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THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS
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Abstract. We construct an explicit transitive free action of a Banach space of Hölder
functions on the space of branched rough paths, which yields in particular a bijection
between theses two spaces. This endows the space of branched rough paths with the
structure of a principal homogeneous space over a Banach space and allows to characterize
its automorphisms. The construction is based on the Baker-Campbell-Hausdorff formula,
on a constructive version of the Lyons-Victoir extension theorem and on the Hairer-Kelly
map, which allows to describe branched rough paths in terms of anisotropic geometric
rough paths.
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1. Introduction

The theory of Rough Paths has been introduced by Terry Lyons in the ’90s with the aim
of giving an alternative construction of stochastic integration and stochastic differential
equations. More recently, it has been expanded by Martin Hairer to cover stochastic
partial differential equations, with the invention of regularity structures.

A rough path and a model of a regularity structure are mathematical objects which
must satisfy some algebraic and analytical constraints. For instance, a rough path can be
described as a Hölder function defined on an interval and taking values in a non-linear
finite-dimensional Lie group; models of regularity structures are a generalization of this
idea. A crucial ingredient of regularity structures is the renormalisation procedure: given
a family of regularized models, which fail to converge in an appropriate topology as the
regularization is removed, one wants to modify it in a such a way that the algebraic and
analytical constraints are still satisfied and the modified version converges. This procedure
has been obtained in [6, 9] for a general class of models with a stationary character.

E-mail addresses: tapia@wias-berlin.de, zambotti@lpsm.paris.
1



2 N. TAPIA AND L. ZAMBOTTI

The same question about rough paths has been asked recently in [3, 4, 5], and indeed it
could have been asked much earlier. Maybe this has not happened because the motivation
was less compelling; although one can construct examples of rough paths depending on a
positive parameter which do not converge as the parameter tends to 0, this phenomenon
is the exception rather than the rule. However the problem of characterizing the automor-
phisms of the space of rough paths is clearly of interest; one example is the transformation
from Itô to Stratonovich integration, see e.g. [1, 16, 17]. However our aim is to put this
particular example in a much larger context.

We recall that there are several possible notions of rough paths; in particular we have
geometric RPs and branched RPs, two notions defined respectively by Terry Lyons [29] and
Massimiliano Gubinelli [25], see Sections 3 and 4 below. These two notions are intimately
related to each other, as shown by Hairer and Kelly [28], see Section 4 below. We note
that regularity structures [27] are a natural and far-reaching generalization of branched
RPs.

In this paper we concentrate on the automorphisms of the space of branched RPs, see
below for a discussion of the geometric case. Let F be the collection of all non-planar
rooted forests with nodes decorated by t1, . . . , du, see Section 4 below. For instance the
following forest

a
b

i
j
k l

m

is an element of F. We call TĂ F the set of rooted trees, namely of non-empty forests
with a single connected component. Grading elements τ P F by the number |τ | of their
nodes we set

Tn – tτ P T : |τ | ď nu, n P N.
Let now Hbe the linear span of F. It is possible to endow Hwith a product and a coproduct
∆: HÑ HbHwhich make it a Hopf algebra, also known as the Butcher-Connes-Kreimer
Hopf algebra, see Section 4.2 below. We let G denote the set of all characters over H, that
is, elements of G are functionals X P H˚ that are also multiplicative in the sense that

xX, τσy “ xX, τyxX, σy

for all forests (and in particular trees) τ, σ P F. Furthermore, the set G can be endowed
with a product ‹, dual to the coproduct, defined pointwise by xX ‹ Y, τy “ xX b Y,∆τy.
We work on the compact interval r0, 1s for simplicity, and all results can be proved without
difficulty on r0, T s for any T ě 0.

Definition 1.1 (Gubinelli [25]). Given γ P s0, 1r, a branched γ-rough path is a path
X : r0, 1s2 Ñ G which satisfies Chen’s rule

Xsu ‹Xut “ Xst, s, u, t P r0, 1s,

and the analytical condition

|xXst, τy| À |t´ s|
γ|τ |, τ P F.

Setting xit – xX0t, iy, t P r0, 1s, we say that X is a branched γ-rough path over the path
x “ px1, . . . , xdq. We denote by BRPγ the set of all branched γ-rough paths (for a fixed
finite alphabet t1, . . . , du).
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By introducing the reduced coproduct ∆1 : HÑ HbH

∆1τ – ∆τ ´ τ b 1´ 1b τ,

where 1 denotes the empty forest, Chen’s rule can we rewritten as follows
δxX, τysut “ xXsu bXut,∆1τy, s, u, t P r0, 1s, (1.1)

where for F : r0, 1s2 Ñ R we set δF : r0, 1s3 Ñ R,
δFsut – Fst ´ Fsu ´ Fut, (1.2)

which is the second order finite increment considered by Gubinelli [24]. Note that the
right-hand side of (1.1) depends on the values of X on trees with strictly fewer nodes
than τ ; if we can invert the operator δ, then the right-hand side of (1.1) determines the
left-hand side. This is however not a trivial result. In fact, a simple (but crucial for us)
remark is the following: if γ|τ | ď 1, then for any gτ : r0, 1s Ñ R such that gτ P Cγ|τ |pr0, 1sq,
the classical homogeneous Hölder space on r0, 1s with Hölder exponent γ|τ |, the function

r0, 1s2 Q ps, tq ÞÑ Fst – xXst, τy ` g
τ
t ´ g

τ
s (1.3)

also satisfies
δFsut “ xXsu bXut,∆1τy, |Fst| À |t´ s|

γ|τ |, s, u, t P r0, 1s. (1.4)

Inversely, if F : r0, 1s2 Ñ R satisfies (1.4), then F must satisfy (1.3) with gτ P Cγ|τ |pr0, 1sq.

If γ|τ | ą 1, then Gubinelli’s Sewing Lemma [24] yields that the function ps, tq ÞÑ xXst, τy
is uniquely determined by (1.4) i.e. by the values of X on trees with at most |τ | ´ 1 nodes,
and therefore, applying a recursion, on trees with at most N – tγ´1u nodes. More explicitly,
the Sewing Lemma is an existence and uniqueness result for r0, 1s2 Q ps, tq ÞÑ xXst, τy with
γ|τ | ą 1, once the right-hand side of (1.1) is known. However, for γ|τ | ď 1 we have no
uniqueness, as we have already seen, and existence is not trivial.

As we have seen in (1.3), the value of xX, τy can be modified by adding the increment
of a function in Cγ|τ |pr0, 1sq, as long as γ|τ | ď 1. It seems reasonable to think that it
is therefore possible to construct an action on the set of branched γ-rough paths of the
abelian group (under pointwise addition)

Cγ – tpgτ qτPTN : gτ0 “ 0, gτ P Cγ|τ |
pr0, 1sq, @ τ P T, |τ | ď Nu,

namely the set of all collections of functions pgτ P Cγ|τ |pr0, 1sq : τ P T, |τ | ď Nq indexed
by rooted trees with fewer than N – tγ´1u nodes, such that gτ0 “ 0 and gτ P Cγ|τ |pr0, 1sq.
This is indeed the content of the following

Theorem 1.2. Let γ P s0, 1r such that γ´1 R N. There is a transitive free action of Cγ on
BRPγ, namely a map pg,Xq ÞÑ gX such that

(1) for each g, g1 P Cγ and X P BRPγ the identity g1pgXq “ pg ` g1qX holds.
(2) if pgτ qτPTN P Cγ is such that there exists a unique τ P TN with gτ ı 0, then

xpgXqst, τy “ xXst, τy ` g
τ
t ´ g

τ
s

and xgX, σy “ xX, σy for all σ P T not containing τ .
(3) For every pair X,X 1 P BRPγ there exists a unique g P Cγ such that gX “ X 1.
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We say that a tree σ P T contains a tree τ P T if there exists a subtree τ 1 of σ,
not necessarily containing the root of σ, such that τ and τ 1 are isomorphic as rooted
trees, where the root of τ 1 is its node which is closest to the root of σ. Note that every
pgτ qτPTN P Cγ is the sum of finitely many elements of Cγ having satisfying the property
required in point (2) of Theorem 1.2.

If γ ą 1{2 then the result of Theorem 1.2 is trivial. Indeed, in this case N “ 1,
TN “ t i : i “ 1, . . . , du, and Cγ “ tg i P Cγpr0, 1sq : g i

0 “ 0, i “ 1, . . . , du. Then the
action is

pg,Xq ÞÑ gX, xpgXqst, iy– xXst, iy ` g
i
t ´ g

i
s , (1.5)

while the value of xgX, τy for |τ | ě 2 is uniquely determined by (1.1) via the Sewing
Lemma. For example

xpgXqst, i
jy–

ż t

s

pxju ´ x
j
s ` g

j
u ´ g

j
s q dpxiu ` g i

u q, (1.6)

where xiu – xX0u, iy and the integral is well-defined in the Young sense, see [24, section 3].

If 1{3 ă γ ď 1{2 then N “ 2 and T2 “ T1 \ t i
j : i, j “ 1, . . . , du. Then the action at

level |τ | “ 1 is still given by (1.5), while at level |τ | “ 2 we must have by (1.1)
δxgX,

i
jysut “ xpgXqsu b pgXqut,∆1τy “ pxju ´ x

j
s ` g

j
u ´ g

j
s qpx

i
t ´ x

i
u ` g

i
t ´ g

i
u q. (1.7)

Although the right-hand side of (1.7) is explicit and simple, in this case there is no
canonical choice for xgX,

i
jy. An expression like (1.6) is ill-defined in the Young sense, and

the same is true if we try the formulation

xpgXqst, i
jy “ xXst, i

jy `

ż t

s

´

pxju ´ x
j
s ` g

j
u ´ g

j
s q dg i

u ` pg
j
u ´ g

j
s q dxiu

¯

, (1.8)

which satisfies formally (1.7), but the Young integrals are ill defined since 2γ ď 1. The
construction of xgX,

i
jy is therefore not trivial in this case.

The same argument applies for any γ ď 1{2 and any tree τ such that 2 ď |τ | ď N “ tγ´1u,
and the fact that the above Young integrals are not well defined shows why existence of
the map X Ñ gX is not trivial.

Since Theorem 1.2 yields an action of Cγ on BRPγ which is regular, i.e. free and
transitive, then BRPγ is a principal Cγ-homogeneous space or Cγ-torsor. In particular,
BRPγ is a copy of Cγ, but there is no canonical choice of an origin in BRPγ.

Therefore, Theorem 1.2 also yields the following
Corollary 1.3. Given a branched γ-rough path X, the map g Ñ gX yields a bijection
between Cγ and the set of branched γ-rough paths.

Therefore Corollary 1.3 yields a complete parametrization of the space of branched
rough paths. This result is somewhat surprising, since rough paths form a non-linear space,
in particular because of the Chen relation; however Corollary 1.3 yields a natural bijection
between the space of branched γ-rough paths and the linear space Cγ.

Corollary 1.3 also gives a complete answer to the question of existence and charac-
terization of branched γ-rough paths over a γ-Hölder path x. Unsurprisingly, for our
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construction we start from a result of T. Lyons and N. B. Victoir’s [30] of 2007, which was
the first general theorem of existence of a geometric γ-rough path over a γ-Hölder path x,
see our discussion of Theorem 1.4 below.

An important point to stress is that the action constructed in Theorem 1.2 is neither
unique nor canonical. In the proof of Theorem 3.4 below, some parameters have to be
fixed arbitrarily, and the final outcome depends on them, see Remark 3.6. In this respect,
the situation is similar to what happens in regularity structures with the reconstruction
operator on spaces Dγ with a negative exponent γ ă 0, see [27, Theorem 3.10].

1.1. Outline of our approach. A key point in Theorem 1.2 is the construction of
branched γ-rough paths. In the case of geometric rough paths, see Definition 4.1, the
signature [11, 29] of a smooth path x : r0, 1s Ñ Rd yields a canonical construction. Other
cases where geometric rough paths over non-smooth paths have been constructed are
Brownian motion and fractional Brownian motion (see [13] for the case H ą 1

4 and [33]
for the general case) among others. However, until T. Lyons and N. B. Victoir’s paper
[30] in 2007, this question remained largely open in the general case. The precise result is
as follows

Theorem 1.4 (Lyons–Victoir extension). If p P r1,8qzN and γ : “ 1{p, a γ-Hölder path
x : r0, 1s Ñ Rd can be lifted to a geometric γ-rough path. For any p ě 1 and ε P s0, γr, a
γ-Hölder path can be lifted to a geometric pγ ´ εq-rough path.

