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THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS

NIKOLAS TAPIA AND LORENZO ZAMBOTTI

Abstract. We construct an explicit transitive free action of a Banach space of Hölder
functions on the space of branched rough paths, which yields in particular a bijection
between theses two spaces. This endows the space of branched rough paths the structure
of a principal homogeneous space over a Banach space and allows to characterize its
automorphisms. The construction is based on the Baker-Campbell-Hausdorff formula
and on the Hairer-Kelly map, which allows to describe branched rough paths in terms
of anisotropic geometric rough paths.

1. Introduction

The theory of Rough Paths has been introduced by Terry Lyons in the ’90s with the aim
of giving an alternative construction of stochastic integrations and stochastic differential
equations. More recently, it has been expanded by Martin Hairer to cover stochastic
partial differential equations, with the invention of regularity structures.

A rough path and a model of a regularity structure are mathematical objects which
must satisfy some algebraic and analytical constraints. For instance, a rough path can
be described as a Hölder function defined on an interval and taking values in a non-
linear finite-dimensional Lie group; models of regularity structures are a generalisation of
this idea. A crucial ingredient of regularity structures is the renormalisation procedure:
given a family of models depending on a parameter ε ą 0, which fails to converge in
an appropriate topology as ε Ñ 0, one wants to modify it in a such a way that the
algebraic and analytical constraints are still satisfied and the modified version converges.
This procedure has been obtained in [5, 7] for a general class of models with a stationary
character.

The same question could have been asked much earlier about rough paths. Maybe this
has not happened because the motivation was less compelling; although one can construct
examples of rough paths depending on a parameter ε ą 0 which do not converge as
ε Ñ 0, this phenomenon is the exception rather than the rule. However the problem of
characterizing the automorphisms of the space of rough paths is clearly of interest; one
example is the transformation from Itô to Stratonovich integration, see e.g. [1, 14, 15].
However our aim is to put this particular example in a much larger context.

We recall that there are several possible notions of rough paths; in particular we have
geometric RPs and branched RPs, two notions defined respectively by Terry Lyons [28]
and Massimiliano Gubinelli [22], see Sections 3 and 4 below. These two notions are
intimately related to each other, as shown by Hairer and Kelly [25], see Section 4 below.
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2 N. TAPIA AND L. ZAMBOTTI

We note that regularity structures [24] are a natural and far-reaching generalisation of
branched RPs.

In this paper we concentrate on the automorphisms of the space of branched RPs, see
below for a discussion of the geometric case. Let F be the collection of all non-planar
rooted forests with nodes decorated by t1, . . . , du, see Section 4 below. For instance the
following forest

a
b

i
j
k l

m

is an element of F. We call TĂ F the set of rooted trees, namely of non-empty forests
with a single connected component. Grading elements τ P F by the number |τ | of their
nodes we set

Tn :“ tτ P T : |τ | ď nu, n P N.
Let now H be the linear span of F. It is possible to endow H with a product and a
coproduct ∆ : HÑ HbH which make it a Hopf algebra, also known as the Butcher-
Connes-Kreimer Hopf algebra, see Section 4.2 below. We let G denote the set of all
characters over H, that is, elements of G are functionals X P H˚ that are also multiplic-
ative in the sense that

xX, τσy “ xX, τyxX, σy

for all forests (and in particular trees) τ, σ P F. Furthermore, the set G can be endowed
with a product ˚, dual to the coproduct, defined pointwise by xX ˚Y, τy “ xXbY,∆τy.We
work on the compact interval r0, 1s for simplicity, and all results can be proved without
difficulty on r0, T s for any T ě 0.

Definition 1.1 (Gubinelli [22]). Given γ P s0, 1r, a branched γ-rough path is a path X :
r0, 1s2 Ñ G such that Xtt “ ε, it satisfies Chen’s rule

Xsu ˚Xut “ Xst, s, u, t P r0, 1s,
and the analytical condition

|xXst, τy| À |t´ s|
γ|τ |, τ P F.

Setting xit :“ xX0t, iy, t P r0, 1s, we say that X is a branched γ-rough path over the path
x “ px1, . . . , xdq. We denote by BRPγ the set of all branched γ-rough paths (for a fixed
finite alphabet t1, . . . , du).

By introducing the reduced coproduct ∆1 : HÑ HbH

∆1τ – ∆τ ´ τ b 1´ 1b τ,
Chen’s rule can we rewritten as follows

δxX, τysut “ xXsu bXut,∆1τy, s, u, t P r0, 1s, (1.1)
where for F : r0, 1s2 Ñ R we set δF : r0, 1s3 Ñ R,

δFsut – Fst ´ Fsu ´ Fut, (1.2)
which is the second order finite increment considered by Gubinelli [21]. Note that the
right-hand side of (1.1) depends on the values of X on trees with strictly fewer nodes
than τ ; if we can invert the operator δ, then the right-hand side of (1.1) determines the
left-hand side. This is however not a trivial result. In fact, a simple (but crucial for us)



THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS 3

remark is the following: if γ|τ | ď 1, then for any gτ : r0, 1s Ñ R such that gτ P Cγ|τ |pr0, 1sq,
the classical homogeneous Hölder space on r0, 1s with Hölder exponent γ|τ |, the function

r0, 1s2 Q ps, tq ÞÑ Fst :“ xXst, τy ` g
τ
t ´ g

τ
s (1.3)

also satisfies

δFsut “ xXsu bXut,∆1τy, |Fst| À |t´ s|
γ|τ |, s, u, t P r0, 1s. (1.4)

Inversely, if F : r0, 1s2 Ñ R satisfies (1.4), then F must satisfy (1.3) with gτ P Cγ|τ |pr0, 1sq.

If γ|τ | ą 1, then Gubinelli’s Sewing Lemma [21] yields that the function ps, tq ÞÑ xXst, τy
is uniquely determined by (1.4) i.e. by the values of X on trees with at most |τ | ´ 1
nodes, and therefore, applying a recursion, on trees with at most N :“ tγ´1u nodes. More
explicitly, the Sewing Lemma is an existence and uniqueness result for r0, 1s2 Q ps, tq ÞÑ
xXst, τy with γ|τ | ą 1, once the right-hand side of (1.1) is known. However, for γ|τ | ď 1
we have no uniqueness, as we have already seen, and existence is not trivial.

