] Lyons | Differential equations driven by rough signals[END_REF] and Massimiliano Gubinelli [START_REF] Gubinelli | Ramification of rough paths[END_REF], see Sections 3 and 4 below. These two notions are intimately related to each other, as shown by Hairer and Kelly [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF], see Section 4 below. We note that regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF] are a natural and far-reaching generalization of branched RPs.

In this paper we concentrate on the automorphisms of the space of branched RPs, see below for a discussion of the geometric case. Let F be the collection of all non-planar rooted forests with nodes decorated by t1, . . . , du, see Section 4 below. For instance the following forest

a b i j k l m
is an element of F. We call T Ă F the set of rooted trees, namely of non-empty forests with a single connected component. Grading elements τ P F by the number |τ | of their nodes we set T ntτ P T : |τ | ď nu, n P N.

Let now H be the linear span of F. It is possible to endow H with a product and a coproduct ∆ : H Ñ Hb H which make it a Hopf algebra, also known as the Butcher-Connes-Kreimer Hopf algebra, see Section 4.2 below. We let G denote the set of all characters over H, that is, elements of G are functionals X P H ˚that are also multiplicative in the sense that xX, τ σy " xX, τ yxX, σy for all forests (and in particular trees) τ, σ P F. Furthermore, the set G can be endowed with a product ‹, dual to the coproduct, defined pointwise by xX ‹ Y, τ y " xX b Y, ∆τ y. We work on the compact interval r0, 1s for simplicity, and all results can be proved without difficulty on r0, T s for any T ě 0.

Definition 1.1 (Gubinelli [25]). Given γ P s0, 1r, a branched γ-rough path is a path X : r0, 1s 2 Ñ G which satisfies Chen's rule X su ‹ X ut " X st , s, u, t P r0, 1s, and the analytical condition |xX st , τ y| À |t ´s| γ|τ | , τ P F.

Setting x i t -xX 0t , iy, t P r0, 1s, we say that X is a branched γ-rough path over the path x " px 1 , . . . , x d q. We denote by BRP γ the set of all branched γ-rough paths (for a fixed finite alphabet t1, . . . , du).

By introducing the reduced coproduct ∆

1 : H Ñ H b H ∆ 1 τ -∆τ ´τ b 1 ´1 b τ,
where 1 denotes the empty forest, Chen's rule can we rewritten as follows δxX, τ y sut " xX su b X ut , ∆ 1 τ y, s, u, t P r0, 1s, (

where for F : r0, 1s 2 Ñ R we set δF : r0, 1s 3 Ñ R,

δF sut -F st ´Fsu ´Fut , (1.2)
which is the second order finite increment considered by Gubinelli [START_REF] Gubinelli | Controlling Rough Paths[END_REF]. Note that the right-hand side of (1.1) depends on the values of X on trees with strictly fewer nodes than τ ; if we can invert the operator δ, then the right-hand side of (1.1) determines the left-hand side. This is however not a trivial result. In fact, a simple (but crucial for us) remark is the following: if γ|τ | ď 1, then for any g τ : r0, 1s Ñ R such that g τ P C γ|τ | pr0, 1sq, the classical homogeneous Hölder space on r0, 1s with Hölder exponent γ|τ |, the function r0, 1s 

Inversely, if F : r0, 1s 2 Ñ R satisfies (1.4), then F must satisfy (1.3) with g τ P C γ|τ | pr0, 1sq.

If γ|τ | ą 1, then Gubinelli's Sewing Lemma [START_REF] Gubinelli | Controlling Rough Paths[END_REF] yields that the function ps, tq Þ Ñ xX st , τ y is uniquely determined by (1.4) i.e. by the values of X on trees with at most |τ | ´1 nodes, and therefore, applying a recursion, on trees with at most N -tγ ´1u nodes. More explicitly, the Sewing Lemma is an existence and uniqueness result for r0, 1s 2 Q ps, tq Þ Ñ xX st , τ y with γ|τ | ą 1, once the right-hand side of (1.1) is known. However, for γ|τ | ď 1 we have no uniqueness, as we have already seen, and existence is not trivial.

As we have seen in (1.3), the value of xX, τ y can be modified by adding the increment of a function in C γ|τ | pr0, 1sq, as long as γ|τ | ď 1. It seems reasonable to think that it is therefore possible to construct an action on the set of branched γ-rough paths of the abelian group (under pointwise addition) C γtpg τ q τ PT N : g τ 0 " 0, g τ P C γ|τ | pr0, 1sq, @ τ P T, |τ | ď N u, namely the set of all collections of functions pg τ P C γ|τ | pr0, 1sq : τ P T, |τ | ď N q indexed by rooted trees with fewer than N -tγ ´1u nodes, such that g τ 0 " 0 and g τ P C γ|τ | pr0, 1sq. This is indeed the content of the following Theorem 1.2. Let γ P s0, 1r such that γ ´1 R N. There is a transitive free action of C γ on BRP γ , namely a map pg, Xq Þ Ñ gX such that [START_REF] Zambotti | Flots et séries de Taylor stochastiques[END_REF] for each g, g 1 P C γ and X P BRP γ the identity g 1 pgXq " pg `g1 qX holds.

(2) if pg τ q τ PT N P C γ is such that there exists a unique τ P T N with g τ ı 0, then xpgXq st , τ y " xX st , τ y `gτ t ´gτ s and xgX, σy " xX, σy for all σ P T not containing τ .

(3) For every pair X, X 1 P BRP γ there exists a unique g P C γ such that gX " X 1 .

We say that a tree σ P T contains a tree τ P T if there exists a subtree τ 1 of σ, not necessarily containing the root of σ, such that τ and τ 1 are isomorphic as rooted trees, where the root of τ 1 is its node which is closest to the root of σ. Note that every pg τ q τ PT N P C γ is the sum of finitely many elements of C γ having satisfying the property required in point (2) of Theorem 1.2.

If γ ą 1{2 then the result of Theorem 1.2 is trivial. Indeed, in this case N " 1, T N " t i : i " 1, . . . , du, and C γ " tg i P C γ pr0, 1sq : 

g i 0 " 0, i " 1, . . . ,
xpgXq st , i j y - ż t s px j u ´xj s `g j u ´g j s q dpx i u `g i u q, (1.6) 
where x i u -xX 0u , iy and the integral is well-defined in the Young sense, see [24, section 3]. If 1{3 ă γ ď 1{2 then N " 2 and T 2 " T 1 \ t i j : i, j " 1, . . . , du. Then the action at level |τ | " 1 is still given by (1.5), while at level |τ | " 2 we must have by (1.1)

δxgX, i j y sut " xpgXq su b pgXq ut , ∆ 1 τ y " px j u ´xj s `g j u ´g j s qpx i t ´xi u `g i t ´g i u q.
(1.7) Although the right-hand side of (1.7) is explicit and simple, in this case there is no canonical choice for xgX, i j y. An expression like (1.6) is ill-defined in the Young sense, and the same is true if we try the formulation

xpgXq st , i j y " xX st , i j y `ż t s ´px j u ´xj s `g j u ´g j s q dg i u `pg j u ´g j s q dx i u ¯, (1.8) 
which satisfies formally (1.7), but the Young integrals are ill defined since 2γ ď 1. The construction of xgX, i j y is therefore not trivial in this case.

The same argument applies for any γ ď 1{2 and any tree τ such that 2 ď |τ | ď N " tγ ´1u, and the fact that the above Young integrals are not well defined shows why existence of the map X Ñ gX is not trivial. Since Theorem 1.2 yields an action of C γ on BRP γ which is regular, i.e. free and transitive, then BRP γ is a principal C γ -homogeneous space or C γ -torsor. In particular, BRP γ is a copy of C γ , but there is no canonical choice of an origin in BRP γ . Therefore, Theorem 1.2 also yields the following Corollary 1.3. Given a branched γ-rough path X, the map g Ñ gX yields a bijection between C γ and the set of branched γ-rough paths.

Therefore Corollary 1.3 yields a complete parametrization of the space of branched rough paths. This result is somewhat surprising, since rough paths form a non-linear space, in particular because of the Chen relation; however Corollary 1.3 yields a natural bijection between the space of branched γ-rough paths and the linear space C γ . Corollary 1.3 also gives a complete answer to the question of existence and characterization of branched γ-rough paths over a γ-Hölder path x. Unsurprisingly, for our construction we start from a result of T. Lyons and N. B. Victoir's [START_REF] Lyons | An extension theorem to rough paths[END_REF] of 2007, which was the first general theorem of existence of a geometric γ-rough path over a γ-Hölder path x, see our discussion of Theorem 1.4 below.

An important point to stress is that the action constructed in Theorem 1.2 is neither unique nor canonical. In the proof of Theorem 3.4 below, some parameters have to be fixed arbitrarily, and the final outcome depends on them, see Remark 3.6. In this respect, the situation is similar to what happens in regularity structures with the reconstruction operator on spaces D γ with a negative exponent γ ă 0, see [START_REF] Hairer | A theory of regularity structures[END_REF]Theorem 3.10].

Outline of our approach.

A key point in Theorem 1.2 is the construction of branched γ-rough paths. In the case of geometric rough paths, see Definition 4.1, the signature [START_REF] Chen | Iterated path integrals[END_REF][START_REF] Lyons | Differential equations driven by rough signals[END_REF] of a smooth path x : r0, 1s Ñ R d yields a canonical construction. Other cases where geometric rough paths over non-smooth paths have been constructed are Brownian motion and fractional Brownian motion (see [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF] for the case H ą 1 4 and [START_REF] Nualart | A construction of the rough path above fractional Brownian motion using Volterra's representation[END_REF] for the general case) among others. However, until T. Lyons and N. B. Victoir's paper [START_REF] Lyons | An extension theorem to rough paths[END_REF] in 2007, this question remained largely open in the general case. The precise result is as follows Theorem 1.4 (Lyons-Victoir extension). If p P r1, 8qzN and γ : " 1{p, a γ-Hölder path x : r0, 1s Ñ R d can be lifted to a geometric γ-rough path. For any p ě 1 and ε P s0, γr, a γ-Hölder path can be lifted to a geometric pγ ´εq-rough path.

Our first result is a version of this theorem which holds for rough paths in a more general algebraic context, see Theorem 3.4 below. We use the Lyons-Victoir approach and an explicit form of the Baker-Campbell-Hausdorff formula by Reutenauer [START_REF] Reutenauer | Theorem of Poincare-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to stirling numbers[END_REF], see formula (2.11) below. Whereas Lyons and Victoir used in one passage the axiom of choice, our method is completely constructive.

Using the same idea we extend this construction to the case where the collection px 1 , . . . , x d q is allowed to have different regularities in each component, which we call anisotropic (geometric) rough paths (aGRP), see Definition 4.8.

Theorem 1.5. To each collection px i q i"1,...,d , with x i P C γ i pr0, 1sq, we can associate an anisotropic rough path X over px i q i"1,...,d . For every collection pg i q i"1,...,d , with g i P C γ i pr0, 1sq, denoting by g X the anisotropic geometric rough path over px i `gi q i"1,...,d , we have g 1 pg Xq " pg `g1 q X. This kind of extension to rough paths has already been explored in the papers [START_REF] Boedihardjo | An isomorphism between branched and geometric rough paths[END_REF][START_REF] Gyurkó | Differential Equations Driven by Π-Rough Paths[END_REF] in the context of isomorphisms between geometric and branched rough paths. It turns out that the additional property obtained by our method enables us to explicitly describe the propagation of suitable modifications from lower to higher degrees.