Our first result is a version of this theorem which holds for rough paths in a more general
algebraic context, see Theorem 3.4 below. We use the Lyons-Victoir approach and an
explicit form of the Baker–Campbell–Hausdorff formula by Reutenauer [34], see formula
(2.11) below. Whereas Lyons and Victoir used in one passage the axiom of choice, our
method is completely constructive.

Using the same idea we extend this construction to the case where the collection
px1, . . . , xdq is allowed to have different regularities in each component, which we call
anisotropic (geometric) rough paths (aGRP), see Definition 4.8.

Theorem 1.5. To each collection pxiqi“1,...,d, with xi P Cγipr0, 1sq, we can associate
an anisotropic rough path X̄ over pxiqi“1,...,d. For every collection pgiqi“1,...,d, with gi P
Cγipr0, 1sq, denoting by gX̄ the anisotropic geometric rough path over pxi ` giqi“1,...,d, we
have

g1pgX̄q “ pg ` g1qX̄.

This kind of extension to rough paths has already been explored in the papers [2, 26] in
the context of isomorphisms between geometric and branched rough paths. It turns out
that the additional property obtained by our method enables us to explicitly describe the
propagation of suitable modifications from lower to higher degrees.

We then go on to describe the interpretation of the above results in the context of
branched rough paths. The main tool is the Hairer–Kelly map [28], that we introduce
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and describe in Lemma 5.1 and then use to encode branched rough paths via anisotropic
geometric rough paths, along the same lines as in [2, Theorem 4.3].

Theorem 1.6. Let X be a branched γ-rough path. There exists an anisotropic geometric
rough path X̄ indexed by words on the alphabet TN , with exponents pγτ “ γ|τ |, τ P TNq,
and such that xX, τy “ xX̄, ψpτqy, where ψ is the Hairer–Kelly map.

The main difference of this result with [28, Theorem 1.9] is that we obtain an anisotropic
geometric rough path instead of a classical geometric rough path. This means that we do
not construct unneeded components, i.e. components with regularity larger than 1, and
we also obtain the right Hölder estimates in terms of the size of the indexing tree. This
addresses two problems mentioned in Hairer and Kelly’s work, namely Remarks 4.14 and
5.9 in [28].

We then use Theorem 1.5 and Theorem 1.6 to construct our action on branched rough
paths. Given pg,Xq P Cγ ˆBRPγ , we construct the anisotropic geometric rough paths X̄
and gX̄ and then define the branched rough path gX P BRPγ as xgX, τy “ xgX̄, ψpτqy,
where ψ is the Hairer–Kelly map.

Our approach also does not make use of Foissy-Chapoton’s Hopf-algebra isomorphism
[10, 20] between the Butcher–Connes–Kreimer Hopf algebra and the shuffle algebra over a
complicated set I of trees as is done in [2]. This allows us to construct an action of a larger
group on the set of branched rough paths; indeed, using the above isomorphism one would
obtain a transformation group parametrized by pgτ qτPI where I is the aforementioned set
of trees of Foissy-Chapoton’s results and gτ P Cγ|τ |; on the other hand our approach yields
a transformation group parametrized by pgτ qτPTN . With the smaller set IXTN , transitivity
of the action g ÞÑ gX would be lost.

Finally we note that we use a special property of the Butcher-Connes-Kreimer Hopf
algebra: the fact that it is freely generated as an algebra by the set of trees, so defining
characters over it is significantly easier than in the geometric case. To define an element
X P G it suffices to give the values xX, τy for all trees τ P T; by freeness there is a unique
multiplicative extension to all of H. This is not at all the case for geometric rough paths:
the shuffle algebra T pAq over an alphabet A is not free over the linear span of words so if
one is willing to define a character X over T pAq there are additional algebraic constraints
that the values of X on words must satisfy.

Outline. We start by reviewing all the theoretical concepts needed to make the exposition
in this section formal. In Section 3 we state and prove the main result of this chapter. We
extend the notion of rough path and we give an explicit construction of such a generalized
rough path above any given path x P Cγ. Next, in Section 4.3 we extend this result
to the class of anisotropic geometric rough paths. Finally, in Section 4 we connect our
construction with M. Gubinelli’s branched rough paths, and we extend M. Hairer and D.
Kelly’s work in Section 5.1. We also explore possible connections with renormalisation in
Section 6 by studying how our construction behaves under modification of the underlying
paths. Then, we connect this approach with a recent work by Bruned, Chevyrev, Friz
and Preiß [4] in Section 6.1, who borrowed ideas from the theory of Regularity Structures
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[6, 27] and proposed a renormalisation procedure for geometric and branched rough paths
[4] based on pre-Lie morphisms.

The main difference between our result and the BCFP procedure is that they consider
translation only by time-independent factors, whereas –under reasonable hypotheses– we
are also able to handle general translations depending on the time parameter. We also
mention that some further algebraic aspects of renormalisation in rough paths have been
recently developed in [5].

Acknowledgements. The authors thank Jean-David Jacques for pointing out a mistake
in a previous version. N.T. acknowledges support by the CONICYT/Doctorado Nacional
doctoral scholarship grant number 2013-21130733, Núcleo Milenio Modelos Estocásticos de
Sistemas Complejos y Desordenados and the Berlin Mathematical School MATH+ EF1-5
project “On robustness of deep neural networks”. L.Z. gratefully acknowledges support by
the project of the Agence Nationale de la Recherche ANR-15-CE40-0020-01 grant LSD.

2. Preliminaries

A Hopf algebra H is a vector space endowed with an associative product m : HbHÑ H:
mpmb idq “ mpidbmq,

and a coassociative coproduct ∆: HÑ HbH:
pidb∆q∆ “ p∆b idq∆,

satisfying moreover certain compatibility assumptions; H is also supposed to have a unit
1 P H, a counit ε P H˚ and an antipode S : HÑ H such that

mpidb Sq∆x “ εpxq1 “ mpS b idq∆x
for all x P H. As usual we will use the more compact notation mpxb yq “ xy. The reader
is referred to the papers [8, 31] for further details.

Definition 2.1. We say that the Hopf algebra H is graded if it can be decomposed as a
direct sum

H“

8
à

n“0
Hpnq (2.1)

with
m : Hpnq bHpmq Ñ Hpn`mq, ∆: Hpnq Ñ

à

p`q“n

Hppq bHpqq. (2.2)

In a graded Hopf algebra, each element x P H can be decomposed as a sum

x “
8
ÿ

n“0
xn, xn P Hpnq, (2.3)

where only a finite number of the summands are non-zero. We call each xn the homogeneous
part of degree n of x, and elements of Hpnq are said to be homogeneous of degree n. In
this case we write |xn| “ n.

Definition 2.2. The graded Hopf algebra H is connected if the degree 0 part is one-
dimensional. It is locally finite if dim Hpnq ă 8 for all n ě 0.
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From now on we consider a graded connected locally finite Hopf algebra H. Then, for
any homogeneous element x P Hpnq the coproduct can be written as

∆x “ xb 1` 1b x`∆1x, where ∆1x P
à

p`q“n
p,qě1

Hppq bHpqq

and ∆1 : HÑ HbH is known as the reduced coproduct. Furthermore, the coassociativity
of ∆ and of ∆1, i.e. the identity p∆1b idq∆1 “ pidb∆1q∆1, allows to unambiguously define
their iterates ∆n,∆1

n : HÑ Hbpn`1q by setting for n ě 2

∆n “ pidb∆n´1q∆, ∆1
n “ pidb∆1

n´1q∆1.

Then we have, for a homogeneous element x P Hpkq of degree k,

∆1
nx P

à

p1`...`pn`1“k
pjě1

Hpp1q b ¨ ¨ ¨ bHppn`1q.

Remark 2.3. These properties of the iterated coproduct imply that the bialgebra pH,∆q
is conilpotent, that is, for each homogeneous x P Hpkq there is an integer n ď k such that
∆1
nx “ 0. We obtain also the inclusion

∆1
nHpn`1q Ă H

bpn`1q
p1q ,

that is, the n-fold reduced coproduct of a homogeneous element of degree n` 1 is a sum
of pn` 1q-fold tensor products of homogeneous elements of degree 1.

We recall that in general the dual space H˚ carries an algebra structure given by the
convolution product ‹, dual to the coproduct ∆, defined by

xf ‹ g, xy– xf b g,∆xy.

For a collection of maps f1, . . . , fk P H˚ we have the formula

f1 ‹ ¨ ¨ ¨ ‹ fk “ pf1 b ¨ ¨ ¨ b fkq ˝∆k´1. (2.4)

Definition 2.4. A character on H is a non-zero linear map X : HÑ R

xX, xyy “ xX, xyxX, yy, @x, y P H.

for all x, y P H. We call G the set of all characters on H. An infinitesimal character (or
derivation) on H is a linear map α : HÑ R such that

xα, xyy “ xα, xyxε, yy ` xε, xyxα, yy, @x, y P H.

We call g the set of all infinitesimal characters on H.

We observe that necessarily xX,1y “ 1 and xα,1y “ 0 for all X P G and α P g. It is
well known that the pG, ‹, εq is a group with product ‹, unit ε and inverse X´1 “ X ˝ S
where S is the antipode defined above. Moreover pg, r¨, ¨sq is a Lie algebra with bracket
rα, βs– α ‹ β ´ β ‹ α. See e.g. [31].



THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS 9

2.1. Nilpotent Lie algebras. From (2.2) we have

Lemma 2.5. For any N P N the subspace

HN –

N
à

k“0
Hpkq Ă H

is a counital subcoalgebra of pH,∆, εq.

By Lemma 2.5 we can consider the dual algebra pH˚
N , ‹, εq. This algebra is also graded

and connected, since we have the natural grading

H˚
N “

N
à

k“0
H˚
pkq, H˚

N Q α “
N
ÿ

k“0
αpkq, (2.5)

where αpkq : HN Ñ R is defined by αpkqpxq– αpxkq with the notation (2.3).

Since HN is not a subalgebra of H, the notions of character and infinitesimal character
on H˚

N are not well-defined. We can however introduce their truncated versions.

Definition 2.6. We say that X P H˚
N is a truncated character on HN if

xX, xyy “ xX, xyxX, yy

holds for all x P Hpnq, y P Hpmq with n ` m ď N . We call GN the space of truncated
characters on HN .

Likewise, we say that α P H˚
N is a truncated infinitesimal character if

xα, xyy “ xα, xyxε, yy ` xε, xyxα, yy

holds for all x P Hpnq, y P Hpmq with n ` m ď N . We call gN the space of truncated
infinitesimal characters on HN .

Lemma 2.7. There are a canonical inclusions H˚
N ãÑ H˚

N`1 ãÑ H˚, which induce canonical
inclusion gN ãÑ gN`1 ãÑ g. Moreover such canonical inclusions are right-inverse for the
corresponding restriction maps H˚ Ñ H˚

N`1 Ñ H˚
N .

Proof. Using the notation (2.5), we can extend α P H˚
N to α P H˚

N`1 (respectively H˚) by
setting αpN`1q ” 0 (respectively αpkq ” 0 for all k ě N ` 1). Trivially this extension takes
H˚
N to H˚

N`1. If α P gN and x, y P HN are such that |x| ` |y| ď N ` 1 then

xα, xyy “
A

α,
N`1
ÿ

j“0
pxyqj

E

“

N
ÿ

j“0
xα, pxyqjy “

N
ÿ

j“0

j
ÿ

k“0
xα, xkyk´jy

“

N
ÿ

j“0
pxα, xjyxε, yy ` xε, xyxα, yjyq “ xα, xyxε, yy ` xε, xyxα, yy.

so that the extension of α is in gN`1. The same argument yields the inclusion gN ãÑ g. �
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There are also the truncated exponential expN : H˚
N Ñ H˚

N and logarithm logN : H˚
N Ñ

H˚
N , defined by the sums

expNpαq–
N
ÿ

k“0

1
k! α

‹k
ˇ

ˇ

HN
, logNpXq–

N
ÿ

k“1

p´1qk`1

k
pX ´ εq‹k

ˇ

ˇ

HN
. (2.6)

The proof of the next result can be found for instance in [19, Thm 77].