As we have seen in (1.3), the value of xX, τy can be modified by adding the increment
of a function in Cγ|τ |pr0, 1sq, as long as γ|τ | ď 1. It seems reasonable to think that it
is therefore possible to construct an action on the set of branched γ-rough paths of the
abelian group (under pointwise addition)

Cγ :“ tpgτ qτPTN : gτ0 “ 0, gτ P Cγ|τ |
pr0, 1sq, @ τ P T, |τ | ď Nu,

namely the set of all collections of functions pgτ P Cγ|τ |pr0, 1sq : τ P T, |τ | ď Nq indexed
by rooted trees with fewer than N :“ tγ´1u nodes, such that gτ0 “ 0 and gτ P Cγ|τ |pr0, 1sq.
This is indeed the content of the following

Theorem 1.2. Let γ P s0, 1r such that γ´1 R N. There is a transitive free action of Cγ

on BRPγ, namely a map pg,Xq ÞÑ gX such that

(1) for each g, g1 P Cγ and X P BRPγ the identity g1pgXq “ pg ` g1qX holds.
(2) if pgτ qτPTN P Cγ is such that there exists a unique τ P TN with gτ ı 0, then

xgX, τy “ xX, τy ` δgτ

and xgX, σy “ xX, σy for all σ P T not containing τ .
(3) For every pair X,X 1 P BRPγ there exists a unique g P Cγ such that gX “ X 1.

We say that a tree σ P T contains a tree τ P T if there exists a subtree τ 1 of σ,
not necessarily containing the root of σ, such that τ and τ 1 are isomorphic as rooted
trees, where the root of τ 1 is its node which is closest to the root of σ. Note that every
pgτ qτPTN P Cγ is the sum of finitely many elements of Cγ having satisfying the property
required in point (2) of Theorem 1.2.

If γ ą 1{2 then the result of Theorem 1.2 is trivial. Indeed, in this case N “ 1,
TN “ t i : i “ 1, . . . , du, and Cγ “ tg i P Cγpr0, 1sq : g i

0 “ 0, i “ 1, . . . , du. Then the
action is

pg,Xq ÞÑ gX, xpgXqst, iy :“ xXst, iy ` g
i
t ´ g

i
s , (1.5)
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while the value of xgX, τy for |τ | ě 2 is uniquely determined by (1.1) via the Sewing
Lemma. For example

xpgXqst, i
jy :“

ż t

s

pxju ´ x
j
s ` g

j
u ´ g

j
s q dpxiu ` g i

u q, (1.6)

where xiu :“ xX0u, iy and the integral is well-defined in the Young sense, see [21, section
3].

If 1{3 ă γ ď 1{2 then N “ 2 and T2 “ T1 \ t i
j : i, j “ 1, . . . , du. Then the action at

level |τ | “ 1 is still given by (1.5), while at level |τ | “ 2 we must have by (1.1)
δxgX,

i
jysut “ xpgXqsu b pgXqut,∆1τy “ pxju ´ x

j
s ` g

j
u ´ g

j
sqpx

i
t ´ x

i
u ` g

i
t ´ g

i
uq. (1.7)

Although the right-hand side of (1.7) is explicit and simple, in this case there is no
canonical choice for xgX,

i
jy. An expression like (1.6) is ill-defined in the Young sense,

and the same is true if we try the formulation

xpgXqst, i
jy “ xXst, i

jy `

ż t

s

´

pxju ´ x
j
s ` g

j
u ´ g

j
s q dg i

u ` pg
j
u ´ g

j
s q dxiu

¯

, (1.8)

which satisfies formally (1.7), but the Young integrals are ill defined since 2γ ď 1. The
construction of xgX,

i
jy is therefore not trivial in this case.

The same argument applies for any γ ď 1{2 and any tree τ such that 2 ď |τ | ď
N “ tγ´1u, and the fact that the above Young integrals are not well defined shows why
existence of the map X Ñ gX is not trivial.

Since Theorem 1.2 yields an action of Cγ on BRPγ which is regular, i.e. free and
transitive, then BRPγ is a principal Cγ-homogeneous space or Cγ-torsor. In particular,
BRPγ is a copy of Cγ, but there is no canonical choice of an origin in BRPγ.

Therefore, Theorem 1.2 also yields the following

Corollary 1.3. Given a branched γ-rough path X, the map g Ñ gX yields a bijection
between Cγ and the set of branched γ-rough paths.

Therefore Corollary 1.3 yields a complete parametrisation of the space of branched
rough paths. This result is somewhat surprising, since rough paths form a non-linear
space, in particular because of the Chen relation; however Corollary 1.3 yields a natural
bijection between the space of branched γ-rough paths and the linear space Cγ.

Moreover, the fact that the above Young integrals are not well defined shows why
existence of the map X Ñ gX is not trivial.

Corollary 1.3 also gives a complete answer to the question of existence and charac-
terization of branched γ-rough paths over a γ-Hölder path x. Unsurprisingly, for our
construction we start from a result of T. Lyons and N. B. Victoir’s [29] of 2007, which
was the first general theorem of existence of a geometric γ-rough path over a γ-Hölder
path x, see our discussion of Theorem 1.4 below.

An important point to stress is that the action constructed in Theorem 1.2 is neither
unique nor canonical. In the proof of Theorem 3.5 below, some parameters have to be
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fixed arbitrarily, and the final outcome depends on them, see Remark 3.7. In this respect,
the situation is similar to what happens in regularity structures with the reconstruction
operator on spaces Dγ with a negative exponent γ ă 0, see [24, Theorem 3.10].

1.1. Outline of our approach. A key point in Theorem 1.2 is the construction of
branched γ-rough paths. In the case of geometric rough paths, see Definition 4.1, the
signature [9, 28] of a smooth path x : r0, 1s Ñ Rd yields a canonical construction. Other
cases where geometric rough paths over non-smooth paths have been constructed are
Brownian motion and fractional Brownian motion (see [11] for the case H ą 1

4 and [32]
for the general case) among others. However, until T. Lyons and N. B. Victoir’s paper
[29] in 2007, this question remained largely open in the general case. The precise result
is as follows

Theorem 1.4 (Lyons–Victoir extension). If p P r1,8qzN and γ :“ 1{p, a γ-Hölder path
x : r0, 1s Ñ Rd can be lifted to a geometric γ-rough path. For any p ě 1 and ε P s0, γr, a
γ-Hölder path can be lifted to a geometric pγ ´ εq-rough path.

Our first result is a version of this theorem which holds for rough paths in a more
general algebraic context, see Theorem 3.5 below. We use the Lyons-Victoir approach
and an explicit form of the Baker–Campbell–Hausdorff formula by Reutenauer [33], see
formula (2.8) below. Whereas Lyons and Victoir used in one passage the axiom of choice,
our method is completely constructive.