We then go on to describe the interpretation of the above results in the context of branched rough paths. The main tool is the Hairer-Kelly map [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF], that we introduce and describe in Lemma 5.1 and then use to encode branched rough paths via anisotropic geometric rough paths, along the same lines as in [START_REF] Boedihardjo | An isomorphism between branched and geometric rough paths[END_REF]Theorem 4.3].

Theorem 1.6. Let X be a branched γ-rough path. There exists an anisotropic geometric rough path X indexed by words on the alphabet T N , with exponents pγ τ " γ|τ |, τ P T N q, and such that xX, τ y " x X, ψpτ qy, where ψ is the Hairer-Kelly map.

The main difference of this result with [28, Theorem 1.9] is that we obtain an anisotropic geometric rough path instead of a classical geometric rough path. This means that we do not construct unneeded components, i.e. components with regularity larger than 1, and we also obtain the right Hölder estimates in terms of the size of the indexing tree. This addresses two problems mentioned in Hairer and Kelly's work, namely Remarks 4.14 and 5.9 in [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF].

We then use Theorem 1.5 and Theorem 1.6 to construct our action on branched rough paths. Given pg, Xq P C γ ˆBRP γ , we construct the anisotropic geometric rough paths X and g X and then define the branched rough path gX P BRP γ as xgX, τ y " xg X, ψpτ qy, where ψ is the Hairer-Kelly map.

Our approach also does not make use of Foissy-Chapoton's Hopf-algebra isomorphism [START_REF] Chapoton | Free Pre-Lie Algebras are Free as Lie Algebras[END_REF][START_REF] Foissy | Finite dimensional comodules over the Hopf algebra of rooted trees[END_REF] between the Butcher-Connes-Kreimer Hopf algebra and the shuffle algebra over a complicated set I of trees as is done in [START_REF] Boedihardjo | An isomorphism between branched and geometric rough paths[END_REF]. This allows us to construct an action of a larger group on the set of branched rough paths; indeed, using the above isomorphism one would obtain a transformation group parametrized by pg τ q τ PI where I is the aforementioned set of trees of Foissy-Chapoton's results and g τ P C γ|τ | ; on the other hand our approach yields a transformation group parametrized by pg τ q τ PT N . With the smaller set I X T N , transitivity of the action g Þ Ñ gX would be lost.

Finally we note that we use a special property of the Butcher-Connes-Kreimer Hopf algebra: the fact that it is freely generated as an algebra by the set of trees, so defining characters over it is significantly easier than in the geometric case. To define an element X P G it suffices to give the values xX, τ y for all trees τ P T; by freeness there is a unique multiplicative extension to all of H. This is not at all the case for geometric rough paths: the shuffle algebra T pAq over an alphabet A is not free over the linear span of words so if one is willing to define a character X over T pAq there are additional algebraic constraints that the values of X on words must satisfy.

Outline. We start by reviewing all the theoretical concepts needed to make the exposition in this section formal. In Section 3 we state and prove the main result of this chapter. We extend the notion of rough path and we give an explicit construction of such a generalized rough path above any given path x P C γ . Next, in Section 4.3 we extend this result to the class of anisotropic geometric rough paths. Finally, in Section 4 we connect our construction with M. Gubinelli's branched rough paths, and we extend M. Hairer and D. Kelly's work in Section 5.1. We also explore possible connections with renormalisation in Section 6 by studying how our construction behaves under modification of the underlying paths. Then, we connect this approach with a recent work by Bruned, Chevyrev, Friz and Preiß [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] in Section 6.1, who borrowed ideas from the theory of Regularity Structures [START_REF] Bruned | Algebraic renormalisation of regularity structures[END_REF][START_REF] Hairer | A theory of regularity structures[END_REF] and proposed a renormalisation procedure for geometric and branched rough paths [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] based on pre-Lie morphisms.

The main difference between our result and the BCFP procedure is that they consider translation only by time-independent factors, whereas -under reasonable hypotheses-we are also able to handle general translations depending on the time parameter. We also mention that some further algebraic aspects of renormalisation in rough paths have been recently developed in [START_REF] Bruned | Quasi-shuffle algebras and renormalisation of rough differential equations[END_REF].
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Preliminaries

A Hopf algebra H is a vector space endowed with an associative product m : Hb H Ñ H: mpm b idq " mpid bmq, and a coassociative coproduct ∆ : H Ñ H b H: pid b ∆q∆ " p∆ b idq∆, satisfying moreover certain compatibility assumptions; H is also supposed to have a unit 1 P H, a counit ε P H ˚and an antipode S : H Ñ H such that mpid b Sq∆x " εpxq1 " mpS b idq∆x for all x P H. As usual we will use the more compact notation mpx b yq " xy. The reader is referred to the papers [START_REF] Cartier | A Primer of Hopf Algebras[END_REF][START_REF] Manchon | Hopf Algebras in Renormalisation[END_REF] H pp 1 q b ¨¨¨b H pp n`1 q .

Remark 2.3. These properties of the iterated coproduct imply that the bialgebra pH, ∆q is conilpotent, that is, for each homogeneous x P H pkq there is an integer n ď k such that ∆ 1 n x " 0. We obtain also the inclusion

∆ 1 n H pn`1q Ă H bpn`1q p1q
, that is, the n-fold reduced coproduct of a homogeneous element of degree n `1 is a sum of pn `1q-fold tensor products of homogeneous elements of degree 1.

We recall that in general the dual space H ˚carries an algebra structure given by the convolution product ‹, dual to the coproduct ∆, defined by xf ‹ g, xyxf b g, ∆xy.

For a collection of maps f 1 , . . . , f k P H ˚we have the formula We call g the set of all infinitesimal characters on H.

f 1 ‹ ¨¨¨‹ f k " pf 1 b ¨¨¨b f k q ˝∆k´1 . ( 2 
We observe that necessarily xX, 1y " 1 and xα, 1y " 0 for all X P G and α P g. It is well known that the pG, ‹, εq is a group with product ‹, unit ε and inverse X ´1 " X ˝S where S is the antipode defined above. Moreover pg, r¨, ¨sq is a Lie algebra with bracket rα, βsα ‹ β ´β ‹ α. See e.g. [START_REF] Manchon | Hopf Algebras in Renormalisation[END_REF].

2.1. Nilpotent Lie algebras. From (2.2) we have Lemma 2.5. For any N P N the subspace

H N - N à k"0 H pkq Ă H is a counital subcoalgebra of pH, ∆, εq.
By Lemma 2.5 we can consider the dual algebra pH N , ‹, εq. This algebra is also graded and connected, since we have the natural grading

H N " N à k"0 H pkq , H N Q α " N ÿ k"0 α pkq , ( 2.5) 
where α pkq : H N Ñ R is defined by α pkq pxq -αpx k q with the notation (2.3).

Since H N is not a subalgebra of H, the notions of character and infinitesimal character on H N are not well-defined. We can however introduce their truncated versions. 

H ˚Ñ H N `1 Ñ H N .
Proof. Using the notation (2.5), we can extend α P H N to α P H N `1 (respectively H ˚) by setting α pN `1q " 0 (respectively α pkq " 0 for all k ě N `1). Trivially this extension takes

H N to H N `1. If α P g N and x, y P H N are such that |x| `|y| ď N `1 then xα, xyy " A α, N `1 ÿ j"0 pxyq j E " N ÿ j"0 xα, pxyq j y " N ÿ j"0 j ÿ k"0 xα, x k y k´j y " N ÿ j"0 pxα, x j yxε, yy `xε, xyxα, y j yq " xα, xyxε, yy `xε, xyxα, yy.
so that the extension of α is in g N `1. The same argument yields the inclusion g N ãÑ g.

There are also the truncated exponential exp N : H N Ñ H N and logarithm log N : H N Ñ H N , defined by the sums

exp N pαq - N ÿ k"0 1 k! α ‹k ˇˇH N , log N pXq - N ÿ k"1 p´1q k`1 k pX ´εq ‹k ˇˇH N . (2.6)
The proof of the next result can be found for instance in [START_REF] Foissy | Algèbres de Hopf combinatoires[END_REF]Thm 77].

Lemma 2.8. pG N , ‹, εq is a group and pg N , r¨, ¨sq is a Lie algebra. Moreover, exp N :

g N Ñ G N is a bijection with inverse log N : G N Ñ g N .
For every k ě 0 we define now, using the notation (2.5),

W k -α P g : α " α pkq ( .
Lemma 2.9. For all n, m ě 0 we have rW n , W m s Ă W n`m .

Proof. Let x P H. With the notation (2.3) we have for α P W n and

β P W m pα ‹ β ´β ‹ αqpxq " pα b β ´β b αq∆x " pα b β ´β b αq∆x n`m by (2.2).
By the canonical inclusion of Lemma 2.7, we observe that

g N " N à k"1 W k , g N Q α " N ÿ k"0 α pkq (2.7)
in the notation (2.5). With this decomposition g N becomes by Lemma 2.9 a graded Lie algebra. We recall that the center of g N is the subspace of all w P g N such that rα, ws " 0 for all α P g N , while the center of G N is the set of all

X P G N such that X ‹ Y " Y ‹ X for all Y P G N .
Proposition 2.10. W N is contained in the center of g N and exp N pW N q is a subgroup contained in the center of G N .

Proof The next (famous) result describes the group law on G N in terms of an operation on g N via the exponential/logarithmic map. Theorem 2.11 (Baker-Campbell-Hausdorff). For all α, β P g N , we have

log N pexp N pαq ‹ exp N pβqq P g N .

We define the map BCH

N : g N ˆgN Ñ g N by BCH N pα, βq -log N pexp N pαq ‹ exp N pβqq.
(2.8)

Another way to interpret this theorem is to say that there exists an element γ " BCH N pα, βq P g N such that exp N pαq ‹ exp N pβq " exp N pγq.

It is a classical result that the map BCH N is formed by a sum of iterated Lie brackets of α and β, where the first terms are

BCH N pα, βq " α `β `1 2 rα, βs `1 12 rα, rα, βss ´1 12 rβ, rα, βss `¨¨¨, (2.9) 
and the following ones are explicit but difficult to compute. Nevertheless, fully explicit formulas have been known since 1947 by Dynkin [START_REF] Dynkin | Calculation of the coefficients in the Campbell-Hausdorff formula[END_REF].

For our purposes, however, Dynkin's formula is too complicated (for example, the regularity argument in step 2 of the proof of Theorem 3.4 would not be as evident) so we rely on a different expression first shown by Reutenauer [START_REF] Reutenauer | Theorem of Poincare-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to stirling numbers[END_REF]. In order to describe it, let ϕ k : pH ˚qbk Ñ H ˚be the linear map

ϕ k pα 1 b ¨¨¨b α k q " ÿ σPS k a σ α σp1q ‹ ¨¨¨‹ α σpkq (2.10)
where S k denotes the symmetric group of order k, and a σ -p´1q dpσq k `k´1 dpσq ˘´1 is a constant depending only on the descent number dpσq of the permutation σ P S k , namely the number of i P t1, . . . , k ´1u such that σpiq ą σpi `1q. Lemma 2.12 (Reutenauer's formula). For all α, β P g N BCH N pα, βq "

N ÿ k"1 ÿ i`j"k 1 i!j! ϕ k pα bi b β bj q. (2.11)
Moreover, for all i P t0, . . . , N u, we have ϕ N `αbi b β bpN ´iq ˘P W N .