Lemma 2.8. pGN , ‹, εq is a group and pgN , r¨, ¨sq is a Lie algebra. Moreover, expN : gN Ñ
GN is a bijection with inverse logN : GN Ñ gN .

For every k ě 0 we define now, using the notation (2.5),

Wk –
 

α P g : α “ αpkq
(

.

Lemma 2.9. For all n,m ě 0 we have rWn,Wms Ă Wn`m.

Proof. Let x P H. With the notation (2.3) we have for α P Wn and β P Wm

pα ‹ β ´ β ‹ αqpxq “ pα b β ´ β b αq∆x “ pα b β ´ β b αq∆xn`m
by (2.2). �

By the canonical inclusion of Lemma 2.7, we observe that

gN “
N
à

k“1
Wk, gN Q α “

N
ÿ

k“0
αpkq (2.7)

in the notation (2.5). With this decomposition gN becomes by Lemma 2.9 a graded Lie
algebra. We recall that the center of gN is the subspace of all w P gN such that rα,ws “ 0
for all α P gN , while the center of GN is the set of all X P GN such that X ‹ Y “ Y ‹X
for all Y P GN .

Proposition 2.10. WN is contained in the center of gN and expNpWNq is a subgroup
contained in the center of GN .

Proof. Let α P gN and w P WN . Clearly, xrα,ws, xy is zero unless |x| “ N . In this case
xrα,ws, xy “ xα b w ´ w b α,∆xy “ xα, 1yxw, xy ´ xw, xyxα, 1y “ 0

since xw, yy “ xw, yNy, in the notation (2.3). The second assertion follows easily: it is
enough to write X “ expNpwq and Y “ expNpαq with α P gN and w P WN and use the
explicit representation (2.6) of expN and the fact that α ‹ w “ w ‹ α. �

The next (famous) result describes the group law on GN in terms of an operation on
gN via the exponential/logarithmic map.

Theorem 2.11 (Baker–Campbell–Hausdorff). For all α, β P gN , we have

logNpexpNpαq ‹ expNpβqq P gN .
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We define the map BCHN : gN ˆ gN Ñ gN by
BCHNpα, βq– logNpexpNpαq ‹ expNpβqq. (2.8)

Another way to interpret this theorem is to say that there exists an element γ “

BCHNpα, βq P gN such that expNpαq ‹ expNpβq “ expNpγq.

It is a classical result that the map BCHN is formed by a sum of iterated Lie brackets
of α and β, where the first terms are

BCHNpα, βq “ α ` β `
1
2rα, βs `

1
12rα, rα, βss ´

1
12rβ, rα, βss ` ¨ ¨ ¨ , (2.9)

and the following ones are explicit but difficult to compute. Nevertheless, fully explicit
formulas have been known since 1947 by Dynkin [15].

For our purposes, however, Dynkin’s formula is too complicated (for example, the
regularity argument in step 2 of the proof of Theorem 3.4 would not be as evident) so we
rely on a different expression first shown by Reutenauer [34]. In order to describe it, let
ϕk : pH˚qbk Ñ H˚ be the linear map

ϕkpα1 b ¨ ¨ ¨ b αkq “
ÿ

σPSk

aσ ασp1q ‹ ¨ ¨ ¨ ‹ ασpkq (2.10)

where Sk denotes the symmetric group of order k, and aσ –
p´1qdpσq

k

`

k´1
dpσq

˘´1 is a constant
depending only on the descent number dpσq of the permutation σ P Sk, namely the number
of i P t1, . . . , k ´ 1u such that σpiq ą σpi` 1q.

Lemma 2.12 (Reutenauer’s formula). For all α, β P gN

BCHNpα, βq “
N
ÿ

k“1

ÿ

i`j“k

1
i!j! ϕkpα

bi
b βbjq. (2.11)

Moreover, for all i P t0, . . . , Nu, we have ϕN
`

αbi b βbpN´iq
˘

P WN .

Proof. Let us suppose first that T pV q is the (completed) tensor algebra over a two-
dimensional vector space V , with V linearly generated by te1, e2u. Then the result is
contained in Reutenauer’s paper [34] where the free step-N nilpotent Lie algebra LN plays
the rôle of gN . We want now to show how this implies the same result in our more general
setting.

Let α, β P gN and let Φ: pT pV qN ,bq Ñ pH˚
N , ‹q be the unique algebra morphism such

that Φpe1q “ α, Φpe2q “ β. Then Φ restricts to a Lie-algebra morphism Φ: LN Ñ gN such
that BCHNpα, βq “ ΦpBCHNpe1, e2qq and therefore (2.11) follows.

In order to prove the first formula, we first note that Φ is not a graded morphism, since
the generators e1 and e2 are homogeneous of degree 1 in T pV qN , but α and β are in general
not homogeneous in H˚

N . However, from the bilinearity of the Lie bracket and Lemma 2.9
we obtain

rWn ‘ ¨ ¨ ¨ ‘WN ,Wm ‘ ¨ ¨ ¨ ‘WN s Ă Wn`m ‘Wn`m`1 ‘ ¨ ¨ ¨ ‘WN .

Then, if α1, . . . , αk P g
N then ϕkpα1 b ¨ ¨ ¨ b αkq P Wk ‘ ¨ ¨ ¨ ‘WN . �
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From all these considerations we obtain the following result on the map
BCHpn`1q : gn`1

ˆ gn`1
Ñ Wn`1, BCHpn`1q – BCHn`1´BCHn, n ě 0. (2.12)

Note that BCHpn`1q takes indeed values in Wn`1 rather than in gn`1 by (both assertions
of) Lemma 2.12.

Lemma 2.13. Let x P Hpn`1q and α, β P gn`1. Then

xBCHpn`1qpα, βq, xy “
ÿ

i`j“n`1

1
i!j!

ÿ

pxq

ÿ

σPSn`1

aσ

i
ź

p“1
xα, xpσ´1ppqqy

n`1
ź

q“i`1
xβ, xpσ´1pqqqy, (2.13)

where
∆1
nx “

ÿ

pxq

xp1q b ¨ ¨ ¨ b xpn`1q P H
bpn`1q
p1q .

Proof. Set α1 “ ¨ ¨ ¨ “ αi – α, αi`1 “ ¨ ¨ ¨ “ αn`1 – β. Then the result follows directly
from the definition of ϕk in (2.10) together with (2.4) and the fact that since xαj,1y “ 0
we can write

α1 ‹ ¨ ¨ ¨ ‹ αn`1 “ pα1 b ¨ ¨ ¨ b αn`1q∆1
n (2.14)

instead (note the reduced coproduct in place of the full coproduct). �

2.2. A distance on the group of truncated characters. Now we introduce a distance
on GN which is well adapted to the notion of rough paths, to be introduced in Definition 3.1
below. We fix a basis B of HN and define a norm } ¨ } on this space by requiring that B is
orthonormal. There is a unique function c : B ˆB ˆB Ñ R such that

∆v “
ÿ

v1,v2PB

cpv, v1, v2q v1 b v2, @ v P B.

Then we define
K – max

vPB

ÿ

v1,v2PB

|cpv, v1, v2q| ă 8, ~f~– K sup
vPB

|xf, vy|, f P H˚
N .

Then, if f, g P H˚
N , for any v P B

|xf ‹ g, vy| ď
ÿ

v1,v2PB

|cpv, v1, v2q||xf, v1y||xg, v2y| ď
1
K
~f~~g~,

thus ~f ‹ g~ ď ~f~~g~. We set now for all X P GN

|X| – max
k“1,...,N

`

k!
�

�Xpkq
�

�

˘1{k
` max

k“1,...,N

´

k!
�

�

�

`

X´1˘

pkq

�

�

�

¯1{k
, (2.15)

where for X P GN Ă H˚
N we use the notation (2.5). We define GN ˆ GN Q pX, Y q ÞÑ

ρNpX, Y q– |X´1 ‹ Y | P R`, i.e. by (2.15)

ρNpX, Y q “ max
k“1,...,N

`

k!
�

�pY ´1
‹Xqpkq

�

�

˘1{k
` max

k“1,...,N

`

k!
�

�pX´1
‹ Y qpkq

�

�

˘1{k (2.16)

Proposition 2.14. The map ρN defines a left-invariant distance on the group GN such
that the metric space pGN , ρNq is complete.
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Proof. We only need to prove that the function | ¨ | defined in (2.15) is sub-additive, the
other properties being clear. Note that for X, Y P GN , with the notation (2.5) we have

X ‹ Y “

˜

N
ÿ

k“0
Xpkq

¸

‹

˜

N
ÿ

k“0
Ypkq

¸

“

N
ÿ

k“0

k
ÿ

j“0
Xpjq ‹ Ypk´jq. (2.17)

Therefore
�

�pX ‹ Y qpkq
�

� ď

k
ÿ

j“0

�

�Xpjq
�

�

�

�Ypk´jq
�

� ď
1
k!

k
ÿ

j“0

ˆ

k

j

˙

|X|j|Y |k´j “
1
k!p|X| ` |Y |q

k

whence the result. �

The next result is the analog of [30, Prop. 7].

Lemma 2.15. If X “ expNpw1 ` ¨ ¨ ¨ ` wNq with wi P Wi, then

cN max
k“1,...,N

~wk~
1{k
ď |X| ď CN max

k“1,...,N
~wk~

1{k.

Proof. Using the notation (2.5), we have

Xpkq “
k
ÿ

i“1

1
i!

ÿ

j1`¨¨¨`ji“k

wj1 ‹ ¨ ¨ ¨ ‹ wji

so that for all k “ 1, . . . , N

`

k!
�

�Xpkq
�

�

˘1{k
ď

˜

k
ÿ

i“1

k!
i!

ÿ

j1`¨¨¨`ji“k

´

~wj1~
1{j1

¯j1
¨ ¨ ¨

´

~wji~
1{ji

¯ji

¸1{k

ď

˜

k
ÿ

i“1

k!
i!

ÿ

j1`¨¨¨`ji“k

ˆ

max
`“1,...,k

~w`~
1{`
˙j1`¨¨¨`ji

¸1{k

.

There are exactly
`

k´1
i´1

˘

ď
pk´1qi´1

pi´1q! solutions to j1 ` ¨ ¨ ¨ ` ji “ k so that

pk!
�

�Xpkq
�

�q
1{k
ď pk!pek ´ 1qq1{k max

`“1,...,k
~w`~

1{`.

Since X´1 “ expNp´w1 ´ ¨ ¨ ¨ ´ wNq, the bound for X´1 follows in the same way and we
have therefore proved the desired upper bound for |X|. For the lower bound, we use the
truncated logarithm

wk “
k
ÿ

i“1

p´1qi´1

i

ÿ

j1`¨¨¨`ji“k

Xpj1q ‹ ¨ ¨ ¨ ‹Xpjiq.

Then we can estimate

~wk~
1{k
ď

˜

k
ÿ

i“1

1
i

ÿ

j1`¨¨¨`ji“k

´

�

�Xpj1q
�

�

1{j1
¯j1
¨ ¨ ¨

´

�

�Xpjiq
�

�

1{ji
¯ji

¸1{k

ď

˜

k
ÿ

i“1

1
i

ˆ

k ´ 1
i´ 1

˙ˆ

max
`“1,...,k

~X`~
1{`
˙j1`¨¨¨`ji

¸1{k

ď
1
cN
|X|
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and the proof is complete. �

We now note that the function | ¨ | and the distance ρN make GN a homogeneous group,
see [22] for an extensive treatment of this subject, and [30] for the case of tensor algebras
and the relation with geometric rough paths.

To put it briefly, for all r ą 0 we can define the following linear operator Ωr : H˚ Ñ H˚

Ωrα –
ÿ

kě0
rk αpkq.

This family satisfies Ωr ˝ Ωs “ Ωrs, r, s ą 0. Moreover Ωr : gN Ñ gN is a Lie-algebra
automorphism of gN for all r ą 0. Then they induce group automorphisms Λr –

expN ˝ Ωr ˝ logN : GN Ñ GN , r ą 0. In the terminology of [22], pΩrqrą0 is a family of
dilations on the finite-dimensional Lie algebra gN and GN is a homogeneous group.