Using the same idea we extend this construction to the case where the collection
px1, . . . , xdq is allowed to have different regularities in each component, which we call
anisotropic (geometric) rough paths (aGRP), see Definition 5.5.

Theorem 1.5. To each collection pxiqi“1,...,d, with xi P Cγipr0, 1sq, we can associate
an anisotropic rough path X̄ over pxiqi“1,...,d. For every collection pgiqi“1,...,d, with gi P
Cγipr0, 1sq, denoting by gX̄ the anisotropic geometric rough path over pxi ` giqi“1,...,d, we
have

g1pgX̄q “ pg ` g1qX̄.

This kind of extension to rough paths has already been explored in the papers [2, 23]
in the context of isomorphisms between geometric and branched rough paths. It turns
out that the additional property obtained by our method enables us to explicitly describe
the propagation of suitable modifications from lower to higher degrees.

We then go on to describe the interpretation of the above results in the context of
branched rough paths. The main tool is the Hairer–Kelly map [25], that we introduce
and describe in Proposition 6.5 a sum over a suitable set of partitions of the given tree, as
opposed to the original iterative definition, which we then use to encode branched rough
paths via anisotropic geometric rough paths, along the same lines as in [2, Theorem 4.3].

Theorem 1.6. Let X be a branched γ-rough path. There exists an anisotropic geometric
rough path X̄ indexed by words on the alphabet TN , with exponents pγτ “ γ|τ |, τ P TNq,
and such that xX, τy “ xX̄, ψpτqy, where ψ is the Hairer–Kelly map.
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The main difference of this result with [25, Theorem 1.9] is that we obtain an anisotropic
geometric rough path instead of a classical geometric rough path. This means that we do
not construct unneeded components, i.e. components with regularity larger than 1, and
we also obtain the right Hölder estimates in terms of the size of the indexing tree. This
addresses two problems mentioned in Hairer and Kelly’s work, namely Remarks 4.14 and
5.9 in [25].

We then use Theorem 1.5 and Theorem 1.6 to construct our action on branched rough
paths. Given pg,Xq P CγˆBRPγ, we construct the anisotropic geometric rough paths X̄
and gX̄ and then define the branched rough path gX P BRPγ as xgX, τy “ xgX̄, ψpτqy,
where ψ is the Hairer–Kelly map.

Our approach also does not make use of Foissy’s and Chapoton’s Hopf-algebra iso-
morphism [8, 17] between the Butcher–Connes–Kreimer Hopf algebra and the shuffle
algebra over a complicated set I of trees as is done in [2]. This allows us to construct
an action of a larger group on the set of branched rough paths; indeed, using the above
isomorphism one would obtain a transformation group parametrised by pgτ qτPI where I it
the aforementioned set of trees of Foissy’s and Chapoton’s results and gτ P Cγ|τ |; on the
other hand our approach yields a transformation group parametrised by pgτ qτPTN . With
the smaller set I XTN , transitivity of the action g ÞÑ gX would be lost.

Finally we note that we use a special property of the Butcher-Connes-Kreimer Hopf
algebra: the fact that it is freely generated as an algebra by the set of trees, so defining
characters over it is significantly easier than in the geometric case. To define an element
X P G it suffices to give the values xX, τy for all trees τ P T; by freeness there is a unique
multiplicative extension to all of H. This is not at all the case for geometric rough paths:
the tensor algebra T cpAq over an alphabet A is not free over the linear span of words so if
one is willing to define a character x over T cpAq there are additional algebraic constraints
that the values of X on words must satisfy.

Outline. We start by reviewing all the theoretical concepts needed to make the expos-
ition in this section formal. In Section 3 we state and prove the main result of this
chapter, namely we give an explicit construction of a geometric rough path above any
given path x P CγpRdq. Next, in Section 5 we extend this result to the wider class of
anisotropic geometric rough paths. Finally, in Section 4 we connect our construction
with M. Gubinelli’s branched rough paths, and we extend M. Hairer and D. Kelly’s work
in Section 6.1. We also explore possible connections with renormalisation in Section 7
by studying how our construction behaves under modification of the underlying paths.
Then, we connect this approach with a recent work by Bruned, Chevyrev, Friz and Preiß
[3] in Section 7.1 who borrowed ideas from the theory of Regularity Structures [5, 24] and
proposed a renormalisation procedure for geometric and branched rough paths [3] based
on pre-Lie morphisms.

The main difference between our result and the BCFP procedure is that they consider
translation only by time-independent factors, whereas –under reasonable hypotheses– we
are also able to handle general translations depending on the time parameter. We also
mention that some further algebraic aspects of renormalisation in rough paths have been
recently developed in [4].
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2. Preliminaries

For the rest of this section we fix a locally finite graded connected Hopf algebra H,
that is, H is a vector space endowed with an associative product m : HbHÑ H and
a coassociative coproduct ∆ : HÑ HbH satisfying certain compatibility assumptions.
There is also a unit 1 P H, a counit ε P H˚ and an antipode S : HÑ H such that

mpidb Sq∆x “ εpxq1 “ mpS b idq∆x

for all x P H. As usual we will denote the imagempxbyq “ xy in order to reduce notation.
The fact that H is locally finite graded connected means that it can be decomposed as a
direct sum

H“

8
à

n“0
Hpnq

with Hp0q “ R1, each Hpnq is finite-dimensional and

m : Hpnq bHpmq Ñ Hpn`mq, ∆ : Hpnq Ñ
à

p`q“n

Hppq bHpqq. (2.1)

Each element x P H can thus be decomposed as a sum

x “
8
ÿ

n“0
xn, xn P Hpnq,

where only a finite number of the summands are non-zero. We call each xn the homogen-
eous part of degree n of x, and elements of Hpnq are said to be homogeneous of degree n.
In this case we write |xn| “ n. From now on the grading pHpnq : n P Nq will be called the
standard grading.

The grading property of H implies in particular that for homogeneous elements x P Hpnq
the coproduct can be written as

∆x “ xb 1` 1b x`∆1x

where
∆1x P

à

p`q“n
p,qě1

Hppq bHpqq

is known as the reduced coproduct. Furthermore, the coassociativity of ∆, i.e. the identity
p∆ b idq∆ “ pid b∆q∆, allows to unambiguously define its iterates ∆n : HÑ Hbpn`1q

by setting
∆0 “ id, ∆n “ pidb∆n´1q∆

and we have, for a homogeneous element x P Hpkq of degree k

∆nx “ xb 1b ¨ ¨ ¨ b 1` 1b xb 1b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b ¨ ¨ ¨ b x`∆1
nx
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where now
∆1
nx P

à

p1`...`pn`1“k
pjě1

Hpp1q b ¨ ¨ ¨ bHppn`1q.