Proof. Let us suppose first that T pV q is the (completed) tensor algebra over a twodimensional vector space V , with V linearly generated by te 1 , e 2 u. Then the result is contained in Reutenauer's paper [START_REF] Reutenauer | Theorem of Poincare-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to stirling numbers[END_REF] where the free step-N nilpotent Lie algebra L N plays the rôle of g N . We want now to show how this implies the same result in our more general setting.

Let α, β P g N and let Φ : pT pV q N , bq Ñ pH N , ‹q be the unique algebra morphism such that Φpe 1 q " α, Φpe 2 q " β. Then Φ restricts to a Lie-algebra morphism Φ : L N Ñ g N such that BCH N pα, βq " ΦpBCH N pe 1 , e 2 qq and therefore (2.11) follows.

In order to prove the first formula, we first note that Φ is not a graded morphism, since the generators e 1 and e 2 are homogeneous of degree 1 in T pV q N , but α and β are in general not homogeneous in H N . However, from the bilinearity of the Lie bracket and Lemma 2.9 we obtain

rW n ' ¨¨¨' W N , W m ' ¨¨¨' W N s Ă W n`m ' W n`m`1 ' ¨¨¨' W N . Then, if α 1 , . . . , α k P g N then ϕ k pα 1 b ¨¨¨b α k q P W k ' ¨¨¨' W N .
From all these considerations we obtain the following result on the map BCH pn`1q :

g n`1 ˆgn`1 Ñ W n`1 , BCH pn`1q -BCH n`1 ´BCH n , n ě 0. (2.12)
Note that BCH pn`1q takes indeed values in W n`1 rather than in g n`1 by (both assertions of) Lemma 2.12.

Lemma 2.13. Let x P H pn`1q and α, β P g n`1 . Then

xBCH pn`1q pα, βq, xy " ÿ i`j"n`1 1 i!j! ÿ pxq ÿ σPS n`1 a σ i ź p"1 xα, x pσ ´1ppqq y n`1 ź q"i`1 xβ, x pσ ´1pqqq y, (2.13) where ∆ 1 n x " ÿ pxq x p1q b ¨¨¨b x pn`1q P H bpn`1q p1q . Proof. Set α 1 " ¨¨¨" α i -α, α i`1 " ¨¨¨" α n`1 -β.
Then the result follows directly from the definition of ϕ k in (2.10) together with (2.4) and the fact that since xα j , 1y " 0 we can write

α 1 ‹ ¨¨¨‹ α n`1 " pα 1 b ¨¨¨b α n`1 q∆ 1 n
(2.14) instead (note the reduced coproduct in place of the full coproduct).

2.2.

A distance on the group of truncated characters. Now we introduce a distance on G N which is well adapted to the notion of rough paths, to be introduced in Definition 3.1 below. We fix a basis B of H N and define a norm } ¨} on this space by requiring that B is orthonormal. There is a unique function c :

B ˆB ˆB Ñ R such that ∆v " ÿ v 1 ,v 2 PB cpv, v 1 , v 2 q v 1 b v 2 , @ v P B.
Then we define

K -max vPB ÿ v 1 ,v 2 PB |cpv, v 1 , v 2 q| ă 8, ~f ~-K sup vPB |xf, vy|, f P H N . Then, if f, g P H N , for any v P B |xf ‹ g, vy| ď ÿ v 1 ,v 2 PB |cpv, v 1 , v 2 q||xf, v 1 y||xg, v 2 y| ď 1 K ~f ~~g~, thus ~f ‹ g~ď ~f ~~g~. We set now for all X P G N |X| -max k"1,...,N `k! X pkq ˘1{k `max k"1,...,N ´k! `X´1 ˘pkq ¯1{k , ( 2.15) 
where for X P G N Ă H N we use the notation (2.5). We define

G N ˆGN Q pX, Y q Þ Ñ ρ N pX, Y q -|X ´1 ‹ Y | P R `, i.e. by (2.15) ρ N pX, Y q " max k"1,...,N `k! pY ´1 ‹ Xq pkq ˘1{k `max k"1,...,N `k! pX ´1 ‹ Y q pkq ˘1{k (2.16)
Proposition 2.14. The map ρ N defines a left-invariant distance on the group G N such that the metric space pG N , ρ N q is complete.

Proof. We only need to prove that the function | ¨| defined in (2.15) is sub-additive, the other properties being clear. Note that for X, Y P G N , with the notation (2.5) we have

X ‹ Y " ˜N ÿ k"0 X pkq ¸‹ ˜N ÿ k"0 Y pkq ¸" N ÿ k"0 k ÿ j"0 X pjq ‹ Y pk´jq . (2.17) Therefore pX ‹ Y q pkq ď k ÿ j"0 X pjq Y pk´jq ď 1 k! k ÿ j"0 ˆk j ˙|X| j |Y | k´j " 1 k! p|X| `|Y |q k
whence the result.

The next result is the analog of [START_REF] Lyons | An extension theorem to rough paths[END_REF]Prop. 7].

Lemma 2.15. If X " exp N pw 1 `¨¨¨`w N q with w i P W i , then

c N max k"1,...,N ~wk ~1{k ď |X| ď C N max k"1,...,N ~wk ~1{k .
Proof. Using the notation (2.5), we have

X pkq " k ÿ i"1 1 i! ÿ j 1 `¨¨¨`j i "k w j 1 ‹ ¨¨¨‹ w j i so that for all k " 1, . . . , N `k! X pkq ˘1{k ď ˜k ÿ i"1 k! i! ÿ j 1 `¨¨¨`j i "k ´~w j 1 ~1{j 1 ¯j1 ¨¨¨´~w j i ~1{j i ¯ji ¸1{k ď ˜k ÿ i"1 k! i! ÿ j 1 `¨¨¨`j i "k ˆmax "1,...,k ~w ~1{ ˙j1 `¨¨¨`j i ¸1{k .
There are exactly `k´1 i´1 ˘ď pk´1q i´1 pi´1q! solutions to j 1 `¨¨¨`j i " k so that pk! X pkq q 1{k ď pk!pe k ´1qq 1{k max "1,...,k ~w ~1{ .

Since X ´1 " exp N p´w 1 ´¨¨¨´w N q, the bound for X ´1 follows in the same way and we have therefore proved the desired upper bound for |X|. For the lower bound, we use the truncated logarithm

w k " k ÿ i"1 p´1q i´1 i ÿ j 1 `¨¨¨`j i "k X pj 1 q ‹ ¨¨¨‹ X pj i q .
Then we can estimate

~wk ~1{k ď ˜k ÿ i"1 1 i ÿ j 1 `¨¨¨`j i "k ´ X pj 1 q 1{j 1 ¯j1 ¨¨¨´ X pj i q 1{j i ¯ji ¸1{k ď ˜k ÿ i"1 1 i ˆk ´1 i ´1 ˙ˆmax "1,...,k ~X ~1{ ˙j1 `¨¨¨`j i ¸1{k ď 1 c N |X|
and the proof is complete.

We now note that the function | ¨| and the distance ρ N make G N a homogeneous group, see [START_REF] Folland | Hardy Spaces on Homogeneous Groups[END_REF] for an extensive treatment of this subject, and [START_REF] Lyons | An extension theorem to rough paths[END_REF] for the case of tensor algebras and the relation with geometric rough paths.

To put it briefly, for all r ą 0 we can define the following linear operator Ω r :

H ˚Ñ H Ωr α - ÿ kě0 r k α pkq .
This family satisfies Ω r ˝Ωs " Ω rs , r, s ą 0. Moreover Ω r : g N Ñ g N is a Lie-algebra automorphism of g N for all r ą 0. Then they induce group automorphisms Λ rexp N ˝Ωr ˝log N : G N Ñ G N , r ą 0. In the terminology of [START_REF] Folland | Hardy Spaces on Homogeneous Groups[END_REF], pΩ r q rą0 is a family of dilations on the finite-dimensional Lie algebra g N and G N is a homogeneous group.

Note that the function | ¨| : G N Ñ R `is continuous, satisfies |Λ r X| " r|X| for all r ą 0 and X P G N , and |X| " 0 for X P G N if and only if X " 1. These three properties make | ¨| a homogeneous norm on G N , see [START_REF] Folland | Hardy Spaces on Homogeneous Groups[END_REF]. The homogeneity property plays an important role in the proof of Theorem 3.4 below.

Construction of Rough paths

As in the previous section, we fix a locally-finite graded connected Hopf algebra H. We also fix a number γ P s0, 1r and let N -tγ ´1u be the biggest integer such that N γ ď 1. Without loss of generality we can fix a basis B of H N consisting only of homogeneous elements and in particular we let te 1 , . . . , e d u " B X H p1q where ddim H p1q . Definition 3.1. A pH, γq-rough path is a function X : r0, 1s 2 Ñ G N , with N " tγ ´1u, which satisfies Chen's rule

X su ‹ X ut " X st , s, u, t P r0, 1s, (3.1) 
and such that for all v P B |xX st , vy| À |t ´s| γ|v| .

(3.2) If x i : r0, 1s Ñ R, i " 1, . . . , d, is such that x i t ´xi
s " xX st , e i y, s, t P r0, 1s, we say that X is a γ-rough path over px 1 , . . . , x d q.

Remark 3.2. By specializing this definition to different choices of H we recover both geometric rough paths [START_REF] Lyons | Differential equations driven by rough signals[END_REF] where H is the shuffle Hopf algebra over an alphabet, branched rough paths [START_REF] Gubinelli | Ramification of rough paths[END_REF] where H is the Butcher-Connes-Kreimer Hopf algebra on decorated non-planar rooted trees, and also planarly branched rough paths [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF].

We remark that there is a bijection between (1) functions X : r0, 1s 2 Ñ G N such that X su ‹ X ut " X st , for all s, u, t P r0, 1s, (2) functions Proof. First note that the distance in (2. [START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF]) is defined with respect to a fixed (but arbitrary) basis so we use the basis B fixed at the beginning of this section. Also, due to the above remark we only have to verify that X is γ-Hölder with respect to ρ N if and only if X satisfies (3.2) using the same basis. In one direction, if X is γ-Hölder then, by definition

X : r0, 1s Ñ G N such that X 0 " 1, given by X Þ Ñ X, X t -X 0t , X Þ Ñ X, X st -X ´1 s ‹ X t ,
|X st | " ρ N pX s , X t q À |t
´s| γ and so, for a basis element v P B we have

|xX st , vy| À |t ´s| γ|v| . Conversely, if (3.
2) holds then |X st | À |t´s| γ and so by definition also ρ N pX s , X t q À |t´s| γ , i.e. X is γ-Hölder with respect to ρ N .

We now come to the problem of existence. Our construction of a rough path in the sense of Definition 3.1 over an arbitrary collection of γ-Hölder paths px 1 , . . . , x d q relies in the following extension theorem. We note that the proof is a reinterpretation of the approach of Lyons-Victoir [30, Theorem 1] in the context of a more general graded Hopf-algebra H.

Theorem 3.4 (Rough path extension)

. Let 1 ď n ď N ´1 and γ P s0, 1r such that γ ´1 R N. Suppose we have a γ-Hölder path X n : r0, 1s Ñ pG n , ρ n q. There is a γ-Hölder path X n`1 : r0, 1s Ñ pG n`1 , ρ n`1 q extending X n , i.e. such that X n`1 | Hn " X n .