Note that the function | ¨ | : GN Ñ R` is continuous, satisfies |ΛrX| “ r|X| for all r ą 0
and X P GN , and |X| “ 0 for X P GN if and only if X “ 1. These three properties make
| ¨ | a homogeneous norm on GN , see [22]. The homogeneity property plays an important
role in the proof of Theorem 3.4 below.

3. Construction of Rough paths

As in the previous section, we fix a locally-finite graded connected Hopf algebra H. We
also fix a number γ P s0, 1r and let N – tγ´1u be the biggest integer such that Nγ ď 1.
Without loss of generality we can fix a basis B of HN consisting only of homogeneous
elements and in particular we let te1, . . . , edu “ B XHp1q where d– dim Hp1q.

Definition 3.1. A pH, γq-rough path is a function X : r0, 1s2 Ñ GN , with N “ tγ´1u,
which satisfies Chen’s rule

Xsu ‹Xut “ Xst, s, u, t P r0, 1s, (3.1)
and such that for all v P B

|xXst, vy| À |t´ s|
γ|v|. (3.2)

If xi : r0, 1s Ñ R, i “ 1, . . . , d, is such that xit ´ xis “ xXst, eiy, s, t P r0, 1s, we say that X
is a γ-rough path over px1, . . . , xdq.

Remark 3.2. By specializing this definition to different choices of H we recover both
geometric rough paths [29] where H is the shuffle Hopf algebra over an alphabet, branched
rough paths [25] where H is the Butcher–Connes–Kreimer Hopf algebra on decorated
non-planar rooted trees, and also planarly branched rough paths [14].

We remark that there is a bijection between

(1) functions X : r0, 1s2 Ñ GN such that Xsu ‹Xut “ Xst, for all s, u, t P r0, 1s,
(2) functions X : r0, 1s Ñ GN such that X0 “ 1,

given by
X ÞÑ X, Xt – X0t, X ÞÑ X, Xst – X´1

s ‹ Xt, s, t P r0, 1s. (3.3)
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Proposition 3.3. Let X : r0, 1s Ñ GN and X : r0, 1s2 Ñ GN as in (3.3). Then X is a
pH, γq-rough path as in Definition 3.1 if and only if X is γ-Hölder with respect to the
metric ρN defined in (2.15).

Proof. First note that the distance in (2.16) is defined with respect to a fixed (but arbitrary)
basis so we use the basis B fixed at the beginning of this section. Also, due to the above
remark we only have to verify that X is γ-Hölder with respect to ρN if and only if X
satisfies (3.2) using the same basis. In one direction, if X is γ-Hölder then, by definition

|Xst| “ ρNpXs,Xtq À |t´ s|
γ

and so, for a basis element v P B we have
|xXst, vy| À |t´ s|

γ|v|.

Conversely, if (3.2) holds then |Xst| À |t´s|
γ and so by definition also ρNpXs,Xtq À |t´s|

γ ,
i.e. X is γ-Hölder with respect to ρN . �

We now come to the problem of existence. Our construction of a rough path in the sense
of Definition 3.1 over an arbitrary collection of γ-Hölder paths px1, . . . , xdq relies in the
following extension theorem. We note that the proof is a reinterpretation of the approach
of Lyons-Victoir [30, Theorem 1] in the context of a more general graded Hopf-algebra H.
Theorem 3.4 (Rough path extension). Let 1 ď n ď N ´ 1 and γ P s0, 1r such that
γ´1 R N. Suppose we have a γ-Hölder path Xn : r0, 1s Ñ pGn, ρnq. There is a γ-Hölder
path Xn`1 : r0, 1s Ñ pGn`1, ρn`1q extending Xn, i.e. such that Xn`1|Hn “ Xn.

A key tool is the following technical lemma whose proof can be found in [30, Lemma 2].
Lemma 3.5. Let pE, ρq be a complete metric space and set

D “ ttmk – k2´m : m ě 0, k “ 0, . . . , 2m ´ 1u.
Suppose y : D Ñ E is a path satisfying the bound ρpytm

k
, ytm

k`1
q À 2´γm for some γ P p0, 1q.

Then, there exists a γ-Hölder path x : r0, 1s Ñ E such that x|D “ y.

Proof of Theorem 3.4. The construction of Xn`1 is made in two steps.

Step 1. For m ě 0 and k P t0, . . . , 2mu we define tmk – k2´m P r0, 1s. Then we define the
following sets of dyadics in r0, 1s

Dpmq – ttmk | k “ 0, . . . , 2mu, Dm –
ď

n“0,...,m
Dpnq, D –

ď

mě0
Dpmq.

Set Xst “ pXn
s q
´1 ‹ Xn

t P G
n and Lst “ lognpXstq P gn where logn was defined in (2.6).

Then, the Baker–Campbell–Hausdorff formula (2.8) and Chen’s rule (3.1) imply that
Lst “ BCHnpLsu, Lutq. (3.4)

We look for Y : r0, 1s2 Ñ Gn`1 such that Y satisfies Chen’s rule (3.1) and Y
ˇ

ˇ

HN
“ X.

We use throughout the proof that gn Ă gn`1, see Lemma 2.7.

In a first step, we define Y : D ˆD Ñ Gn`1. In the second step we show that Y has
suitable uniform continuity properties and can thus be extended to r0, 1s2 using Lemma 3.5.
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The construction of Y : DˆD Ñ Gn`1 goes through a construction of Y m : DmˆDm Ñ

Gn`1 by recursion on m ě 0. We claim that for all m ě 0 we can find Y m such that

(1) Y m satisfies Chen’s relation on Dm, namely Y m
ab ‹ Y

m
bc “ Y m

ac for all a, b, c P Dm

(2) for any n P t0, . . . ,mu and k, ` P t0, . . . , 2m´nu, we have the compatibility relation
Y m
tm
k2n t

m
`2n
“ Y m´n

tm´n
k

tm´n
`

.

(3) Y m restricted to Hn is equal to X : Dm ˆDm Ñ Gn, in the sense that
Y m
ab |Hn “ Xab, @ a, b P Dm.

(4) for all k “ 0, . . . , 2m ´ 1, setting

Zm
tm
k
tm
k`1

– logn`1

´

Y m
tm
k
tm
k`1
‹ expn`1

´

´Ltm
k
tm
k`1

¯¯

,

we have Zm
tm
k
tm
k`1
P Wn`1.

For m “ 0, we set Y 0
01 “ expn`1pL01q, Y 0

00 “ Y 0
11 – ε, and Z0

01 – 0 P Wn`1. For
x P Hn, we have xexpn`1pL01q, xy “ xexpnpL01q, xy, so that Y 0 restricted to Hn is equal to
X : D0 ˆD0 Ñ Gn.

Let now m ě 1, and suppose that Y m´1 : Dm´1 ˆDm´1 Ñ Gn`1 has been constructed
with the above properties. We start by defining Y m

tt “ ε for all t P Dpmq. Let us consider
three consecutive points in Dpmq of the form

s “ tm2k, u “ tm2k`1, t “ tm2k`2

for some k “ 0, . . . , 2m´1´1. Note that s “ tm´1
k and t “ tm´1

k`1 , so that Zm
st – Zm´1

st P Wn`1
is already defined by the recurrence hypothesis. We define Zm

su and Zm
ut as follows

Zm
su “ Zm

ut –
1
2
`

Zm´1
st ´ BCHpn`1qpLsu, Lutq

˘

, (3.5)

where BCHpn`1q “ BCHn`1´BCHn : gn`1ˆgn`1 Ñ Wn`1, see (2.12). Since by recurrence
Zm´1
st P Wn`1, we obtain that Zm

su, Z
m
ut P Wn`1 and

Zm
su ` Z

m
ut “ Zm´1

st ´ BCHpn`1qpLsu, Lutq “ Lst ` Z
m
st ´ BCHn`1pLsu, Lutq (3.6)

where in the last equality we have applied (3.4). Then we set
Y m
su – expn`1pLsu ` Z

m
suq, Y m

ut – expn`1pLut ` Z
m
utq.

Since expn`1pWn`1q is in the center of Gn`1 by Proposition 2.10, we obtain that
Y m
su “ expn`1pLsuq ‹ expn`1pZ

m
suq, Y m

ut “ expn`1pLutq ‹ expn`1pZ
m
utq.

By (2.8) and (3.6) the product is equal to
Y m
su ‹ Y

m
ut “ expn`1pBCHn`1pLsu, Lutq ` Z

m
su ` Z

m
utq “ expn`1pLst ` Z

m
st q “ Y m

st .

Let now tmj , t
m
k P Dpmq with 0 ď j ă k ď 2m. We set

Y m
tmj t

m
k
– Y m

tmj t
m
j`1
‹ ¨ ¨ ¨ ‹ Y m

tm
k´1t

m
k
, Y m

tm
k
tmj

–

´

Y m
tmj t

m
k

¯´1

so that the identity Y m
ab ‹ Y

m
bc “ Y m

ac is valid for any a, b, c P Dpmq.
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We need now to check that this definition is compatible with the values already con-
structed on Dm´1 ˆDm´1. By the recursion assumption, it is enough to show that for all
k, ` P t0, . . . , 2m´1u

Y m
tm2kt

m
2`
“ Y m´1

tm´1
k

tm´1
`

.

If k “ ` or |k´`| “ 1, then this is true by construction. Otherwise, if for example k`1 ă `
then

Y m
tm2kt

m
2`
“ Y m

tm2kt
m
2k`2

‹ ¨ ¨ ¨ ‹ Y m
tm2`´2t

m
2`
“ Y m´1

tm´1
k

tm´1
k`1

‹ ¨ ¨ ¨ ‹ Y m´1
tm´1
`´1 tm´1

`

“ Y m´1
tm´1
k

tm´1
`

by the recursion property and the Chen relation satisfied by Y m (respectively Y m´1) on
Dpmq (resp. Dpm´1q).

We also have to check the extension property: for x P Hn we have
xY m

tmj t
m
j`1
, xy “ xexpn`1pLtmj tmj`1

q ‹ expn`1pZ
m
tmj t

m
j`1
q, xy “ xexpnpLtmj tmj`1

q, xy “ xXtmj t
m
j`1
, xy.

By recurrence, we have proved that Y m : DmˆDm Ñ Gn`1 is well defined for all m ě 0,
with the above properties. Therefore, we can unambiguously define Y : D ˆD Ñ Gn`1,

Yst – Y m
st , s, t P Dm,

and Y indeed satisfies the Chen relation on D, namely Yab ‹ Ybc “ Yac for all a, b, c P D,
and the restriction property

xYab, xy “ xXab, xy, @ a, b P D, x P Hn.

Step 2. In order to have a pHn`1, γq-Hölder path, Definition 3.1 requires us to construct
a γ-Hölder path with values in Gn`1, and for this we will use Lemma 3.5. Set

am – 2mpn`1qγ max
k“0,...,2m´1

�

�

�
Zm
tm
k
tm
k`1

�

�

�

n`1
.

Then, if υ is a basis element in Hpn`1q we have by (2.13), for s “ tmk , u “ tmk`1 and t “ tmk`2

|xBCHpn`1qpLsu, Lutq, υy|ď
ÿ

pυq

ÿ

i`j“n`1

1
i!j!

ÿ

σPSn`1

|aσ|
i
ź

p“1
|xLsu, υpσ´1ppqqy|

n`1
ź

q“i`1
|xLut, υpσ´1pqqqy|.

Now, since υpjq P Hp1q for all j “ 1, . . . , n` 1 we actually have that

|xLsu, υpjqy| ď
d
ÿ

k“1
|xku ´ x

k
s ||υ

k
pjq| ď 2´mγ

d
ÿ

k“1
|υkpjq|

for some coefficients υkpjq P R such that υpjq “
řd
k“1 υ

k
pjqek, and we have a similar estimate

for Lut instead of Lsu. Therefore we obtain that
�

�BCHpn`1qpLsu, Lutq
�

�

n`1 ď C 2´mpn`1qγ,

where

C “ K max
υ

ÿ

pυq

ÿ

i`j“n`1

1
i!j!

ÿ

σPSn`1

|aσ|
n`1
ÿ

k1,...,kn`1“1

n`1
ź

`“1
|υk`
p`q|.