Remark 2.1. These properties of the iterated coproduct imply that the bialgebra pH,∆q
is conilpotent, that is, for each homogeneous x P Hpkq there is an integer n ě 1 such that
∆1
nx “ 0 and we see that in fact n “ k.

Remark 2.2. From the above discussion we obtain in particular the inclusion
∆1
nHpn`1q Ă H

bpn`1q
p1q ,

that is, the n-fold reduced coproduct of a homogeneous element of degree n` 1 is a sum
of pn` 1q-fold tensor products of homogeneous elements of degree 1.

We recall that in general the dual space H˚ carries an algebra structure given by the
convolution product ‹, dual to the coproduct ∆, defined by

xX ‹ Y, xy “ xX b Y,∆xy,
but in general H˚ cannot be made into a coalgebra by dualizing the product. In par-
ticular, H˚ is commutative if and only if H is cocommutative. For a sequence of maps
X1, . . . , Xk P H˚ we have the formula

X1 ‹ ¨ ¨ ¨ ‹Xk “ mbpk´1q
pX1 b ¨ ¨ ¨ bXkq∆k´1. (2.2)

Definition 2.3. A character on H is a linear map X : HÑ R such that
xX, xyy “ xX, xyxX, yy

for all x, y P H. We call G the set of all characters on H.

An infinitesimal character (or derivation) on H is a linear map α : HÑ R such that
xα, xyy “ xα, xyxε, yy ` xε, xyxα, yy.

We call g the set of all infinitesimal characters on H.

We observe that xX,1y “ 1 and xα,1y “ 0 for all X P G and α P g.

It is well known that the set G of characters on H is a group with unit ε and inverse
X´1 “ S˚X “ X ˝S. The space g of infinitesimal characters on H is a Lie algebra under
the bracket rα, βs “ α ‹ β ´ β ‹ α. Moreover, there is an exponential map exp : gÑ G

exppαq–
8
ÿ

n“0

α‹n

n!
which is a bijection and its inverse is the map log : GÑ g

logpXq–
8
ÿ

n“1
p´1qn`1 pX ´ εq‹n

n
.

Remark 2.4. The above maps are actually defined over bigger spaces. These definitions
make sense for maps α P ĝ and X P Ĝ, where ĝ is the Lie algebra of linear maps mapping
1 Ñ 0 and Ĝ is the group of linear maps mapping 1 Ñ 1. In fact, g is a sub-Lie algebra
of ĝ and G is a subgroup of Ĝ.
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Remark 2.5. The conilpotency of pH,∆q implies that for each homogeneous element
x P Hpnq the above series defining exp and log terminate after a finite number of terms
(precisely n, in fact). Therefore, for a general element x P H and α P g the value of
xexppαq, xy is made up of a finite number of finite sums, so there are no convergence
issues involved whatsoever.

Using the grading of Hwe can inductively define a collection of subspaces

W1 “ H˚
p1q, Wk`1 “ rW1,Wks Ă H˚

pk`1q. (2.3)

The Lie algebra g consists of formal series of the type

α “
8
ÿ

k“1
αpkq, αpkq “ α|Hpkq P Wk

Formally, g corresponds to the completion

g “
8
ź

k“1
Wk

of the graded Lie algebra W1‘W2‘ ¨ ¨ ¨ with respect to the natural filtration induced by
the grading, and so it also admits a filtration

gpnq “
ź

kěn

Wk.

Remark 2.6. The elements of g correspond to infinite formal series and cannot in general
be reduced to finite sums. The same goes for elements of the character group G and more
in general for arbitrary elements of the dual space H˚. That is, we can think of elements
f P H˚ as formal series

f “
8
ÿ

k“0
fk

with fk “ f |Hpkq P H˚
pkq. This is one of the reasons why it is not possible to dualize the

product on H to induce a coproduct on H˚.

The Baker–Campbell–Hausdorff formula below describes the group law on G in terms
of the Lie bracketing on g via the exponential map. See [26] for a proof.

Theorem 2.7 (Baker–Campbell–Hausdorff). Let α, β P g, then logpexppαq ‹ exppβqq P g.

We define the map BCH: gˆ gÑ g by

BCHpα, βq– logpexppαq ‹ exppβqq. (2.4)

The main point of Theorem 2.7 is that, even if one can compute explicitly all the terms
appearing in the series defining logpexppαq ‹ exppβqq it is not immediately clear that each
of these terms can be rewritten in terms of iterated commutators as the definition of g
requires. Another way to interpret this theorem is to say that there exists an element
γ “ BCHpα, βq P g such that exppαq ‹ exppβq “ exppγq.
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More can be said about the Lie series

BCHpα, βq “
ÿ

kě1
BCHpkqpα, βq P g (2.5)

given by the previous theorem. In fact, it is possible to show that each homogeneous term
BCHpkq of this series is formed by iterated Lie brackets of α and β, where the first are

BCHpα, βq “ α ` β `
1
2rα, βs `

1
12rα, rα, βss ´

1
12rβ, rα, βss ` ¨ ¨ ¨ , (2.6)

and the following terms are explicit but difficult to compute. Nevertheless, fully explicit
formulas have been known since 1947 by Dynkin [13].

For our purposes, however, Dynkin’s formula is too complicated so we relay on a differ-
ent expression first show by Reutenauer [33]. In order to describe it, let ϕk : pH˚qbk Ñ H˚

be the linear map
ϕkpα1 b ¨ ¨ ¨ b αkq “

ÿ

σPSk

aσ ασp1q ‹ ¨ ¨ ¨ ‹ ασpkq (2.7)

where Sk denotes the symmetric group of order k, and aσ –
p´1qdpσq

k

`

k´1
dpσq

˘´1 is a constant
depending only on the descent number1 dpσq of the permutation σ P Sk.