A key tool is the following technical lemma whose proof can be found in [30, Lemma 2]. Lemma 3.5. Let pE, ρq be a complete metric space and set D " tt m k -k2 ´m : m ě 0, k " 0, . . . , 2 m ´1u. Suppose y : D Ñ E is a path satisfying the bound ρpy t m k , y t m k`1 q À 2 ´γm for some γ P p0, 1q. Then, there exists a γ-Hölder path x : r0, 1s Ñ E such that x| D " y.

Proof of Theorem 3.4. The construction of X n`1 is made in two steps.

Step 1. For m ě 0 and k P t0, . . . , 2 m u we define t m k -k2 ´m P r0, 1s. Then we define the following sets of dyadics in r0, 1s

D pmq -tt m k | k " 0, . . . , 2 m u, D m - ď n"0,...,m D pnq , D - ď mě0 D pmq .
Set X st " pX n s q ´1 ‹ X n t P G n and L st " log n pX st q P g n where log n was defined in (2.6). Then, the Baker-Campbell-Hausdorff formula (2.8) and Chen's rule (3.1) imply that L st " BCH n pL su , L ut q.

(3.4)

We look for Y : r0, 1s 2 Ñ G n`1 such that Y satisfies Chen's rule (3.1) and Y ˇˇH N " X. We use throughout the proof that g n Ă g n`1 , see Lemma 2.7.

In a first step, we define Y : D ˆD Ñ G n`1 . In the second step we show that Y has suitable uniform continuity properties and can thus be extended to r0, 1s 2 using Lemma 3. 

Y m t m k2 n t m 2 n " Y m´n t m´n k t m´n . (3) Y m restricted to H n is equal to X : D m ˆDm Ñ G n , in the sense that Y m ab | Hn " X ab , @ a, b P D m .
(4) for all k " 0, . . . , 2 m ´1, setting

Z m t m k t m k`1 -log n`1 ´Y m t m k t m k`1 ‹ exp n`1 ´´L t m k t m k`1 ¯¯, we have Z m t m k t m k`1 P W n`1 .
For m " 0, we set Y 0 01 " exp n`1 pL 01 q, Y 0 00 " Y 0 11 -ε, and Z 0 01 -0 P W n`1 . For x P H n , we have xexp n`1 pL 01 q, xy " xexp n pL 01 q, xy, so that Y 0 restricted to H n is equal to

X : D 0 ˆD0 Ñ G n .
Let now m ě 1, and suppose that Y m´1 : D m´1 ˆDm´1 Ñ G n`1 has been constructed with the above properties. We start by defining Y m tt " ε for all t P D pmq . Let us consider three consecutive points in D pmq of the form

s " t m 2k , u " t m 2k`1 , t " t m 2k`2
for some k " 0, . . . , 2 m´1 ´1. Note that s " t m´1 k and t " t m´1 k`1 , so that Z m st -Z m´1 st P W n`1 is already defined by the recurrence hypothesis. We define Z m su and Z m ut as follows

Z m su " Z m ut - 1 2 `Zm´1 st ´BCH pn`1q pL su , L ut q ˘, (3.5) 
where BCH pn`1q " BCH n`1 ´BCH n : g n`1 ˆgn`1 Ñ W n`1 , see (2.12). Since by recurrence

Z m´1 st P W n`1 , we obtain that Z m su , Z m ut P W n`1 and Z m su `Zm ut " Z m´1 st ´BCH pn`1q pL su , L ut q " L st `Zm st ´BCH n`1 pL su , L ut q (3.6)
where in the last equality we have applied (3.4). Then we set

Y m su -exp n`1 pL su `Zm su q, Y m ut -exp n`1 pL ut `Zm ut q. Since exp n`1 pW n`1 q is in the center of G n`1 by Proposition 2.10, we obtain that Y m su " exp n`1 pL su q ‹ exp n`1 pZ m su q, Y m ut " exp n`1 pL ut q ‹ exp n`1 pZ m ut q
. By (2.8) and (3.6) the product is equal to

Y m su ‹ Y m ut " exp n`1 pBCH n`1 pL su , L ut q `Zm su `Zm ut q " exp n`1 pL st `Zm st q " Y m st . Let now t m j , t m k P D pmq with 0 ď j ă k ď 2 m . We set Y m t m j t m k -Y m t m j t m j`1 ‹ ¨¨¨‹ Y m t m k´1 t m k , Y m t m k t m j -´Y m t m j t m k ¯´1
so that the identity Y m ab ‹ Y m bc " Y m ac is valid for any a, b, c P D pmq .

We need now to check that this definition is compatible with the values already constructed on D m´1 ˆDm´1 . By the recursion assumption, it is enough to show that for all k, P t0, . . . ,

2 m´1 u Y m t m 2k t m 2 " Y m´1 t m´1 k t m´1 . If k " or |k ´ | " 1, then this is true by construction. Otherwise, if for example k `1 ă then Y m t m 2k t m 2 " Y m t m 2k t m 2k`2 ‹ ¨¨¨‹ Y m t m 2 ´2t m 2 " Y m´1 t m´1 k t m´1 k`1 ‹ ¨¨¨‹ Y m´1 t m´1 ´1 t m´1 " Y m´1 t m´1 k t m´1
by the recursion property and the Chen relation satisfied by Y m (respectively Y m´1 ) on D pmq (resp. D pm´1q ).

We also have to check the extension property: for x P H n we have

xY m t m j t m j`1 , xy " xexp n`1 pL t m j t m j`1 q ‹ exp n`1 pZ m t m j t m j`1 q, xy " xexp n pL t m j t m j`1 q, xy " xX t m j t m j`1 , xy.
By recurrence, we have proved that Y m : D m ˆDm Ñ G n`1 is well defined for all m ě 0, with the above properties. Therefore, we can unambiguously define Y : |xBCH pn`1q pL su , L ut q, υy| ď

D ˆD Ñ G n`1 , Y st -Y m st ,
ÿ pυq ÿ i`j"n`1 1 i!j! ÿ σPS n`1 |a σ | i ź p"1 |xL su , υ pσ ´1ppqq y| n`1 ź q"i`1
|xL ut , υ pσ ´1pqqq y|. Now, since υ pjq P H p1q for all j " 1, . . . , n `1 we actually have that

|xL su , υ pjq y| ď d ÿ k"1 |x k u ´xk s ||υ k pjq | ď 2 ´mγ d ÿ k"1 |υ k pjq |
for some coefficients υ k pjq P R such that υ pjq " ř d k"1 υ k pjq e k , and we have a similar estimate for L ut instead of L su . Therefore we obtain that BCH pn`1q pL su , L ut q n`1 ď C 2 ´mpn`1qγ , where

C " K max υ ÿ pυq ÿ i`j"n`1 1 i!j! ÿ σPS n`1 |a σ | n`1 ÿ k 1 ,...,k n`1 "1 n`1 ź "1 |υ k p q |.
Therefore, from (3.5) we get

max k"0,...,2 m ´1 Z m t m k t m k`1 n`1 ď 1 2 max k"0,...,2 m´1 ´1 Z m´1 t m´1 k ,t m´1 k`1 n`1 `1 2 C 2 ´mpn`1qγ hence a m ď 2 pn`1qγ´1 a m´1 `C 2 , m ě 1.
Since a 0 " 0 we can show by recurrence on m ě 0

a m ď C 2 m´1 ÿ j"0 2 ´jp1´pn`1qγq .
Since we are in the regime where pn `1qγ ă 1 (here we use that γ ´1 R N) we obtain that 

sup mě0 a m ď C 2 ´2pn`1qγ . Therefore Z m t m k t m k`1 n`1 À 2 ´mpn`1qγ , @ m ě 0, k " 0, . . . , 2 m ´1. ( 3 
|exp n`1 pZ m st q| À Z m t m k t m k`1 1 n`1 n`1 À 2 ´mγ .
Moreover, using Lemma 2.15 again (first the upper bound, then the lower bound) and the fact that X n : r0, 1s Ñ G n is γ-Hölder by assumption,

|exp n`1 pL st q| ď C n`1 sup k"1,...,n`1 ~pL st q k ~1{k " C n`1 sup k"1,...,n ~pL st q k ~1{k ď ď C n`1 c n |exp n pL st q| " C n`1 c n |X st | " C n`1 c n ρ n ´Xn t m j , X n t m j`1 ¯À 2 ´mγ . Therefore, the path X n`1 : D Ñ G n`1 defined by X n`1 t m j -Y 0,t m j satisfies ρ n`1 ´Xn`1 t m j , X n`1 t m j`1 ¯À 2 
´mγ , thus by Lemma 3.5 we obtain a γ-Hölder path X n`1 : r0, 1s Ñ G n`1 extending X n . Remark 3.6. Our construction depends on a finite number of choices, namely we set Z 01 " 0 to start the recursion in (3.6), and this for each level; moreover in (3.6) we make the choice Z t m 2k ,t m 2k`1 " Z t m 2k`1 ,t m 2k`2 . These choices are the same as in [30, Proof of Theorem 1] and are indeed the most natural ones, but one could change them and the final outcome would be different. Remark 3.7. While in [30, Proof of Proposition 6] Lyons and Victoir use the axiom of choice, our proof is completely constructive. In particular, we use the explicit map exp k`1 ˝log k : G k pT n q Ñ G k`1 pT n q which plays the role of the injection i G{K,G : G{K Ñ G in [30, Proposition 6]. The fact that this map has good continuity estimates is based on Lemma 2.15. Corollary 3.8. Given γ P s0, 1r with γ ´1 R N and a collection of γ-Hölder paths x i : r0, 1s Ñ R, i " 1, . . . , d, there exists a γ-Hölder path X : r0, 1s Ñ G N such that xX, e i y " x i ´xi 0 , i " 1, . . . , d. Then X st -X ´1 s ‹ X t defines a pH, γq-rough path over px 1 , . . . , x d q.

Proof. We start with the following observation: for n " 1, the group G 1 Ă H p1q is abelian, and isomorphic to the additive group H p1q . Indeed, let X, Y P G 1 By Theorem 3.4 there is a γ-Hölder path X 2 : r0, 1s Ñ pG 2 , ρ 2 q extending X 1 so in particular xX 2 t , e i y " x i t ´xi 0 also. Continuing in this way we obtain successive γ-Hölder extensions X 3 , . . . , X N and we set X -X N .

The following result has already been proved in the case where the underlying Hopf algebra H is combinatorial by Curry, Ebrahimi-Fard, Manchon and Munthe-Kaas in [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF]Theorem 4.3]. We remark that their proof works without modifications in our context so we have Theorem 3.9. Let X : r0, 1s Ñ G N be a γ-Hölder path with X 0 " 1 and suppose that γ ´1 R N. There exists a path X : r0, 1s Ñ G such that |x X´1 s ‹ Xt , vy| À |t ´s| γ|v| for all homogeneous v P H and extending X, in the sense that XˇˇH N " X.

Remark 3.10. In view of Theorem 3.9 we can replace the truncated group in Definition 3.1 by the full group of characters G. What this means is that γ-rough paths are uniquely defined once we fix the first N levels and since H is locally finite, this amounts to a finite number of choices. This is of course a generalization of the extension theorem of [START_REF] Lyons | Differential equations driven by rough signals[END_REF], see also [START_REF] Gubinelli | Ramification of rough paths[END_REF]Theorem 7.3] for the branched case.