Therefore, from (3.5) we get

max
k“0,...,2m´1

�

�

�
Zm
tm
k
tm
k`1

�

�

�

n`1
ď

1
2 max
k“0,...,2m´1´1

�

�

�
Zm´1
tm´1
k

,tm´1
k`1

�

�

�

n`1
`

1
2 C 2´mpn`1qγ
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hence
am ď 2pn`1qγ´1am´1 `

C

2 , m ě 1.

Since a0 “ 0 we can show by recurrence on m ě 0

am ď
C

2

m´1
ÿ

j“0
2´jp1´pn`1qγq.

Since we are in the regime where pn` 1qγ ă 1 (here we use that γ´1 R N) we obtain that

sup
mě0

am ď
C

2´ 2pn`1qγ .

Therefore
�

�

�
Zm
tm
k
tm
k`1

�

�

�

n`1
À 2´mpn`1qγ, @ m ě 0, k “ 0, . . . , 2m ´ 1. (3.7)

Let now fix m ě 0, i P t0, . . . , 2m ´ 1u, and set s – tmj , t – tmj`1. Then we want to
prove that |Yst| À 2´mγ, see (2.15) for the definition of | ¨ |. By subadditivity of | ¨ | w.r.t.
the convolution product ‹ we have

|Yst| ď |expn`1pLstq| ` |expn`1pZ
m
st q|.

By Lemma 2.15 and (3.7)

|expn`1pZ
m
st q| À

�

�

�
Zm
tm
k
tm
k`1

�

�

�

1
n`1

n`1
À 2´mγ.

Moreover, using Lemma 2.15 again (first the upper bound, then the lower bound) and the
fact that Xn : r0, 1s Ñ Gn is γ-Hölder by assumption,

|expn`1pLstq| ď Cn`1 sup
k“1,...,n`1

~pLstqk~
1{k
“ Cn`1 sup

k“1,...,n
~pLstqk~

1{k
ď

ď
Cn`1

cn
|expnpLstq| “

Cn`1

cn
|Xst| “

Cn`1

cn
ρn

´

Xn
tmj
,Xn

tmj`1

¯

À 2´mγ.

Therefore, the path Xn`1 : D Ñ Gn`1 defined by Xn`1
tmj

– Y0,tmj satisfies

ρn`1

´

Xn`1
tmj

,Xn`1
tmj`1

¯

À 2´mγ,

thus by Lemma 3.5 we obtain a γ-Hölder path Xn`1 : r0, 1s Ñ Gn`1 extending Xn. �

Remark 3.6. Our construction depends on a finite number of choices, namely we set
Z01 “ 0 to start the recursion in (3.6), and this for each level; moreover in (3.6) we make
the choice Ztm2k,tm2k`1

“ Ztm2k`1,t
m
2k`2

. These choices are the same as in [30, Proof of Theorem
1] and are indeed the most natural ones, but one could change them and the final outcome
would be different.

Remark 3.7. While in [30, Proof of Proposition 6] Lyons and Victoir use the axiom
of choice, our proof is completely constructive. In particular, we use the explicit map
expk`1 ˝ logk : GkpTnq Ñ Gk`1pTnq which plays the role of the injection iG{K,G : G{K Ñ G
in [30, Proposition 6]. The fact that this map has good continuity estimates is based on
Lemma 2.15.
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Corollary 3.8. Given γ P s0, 1r with γ´1 R N and a collection of γ-Hölder paths xi : r0, 1s Ñ
R, i “ 1, . . . , d, there exists a γ-Hölder path X : r0, 1s Ñ GN such that xX, eiy “ xi ´ xi0,
i “ 1, . . . , d. Then Xst – X´1

s ‹ Xt defines a pH, γq-rough path over px1, . . . , xdq.

Proof. We start with the following observation: for n “ 1, the group G1 Ă H˚
p1q is abelian,

and isomorphic to the additive group H˚
p1q. Indeed, let X, Y P G1 and x P Hp1q. Then, as

∆x “ xb 1` 1b x by the grading, we have that

xX ‹ Y, xy “ xX, xy ` xY, xy,

that is, X ‹ Y “ X ` Y . Moreover, in H1 the product xy “ 0. Therefore, we may set
xX1

t , eiy – xit ´ xi0 where te1, . . . , edu is a basis of Hp1q and this path is γ-Hölder with
respect to ρ1.

By Theorem 3.4 there is a γ-Hölder path X2 : r0, 1s Ñ pG2, ρ2q extending X1 so in
particular xX2

t , eiy “ xit ´ x
i
0 also. Continuing in this way we obtain successive γ-Hölder

extensions X3, . . . ,XN and we set X – XN . �

The following result has already been proved in the case where the underlying Hopf
algebra H is combinatorial by Curry, Ebrahimi-Fard, Manchon and Munthe-Kaas in [14,
Theorem 4.3]. We remark that their proof works without modifications in our context so
we have

Theorem 3.9. Let X : r0, 1s Ñ GN be a γ-Hölder path with X0 “ 1 and suppose that
γ´1 R N. There exists a path X̂ : r0, 1s Ñ G such that |xX̂´1

s ‹ X̂t, vy| À |t ´ s|γ|v| for all
homogeneous v P H and extending X, in the sense that X̂

ˇ

ˇ

HN
“ X.

Remark 3.10. In view of Theorem 3.9 we can replace the truncated group in Definition 3.1
by the full group of characters G. What this means is that γ-rough paths are uniquely
defined once we fix the first N levels and since H is locally finite, this amounts to a finite
number of choices. This is of course a generalization of the extension theorem of [29], see
also [25, Theorem 7.3] for the branched case.

4. Applications

We now apply Theorem 3.4 to various kinds of Hopf algebras in order to link this result
with the contexts already existing in the literature.

4.1. Geometric rough paths. In this setting we fix a finite alphabet A – t1, . . . , du.
As a vector space H– T pAq is the linear span of the free monoid MpAq generated by
A. The product on H is the shuffle product � : Hb H Ñ H defined recursively by
1� v “ v�1 “ v for all v P H, where 1 P MpAq is the unit for the monoid operation, and

pau� bvq “ apu� bvq ` bpau� vq

for all u, v P H and a, b P A, where au and bv denote the product of the letters a, b with
the words u, v in MpAq.
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The coproduct ∆̄ : HÑ HbH is obtained by deconcatenation of words,

∆̄pa1 ¨ ¨ ¨ anq “ a1 ¨ ¨ ¨ an b 1` 1b a1 ¨ ¨ ¨ an `
n´1
ÿ

k“1
a1 ¨ ¨ ¨ ak b ak`1 ¨ ¨ ¨ an.

It turns out that pH,�, ∆̄q is a commutative unital Hopf algebra, and pH, ∆̄q is the cofree
coalgebra over the linear span of A. The antipode is the linear map S : HÑ H given by

Spa1 ¨ ¨ ¨ anq “ p´1qnan . . . a1.

Finally, we recall that H is graded by the length `pa1 ¨ ¨ ¨ anq “ n and it is also connected.
The homogeneous components Hpnq are spanned by the sets ta1 ¨ ¨ ¨ an : ai P Au.

Definition 3.1 specializes in this case to geometric rough paths (GRP) as defined in [28]
(see just below for the precise definition) and Theorem 3.4 coincides with [30, Theorem 6].

Definition 4.1. Let γ P s0, 1r and set N – tγ´1u. A geometric γ-rough path is a map
X : r0, 1s2 Ñ GN which satisfies Chen’s rule

Xst “ Xsu ‹Xut

for all s, u, t P r0, 1s and the analytic bound |xXst, vy| À |t´ s|
γ`pvq for all v P HN .

Then Proposition 3.3 and the existence results Theorem 3.4-Corollary 3.8 are the content
of the paper [30] by Lyons and Victoir.

4.2. Branched rough paths. Let Tbe the collection of all non-planar non-empty rooted
trees with nodes decorated by t1, . . . , du. Elements of T are written as 2-tuples τ “ pT, cq
where T is a non-planar tree with node set NT and edge set ET , and c : NT Ñ t1, . . . , du
is a function. Edges in ET are oriented away from the root, but this is not reflected in our
graphical representation. Examples of elements of T include the following

i, i
j,

i
j k,

i
j
k l

m.

For τ P Twrite |τ | “ #NT for its number of nodes. Also, given an edge e “ px, yq P ET
we set speq “ x and tpeq “ y. There is a natural partial order relation on NT where x ď y
if and only if there is a path in T from the root to y containing x.

We denote by F the collection of decorated rooted forests and we let H – HBCK
denote the vector space spanned by F. There is a natural commutative and associative
product on F, denoted by ¨ and given by the disjoint union of forests, where the empty
forest 1 acts as the unit. Then, H is the free commutative algebra over T, with grading
|τ1 ¨ ¨ ¨ τk| “ |τ1| ` ¨ ¨ ¨ ` |τk|. Given i P t1, . . . , du and a forest τ “ τ1 ¨ ¨ ¨ τk we denote by
rτ1 ¨ ¨ ¨ τksi the tree obtained by grafting each of the trees τ1, . . . , τk to a new root decorated
by i, e.g.

r jsi “ i
j, r j ksi “ i

j k.

The decorated Butcher–Connes–Kreimer coproduct [12, 25] is the unique algebra mor-
phism ∆: HÑ HbH such that

∆rτ si “ rτ si b 1` pidb r¨siq∆τ.



THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS 21

This coproduct admits a representation in terms of cuts. An admissible cut C of a tree
T is a non-empty subset of ET such that any path from any vertex of the tree to the
root contains at most one edge from C; we denote by ApT q the set of all admissible
cuts of the tree T . Any admissible cut C containing k edges maps a tree T to a forest
CpT q “ T1 ¨ ¨ ¨Tk`1 obtained by removing each of the edges in C. Observe that only one
of the remaining trees T1, . . . , Tk`1 contains the root of T , which we denote by RCpT q;
the forest formed by the other k factors is denoted by PCpT q. This naturally induces a
map on decorated trees by considering cuts of the underlying tree, and restriction of the
decoration map to each of the rooted subtrees T1, . . . , Tk`1. Then,

∆τ “ τ b 1` 1b τ `
ÿ

CPApτq

PC
pτq bRC

pτq. (4.1)

This, together with the counit map ε : FÑ R such that εpτq “ 1 if and only if τ “ 1
endows Fwith a connected graded commutative non-cocommutative bialgebra structure,
hence a Hopf algebra structure [31].

As before we denote by H˚ the linear dual of Hwhich is an algebra via the convolution
product xX ‹ Y, τy “ xX b Y,∆τy and we denote by G the set of characters on H, that
is, linear functionals X P H˚ such that xX, σ ¨ τy “ xX, σyxX, τy. For each n P N the
finite-dimensional vector space Hn spanned by the set Fn of forests with at most n nodes
is a subcoalgebra of H, hence its dual is an algebra under the convolution product, and
we let Gn be the set of characters on Hn.

We have already defined branched rough paths in Definition 1.1. Proposition 3.3 yields
the following characterization

Proposition 4.2. A path X : r0, 1s2 Ñ GN is a branched rough path if and only if
Xt – X0t is γ-Hölder path with respect to the distance ρN defined in (2.16).

Directly applying Theorem 3.4 to the Butcher-Connes-Kreimer Hopf algebra H we
obtain

Corollary 4.3. Given γ P s0, 1r with γ´1 R N and a family of γ-Hölder paths pxi : i “
1, . . . , dq, there exists a branched rough path X above pxi : i “ 1, . . . , dq, i.e. X : r0, 1s2 Ñ
GN is such that xXst, iy “ xit ´ x

i
s for all i “ 1, . . . , d.

Remark 4.4. Given the level of generality in which Theorem 3.4 is developed, our results
also apply to the case when H is a combinatorial Hopf algebra as defined in [14]. In
particular, we also have a construction theorem for planarly branched rough paths [14]
which are characters over Munthe-Kaas and Wright’s Hopf algebra of Lie group integrators
[32].

4.3. Anisotropic geometric rough paths. We now apply our results to another class
of rough paths which we call anisotropic geometric rough paths (aGRPs for short). L.
Gyurkó introduced a similar concept in [26], which he called Π-rough paths; unlike us, he
uses a “primal” presentation, i.e. paths taking values in the tensor algebra T pRdq, and
p-variation norms rather than Hölder norms. Geometric rough paths over a inhomogeneous
(or anisotropic) set of paths can be traced back to Lyons’ original paper [29].
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As in the geometric case, see Section 4.1, fix a finite alphabet A “ t1, . . . , du and denote
by MpAq the free monoid generated by A. We denote again by H– T pAq the shuffle Hopf
algebra over the alphabet A.