Lemma 2.8 (Reutenauer’s formula). For all k ě 1, ϕk : gbk Ñ Wk, i.e. ϕkpα1, . . . , αkq P
Wk if α1, . . . , αk P g. Moreover, the k-th homogeneous term in (2.5) is

BCHpkqpα, βq “
ÿ

i`j“k

1
i!j! ϕkpα

bi
b βbjq P Wk. (2.8)

Remark 2.9. A priori the homogeneous term (2.8) looks different from the ones appearing
in (2.6) which are written in terms of iterated Lie brackets. This can be explained by
using a theorem by Dynkin, Specht and Wever [27] relating products of elements in g with
their iterated brackets. More concretely, one can define the Dynkin operator D : H˚ Ñ g
by

Dpx1 b ¨ ¨ ¨ b xkq “ rx1, . . . rxk´1, xks . . . s

for x1, . . . , xk P H˚
p1q, and then the Dynkin–Specht–Wever theorem asserts that a homo-

geneous element X P H˚
pkq is in g (i.e. X P Wk) if and only if DpXq “ kX. A nice

short proof of this fact in terms of Hopf algebras can be found in [36]. The point is
that the coefficients in (2.7)-(2.8) are such that if we replace the products with iterated
brackets then we recover the terms in (2.6). For example, we have that ϕ1pαq “ α,
ϕ2pα b βq “

1
2pα ‹ β ´ β ‹ αq and (omitting the ‹ product)

ϕ3pα1 b α2 b α3q “
1
3α1α2α3 ´

1
6pα2α1α3 ` α1α3α2 ` α2α3α1 ` α3α1α2q `

1
3α3α2α1.

In any case, this is not needed in what follows and we work with formulas (2.7)-(2.8).

From all these considerations we obtain

1The number of i such that σpiq ą σpi` 1q.
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Lemma 2.10. Let x P Hpkq such that

∆1
k´1x “

ÿ

pxq

xp1q b ¨ ¨ ¨ b xpkq P Hbk
p1q .

Then for all α1, . . . , αk P g

xϕkpα1 b ¨ ¨ ¨ b αkq, xy “
ÿ

pxq

ÿ

σPSk

aσ

k
ź

j“1
xασpjq, xpjqy. (2.9)

Proof. This follows directly from the definition of ϕk in (2.7) together with (2.2) and the
fact that since αjp1q “ 0 we can write

α1 ‹ ¨ ¨ ¨ ‹ αk “ mbpk´1q
pα1 b ¨ ¨ ¨ b αkq∆1

k´1

instead (note the reduced coproduct in place of the full coproduct). �

Combining (2.9) with (2.8) we get

xBCHpkqpα, βq, xy “
ÿ

i`j“k

1
i!j!

ÿ

σPSk

aσ

i
ź

p“1
xα, xpiσ´1ppqq

y

k
ź

q“i`1
xβ, xpiσ´1pqqq

y (2.10)

for all x P Hpkq.

2.1. Nilpotent Lie algebras. From (2.1) we have

Lemma 2.11. For any N P N the subspace

HN –

N
à

k“0
Hpkq Ă H

is a counital subcoalgebra of pH,∆, εq. The canonical projection πN : H Ñ HN is a
coalgebra epimorphism.

Then we can consider the dual algebra pH˚
N , ‹, εq and the corresponding truncated Lie

algebra

gN “ g{gpNq –
N
à

k“1
Wk.

There is a canonical injection ιN – π˚N : H˚
N Ñ H˚ such that xιNX, xy “ 0 if |x| ą N

so when working with elements of H˚
N or gN we will always assume that they satisfy this

property. There is also a restricted exponential map expN : gN Ñ GN where GN –

expNpgNq defined by the truncated series

expNpαq–
N
ÿ

k“0

α‹k

k! . (2.11)

The (truncated) BCH formula again shows that GN defined in this way is a group. Also,
as before, expN is a bijection with inverse logN : GN Ñ gN given by

logNpXq–
ÿ

k“1
p´1qk`1 pX ´ εq‹k

k
.
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Proposition 2.12. The orthogonal subspace
KN – HK

N “ t X P H˚ : xX, xy “ 0, @x P HNu

is an ideal of the algebra pH˚, ‹, εq. In particular, the quotient algebra H˚{KN is iso-
morphic to pH˚

N , ‹, εq.

Proof. This is standard, see [30, Proposition I.3.1]. �

Remark 2.13. The canonical inclusion ιN is an algebra monomorphism, being the dual
map to a coalgebra epimorphism. Moreover, it is such that if $N : H˚ Ñ H˚

N is the
canonical projection then $N ˝ ιN “ idH˚N

. We see that, a priori, ιN maps GN to Ĝ and
gN to ĝ defined inside Remark 2.4.
Proposition 2.14. The canonical inclusion ιN maps gN to g.

Proof. We already know that ιN : gN Ñ ĝ so it only suffices to check that given α P gN

we have that ιNα is an infinitesimal character. Let x, y P H, then

xιNα, xyy “ xα, πNpxyqy “
N
ÿ

n“0

n
ÿ

j“0
xα, xjyn´jy

“

N
ÿ

n“0

n
ÿ

j“0
pxα, xjyxε, yn´jy ` xε, xjyxα, yn´jyq

“

N
ÿ

n“0
pxα, xnyxε, y0y ` xε, x0yxα, ynyq “ xα, πNxyxε, yy ` xε, xyxα, πNyy,

hence ιNα P g. �

Remark 2.15. A similar statement cannot hold for GN . For instance take X P GN and
an element x P HNzt1u such that xX, xy ‰ 0. Without loss of generality we may suppose
that x is homogeneous. Take k large enough so that k|x| ě N ` 1. Then

0 “ xιNX, xky ‰ xX, xyk.
Remark 2.16. All the above considerations work, with minor modifications, if linear maps
are allowed to take values in an arbitrary commutative algebra instead of the ground
field (in this case R). That is, we may consider instead of the dual space H˚, the space
LpH, Aq of linear maps from H to a commutative unital algebra A. Even though this level
of generality may seem superfluous, it could be interesting since the added structure may
reveal some further connections with renormalisation via the Birkhoff decomposition of
characters. Since our aim is to define paths taking values in the group GN satisfying some
extra properties, for example, we could make them depend on an extra parameter ε ą 0
and A then could be taken to be the algebra of Laurent series in this extra parameter.
See [30] for further details.
Proposition 2.17. The finite-dimensional Lie algebra gN is step N nilpotent.

Proof. We recall that nilpotency means that the lower central series gN1 Ą gN2 Ą ¨ ¨ ¨

defined inductively gN1 – gN , gNk`1 – rgN , gNk s terminates after a finite number of steps,
that is, there exists k0 P N such that gNk “ t0u for all k ě k0. The smallest number



THE GEOMETRY OF THE SPACE OF BRANCHED ROUGH PATHS 13

such that this happens is called the nilpotency step of gN . Thus, we have to show that
gNN`1 “ t0u but gNN ‰ t0u.