Applications

We now apply Theorem 3.4 to various kinds of Hopf algebras in order to link this result with the contexts already existing in the literature.

Geometric rough paths.

In this setting we fix a finite alphabet A -t1, . . . , du. As a vector space H -T pAq is the linear span of the free monoid MpAq generated by A. The product on H is the shuffle product ¡: H b H Ñ H defined recursively by 1 ¡v " v ¡1 " v for all v P H, where 1 P MpAq is the unit for the monoid operation, and pau ¡ bvq " apu ¡ bvq `bpau ¡ vq for all u, v P H and a, b P A, where au and bv denote the product of the letters a, b with the words u, v in MpAq.

The coproduct ∆ : H Ñ H b H is obtained by deconcatenation of words,

∆pa 1 ¨¨¨a n q " a 1 ¨¨¨a n b 1 `1 b a 1 ¨¨¨a n `n´1 ÿ k"1 a 1 ¨¨¨a k b a k`1 ¨¨¨a n .
It turns out that pH, ¡, ∆q is a commutative unital Hopf algebra, and pH, ∆q is the cofree coalgebra over the linear span of A. The antipode is the linear map S : H Ñ H given by Spa 1 ¨¨¨a n q " p´1q n a n . . . a 1 .

Finally, we recall that H is graded by the length pa 1 ¨¨¨a n q " n and it is also connected.

The homogeneous components H pnq are spanned by the sets ta 1 ¨¨¨a n : a i P Au.

Definition 3.1 specializes in this case to geometric rough paths (GRP) as defined in [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF] (see just below for the precise definition) and Theorem 3.4 coincides with [START_REF] Lyons | An extension theorem to rough paths[END_REF]Theorem 6]. Definition 4.1. Let γ P s0, 1r and set N -tγ ´1u. A geometric γ-rough path is a map X : r0, 1s 2 Ñ G N which satisfies Chen's rule X st " X su ‹ X ut for all s, u, t P r0, 1s and the analytic bound |xX st , vy| À |t ´s| γ pvq for all v P H N .

Then Proposition 3.3 and the existence results Theorem 3.4-Corollary 3.8 are the content of the paper [START_REF] Lyons | An extension theorem to rough paths[END_REF] by Lyons and Victoir.

Branched rough paths.

Let T be the collection of all non-planar non-empty rooted trees with nodes decorated by t1, . . . , du. Elements of T are written as 2-tuples τ " pT, cq where T is a non-planar tree with node set N T and edge set E T , and c : N T Ñ t1, . . . , du is a function. Edges in E T are oriented away from the root, but this is not reflected in our graphical representation. Examples of elements of T include the following

i, i j , i j k , i j k l m.
For τ P T write |τ | " #N T for its number of nodes. Also, given an edge e " px, yq P E T we set speq " x and tpeq " y. There is a natural partial order relation on N T where x ď y if and only if there is a path in T from the root to y containing x.

We denote by F the collection of decorated rooted forests and we let H -H BCK denote the vector space spanned by F. There is a natural commutative and associative product on F, denoted by ¨and given by the disjoint union of forests, where the empty forest 1 acts as the unit. Then, H is the free commutative algebra over T, with grading |τ 1 ¨¨¨τ k | " |τ 1 | `¨¨¨`|τ k |. Given i P t1, . . . , du and a forest τ " τ 1 ¨¨¨τ k we denote by rτ 1 ¨¨¨τ k s i the tree obtained by grafting each of the trees τ 1 , . . . , τ k to a new root decorated by i, e.g. r j s i " i j , r j ks i " i j k .

The decorated Butcher-Connes-Kreimer coproduct [START_REF] Connes | Hopf Algebras, Renormalization and Noncommutative Geometry[END_REF][START_REF] Gubinelli | Ramification of rough paths[END_REF] is the unique algebra morphism ∆ :

H Ñ H b H such that ∆rτ s i " rτ s i b 1 `pid b r¨s i q∆τ.
This coproduct admits a representation in terms of cuts. An admissible cut C of a tree T is a non-empty subset of E T such that any path from any vertex of the tree to the root contains at most one edge from C; we denote by ApT q the set of all admissible cuts of the tree T . Any admissible cut C containing k edges maps a tree T to a forest CpT q " T 1 ¨¨¨T k`1 obtained by removing each of the edges in C. Observe that only one of the remaining trees T 1 , . . . , T k`1 contains the root of T , which we denote by R C pT q; the forest formed by the other k factors is denoted by P C pT q. This naturally induces a map on decorated trees by considering cuts of the underlying tree, and restriction of the decoration map to each of the rooted subtrees T 1 , . . . , T k`1 . Then,

∆τ " τ b 1 `1 b τ `ÿ CPApτ q P C pτ q b R C pτ q. (4.1)
This, together with the counit map ε : F Ñ R such that εpτ q " 1 if and only if τ " 1 endows F with a connected graded commutative non-cocommutative bialgebra structure, hence a Hopf algebra structure [START_REF] Manchon | Hopf Algebras in Renormalisation[END_REF].

As before we denote by H ˚the linear dual of H which is an algebra via the convolution product xX ‹ Y, τ y " xX b Y, ∆τ y and we denote by G the set of characters on H, that is, linear functionals X P H ˚such that xX, σ ¨τ y " xX, σyxX, τ y. For each n P N the finite-dimensional vector space H n spanned by the set F n of forests with at most n nodes is a subcoalgebra of H, hence its dual is an algebra under the convolution product, and we let G n be the set of characters on H n .

We have already defined branched rough paths in Definition 1.1. Proposition 3.3 yields the following characterization Proposition 4.2. A path X : r0, 1s 2 Ñ G N is a branched rough path if and only if X t -X 0t is γ-Hölder path with respect to the distance ρ N defined in (2.16).

Directly applying Theorem 3.4 to the Butcher-Connes-Kreimer Hopf algebra H we obtain Corollary 4.3. Given γ P s0, 1r with γ ´1 R N and a family of γ-Hölder paths px i : i " 1, . . . , dq, there exists a branched rough path X above px i : i " 1, . . . , dq, i.e. X : r0, 1s 2 Ñ G N is such that xX st , iy " x i t ´xi s for all i " 1, . . . , d. Remark 4.4. Given the level of generality in which Theorem 3.4 is developed, our results also apply to the case when H is a combinatorial Hopf algebra as defined in [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF]. In particular, we also have a construction theorem for planarly branched rough paths [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF] which are characters over Munthe-Kaas and Wright's Hopf algebra of Lie group integrators [START_REF] Munthe-Kaas | On the Hopf Algebraic Structure of Lie Group Integrators[END_REF].

Anisotropic geometric rough paths.

We now apply our results to another class of rough paths which we call anisotropic geometric rough paths (aGRPs for short). L. Gyurkó introduced a similar concept in [START_REF] Gyurkó | Differential Equations Driven by Π-Rough Paths[END_REF], which he called Π-rough paths; unlike us, he uses a "primal" presentation, i.e. paths taking values in the tensor algebra T pR d q, and p-variation norms rather than Hölder norms. Geometric rough paths over a inhomogeneous (or anisotropic) set of paths can be traced back to Lyons' original paper [START_REF] Lyons | Differential equations driven by rough signals[END_REF].

As in the geometric case, see Section 4.1, fix a finite alphabet A " t1, . . . , du and denote by MpAq the free monoid generated by A. We denote again by H -T pAq the shuffle Hopf algebra over the alphabet A.

Let pγ a : a P Aq be a sequence of real numbers such that 0 ă γ a ă 1 for all a, and let γ " min aPA γ a . For a word v " a 1 ¨¨¨a k P MpAq of length k define ωpvqγ a 1 `. . . `γa k and observe that ω is additive in the sense that ωpuvq " ωpuq `ωpvq for each pair of words u, v P MpAq. The set Ltv P MpAq : ωpvq ď 1u is finite; if N -tγ ´1u then L Ă H N . In analogy with Lemma 2.5, the additivity of ω implies Lemma 4.5. The subspace H a Ă H N spanned by L is a subcoalgebra of pH, ∆, εq.

Consequently, we will consider the dual algebra pH å , ‹, εq. In this case, we define g a to be the space of truncated infinitesimal characters on H a , namely the linear functionals α P H å such that xα, x ¡ yy " xα, xyxε, yy `xε, xyxα, yy for all x, y P H a such that x ¡ y P H a , and let G a -tX " exp N pαq| Ha : α P g a u. As before, there is a canonical injection H å ãÑ H ˚so we suppose that xX, vy " 0 for all X P H ˚and v R L.

For each λ ą 0 there is a unique coalgebra automorphism Ω λ : H Ñ H such that Ω λ a " λ γa{γ a for all a P A. We also define } ¨} :

G a Ñ R, }X} -max vPL |xX, vy| γ{ωpvq . (4.2)
As at the end of Section 2, pΩ λ q λą0 is a one-parameter family of Lie-algebra automorphisms of g a and }Ω λ X} " λ}X} for all λ ą 0 and X P G a , namely } ¨} is a homogeneous norm on G a . However, unlike ~¨~this norm is not subadditive and it therefore does not define a distance on G a .

4.3.1.

Signatures. In order to construct an appropriate metric on G a we consider signatures of smooth paths. We observe that A Ă L. Let x " px a : a P Aq be a collection of (piecewise) smooth paths, and define a map Spxq : r0, 1s 2 Ñ H ˚by xSpxq st , vy -

ż t s dx v k s k ż s k s dx v k´1 s k´1 ¨¨¨ż s 2 s dx v 1 s 1 .
In his seminal work [START_REF] Chen | Iterated path integrals[END_REF], K. T. Chen showed that Spxq is a character of pT pAq, ¡q; in particular, Spxq st | Ha P G a .

Consider the metric d a pX, Y q " ř aPA |xX ´Y, ay| γ{γa on H p1q , where we recall that H p1q is the vector space spanned by A. The anisotropic length of a smooth curve θ : r0, 1s Ñ H 1 is defined to be its length with respect to this metric and will be denoted by L a pθq. Observe that since d a pΩ λ X, Ω λ Y q " λd a pX, Y q we have that L a pΩ λ θq " λL a pθq.

We now define a homogeneous norm (see the end of Section 2) | ¨|CC : G a Ñ R `, called the anisotropic Carnot-Carathéodory norm, by setting |X| CC -inftL a pxq : x a P C 8 , Spxq 01 " Xu.

Since curve length is invariant under reparametrization in any metric space we obtain, as in [23, Section 7.5.4]: Proposition 4.6. The infimum defining the anisotropic Carnot-Carathéodory norm is finite and attained at some minimizing path x.

Proposition 4.7. The anisotropic Carnot-Carathéodory norm is homogeneous, that is,

|Ω λ X| CC " λ|X| CC .
Proof. Let x be the curve such that |X| CC " L a pxq. For any λ ą 0 and word v P L we have xSpΩ λ xq 01 , vy " λ ωpvq{γ xSpxq 01 , vy " xΩ λ Spxq 01 , vy " xΩ λ X, vy, thus |Ω λ X| CC ď L a pΩ λ xq " λL a pxq " λ|X| CC . The reverse inequality is obtained by noting that X " pΩ λ ´1 ˝Ωλ qX.