Let pγa : a P Aq be a sequence of real numbers such that 0 ă γa ă 1 for all a, and let
γ̂ “ minaPA γa. For a word v “ a1 ¨ ¨ ¨ ak P MpAq of length k define

ωpvq– γa1 ` . . .` γak

and observe that ω is additive in the sense that ωpuvq “ ωpuq`ωpvq for each pair of words
u, v P MpAq. The set

L – tv P MpAq : ωpvq ď 1u
is finite; if N̂ – tγ̂´1u then L Ă HN̂ . In analogy with Lemma 2.5, the additivity of ω
implies

Lemma 4.5. The subspace Ha Ă HN̂ spanned by L is a subcoalgebra of pH, ∆̄, εq.

Consequently, we will consider the dual algebra pH˚
a , ‹, εq. In this case, we define ga to

be the space of truncated infinitesimal characters on Ha, namely the linear functionals
α P H˚

a such that
xα, x� yy “ xα, xyxε, yy ` xε, xyxα, yy

for all x, y P Ha such that x� y P Ha, and let Ga – tX “ expN̂pαq|Ha
: α P gau. As

before, there is a canonical injection H˚
a ãÑ H˚ so we suppose that xX, vy “ 0 for all

X P H˚ and v R L.

For each λ ą 0 there is a unique coalgebra automorphism Ωλ : H Ñ H such that
Ωλa “ λγa{γ̂a for all a P A. We also define } ¨ } : Ga Ñ R,

}X}– max
vPL

|xX, vy|γ̂{ωpvq. (4.2)

As at the end of Section 2, pΩλqλą0 is a one-parameter family of Lie-algebra automorphisms
of ga and }ΩλX} “ λ}X} for all λ ą 0 and X P Ga, namely } ¨ } is a homogeneous norm
on Ga. However, unlike ~¨~ this norm is not subadditive and it therefore does not define a
distance on Ga.

4.3.1. Signatures. In order to construct an appropriate metric on Ga we consider signatures
of smooth paths. We observe that A Ă L. Let x “ pxa : a P Aq be a collection of (piecewise)
smooth paths, and define a map Spxq : r0, 1s2 Ñ H˚ by

xSpxqst, vy–

ż t

s

dxvksk
ż sk

s

dxvk´1
sk´1

¨ ¨ ¨

ż s2

s

dxv1
s1 .

In his seminal work [11], K. T. Chen showed that Spxq is a character of pT pAq,�q; in
particular, Spxqst|Ha

P Ga.

Consider the metric dapX, Y q “
ř

aPA |xX ´ Y, ay|
γ̂{γa on H˚

p1q, where we recall that Hp1q
is the vector space spanned by A. The anisotropic length of a smooth curve θ : r0, 1s Ñ H˚

1
is defined to be its length with respect to this metric and will be denoted by Lapθq. Observe
that since dapΩλX,ΩλY q “ λdapX, Y q we have that LapΩλθq “ λLapθq.
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We now define a homogeneous norm (see the end of Section 2) | ¨ |CC : Ga Ñ R`, called
the anisotropic Carnot–Carathéodory norm, by setting

|X|CC – inftLapxq : xa P C8, Spxq01 “ Xu.

Since curve length is invariant under reparametrization in any metric space we obtain, as
in [23, Section 7.5.4]:

Proposition 4.6. The infimum defining the anisotropic Carnot–Carathéodory norm is
finite and attained at some minimizing path x̂.

Proposition 4.7. The anisotropic Carnot–Carathéodory norm is homogeneous, that is,
|ΩλX|CC “ λ|X|CC.

Proof. Let x̂ be the curve such that |X|CC “ Lapx̂q. For any λ ą 0 and word v P L we
have

xSpΩλx̂q01, vy “ λωpvq{γ̂xSpx̂q01, vy “ xΩλSpx̂q01, vy “ xΩλX, vy,

thus |ΩλX|CC ď LapΩλx̂q “ λLapx̂q “ λ|X|CC. The reverse inequality is obtained by
noting that X “ pΩλ´1 ˝ ΩλqX. �

The anisotropic Carnot–Carathéodory norm can also be seen to satisfy |X|CC “ |X
´1|CC

and |X ‹ Y |CC ď |X|CC ` |Y |CC for all X, Y P Ga, see e.g. the proof of [23, Proposition
7.40]; hence it induces a left-invariant metric ρapX, Y q– |X´1 ‹ Y |CC on Ga. Moreover,
arguing as in the proof of [23, Theorem 7.44] we see that there exist positive constants
c, C such that

c|X|CC ď }X} ď C|X|CC, @ X P Ga. (4.3)

Definition 4.8. An anisotropic geometric γ-rough path, with γ “ pγa, a P Aq, is a map
X : r0, 1s2 Ñ Ga which satisfies

(1) the Chen rule Xsu ‹Xut “ Xst for all ps, u, tq P r0, 1s3,
(2) the bound |xXst, vy| À |t´ s|

ωpvq for all v P L.

Proposition 4.9. Anisotropic geometric γ-rough paths are in one-to-one correspondence
with γ̂-Hölder paths X : r0, 1s Ñ pGa, ρaq with X0 “ 1.

Proof. Let X be an anisotropic geometric γ-rough path and v a word. By definition we
have that |xXst, vy| À |t´ s|

ωpvq, hence }Xst} À |t´ s|
γ̂ . The equivalence between } ¨ } and

| ¨ |CC of (4.3) implies that ρapXs,Xtq “ |Xst|CC À |t´ s|
γ̂ , hence t ÞÑ Xt is γ̂-Hölder with

respect to ρa. The other direction follows in a similar manner. �

Theorem 3.4 also applies to this situation, and we obtain the following

Corollary 4.10. Let pγa : a P Aq be real numbers in s0, 1r such that 1 R
ř

aPA γaN. Let
pxa : a P Aq be a collection of real-valued paths such that xa is γa-Hölder. Then there exists
an anisotropic geometric γ-rough path X such that xXst, ay “ xat ´ x

a
s for all a P A.
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Proof. We start by constructing the homogeneous geometric rough path X given by the
γ̂-Hölder path X : r0, 1s Ñ GN̂ of Corollary 3.8. Then we restrict X to Ha Ă HN̂ and we
show that on this space it satisfies the stronger bound |xXst, vy| À |t´ s|

ωpvq for all v P L.

Recalling the proof of Theorem Theorem 3.4, we consider v P Hn XHa, and we proceed
by recurrence on n. For n “ 0 there is nothing to prove. Suppose we have proved the
result for n and let v P Hn`1 XHa. In this case

xXn`1
st , vy “ xexpn`1pLst ` Zstq, vy “

n`1
ÿ

i“0

1
i!xpLstq

i‹
‹ pε` Zstq, vy

“

n`1
ÿ

i“0

1
i!xpLstq

i‹, vy ` xZst, vy “ xX
n
st, vy `

1
pn` 1q!xpLstq

pn`1q‹, vy ` xZst, vy.

We want to prove now that
ˇ

ˇ

ˇ
xXn`1

tm
k
tm
k`1
, vy

ˇ

ˇ

ˇ
À 2´mωpvq, @m ě 0, k “ 0, . . . , 2m ´ 1. (4.4)

For m ě 0 set
bm – 2mωpvq max

k“0,...,2m´1

ˇ

ˇ

ˇ
xZm

tm
k
tm
k`1
, vy

ˇ

ˇ

ˇ
.

Then, for s “ tmk , u “ tmk`1 and t “ tmk`2 and v “ v1 ¨ ¨ ¨ vn`1

|xBCHpn`1qpLsu, Lutq, vy| ď
ÿ

i`j“n`1

1
i!j!

ÿ

σPSn`1

|aσ|
i
ź

p“1
|xLsu, vσ´1ppqy|

n`1
ź

q“i`1
|xLut, vσ´1pqqy|.

Now, since vj P Hp1q for all j “ 1, . . . , n ` 1 we actually have that by the assumption
xa P Cγa

|xLsu, ay| “ |x
a
u ´ x

a
s | À 2´mγa

and we have a similar estimate for Lut instead of Lsu. Therefore we obtain that
ˇ

ˇxBCHpn`1qpLsu, Lutq, vy
ˇ

ˇ À 2´mωpvq.
Therefore, from (3.5) we get

bm ď 2mpωpvq´1qbm´1 ` C, m ě 1,
hence since b0 “ 0 we can show by recurrence on m ě 0

bm ď C
m´1
ÿ

j“0
2´jp1´ωpvqq.

Since we are in the regime where ωpvq ă 1 (here we use that 1 R
ř

aPA γaN) we obtain that

sup
mě0

bm ď
C

1´ 2ωpvq´1 .

Therefore
ˇ

ˇ

ˇ
xZm

tm
k
tm
k`1
, vy

ˇ

ˇ

ˇ
À 2´mωpvq, m ě 0, k “ 0, . . . , 2m ´ 1.

Analogously, since Lst P g, arguing as in (2.14) we have

xpLstq
pn`1q‹, vy “

n`1
ź

i“1
xLst, viy “

n`1
ź

i“1
pxvit ´ x

vi
s q ùñ

ˇ

ˇxpLstq
pn`1q‹, vy

ˇ

ˇ À 2´mωpvq
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and (4.4) is proved. This implies that }Xn`1
tm
k
tm
k`1
} À 2´mγ̂ and by equivalence of homogeneous

norms (4.3) we obtain

ρa

´

Xn`1
tm
k
,Xn`1

tm
k`1

¯

À 2´mγ̂.

Then we can use Lemma 3.5 and obtain that the path Xn`1 constructed in the proof of
Theorem 3.4 is in fact γ̂-Hölder path with values in Ga. �

5. The Hairer-Kelly construction

In this section we develop further results specifically for branched rough paths as
introduced in Section 4.2 by using our general results from Section 3. We analyze in
detail the Hairer-Kelly map introduced in [28], which plays a very important role in our
construction, and we use it to prove Theorem 1.2 and Corollary 1.3.

5.1. The Hairer–Kelly map. Recall that Tdenotes the set of all decorated rooted trees,
F denotes the collection of all decorated rooted forests, and HBCK is the Butcher–Connes–
Kreimer Hopf algebra. As in Section 4.2, ∆ denotes the Connes–Kreimer coproduct on
HBCK. For each n P N, n ě 1, we denote by Tn the set of (non-empty) trees with at most
n vertices.

Recall also from Section 4.1 that given an alphabet A we denote by T pAq the shuffle
Hopf algebra generated by A, and that ∆ denotes the deconcatenation coproduct on it.
We fix N P N and we consider the shuffle Hopf algebras T pTq and T pTNq, namely we
choose as letters of our alphabet the (non-empty) decorated rooted trees (respectively
rooted trees with with at most N vertices). Note that we can identify every non-empty
tree τ P Twith the word in T pTq composed by the single letter τ . We also remark that,
in order to avoid confusion with the forest product on HBCK we denote the concatenation
of letters in T pTq by a tensor symbol.

We note that T pTq and T pTNq admit two different natural gradings, both of which
make them locally finite graded Hopf-algebras. One grading, as in Section 4.1, is given by
the number of letters (trees) of each word, namely the degree of v “ τ1b ¨ ¨ ¨ b τk is k. The
other grading is given by the sum of the number of nodes of each letter (tree), namely the
degree of v “ τ1 b ¨ ¨ ¨ b τk is |τ1| ` ¨ ¨ ¨ ` |τk|, where we recall that forests and trees are
graded in HBCK by the number of nodes, with the notation |τ | “ #Nτ . We remark the
latter grading is always greater or equal to the former. As an example, take v “ i b j

k;
then, as a word v has length 2 but the total number of nodes is 3.

We recall the following result from [28, Lemma 4.9].

Lemma 5.1. We grade T pTq according to the number of nodes. Then there exists a graded
morphism of Hopf algebras ψ : HBCK Ñ T pTq satisfying ψpτq “ τ `ψn´1pτq for all τ P Tn,
where ψn´1 denotes the projection of ψ onto T pTn´1q.