We first prove that rWk,Wjs Ă Wk`j. Take α P Wk, β P Wj and an element x P H.
Then

xrα, βs, xy “ xα b β ´ β b α,∆xy “
ÿ

pxq

xα, xp1qyxβ, xp2qy ´ xβ, xp1qyxα, xp2qy

where the only surviving terms are those with |xp1q| “ k and |xp2q| “ j or |xp1q| “ j and
|xp2q| “ k. In any case this is only possible if x is homogeneous of degree k ` j.

Now, observe that using this fact and induction one can show that

gNk Ă
N
à

j“k

Wj

thus gNN Ă WN and gNN`1 “ t0u. �

Corollary 2.18. The centre of gN is WN .

Note that the Baker–Campbell–Hausdorff is also valid in gN with the additional prop-
erty that the sum is now finite due to nilpotency. We define an operator BCHN : gNˆgN Ñ
gN by

BCHNpα, βq–
N
ÿ

k“1
BCHpkqpα, βq (2.12)

where BCHpkq : gˆ gÑ Wk was defined in (2.8).

2.2. Homogeneous norms. Let L be a finite-dimensional Lie algebra. A family of
dilations on L is a family pΩrqrą0 of automorphisms of L such that ΩrΩs “ Ωrs. A homo-
geneous group is a connected simply connected Lie group whose Lie algebra is endowed
with a family of dilations. If G is a homogeneous group, the map exp ˝Ωr ˝ log is a group
automorphism of G and we also call them dilations.

Definition 2.19. The element X P L is said to be an eigenvector of the dilation Ω with
eigenvalue α P R if ΩrX “ rαX for all r ą 0. For an eigenvalue α P R the eigenspace Eα
is the subspace of L spanned by all the eigenvectors of Ω with eigenvalue α.

Since Ωr is a Lie homomorphism we have that rEα, Eβs Ă Eα`β.

Lemma 2.20. A family pΩrqrą0 is a dilation if and only if Ωr “ elogprqA for some matrix
A.

Proof. It suffices to observe that fprq– Ωer satisfies fpr ` sq “ fprq ˝ fpsq. �

Thus, a dilation can only have a finite number of eigenvalues which correspond to
eigenvalues of the matrix A. In the sequel we order the spectrum of Ω (or A) increasingly,
i.e. α1 ď ¨ ¨ ¨ ď αn where n “ dimL. Since if Ω is a dilation then Ω̃r “ Ωrα is also a
dilation, we may and do suppose that α1 ě 1.
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In the following, we assume the matrix A to be diagonalizable. In this case, we may
fix a basis tX1, . . . , Xnu of L such that AXj “ αjXj. We use this basis to obtain a norm
} ¨ } on L by requiring that this basis is orthonormal.

Definition 2.21. A homogeneous norm on a homogeneous group G is a continuous func-
tion | ¨ | : G Ñ R` which is of class C8 on Gzt1u and such that |X´1| “ |X|, and
|ΩrX| “ r|X|. The homogeneous norm | ¨ | is said to be sub-additive if |XY | ď |X| ` |Y |.

In case the homogeneous norm is sub-additive, we can induce a left-invariant metric on
G by setting ρpX, Y q “ |Y ´1X|.

Lemma 2.22 ([19]). Suppose G is a homogeneous group with Lie algebra L. Then there
exist constants C1, C2 ą 0 such that

C1} logX} ď |X| ď C2} logX}1{αn

for all X P G with |X| ď 1.

A simple consequence of this lemma is the following

Corollary 2.23. All homogeneous norms on G are equivalent.

We can build a dilation on gN as follows: for x P Hpkq set Ωrx “ rkx and transpose this
map to H˚ by setting xΩrX, xy “ xX,Ωrxy.

Proposition 2.24. The maps Ωr are algebra automorphisms of H˚.

Proof. The map Ωr is a coalgebra morphism of H. Indeed, for a homogeneous element
x P H

∆pΩrxq “ r|x|∆x “ pΩr b Ωrq∆x
by Equation (2.1). �

In fact, the maps Ωr are bialgebra automorphisms of H, hence Hopf algebra auto-
morphisms. Therefore, we obtain a dilation on gN by simple restriction, and we remark
that the spaces Wk act as eigenspaces for Ω, with k as the associated eigenvalue.

Fix a basis B of HN and define a norm } ¨ } on this space by requiring that B is
orthonormal. Define the constant

D – max
vPB

ÿ

pvq

|cpv1, v2; vq|}v1}}v2} ă 8

where ∆v “
ř

cpv1, v2; vqv1 b v2, and set, for f P H˚
N ,

|||f ||| – D}f}8

where } ¨ }8 is the usual operator norm with respect to B. Then, if f P H˚
pkq and g P H˚

pkq

we have that f ‹ g P H˚
pk`jq and for any v P B

|xf ‹ g, vy| ď
ÿ

pvq

|cpv1, v2; vq||xf, v1y||xg, v2y| ď
1
D

|||f ||||||g|||,

thus |||f ‹ g||| ď |||f ||||||g|||.
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We obtain a homogeneous norm on GN by setting

|X| – max
k“1,...,N

pk!|||Xk|||q1{k ` max
k“1,...,N

´

k!
∣∣∣∣∣∣ˇˇX´1

k

∣∣∣∣∣∣∣∣∣¯1{k
, (2.13)

where for X P GN we write uniquely (see Remark 2.6)

X “ ε`
N
ÿ

k“1
Xk, Xk P H˚

pkq.

The following formula for the components of the convolution product between two linear
maps follows directly from (2.1): given linear maps f, g P H˚

N , writing

f “ ε`
N
ÿ

k“1
fk, g “ ε`

N
ÿ

k“1
gk

we then have

f ‹ g “ ε`
N
ÿ

k“1

k
ÿ

j“1
fj ‹ gk´j. (2.14)

Proposition 2.25. The group pGN , | ¨ |q is homogeneous with | ¨ | sub-additive.