The anisotropic Carnot-Carathéodory norm can also be seen to satisfy

|X| CC " |X ´1| CC and |X ‹ Y | CC ď |X| CC `|Y | CC for all X, Y P G a , see e.g. the proof of [23, Proposition 7.40]; hence it induces a left-invariant metric ρ a pX, Y q -|X ´1 ‹ Y | CC on G a .
Moreover, arguing as in the proof of [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF]Theorem 7.44] we see that there exist positive constants c, C such that c|X| CC ď }X} ď C|X| CC , @ X P G a . (

Definition 4.8. An anisotropic geometric γ-rough path, with γ " pγ a , a P Aq, is a map X : r0, 1s 2 Ñ G a which satisfies

(1) the Chen rule X su ‹ X ut " X st for all ps, u, tq P r0, 1s 3 , (2) the bound |xX st , vy| À |t ´s| ωpvq for all v P L.

Proposition 4.9. Anisotropic geometric γ-rough paths are in one-to-one correspondence with γ-Hölder paths X : r0, 1s Ñ pG a , ρ a q with X 0 " 1.

Proof. Let X be an anisotropic geometric γ-rough path and v a word. By definition we have that |xX st , vy| À |t ´s| ωpvq , hence }X st } À |t ´s| γ . The equivalence between } ¨} and | ¨|CC of (4.3) implies that ρ a pX s , X t q " |X st | CC À |t ´s| γ , hence t Þ Ñ X t is γ-Hölder with respect to ρ a . The other direction follows in a similar manner.

Theorem 3.4 also applies to this situation, and we obtain the following Corollary 4.10. Let pγ a : a P Aq be real numbers in s0, 1r such that 1 R ř aPA γ a N. Let px a : a P Aq be a collection of real-valued paths such that x a is γ a -Hölder. Then there exists an anisotropic geometric γ-rough path X such that xX st , ay " x a t ´xa s for all a P A.

Proof. We start by constructing the homogeneous geometric rough path X given by the γ-Hölder path X : r0, 1s Ñ G N of Corollary 3.8. Then we restrict X to H a Ă H N and we show that on this space it satisfies the stronger bound |xX st , vy| À |t ´s| ωpvq for all v P L.

Recalling the proof of Theorem Theorem 3.4, we consider v P H n X H a , and we proceed by recurrence on n. For n " 0 there is nothing to prove. Suppose we have proved the result for n and let v P H n`1 X H a . In this case

xX n`1 st , vy " xexp n`1 pL st `Zst q, vy " n`1 ÿ i"0 1 i! xpL st q i‹ ‹ pε `Zst q, vy " n`1 ÿ i"0 1 i! xpL st q i‹ ,
vy `xZ st , vy " xX n st , vy `1 pn `1q! xpL st q pn`1q‹ , vy `xZ st , vy.

We want to prove now that

ˇˇxX n`1 t m k t m k`1 , vy ˇˇÀ 2 ´mωpvq , @ m ě 0, k " 0, . . . , 2 m ´1. (4.4) For m ě 0 set b m -2 mωpvq max k"0,...,2 m ´1ˇx Z m t m k t m k`1 , vy ˇˇ. Then, for s " t m k , u " t m k`1 and t " t m k`2 and v " v 1 ¨¨¨v n`1 |xBCH pn`1q pL su , L ut q, vy| ď ÿ i`j"n`1 1 i!j! ÿ σPS n`1 |a σ | i ź p"1 |xL su , v σ ´1ppq y| n`1 ź q"i`1 |xL ut , v σ ´1pqq y|.
Now, since v j P H p1q for all j " 1, . . . , n `1 we actually have that by the assumption x a P C γa |xL su , ay| " |x a u ´xa s | À 2 ´mγa and we have a similar estimate for L ut instead of L su . Therefore we obtain that ˇˇxBCH pn`1q pL su , L ut q, vy ˇˇÀ 2 ´mωpvq .

Therefore, from (3.5) we get

b m ď 2 mpωpvq´1q b m´1 `C, m ě 1,
hence since b 0 " 0 we can show by recurrence on m ě 0

b m ď C m´1 ÿ j"0 2 ´jp1´ωpvqq .
Since we are in the regime where ωpvq ă 1 (here we use that 1 R ř aPA γ a N) we obtain that

sup mě0 b m ď C 1 ´2ωpvq´1 . Therefore ˇˇxZ m t m k t m k`1 , vy ˇˇÀ 2 ´mωpvq , m ě 0, k " 0, . . . , 2 m ´1.
Analogously, since L st P g, arguing as in (2.14) we have

xpL st q pn`1q‹ , vy " n`1 ź i"1 xL st , v i y " n`1 ź i"1 px v i t
´xv i s q ùñ ˇˇxpL st q pn`1q‹ , vy ˇˇÀ 2 ´mωpvq and (4.4) is proved. This implies that }X n`1 t m k t m k`1 } À 2 ´mγ and by equivalence of homogeneous norms (4.3) we obtain

ρ a ´Xn`1 t m k , X n`1 t m k`1 ¯À 2 ´mγ .
Then we can use Lemma 3.5 and obtain that the path X n`1 constructed in the proof of Theorem 3.4 is in fact γ-Hölder path with values in G a .

The Hairer-Kelly construction

In this section we develop further results specifically for branched rough paths as introduced in Section 4.2 by using our general results from Section 3. We analyze in detail the Hairer-Kelly map introduced in [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF], which plays a very important role in our construction, and we use it to prove Theorem 1.2 and Corollary 1.3.

The Hairer-Kelly map.

Recall that T the set of all decorated rooted trees, F denotes the collection of all decorated rooted forests, and H BCK is the Butcher-Connes-Kreimer Hopf algebra. As in Section 4.2, ∆ denotes the Connes-Kreimer coproduct on H BCK . For each n P N, n ě 1, we denote by T n the set of (non-empty) trees with at most n vertices.

Recall also from Section 4.1 that given an alphabet A we denote by T pAq the shuffle Hopf algebra generated by A, and that ∆ denotes the deconcatenation coproduct on it. We fix N P N and we consider the shuffle Hopf algebras T pTq and T pT N q, namely we choose as letters of our alphabet the (non-empty) decorated rooted trees (respectively rooted trees with with at most N vertices). Note that we can identify every non-empty tree τ P T with the word in T pTq composed by the single letter τ . We also remark that, in order to avoid confusion with the forest product on H BCK we denote the concatenation of letters in T pTq by a tensor symbol.

We note that T pTq and T pT N q admit two different natural gradings, both of which make them locally finite graded Hopf-algebras. One grading, as in Section 4.1, is given by the number of letters (trees) of each word, namely the degree of v " τ 1 b ¨¨¨b τ k is k. The other grading is given by the sum of the number of nodes of each letter (tree), namely the degree of v " τ 1 b ¨¨¨b τ k is |τ 1 | `¨¨¨`|τ k |, where we recall that forests and trees are graded in H BCK by the number of nodes, with the notation |τ | " #N τ . We remark the latter grading is always greater or equal to the former. As an example, take v " i b j k ; then, as a word v has length 2 but the total number of nodes is 3.

We recall the following result from [28, Lemma 4.9]. Lemma 5.1. We grade T pTq according to the number of nodes. Then there exists a graded morphism of Hopf algebras ψ : H BCK Ñ T pTq satisfying ψpτ q " τ `ψn´1 pτ q for all τ P T n , where ψ n´1 denotes the projection of ψ onto T pT n´1 q.

We call ψ the Hairer-Kelly map. Since ψ is graded, for any forest τ P F the image ψpτ q is a sum of words of the form τ 1 b ¨¨¨b τ k where all terms satisfy

|τ 1 | `¨¨¨`|τ k | " |τ |.
Observe that since ψ is a Hopf algebra morphism, in particular a coalgebra morphism, then pψ b ψq∆ 1 τ " ∆1 ψpτ q " ∆1 ψ n´1 pτ q, τ P T n , since trees are primitive elements in T pTq, being single-letter words. From the proof of [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF]Lemma 4.9] we are able to see that in fact ψ n´1 is given by the recursion ψ n´1 " m b pψ b idq∆ 1 on the linear span of T n , see also [ 

5.2.

A special class of anisotropic geometric rough paths. We have already discussed anisotropic geometric rough paths (aGRPs) in Section 4.3. For the Hairer-Kelly construction we need a very particular subclass of aGRPs, where the base paths px a q aPA are such that each x a is γ a -Hölder and there exists γ P s0, 1r and pk a q aPA Ă N such that γ a " k a γ; therefore the Hölder exponents are all integer multiples of a fixed exponent γ.

We may of course apply the extension result of Corollary 4.10, but it turns out that in this setting we can avoid using the Carnot-Carathéodory distance and rather use a more explicit metric, which is a simple generalization of the homogeneous case (2.16).

We have already seen that the space H -T pT N q can be graded in two ways. We can even define a bigrading on this space: for 1 ď n ď N and n ď j ď nN , we define the space H pn,jq as the linear span of the words τ 1 b ¨¨¨b τ n P T pT N q such that |τ 1 | `¨¨¨`|τ n | " j. Then, in analogy with (2.2), we have ¡: H pn,jq b H pm,hq Ñ H pn`m,j`hq , ∆ : H pn,jq Ñ à p"0,...,n, q"1,...,j´1 H pp,qq b H pn´p,j´qq .

Then, recalling that H 0 " R1, we set

H N,N -H 0 ' N à n"1 N à j"n H pn,jq .
In other words, H N,N is the linear span of all words τ 1 b ¨¨¨b τ n with n ď N and |τ 1 | `¨¨¨`|τ n | ď N . Therefore, analogously to (2.3) and (2.5), we have decompositions

H N,N Q x " x 0 `N ÿ n"1 N ÿ j"n x n,j , H N,N Q α " α p0q `N ÿ n"1 N ÿ j"n
α pn,jq , α pn,jq pxq " αpx n,j q.

We define now g N,N as the space of truncated characters on H N,N , namely of all linear α : H N,N Ñ R such that xα, x ¡ yy " xα, xyxε, yy `xε, xyxα, yy Proof. Let g, g 1 be two collections of functions as in the statement of the theorem. We have the identity xrg 1 pgXqs t , τ y " xpgXq t , τ y `pg 1 q τ t " x τ t `gτ t `pg 1 q τ t " xrpg 1 `gqXs t , τ y. Since both g 1 pgXq and pg 1 `gqX are constructed iteratively by adding at each step a function Z satisfying (3.6) on the dyadics, if we let L n and Ln denote the logarithms corresponding to g 1 pgXq and pg 1 `gqX, Lemma 2.13 and the previous identity imply that BCH n`1 pL n su , L n ut q " BCH n`1 p Ln su , Ln ut q and so g 1 pgXq " pg 1 `gqX.

5.3.

Branched rough paths are anisotropic geometric rough paths. The next theorem is almost the same statement as Theorem 4.10 in [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF], the only difference being that we construct an anisotropic geometric rough path X while Hairer-Kelly need only that X is geometric in the usual sense (see also [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF]Remark 4.14].

Theorem 5.6. Let γ P s0, 1r with γ ´1 R N, and let X be a branched γ-rough path. There exists an anisotropic geometric rough path X : r0, 1s 2 Ñ G N,N with exponents γ " pγ τ " γ|τ |, τ P T N q, and such that xX, τ y " x X, ψpτ qy, @ τ P F N .

Proof. We construct X iteratively as follows. Let Xp1q be the anisotropic geometric rough path indexed by T 1 " t 1, . . . , du over the paths px i t -xX t , iy : i " 1, . . . , dq with exponents pγ i " γq given by Proposition 5.4 (alternatively we could use have used Theorem 3.4 since all the exponents are equal). This will give us an anisotropic rough path path X : r0, 1s 2 Ñ G a pT 1 q with exponents pγ τ " γ, τ P T 1 q.