We call ψ the Hairer-Kelly map. Since ψ is graded, for any forest τ P F the image ψpτq
is a sum of words of the form τ1 b ¨ ¨ ¨ b τk where all terms satisfy |τ1| ` ¨ ¨ ¨ ` |τk| “ |τ |.
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Observe that since ψ is a Hopf algebra morphism, in particular a coalgebra morphism,
then

pψ b ψq∆1τ “ ∆̄1ψpτq “ ∆̄1ψn´1pτq, τ P Tn,

since trees are primitive elements in T pTq, being single-letter words. From the proof of
[28, Lemma 4.9] we are able to see that in fact ψn´1 is given by the recursion ψn´1 “

mbpψ b idq∆1 on the linear span of Tn, see also [3, Definition 1, section 6].

Example 5.2. Here are some examples of the action of ψ on some trees:

ψp iq “ i, ψp a bq “ ψp aq� ψp bq “ a b b ` b b a, ψ
`

a
b
˘

“ a
b ` b b a

ψ
´

a
c
d
b

¯

“
a
c
d
b ` b b

a
c
d
` d b a

c d ` c
d b a

b ` d b c b a
b ` d b b b a

c ` b b d b a
c

` c
d b b b a ` b b c

d b a ` d b c b b b a ` d b b b c b d

` b b d b c b a.

5.2. A special class of anisotropic geometric rough paths. We have already dis-
cussed anisotropic geometric rough paths (aGRPs) in Section 4.3. For the Hairer-Kelly
construction we need a very particular subclass of aGRPs, where the base paths pxaqaPA
are such that each xa is γa-Hölder and there exists γ P s0, 1r and pkaqaPA Ă N such that
γa “ kaγ; therefore the Hölder exponents are all integer multiples of a fixed exponent γ.

We may of course apply the extension result of Corollary 4.10, but it turns out that in
this setting we can avoid using the Carnot-Carathéodory distance and rather use a more
explicit metric, which is a simple generalization of the homogeneous case (2.16).

We have already seen that the space H– T pTNq can be graded in two ways. We can
even define a bigrading on this space: for 1 ď n ď N and n ď j ď nN , we define the space
Hpn,jq as the linear span of the words τ1 b ¨ ¨ ¨ b τn P T pTNq such that |τ1| ` ¨ ¨ ¨ ` |τn| “ j.
Then, in analogy with (2.2), we have

� : Hpn,jq bHpm,hq Ñ Hpn`m,j`hq, ∆̄ : Hpn,jq Ñ
à

p“0,...,n, q“1,...,j´1
Hpp,qq bHpn´p,j´qq.

Then, recalling that H0 “ R1, we set

HN,N – H0 ‘
N
à

n“1

N
à

j“n

Hpn,jq.

In other words, HN,N is the linear span of all words τ1 b ¨ ¨ ¨ b τn with n ď N and
|τ1| ` ¨ ¨ ¨ ` |τn| ď N . Therefore, analogously to (2.3) and (2.5), we have decompositions

HN,N Q x “ x0 `

N
ÿ

n“1

N
ÿ

j“n

xn,j, H˚
N,N Q α “ αp0q `

N
ÿ

n“1

N
ÿ

j“n

αpn,jq, αpn,jqpxq “ αpxn,jq.

We define now gN,N as the space of truncated characters on HN,N , namely of all linear
α : HN,N Ñ R such that

xα, x� yy “ xα, xyxε, yy ` xε, xyxα, yy
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for all x, y P HN,N such that x�y P HN,N . Moreover we define GN,N – expNpgN,Nq Ă H˚
N .

Then we set in analogy with (2.17) for X P GN,N

|X| – N max
n“1,...,N

ˆ

max
j“n,...,N

`

j!
�

�Xpn,jq
�

�

˘1{j
` max

j“n,...,N

´

j!
�

�

�

`

X´1˘

pn,jq

�

�

�

¯1{j
˙

, (5.1)

and we can see that

Lemma 5.3. The map GN,N ˆGN,N Q pX, Y q ÞÑ ρN,NpX, Y q – |X´1 ‹ Y | P R defines a
distance on GN,N .

Proof. We only have to check the triangular inequality, which is equivalent to the sub-
additivity property |X ‹ Y | ď |X| ` |Y | for all X, Y P GN,N . Arguing as in the proof of
Proposition 2.14

�

�pX ‹ Y qpn,jq
�

� ď

n
ÿ

m“0

j´1
ÿ

i“1

�

�Xpm,jq
�

�

�

�Ypn´m,j´iq
�

�

ď N
1
j!

1
N2

j
ÿ

i“0

ˆ

j

i

˙

|X|i|Y |j´i “
1
N

1
j!p|X| ` |Y |q

j

whence the result. �

Let γ P s0, 1r and N – tγ´1u. In accordance with Definition 4.8, an anisotropic geometric
γ-rough path in this setting is a map X : r0, 1s2 Ñ GN,N which satisfies

(1) the Chen rule Xsu ‹Xut “ Xst for all ps, u, tq P r0, 1s3,
(2) |xXst, vy| À |t´ s|

jγ for all v P Hpn,jq with 1 ď n ď N and j ď N .

Then, arguing as in Proposition 3.3, it is easy to show that X : r0, 1s Ñ GN,N is γ-Hölder
with respect to the metric ρN,N if and only if X : r0, 1s2 Ñ GN,N , defined as Xst – X´1

s ‹Xt,
is an anisotropic geometric γ-rough path with γv “ jγ for v “ τ1 b ¨ ¨ ¨ b τn with n ď N
and |τ1| ` ¨ ¨ ¨ ` |τn| “ j ď N .

The next result is the analog of Corollary 4.10 in this setting. The proof is the same, with
one exception: we can use the explicit norm (5.1) rather than the Carnot-Carathéodory
norm | ¨ |CC and we do not need the equivalence of norms result (4.3).

Proposition 5.4. Given γ P s0, 1r with γ´1 R N and a collection of paths xτ : r0, 1s Ñ R,
τ P TN , such that xτ P Cγ|τ |, there exists a γ-Hölder path X : r0, 1s Ñ GN,N such that
xX, τy “ xτ for all τ P TN .

Corollary 5.5. In the setting of Proposition 5.4, let pgτ : τ P TNq be a collection of
functions with gτ P Cγ|τ |. Set x̄τt “ xτt ` gτt and denote by gX the anisotropic geometric
γ-rough path constructed in Proposition 5.4 above the path

x̄t “
ÿ

τPTN

x̄τt τ P Hp1q, t P r0, 1s.

Then, for any two such functions g and g1 we have that g1pgXq “ pg ` g1qX.
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Proof. Let g, g1 be two collections of functions as in the statement of the theorem. We
have the identity

xrg1pgXqst, τy “ xpgXqt, τy ` pg
1
q
τ
t “ xτt ` g

τ
t ` pg

1
q
τ
t “ xrpg

1
` gqXst, τy.

Since both g1pgXq and pg1 ` gqX are constructed iteratively by adding at each step a
function Z satisfying (3.6) on the dyadics, if we let Ln and L̄n denote the logarithms
corresponding to g1pgXq and pg1 ` gqX, Lemma 2.13 and the previous identity imply that

BCHn`1pL
n
su, L

n
utq “ BCHn`1pL̄

n
su, L̄

n
utq

and so g1pgXq “ pg1 ` gqX. �

5.3. Branched rough paths are anisotropic geometric rough paths. The next
theorem is almost the same statement as Theorem 4.10 in [28], the only difference being
that we construct an anisotropic geometric rough path X̄ while Hairer-Kelly need only
that X̄ is geometric in the usual sense (see also [28, Remark 4.14].

Theorem 5.6. Let γ P s0, 1r with γ´1 R N, and let X be a branched γ-rough path. There
exists an anisotropic geometric rough path X̄ : r0, 1s2 Ñ GN,N with exponents γ “ pγτ “
γ|τ |, τ P TNq, and such that

xX, τy “ xX̄, ψpτqy, @ τ P FN .

Proof. We construct X̄ iteratively as follows. Let X̄p1q be the anisotropic geometric
rough path indexed by T1 “ t 1, . . . , du over the paths pxit – xXt, iy : i “ 1, . . . , dq
with exponents pγ i “ γq given by Proposition 5.4 (alternatively we could use have used
Theorem 3.4 since all the exponents are equal). This will give us an anisotropic rough
path path X : r0, 1s2 Ñ GapT1q with exponents pγτ “ γ, τ P T1q.

Suppose we have constructed anisotropic geometric rough paths X̄pkq : r0, 1s2 Ñ GapTkq

over the paths pxτ : τ P Tkq such that xτt´xτs “ xXst, τy´xX̄
pk´1q
st , ψk´1pτqy for k “ 1, . . . , n.

This is true for n “ 1 by the previous paragraph, since ψp iq “ i for all i “ 1, . . . , d.

If we let F τ
st “ xXst, τy and Gτ

st “ xX̄
pnq
st , ψnpτqy for τ P Tn`1 we have, by Chen’s rule,

that

δF τ
sut “ xXsu bXut,∆1τy “ xX̄pnq

su ˝ ψ b X̄
pnq
ut ˝ ψ,∆1τy.

Since ψ is in particular a coalgebra morphism between pH,∆q and pT pTNq, ∆̄q we obtain
the identity δF τ

sut “ xX̄
pnq
su b X̄

pnq
ut , ∆̄1ψpτqy, which then, by Lemma 5.1 becomes

δF τ
sut “ xX̄

pnq
su b X̄

pnq
ut , ∆̄1ψnpτqy “ δGτ

sut. (5.2)

since every τ P T is primitive in pT pTNq, ∆̄q being a single-letter word.

The finite increment operator δ has the following property: if J : r0, 1s2 Ñ R is such
that δJ “ 0 then there exists f : r0, 1s Ñ R such that Jst “ ft ´ fs, and the function
f is unique up to an additive constant shift, see also [25, formula (5)]. Thus, by this
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fundamental property, for each τ P Tn`1 there exists a function xτ : r0, 1s Ñ R such that
xτt ´ x

τ
s “ F τ

st ´G
τ
st and then

|xτt ´ x
τ
s | ď |xXst, τy| ` |xX̄

pnq
st , ψnpτqy| À |t´ s|

γ|τ |

since ψnpτq preserves the number of nodes by Lemma 5.1.

Repeatedly using Proposition 5.4 we obtain an anisotropic geometric rough path
X̄pn`1q : r0, 1s Ñ GapTn`1q over pxτ : τ P Tn`1q whose restriction to T pTnq coincides
with X̄pnq.

Finally notice that if τ P Tn`1 is a tree then

xX̄
pn`1q
st , ψpτqy “ xX̄

p|τ |q
st , τy ` xX̄

p|τ |q
st , ψ|τ |´1pτqy

“ xτt ´ x
τ
s ` xXst, τy ´ px

τ
t ´ x

τ
sq “ xXst, τy

and the corresponding identity for arbitrary forests follows by multiplicativity. The
anisotropic geometric rough path sought for is X̄ “ X̄pNq. �

We note that our proof is shorter and simpler than that of [28, Theorem 4.10], so we
will now dedicate a few paragraphs to highlight the differences between our approach and
that of Hairer and Kelly. They define first

X̂1
t “ expN

˜

ÿ

aPA

xat a

¸

P GN
pT1q

then they note that this is not γ-Hölder with values inGNpT1q, but it is γ-Hölder with values
inGNpT1q{K1, whereK1 – expNpW2`¨ ¨ ¨`WNq, see (2.7). By the Lyons-Victoir extension
theorem there exists a γ-Hölder path X̄1

t Ñ GNpT1q such that πGN pT1qÑGN pT1q{K1pX̄1q “ X̂1.
Then, in order to add a new tree τ with |τ | “ 2, they define

pδX̄τ
qst “ xXst, τy ´ xX̄

p1q
st , ψ1pτqy

and this defines the new function t ÞÑ xX̂t, τy. Then they define

X̂2
t “ expN

˜

ÿ

aPA

xat a `
ÿ

|τ |“2
xX̂t, τy τ

¸

P GN
pT2q

and again they note that this path is not γ-Hölder with values in GNpT2q, but it is with
values in GNpT2q{K2, where K2 – expNpW3 ` ¨ ¨ ¨ `WNq, and again the Lyons-Victoir
extension theorem yields a γ-Hölder path X̄2

t Ñ GNpT2q such that πGN pT2qÑGN pT2q{K2pX̄2q “

X̂2. Finally they construct recursively in this way X̂k and X̄k for all k ď N .