Proof. We only need to prove that the norm defined in Equation (2.13) is sub-additive,
the other properties being clear. By (2.14) we have that

|||pX ‹ Y qk||| ď
k
ÿ

j“1
|||Xj||||||Yk´j||| ď

1
k!

k
ÿ

j“1

ˆ

k

j

˙

|X|j|Y |k´j “
1
k!p|X| ` |Y |q

1{k

whence the result. �

In particular we obtain a metric ρN on GN which is left-invariant and such that the
metric space pGN , ρNq is complete. This distance may be explicitly computed by Equa-
tion (2.13) as

ρNpX, Y q “ max
k“1,...,N

´

k!
∣∣∣∣∣∣ˇˇpY ´1

‹Xqk
∣∣∣∣∣∣∣∣∣¯1{k

Remark 2.26. In view of Corollary 2.23 we may obtain bounds over the distance ρNpX, Y q
by bounding first ppY ´1 ‹Xq for any homogeneous norm p on G. The importance of | ¨ |
resides in the fact that we know it to be sub-additive by Proposition 2.25 so we obtain a
distance. On some concrete cases there might be other sub-additive homogeneous norms
defined on GN but we choose to work with the one defined in (2.13) since it is closely
related to rough paths, see Definition 3.1 and Proposition 4.2

3. Construction of Rough paths

As in the previous section, we fix a locally-finite graded connected Hopf algebra H. We
also fix a number γ P s0, 1r and let N – tγ´1u be the biggest integer such that Nγ ď 1.
Without loss of generality we can fix a basis B of HN consisting only of homogeneous
elements and in particular we let te1, . . . , edu “ B XHp1q where d– dim Hp1q.
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Definition 3.1. A pH, γq-Hölder path is a path X : r0, 1s Ñ GN , with N “ tγ´1u, which
is γ-Hölder with respect to the metric ρN defined by the homogeneous norm in (2.13) and
such that X0 “ ε. Setting xit “ xXt, eiy we say that X is a γ-rough path over px1, . . . , xdq.
Remark 3.2. The classical definitions of rough paths of various types consider functions
X : r0, 1s2 Ñ G with values in an appropriate group, satisfying Chen’s rule

Xsu ˚Xut “ Xst

and an analytical estimate. It turns out that one can reduce X to a one-variable path
X : r0, 1s Ñ G by noting that the above equation implies that Xst “ pX0sq

´1 ˚ X0t.
The analytical estimate can be seen to be equivalent to requiring that the resulting path
Xt “ X0t is γ-Hölder with respect to the corresponding homogeneous metric ρN . For
a more detailed exposition, albeit in the setting of geometric rough paths under the p-
variation norm, see [20].
Remark 3.3. By specializing this definition to different values of H we recover both geo-
metric rough paths [28] where H is the shuffle Hopf algebra over an alphabet and branched
rough paths [22] where H is the Butcher–Connes–Kreimer Hopf algebra on decorated non-
planar rooted trees.
Proposition 3.4. The path X : r0, 1s Ñ GN is a pH, γq-Hölder path if and only if the
two-variable function X : r0, 1s2 Ñ GN given by Xst “ X´1

s ‹ Xt satisfies Chen’s rule and
for all v P B one has

|xXst, vy| À |t´ s|
γ|v|. (3.1)

Proof. First note that the homogeneous norm in (2.13) is defined with respect a fixed
(but arbitrary) basis so we use the basis B fixed at the beginning of this section. Also,
due to the above remark we only have to verify that X is γ-Hölder with respect to ρN if
and only if X satisfies (3.1) using the same basis. In one direction, if X is γ-Hölder then,
by definition

|Xst| “ ρNpXs,Xtq À |t´ s|
γ

and so, for a basis element v P B we have

|xXst, vy| À
1

D|v|! |t´ s|
γ|v|.

Conversely, if (3.1) holds then |Xst| À |t´s|
γ and so by definition also ρNpXs,Xtq À |t´s|

γ,
i.e. X is γ-Hölder with respect to ρN . �

We now come to the problem of existence. Our construction of a rough path in the
sense of Definition 3.1 over an arbitrary collection of γ-Hölder paths px1, . . . , xdq relies
in the following extension theorem. We note that the proof is a reinterpretation of the
approach of Lyons-Victoir [29, Theorem 1].
Theorem 3.5 (Rough path extension). Let 1 ď n ď N ´ 1 and γ P s0, 1r such that
γ´1 R N. Suppose we have a pHn, γq-Hölder path X : r0, 1s Ñ pGn, ρnq. There is a
pHn`1, γq-Hölder path X̃ : r0, 1s Ñ pGn`1, ρn`1q extending X, i.e. such that X̃

ˇ

ˇ

Hn
“ X.

A key tool is the following technical lemma whose proof can be found in [29, Lemma
2].
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Lemma 3.6. Let pE, ρq be a complete metric space and set D “ ttmk – k2´m : m ě 0, k “
0, . . . , 2m ´ 1u. Suppose y : D Ñ E is a path satisfying the bound ρpytm

k
, ytm

k`1
q À 2´γm for

some γ P p0, 1q. Then, there exists a γ-Hölder path x : r0, 1s Ñ E such that x|D “ y.

Proof of Theorem 3.5. The construction of X̃ is made in two steps.

Step 1. Let D “ ttmk – 2´mk | m P N0, k “ 0, . . . , 2mu be the dyadics in r0, 1s. Set
Xst “ pXn

s q
´1 ‹Xn

t P G
n and Lst “ lognpXstq P g

n where logn was defined in (2.11). Then,
the BCH formula (2.12) and Chen’s rule imply that

Lst “ BCHnpLsu, Lutq “ Lsu ` Lut ` BCH1npLsu, Lutq. (3.2)

We look for Zst P Wn`1 such that the exponential Xn`1
st “ expn`1pιn`1Lst ` Zstq still

satisfies Chen’s rule. To this effect, we first define Z on the dyadics, starting from the
initial condition Z0,1 “ 0 and

Ztm2k,tm2k`1
“ Ztm2k`1,t

m
2k`2

–
1
2Zt

m´1
k

,tm´1
k`1

´
1
2 BCHpn`1qpιn`1Ltm2k,tm2k`1

, ιn`1Ltm2k`1,t
m
2k`2
q (3.3)

where ιn`1 is the canonical inclusion and we have used Proposition 2.14 so that the right-
hand side is well defined. To ease notation in the following we identify L with ιn`1L where
appropriate. Note that with this Zst P Wn`1 for each pair of consecutive dyadics.

We now look to extend this definition to more general pairs of dyadics s, t P D. Set
Y0,1 – expn`1pL0,1 ` wq. If s “ tm2k, u “ tm2k`1 and tm2k`2 are consecutive dyadics then we
define

Ysu – expn`1pLsu ` Zsuq, Yut – expn`1pLut ` Zutq

and note that by (3.3) we have
logn`1pYsu ‹ Yutq “ Lsu ` Lut ` BCH1n`1pLsu, Lutq ` Zsu ` Zut

“ Lsu ` Lut ` BCH1npLsu, Lutq ` Zst “ Lst ` Zst

by (3.2), so that
Ysu ‹ Yut “ Yst.