Suppose we have constructed anisotropic geometric rough paths Xpkq : r0, 1s 2 Ñ G a pT k q over the paths px τ : τ P T k q such that x τ t ´xτ s " xX st , τ y´x Xpk´1q st , ψ k´1 pτ qy for k " 1, . . . , n. This is true for n " 1 by the previous paragraph, since ψp iq " i for all i " 1, . . . , d.

If we let F τ

st " xX st , τ y and G τ st " x Xpnq st , ψ n pτ qy for τ P T n`1 we have, by Chen's rule, that

δF τ sut " xX su b X ut , ∆ 1 τ y " x Xpnq su ˝ψ b Xpnq ut ˝ψ, ∆ 1 τ y.
Since ψ is in particular a coalgebra morphism between pH, ∆q and pT pT N q, ∆q we obtain the identity δF τ sut " x Xpnq su b Xpnq ut , ∆1 ψpτ qy, which then, by Lemma 5.1 becomes δF τ sut " x Xpnq su b Xpnq ut , ∆1 ψ n pτ qy " δG τ sut .

(5.2) since every τ P T is primitive in pT pT N q, ∆q being a single-letter word.

The finite increment operator δ has the following property: if J : r0, 1s 2 Ñ R is such that δJ " 0 then there exists f : r0, 1s Ñ R such that J st " f t ´fs , and the function f is unique up to an additive constant shift, see also [25, formula (5) Repeatedly using Proposition 5.4 we obtain an anisotropic geometric rough path Xpn`1q : r0, 1s Ñ G a pT n`1 q over px τ : τ P T n`1 q whose restriction to T pT n q coincides with Xpnq .

Finally notice that if τ P T n`1 is a tree then We note that our proof is shorter and simpler than that of [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF]Theorem 4.10], so we will now dedicate a few paragraphs to highlight the differences between our approach and that of Hairer and Kelly. They define first

X1

t " exp N ˜ÿ aPA x a t a ¸P G N pT 1 q then they note that this is not γ-Hölder with values in G N pT 1 q, but it is γ-Hölder with values in G N pT 1 q{K 1 , where K 1 -exp N pW 2 `¨¨¨`W N q, see (2.7). By the Lyons-Victoir extension theorem there exists a γ-Hölder path X1 t Ñ G N pT 1 q such that π G N pT 1 qÑG N pT 1 q{K 1 p X1 q " X1 . Then, in order to add a new tree τ with |τ | " 2, they define pδ Xτ q st " xX st , τ y ´x Xp1q st , ψ 1 pτ qy and this defines the new function t Þ Ñ x Xt , τ y. Then they define

X2 t " exp N ˜ÿ aPA x a t a `ÿ |τ |"2 x Xt , τ y τ ¸P G N pT 2 q
and again they note that this path is not γ-Hölder with values in G N pT 2 q, but it is with values in G N pT 2 q{K 2 , where K 2 -exp N pW 3 `¨¨¨`W N q, and again the Lyons-Victoir extension theorem yields a γ-Hölder path X2 t Ñ G N pT 2 q such that π G N pT 2 qÑG N pT 2 q{K 2 p X2 q " X2 . Finally they construct recursively in this way Xk and Xk for all k ď N .

At this point we see the difference with our approach. We do not define X2 t nor Xk but rather we construct X step by step, namely on all G k pT n q with 1 ď k, n ď N , first by recursion on k for fixed n and then by recursion on n; at each step we enforce the Hölder continuity on G k pT n q and the compatibility with the previous levels. This is done using the Lyons-Victoir technique, but in a very explicit and constructive way, in particular without ever using the axiom of choice, since we have the explicit map exp k`1 ˝log k : G k pT n q Ñ G k`1 pT n q which plays the role of the injection i G{K,G : G{K Ñ G in [30, Proposition 6].

An action on branched rough paths

In this section we prove Theorem 1.2.

Given γ P s0, 1r, let N " tγ ´1u and denote by C γ the set of collections of functions pg τ q τ PT N such that g τ P C γ|τ | and g τ 0 " 0 for all τ P T N . It is easy to see that C γ is a group under pointwise addition in t, that is, pg `hq τg τ `hτ .

As a consequence of Proposition 5.4, pg, Xq Þ Ñ g X is an action of C γ on the space of anisotropic geometric rough paths.

We use the Hairer-Kelly map ψ of Lemma 5.1 to induce an action of C γ on branched rough paths. Given a branched rough path X and g P C γ we let gX be the branched rough path defined by xgX st , τ y " xg Xst , ψpτ qy, where X is the anisotropic geometric rough path given by Theorem 5.6. As a simple consequence of Proposition 5.4 we obtain Proposition 6.1. Let X P BRP γ .

(1) We have g 1 pgXq " pg 1 `gqX for all g, g 1 P C γ .

(2) If pg τ q τ PT N P C γ is such that there exists a unique τ P T N with g τ ı 0, then xpgXq st , τ y " xX st , τ y `gτ t ´gτ s and xgX, σy " xX, σy for all σ P T not containing τ as a subtree.

Proof. The first claim follows from point (1) in Proposition 5.4. In order to prove the second claim, let g " pg τ q τ PT N P C γ be such that there exists a unique τ P T N with g τ ı 0. Then by the property of g we have xgX, τ y " xgX, ψpτ qy " xgX, τ `ψ|τ|´1 pτ qy " x X, τ y `δg τ `xg X, ψ |τ |´1 pτ qy where δg τ st -g τ t ´gτ s . By Lemma 5.1 the tree τ does not appear as a factor in any of the tensor products appearing in ψ |τ |´1 pτ q, hence one can recursively show that xg X, ψ |τ |´1 pτ qy " x X, ψ |τ |´1 pτ qy so that the above expression becomes xgX, τ y " x X, τ `ψ|τ|´1 pτ qy `δg τ " xX, τ y `δg τ .

For the last assertion, it is enough to note that σ P T contains τ P T if and only if τ appears in the expression for ψpσq; this can be expressed more precisely by saying that σ R T pT N ztτ uq. But if σ P T pT N ztτ uq, then xgX, ψpτ qy " xX, ψpτ qy. Proposition 6.2. The action of C γ on branched γ-rough paths is transitive: for every pair of branched γ-rough paths X and X 1 there exists g P C γ such that gX " X 1 .

Proof. We define g P C γ inductively by imposing the desired identity. For trees τ P T 1 " t 1, . . . , du we set g τ t " xX 1 0t , τ y ´xX 0t , τ y P C γ so that xgX, τ y " xg X, ψpτ qy " xg X, τ y " x X, τ y `δg τ " xX 1 , τ y where δg τ st -g τ t ´gτ s . Suppose we have already defined g τ for all τ P T n for some n ě 1, satisfying the constraints in the definition of C γ . For a tree τ with |τ | " n `1 we define F τ st " xX 1 st , τ y ´x Xst , τ y ´xg Xst , ψ n pτ qy. Then s . This concludes the proof. Proposition 6.3. The action of C γ on branched γ-rough paths is free, namely if gX " g 1 X then g " g 1 .

δF τ sut " xX 1 su b X 1 ut , ∆ 1 τ y ´xg Xsu b g Xut , ∆1 ψ n pτ qy " xX 1 su b X 1 ut , ∆ 1 τ y ´xg Xsu b g Xut , ∆1 ψpτ qy " xX 1 su b X 1 ut , ∆ 1 τ y ´xg Xsu ˝ψ b g Xut ˝ψ, ∆ 1 τ y " xX 1 su b X 1 ut , ∆ 1 τ
Proof. This follows from the fact that by (6.1) the function g τ is defined up to a constant shift. Therefore, the condition g τ 0 " 0 determines g τ uniquely.

Together, Proposition 6. where we regard τ as a linear functional on H, such that xτ, σy " 1 if σ " τ and zero else. The aforementioned modification procedure then acts as a translation of the series (6.2). Specifically, for each collection v " pv 0 , . . . , v d q : T Ñ R d`1 an operator M v : H ˚Ñ H ˚is defined, such that for a γ-branched rough path, pM v Xq st -M v pX st q is a γ{N -branched rough path.

In the particular case where v j " 0 except for v 0 , the action of this operator can be described in terms of an extraction/contraction map1 Ψ : H Ñ H b H. This map acts on a tree τ by extracting subforests and placing them in the left factor; the right factor is obtained by contracting the extracted forest and decorating the resulting node with 0. As an example, consider Ψp i j k q " 1 b i j k `i b 0 j k `j b i 0 k `k b i j 0 `i j b 0 k `i k b 0 j `i j b 0 0 k `i k b 0 j 0 `j k b i 0 0 `i j k b 0 0 `i k j b 0 0 `i j k b 0.

Extending v " v 0 : T Ñ R to all of H ˚as an algebra morphism it is shown that where |τ | 0 counts the times the decoration 0 appears in τ . Essentially, this condition imposes that the components corresponding to the zero decoration be Lipschitz on the diagonal s " t.

xpM v
We now show how this setting can be recovered from the results of Section 6. Let X be a γ-branched rough path on R d`1 satisfying (6.4). Since M v X is again a γ-branched rough path, by Proposition 6.2 there exists a collection of functions g P C γ such that gX " M v X. Moreover, this collection is the unique one satisfying for all τ P TpR d`1 q where we have used (6.3) in order to express M v X in terms of Ψ. Theorem 28 in [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] ensures that the first term on the right-hand side is in

C γ|τ | 2
hence g is actually in C γ|τ | as required.

The approach of [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] is based on pre-Lie morphisms and crucially on a cointeraction property, which has been explored by [START_REF] Calaque | Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series[END_REF], see in particular [4, Lemma 18]. The cointeraction property can be used for time-independent modifications, indeed note that the functional v in [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] is always constant.

Let us see why this is the case. The approach of [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] is based on a cointeraction property studied by [START_REF] Bruned | Algebraic renormalisation of regularity structures[END_REF][START_REF] Calaque | Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series[END_REF][START_REF] Foissy | Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials[END_REF] " ppv st b X su q b pv st b X ut qqpδ b δq∆ but we can not conclude that this is equal to ppvXq su b pvXq ut q∆. Our construction, as explained after formula (1.8), is not purely algebraic but is based on a (non-canonical) choice of generalized Young integrals with respect to the rough path X. Moreover our transformation group, infinite-dimensional, is much larger than that finite-dimensional group studied in [START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF].

Perspectives

In this paper we have shown that the space of branched γ-rough paths is a principal homogeneous space with respect to the linear group C γ . This is related to the analytical properties of the operator δ defined in (1.2), which is invertible under the conditions of Gubinelli's Sewing Lemma, but not in general, and in particular not in the context of the Chen relation on trees with low degree.

It would be now interesting to see how this action can be translated on the level of controlled paths [START_REF] Gubinelli | Controlling Rough Paths[END_REF]. The space of paths controlled by a rough path X P BRP γ should be interpreted as the tangent space to BRP γ at X, and the action on rough paths should induce an action on controlled paths. In particular it should be possible to write an action on solutions to rough differential equations.