At this point we see the difference with our approach. We do not define X̂2
t nor X̂k

but rather we construct X̄ step by step, namely on all GkpTnq with 1 ď k, n ď N , first
by recursion on k for fixed n and then by recursion on n; at each step we enforce the
Hölder continuity on GkpTnq and the compatibility with the previous levels. This is
done using the Lyons-Victoir technique, but in a very explicit and constructive way,
in particular without ever using the axiom of choice, since we have the explicit map
expk`1 ˝ logk : GkpTnq Ñ Gk`1pTnq which plays the role of the injection iG{K,G : G{K Ñ G
in [30, Proposition 6].
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6. An action on branched rough paths

In this section we prove Theorem 1.2.

Given γ P s0, 1r, let N “ tγ´1u and denote by Cγ the set of collections of functions
pgτ qτPTN such that gτ P Cγ|τ | and gτ0 “ 0 for all τ P TN . It is easy to see that Cγ is a group
under pointwise addition in t, that is,

pg ` hqτ – gτ ` hτ .

As a consequence of Proposition 5.4, pg, X̄q ÞÑ gX̄ is an action of Cγ on the space of
anisotropic geometric rough paths.

We use the Hairer-Kelly map ψ of Lemma 5.1 to induce an action of Cγ on branched
rough paths. Given a branched rough path X and g P Cγ we let gX be the branched
rough path defined by

xgXst, τy “ xgX̄st, ψpτqy,

where X̄ is the anisotropic geometric rough path given by Theorem 5.6. As a simple
consequence of Proposition 5.4 we obtain

Proposition 6.1. Let X P BRPγ.

(1) We have g1pgXq “ pg1 ` gqX for all g, g1 P Cγ.
(2) If pgτ qτPTN P Cγ is such that there exists a unique τ P TN with gτ ı 0, then

xpgXqst, τy “ xXst, τy ` g
τ
t ´ g

τ
s

and xgX, σy “ xX, σy for all σ P T not containing τ as a subtree.

Proof. The first claim follows from point (1) in Proposition 5.4. In order to prove the
second claim, let g “ pgτ qτPTN P Cγ be such that there exists a unique τ P TN with gτ ı 0.
Then by the property of g we have

xgX, τy “ xgX, ψpτqy “ xgX, τ ` ψ|τ |´1pτqy

“ xX̄, τy ` δgτ ` xgX̄, ψ|τ |´1pτqy

where δgτst – gτt ´ gτs . By Lemma 5.1 the tree τ does not appear as a factor in any
of the tensor products appearing in ψ|τ |´1pτq, hence one can recursively show that
xgX̄, ψ|τ |´1pτqy “ xX̄, ψ|τ |´1pτqy so that the above expression becomes

xgX, τy “ xX̄, τ ` ψ|τ |´1pτqy ` δg
τ

“ xX, τy ` δgτ .

For the last assertion, it is enough to note that σ P T contains τ P T if and only if τ
appears in the expression for ψpσq; this can be expressed more precisely by saying that
σ R T pTNztτuq. But if σ P T pTNztτuq, then xgX, ψpτqy “ xX,ψpτqy. �

Proposition 6.2. The action of Cγ on branched γ-rough paths is transitive: for every
pair of branched γ-rough paths X and X 1 there exists g P Cγ such that gX “ X 1.



THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS 31

Proof. We define g P Cγ inductively by imposing the desired identity. For trees τ P T1 “

t 1, . . . , du we set gτt “ xX 1
0t, τy ´ xX0t, τy P C

γ so that

xgX, τy “ xgX̄, ψpτqy “ xgX̄, τy “ xX̄, τy ` δgτ “ xX 1, τy

where δgτst – gτt ´ g
τ
s . Suppose we have already defined gτ for all τ P Tn for some n ě 1,

satisfying the constraints in the definition of Cγ. For a tree τ with |τ | “ n` 1 we define

F τ
st “ xX

1
st, τy ´ xX̄st, τy ´ xgX̄st, ψnpτqy.

Then

δF τ
sut “ xX

1
su bX

1
ut,∆1τy ´ xgX̄su b gX̄ut, ∆̄1ψnpτqy

“ xX 1
su bX

1
ut,∆1τy ´ xgX̄su b gX̄ut, ∆̄1ψpτqy

“ xX 1
su bX

1
ut,∆1τy ´ xgX̄su ˝ ψ b gX̄ut ˝ ψ,∆1τy

“ xX 1
su bX

1
ut,∆1τy ´ xgXsu b gXut,∆1τy “ 0

by the induction hypothesis. Hence there is gτ : r0, 1s Ñ R such that gτ0 “ 0 and

gτt ´ g
τ
s “ xX

1
st, τy ´ xX̄st, τy ´ xgX̄st, ψnpτqy (6.1)

whence g P Cγ|τ |; by construction

xgX, τy “ xgX̄, ψpτqy “ xgX̄, τy ` xgX̄, ψnpτqy

“ xX̄, τy ` δgτ ` xgX̄, ψnpτqy “ xX
1, τy,

where δgτst “ gτt ´ g
τ
s . This concludes the proof. �

Proposition 6.3. The action of Cγ on branched γ-rough paths is free, namely if gX “ g1X
then g “ g1.

Proof. This follows from the fact that by (6.1) the function gτ is defined up to a constant
shift. Therefore, the condition gτ0 “ 0 determines gτ uniquely. �

Together, Proposition 6.1, Proposition 6.2 and Proposition 6.3 imply Theorem 1.2.

6.1. The BCFP renormalisation. In [4] a different kind of modification is proposed.
There, a new decoration 0 is considered so rough paths –branched and geometric– are over
paths taking values in Rd`1. Recall that since branched rough paths are seen as Hölder
paths taking values in the character group of the Butcher-Connes-Kreimer Hopf algebra,
we may think of them as an infinite forest series of the form

Xst “
ÿ

τPF

xXst, τyτ (6.2)

where we regard τ as a linear functional on H, such that xτ, σy “ 1 if σ “ τ and zero else.
The aforementioned modification procedure then acts as a translation of the series (6.2).
Specifically, for each collection v “ pv0, . . . , vdq : TÑ Rd`1 an operator Mv : H˚ Ñ H˚ is
defined, such that for a γ-branched rough path, pMvXqst –MvpXstq is a γ{N -branched
rough path.
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In the particular case where vj “ 0 except for v0, the action of this operator can be
described in terms of an extraction/contraction map1 Ψ: HÑ HbH. This map acts on
a tree τ by extracting subforests and placing them in the left factor; the right factor is
obtained by contracting the extracted forest and decorating the resulting node with 0. As
an example, consider

Ψp
i
j kq “ 1b

i
j k ` i b 0

j k ` j b i
0 k ` k b i

j 0 `
i
j b 0

k ` i
k b 0

j

` i j b 0
0 k ` i k b 0

j 0 ` j k b i
0 0 `

i
j
k b 0

0 ` i
k j b 0

0 `
i
j k b 0.

Extending v “ v0 : TÑ R to all of H˚ as an algebra morphism it is shown that

xpMvXqst, τy “ xXst, pv b idqΨpτqy. (6.3)

Furthermore, in this case MvX is a γ-branched rough path if coefficients corresponding to
trees with decoration zero are required to satisfy the stronger analytical condition

sup
0ďs,tď1

|xXst, τy|

|t´ s|p1´γq|τ |0`γ|τ |
ă 8, (6.4)

where |τ |0 counts the times the decoration 0 appears in τ . Essentially, this condition
imposes that the components corresponding to the zero decoration be Lipschitz on the
diagonal s “ t.

We now show how this setting can be recovered from the results of Section 6. Let X
be a γ-branched rough path on Rd`1 satisfying (6.4). Since MvX is again a γ-branched
rough path, by Proposition 6.2 there exists a collection of functions g P Cγ such that
gX “MvX. Moreover, this collection is the unique one satisfying

gτt ´ g
τ
s “ xXst, pv b idqΨpτqy ´ xX̄st, τy ´ xgX̄st, ψ|τ |´1pτqy (6.5)

for all τ P TpRd`1q where we have used (6.3) in order to express MvX in terms of Ψ.
Theorem 28 in [4] ensures that the first term on the right-hand side is in Cγ|τ |

2 hence g is
actually in Cγ|τ | as required.

The approach of [4] is based on pre-Lie morphisms and crucially on a cointeraction
property, which has been explored by [7], see in particular [4, Lemma 18]. The cointeraction
property can be used for time-independent modifications, indeed note that the functional
v in [4] is always constant.

Let us see why this is the case. The approach of [4] is based on a cointeraction
property studied by [6, 7, 21] between the Butcher-Connes-Kreimer coproduct and another
extraction-contraction coproduct δ : HÑ HbH. The formula is the following

pidb∆qδ “M1,3pδ b δq∆.

Let us consider now a character v P H˚. If we multiply both sides by pv b idb idq and set
M˚

v “ pv b idqδ : HÑ H as in [4, Proposition 17], then we obtain

∆M˚
v “ pM

˚
v bM

˚
v q∆,

1In [4] this map is named δ but we choose to call it Ψ in order to avoid confusion with the operator
defined here.
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namely M˚
v is a coalgebra morphism on H. Then one can define a modified rough path as

vX –MvX “ X ˝M˚
v . The crucial Chen property is still satisfied since
pvXqst “ pv bXstqδ “ pv bXsu bXutqpidb∆qδ

“ pv bXsu bXutqM1,3pδ b δq∆
“ ppv bXsuq b pv bXutqqpδ b δq∆
“ ppvXqsu b pvXqutq∆

However this does not work if v : r0, 1s2 Ñ H˚ is a time-dependent character. Indeed in
this case we set pvXqst – pvst b idqδ and we obtain

pvXqst “ pvst bXstqδ “ pvst bXsu bXutqpidb∆qδ
“ pvst bXsu bXutqM1,3pδ b δq∆
“ ppvst bXsuq b pvst bXutqqpδ b δq∆

but we can not conclude that this is equal to ppvXqsu b pvXqutq∆. Our construction, as
explained after formula (1.8), is not purely algebraic but is based on a (non-canonical)
choice of generalized Young integrals with respect to the rough path X. Moreover our
transformation group, infinite-dimensional, is much larger than that finite-dimensional
group studied in [4].

7. Perspectives

In this paper we have shown that the space of branched γ-rough paths is a principal
homogeneous space with respect to the linear group Cγ. This is related to the analytical
properties of the operator δ defined in (1.2), which is invertible under the conditions of
Gubinelli’s Sewing Lemma, but not in general, and in particular not in the context of the
Chen relation on trees with low degree.

It would be now interesting to see how this action can be translated on the level of
controlled paths [24]. The space of paths controlled by a rough path X P BRPγ should
be interpreted as the tangent space to BRPγ at X, and the action on rough paths should
induce an action on controlled paths. In particular it should be possible to write an action
on solutions to rough differential equations.

The proof of Proposition 6.2, and in particular (6.1), gives a recursive way of computing
the unique g P Cγ translating a given branched γ-rough path into another. An interesting
feature of the BCFP scheme is that is given in terms of a coaction so explicit calculations
are somewhat easier in this more restricted case as one can compute gτ for each tree
τ P TN directly by extracting and contracting subforests of τ without doing any recursions
(see (6.5).) However, we do not have a computational rule for an important case: suppose
that X is branched rough path lift of a stochastic process with a.s. Cγ´ trajectories; it
would be nice to have a way of finding g P Cγ such that gX is centered with respect to the
underlying distribution of the process, provided this is possible. Even this last problem,
namely giving precise conditions under which this centering is possible is interesting in
itself. This should be related to the notion of Wick polynomials and deformations of
products as considered in [18].
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More generally, in the physics literature there are various renormalisation procedures
which allow to obtain convergent iterated integrals from divergent ones by subtracting
suitable “counterterms”. In the context of rough paths, implementing one of the most
accepted such procedures due to Bogoliubov–Parasiuk–Hepp–Zimmermman (BPHZ) has
been carried out by J. Unterberger in [35, 36] by means of the Fourier normal ordering
algorithm and using a technique relating the trees in the Butcher–Connes–Kreimer Hopf
algebra to certain Feynman diagrams. In our context, this could provide a canonical choice
for g P Cγ implementing the BPHZ renormalization procedure in a way analogous to what
is done in [6] for Regularity Structures.
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