The proof of Proposition 6.2, and in particular (6.1), gives a recursive way of computing the unique g P C γ translating a given branched γ-rough path into another. An interesting feature of the BCFP scheme is that is given in terms of a coaction so explicit calculations are somewhat easier in this more restricted case as one can compute g τ for each tree τ P T N directly by extracting and contracting subforests of τ without doing any recursions (see (6.5).) However, we do not have a computational rule for an important case: suppose that X is branched rough path lift of a stochastic process with a.s. C γ´t rajectories; it would be nice to have a way of finding g P C γ such that gX is centered with respect to the underlying distribution of the process, provided this is possible. Even this last problem, namely giving precise conditions under which this centering is possible is interesting in itself. This should be related to the notion of Wick polynomials and deformations of products as considered in [START_REF] Ebrahimi-Fard | Hopf-algebraic deformations of products and Wick polynomials[END_REF]. More generally, in the physics literature there are various renormalisation procedures which allow to obtain convergent iterated integrals from divergent ones by subtracting suitable "counterterms". In the context of rough paths, implementing one of the most accepted such procedures due to Bogoliubov-Parasiuk-Hepp-Zimmermman (BPHZ) has been carried out by J. Unterberger in [START_REF] Unterberger | Hölder-continuous rough paths by Fourier normal ordering[END_REF][START_REF] Unterberger | A renormalized rough path over fractional Brownian motion[END_REF] by means of the Fourier normal ordering algorithm and using a technique relating the trees in the Butcher-Connes-Kreimer Hopf algebra to certain Feynman diagrams. In our context, this could provide a canonical choice for g P C γ implementing the BPHZ renormalization procedure in a way analogous to what is done in [START_REF] Bruned | Algebraic renormalisation of regularity structures[END_REF] for Regularity Structures.

.

  Let α P g N and w P W N . Clearly, xrα, ws, xy is zero unless |x| " N . In this case xrα, ws, xy " xα b w ´w b α, ∆xy " xα, 1yxw, xy ´xw, xyxα, 1y " 0 since xw, yy " xw, y N y, in the notation (2.3). The second assertion follows easily: it is enough to write X " exp N pwq and Y " exp N pαq with α P g N and w P W N and use the explicit representation (2.6) of exp N and the fact that α ‹ w " w ‹ α.

5 .

 5 The construction of Y : D ˆD Ñ G n`1 goes through a construction of Y m : D m ˆDm Ñ G n`1 by recursion on m ě 0. We claim that for all m ě 0 we can find Y m such that (1) Y m satisfies Chen's relation on D m , namely Y m ab ‹ Y m bc " Y m ac for all a, b, c P D m (2) for any n P t0, . . . , mu and k, P t0, . . . , 2 m´n u, we have the compatibility relation

3 ,Example 5 . 2 .

 352 Definition 1, section 6]. Here are some examples of the action of ψ on some trees: ψp iq " i, ψp a bq " ψp aq ¡ ψp bq " a b b `b b a, ψ `a b ˘" a b `b b a b a c d `c d b a b `d b c b a b `d b b b a c `b b d b a c `c d b b b a `b b c d b a `d b c b b b a `d b b b c b d `b b d b c b a.

  st , pv b idqΨpτ qy ´x Xst , τ y ´xg Xst , ψ |τ |´1 pτ qy(6.5) 

  between the Butcher-Connes-Kreimer coproduct and another extraction-contraction coproduct δ : H Ñ H b H. The formula is the following pid b ∆qδ " M 1,3 pδ b δq∆. Let us consider now a character v P H ˚. If we multiply both sides by pv b id b idq and set M v " pv b idqδ : H Ñ H as in [4, Proposition 17], then we obtain ∆ M v " pM v b M v q∆, namely M v is a coalgebra morphism on H. Then one can define a modified rough path as vX -M v X " X ˝M v . The crucial Chen property is still satisfied since pvXq st " pv b X st qδ " pv b X su b X ut qpid b ∆qδ " pv b X su b X ut qM 1,3 pδ b δq∆ " ppv b X su q b pv b X ut qqpδ b δq∆ " ppvXq su b pvXq ut q∆ However this does not work if v : r0, 1s 2 Ñ H ˚is a time-dependent character. Indeed in this case we set pvXq stpv st b idqδ and we obtain pvXq st " pv st b X st qδ " pv st b X su b X ut qpid b ∆qδ " pv st b X su b X ut qM 1,3 pδ b δq∆

  du. Then the action is pg, Xq Þ Ñ gX, xpgXq st , iy -xX st , iy `g i

	t	´g i s ,	(1.5)
	while the value of xgX, τ y for |τ | ě 2 is uniquely determined by (1.1) via the Sewing
	Lemma. For example		

for further details. Definition 2.1. We say that the Hopf algebra H is graded if it can be decomposed as a direct sum H "

  The graded Hopf algebra H is connected if the degree 0 part is onedimensional. It is locally finite if dim H pnq ă 8 for all n ě 0.From now on we consider a graded connected locally finite Hopf algebra H. Then, for any homogeneous element x P H pnq the coproduct can be written as

	8 à n"0 ∆ : H pnq Ñ H pnq In a graded Hopf algebra, each element x P H can be decomposed as a sum with m : H pnq b H pmq Ñ H pn`mq , à p`q"n H ppq b H pqq . x " 8 ÿ n"0 x n , x n P H pnq , where only a finite number of the summands are non-zero. We call each x n the homogeneous (2.1) (2.2) (2.3) part of degree n of x, and elements of H pnq are said to be homogeneous of degree n. In this case we write |x n | " n. where ∆ 1 x P à p`q"n p,qě1 H ppq b H pqq and ∆ 1 : H Ñ H b H is known as the reduced coproduct. Furthermore, the coassociativity of ∆ and of ∆ 1 , i.e. the identity p∆ 1 b idq∆ 1 " pid b ∆ 1 q∆ 1 , allows to unambiguously define their iterates ∆ n , ∆ 1 n : H Ñ H bpn`1q by setting for n ě 2 ∆ n " pid b ∆ n´1 q∆, ∆ 1 n " pid b ∆ 1 n´1 q∆ 1 . Then we have, for a homogeneous element x P H pkq of degree k, ∆ 1 n x P à p 1 `...`p n`1 "k Definition 2.2. ∆x " x b 1 `1 b x `∆1 x, p j ě1

  Let X : r0, 1s Ñ G N and X : r0, 1s 2 Ñ G N as in(3.3). Then X is a pH, γq-rough path as in Definition 3.1 if and only if X is γ-Hölder with respect to the metric ρ N defined in(2.15).

s, t P r0, 1s. (3.3) Proposition 3.3.

  Then we want to prove that |Y st | À 2 ´mγ , see (2.15) for the definition of | ¨|. By subadditivity of | ¨| w.r.t. the convolution product ‹ we have |Y st | ď |exp n`1 pL st q| `|exp n`1 pZ m st q|. By Lemma 2.15 and (3.7)

.7) 

Let now fix m ě 0, i P t0, . . . , 2 m ´1u, and set st m j , tt m j`1 .

  and x P H p1q . Then, as ∆x " x b 1 `1 b x by the grading, we have that xX ‹ Y, xy " xX, xy `xY, xy, that is, X ‹ Y " X `Y . Moreover, in H 1 the product xy " 0. Therefore, we may set xX 1 t , e i y -x i t ´xi 0 where te 1 , . . . , e d u is a basis of H p1q and this path is γ-Hölder with respect to ρ 1 .

  ]. Thus, by this fundamental property, for each τ P T n`1 there exists a function x τ : r0, 1s Ñ R such that x τ Xpnq st , ψ n pτ qy| À |t ´s| γ|τ | since ψ n pτ q preserves the number of nodes by Lemma 5.1.

	t	´xτ s " F τ st	´Gτ st and then
			|x τ t	´xτ s | ď |xX st , τ y| `|x

  xX st , τ y and the corresponding identity for arbitrary forests follows by multiplicativity. The anisotropic geometric rough path sought for is X " XpNq .

	x	Xpn`1q st	, ψpτ qy " x	Xp|τ|q st , τ y `x Xp|τ|q st , ψ |τ |´1 pτ qy
			" x τ t	´xτ s `xX st , τ y ´px τ t	´xτ s q "

  y ´xgX su b gX ut , ∆ 1 τ y " 0 by the induction hypothesis. Hence there is g τ : r0, 1s Ñ R such that g τ

		0 " 0 and
	g τ t	´gτ

s " xX 1 st , τ y ´x Xst , τ y ´xg Xst , ψ n pτ qy (6.1) whence g P C γ|τ | ; by construction xgX, τ y " xg X, ψpτ qy " xg X, τ y `xg X, ψ n pτ qy " x X, τ y `δg τ `xg X, ψ n pτ qy " xX 1 , τ y, where δg τ st " g τ t ´gτ

  1, Proposition 6.2 and Proposition 6.3 imply Theorem 1.2.6.1. The BCFP renormalisation. In[START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] a different kind of modification is proposed. There, a new decoration 0 is considered so rough paths -branched and geometric-are over paths taking values in R d`1 . Recall that since branched rough paths are seen as Hölder paths taking values in the character group of the Butcher-Connes-Kreimer Hopf algebra, we may think of them as an infinite forest series of the form

	ÿ		
	X st "	xX st , τ yτ	(6.2)
	τ PF	

  Xq st , τ y " xX st , pv b idqΨpτ qy. (6.3) Furthermore, in this case M v X is a γ-branched rough path if coefficients corresponding to trees with decoration zero are required to satisfy the stronger analytical condition

	sup 0ďs,tď1	|xX st , τ y| |t ´s| p1´γq|τ | 0 `γ|τ | ă 8,	(6.4)

In[START_REF] Bruned | A Rough Path Perspective on Renormalization[END_REF] this map is named δ but we choose to call it Ψ in order to avoid confusion with the operator defined here.

for all x, y P H N,N such that x ¡y P H N,N . Moreover we define G N,Nexp N pg N,N q Ă H N .

Then we set in analogy with (2.17 and we can see that

Proof. We only have to check the triangular inequality, which is equivalent to the subadditivity property |X ‹ Y | ď |X| `|Y | for all X, Y P G N,N . Arguing as in the proof of Proposition 2.14

whence the result.

Let γ P s0, 1r and N -tγ ´1u. In accordance with Definition 4.8, an anisotropic geometric γ-rough path in this setting is a map X : r0, 1s 2 Ñ G N,N which satisfies (1) the Chen rule X su ‹ X ut " X st for all ps, u, tq P r0, 1s 3 , (2) |xX st , vy| À |t ´s| jγ for all v P H pn,jq with 1 ď n ď N and j ď N .

Then, arguing as in Proposition 3.3, it is easy to show that X : r0, 1s Ñ G N,N is γ-Hölder with respect to the metric ρ N,N if and only if X : r0, 1s 2 Ñ G N,N , defined as X st -X ´1 s ‹X t , is an anisotropic geometric γ-rough path with γ v " jγ for v " τ 1 b ¨¨¨b τ n with n ď N and

The next result is the analog of Corollary 4.10 in this setting. The proof is the same, with one exception: we can use the explicit norm (5.1) rather than the Carnot-Carathéodory norm | ¨|CC and we do not need the equivalence of norms result (4.3). Proposition 5.4. Given γ P s0, 1r with γ ´1 R N and a collection of paths x τ : r0, 1s Ñ R, τ P T N , such that x τ P C γ|τ | , there exists a γ-Hölder path X : r0, 1s Ñ G N,N such that xX, τ y " x τ for all τ P T N . Corollary 5.5. In the setting of Proposition 5.4, let pg τ : τ P T N q be a collection of functions with g τ P C Then, for any two such functions g and g 1 we have that g 1 pgXq " pg `g1 qX.