We have also used the fact that ιn`1 is an algebra morphism for the ‹ product and that
Wn`1 is in the centre of gn`1 by Corollary 2.18. Therefore, we may set

Ytm
k
,tmj

– Ytm
k
,tm
k`1
‹ Ytm

k`1,t
m
k`2
‹ ¨ ¨ ¨ ‹ Ytmj´1,t

m
j

so that the identity Ytmi ,tmj ‹ Ytmj ,tmk “ Ytmi ,tmk is valid for any 0 ď i ă j ă k ď 2m.

Step 2. In order to have a pHn`1, γq-Hölder path, Definition 3.1 requires us to construct
a γ-Hölder path with values in Gn`1, and for this we will use Lemma 3.6. Set

am – 2mpn`1qγ max
k“0,...,2m´1

∣∣∣∣∣∣∣∣ˇˇˇZtmk ,tmk`1

∣∣∣∣∣∣∣∣∣∣∣
n`1

.

Then, if υ is a basis element in Hpn`1q we have by Equation (2.10), for s “ tmk , u “ tmk`1
and t “ tmk`2, that

|xBCHpn`1qpLsu, Lutq, υy| ď
ÿ

pυq

ÿ

i`j“n`1

1
i!j!

ÿ

σPSn`1

|aσ|
i
ź

p“1
|xLsu, υσ´1ppqy|

n`1
ź

q“i`1
|xLut, υσ´1pqqy|.
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Now, since υpjq P Hp1q for all j “ 1, . . . , n` 1 we actually have that

|xLsu, υpjqy| ď
d
ÿ

k“1
|xku ´ x

k
s ||υ

k
pjq| ď 2´mγ

d
ÿ

k“1
|υkpjq|

for some coefficients υkpjq P R such that υpjq “
řd
k“1 υ

k
pjqek, and we have a similar estimate

for Lut instead of Lsu. Therefore we obtain that∣∣∣∣∣∣ˇˇBCHpn`1qpLsu, Lutq
∣∣∣∣∣∣∣∣∣
n`1

ď C2´mpn`1qγ,

where

C “ max
υ

ÿ

pυq

ÿ

i`j“n`1

1
i!j!

ÿ

σPSn`1

|aσ|
n`1
ÿ

k1,...,kn`1“1

n`1
ź

`“1
|υk`
p`q|.

Therefore, from (3.3) we get

2´pm`1qpn`1qγam`1 ď 2´mpn`1qγ
` C2´mpn`1qγ,

hence there is another constant C ą 0 such that

am ď C
m´1
ÿ

j“0
2´jp1´pn`1qγq.

Since we are in the regime where pn ` 1qγ ă 1 we obtain that the rhs is bounded in m
(here we use that γ´1 R N) and

sup
mě0

am ď
C

2´ 2pn`1qγ .

To conclude, we observe that

L ÞÑ
n
ÿ

k“1
|||L|||1{kk

defines a norm on H˚
n , thus by Lemma 2.22 there’s a constant C1 such that

|||Lst|||k ď }Lst}
k
ď |pXn

s q
´1
‹ Xn

t |
k
“ ρnpXn

s ,Xn
t q
k
ď C12´mkγ

for all k “ 1, . . . , n and s “ tmj , t “ tmj`1 since Xn is γ-Hölder with respect to ρn. This
and the previous estimate provide the bound

|Ytmj ,tmj`1
| À 2´mγ. (3.4)

By Chen’s rule, the path Y : D Ñ Gn`1 defined by Ytmj
– Y0,tmj satisfies

ρn`1pYtmj
,Ytmj`1

q À 2´mγ,

thus by Lemma 3.6 we obtain a γ-H"older path X̃ : r0, 1s Ñ Gn`1. �

Remark 3.7. Our construction depends on a finite number of choices, namely we set
Z0,1 “ 0 to start the recursion in (3.3), and this for each level; moreover in (3.3) we make
the choice Ztm2k,tm2k`1

“ Ztm2k`1,t
m
2k`2

. These choices are the same as in [29, Proof of Theorem
1] and are indeed the most natural ones, but one could change them and the final outcome
would be different.
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Remark 3.8. While in [29, Proof of Proposition 6] Lyons and Victoir use the axiom
of choice, our proof is completely constructive. In particular, we use the explicit map
expk`1 ˝ logk : GkpTnq Ñ Gk`1pTnq instead the role of the injection iG{K,G : G{K Ñ G in
[29, Proposition 6]. The fact that this map has good continuity estimates is based on the
explicit expression (2.10) for the Baker-Campbell-Hausdorff formula.

Corollary 3.9. Given γ P s0, 1r with γ´1 R N and a collection of γ-Hölder paths xi :
r0, 1s Ñ R, there exists a pH, γq-Hölder path X over px1, . . . , xdq in the sense of Defini-
tion 3.1.

Proof. We start with the following observation: for n “ 1, the group G1 Ă H˚
p1q is abelian,

and isomorphic to the additive group H˚
p1q. Indeed, let X, Y P G1 and x P Hp1q. Then, as

∆x “ xb 1` 1b x by the grading, we have that
xX ‹ Y, xy “ xX, xy ` xY, xy,

that is, X ‹ Y “ X ` Y . Moreover, in H1 the product xy “ 0. Therefore, we may set
xX1

t , eiy – xit where te1, . . . , edu is a basis of Hp1q and this path is γ-Hölder with respect
to ρ1.

By Theorem 3.5 there is a γ-Hölder path X2 : r0, 1s Ñ pG2, ρ2q extending X1 so in par-
ticular xX2

t , eiy “ xit also. Continuing in this way we obtain successive γ-Hölder extensions
X3, . . . ,XN and we set X – XN . �

The following result has already been proved in the case where the underlying Hopf
algebra H is combinatorial by Curry, Ebrahimi-Fard, Manchon and Munthe-Kaas in [12].
We remark that their proof works without modifications in our context so we have

Theorem 3.10. Let X be a pH, γq-Hölder path. There exists a path X̂ : r0, 1s Ñ G such
that |xX̂´1

s ‹ X̂t, xy| À |t´ s|
γ|x| for all homogeneous x P H.

Remark 3.11. In view of Theorem 3.10 we can replace the truncated group in Definition 3.1
by the full group of characters G. What this means is that γ-rough paths are uniquely
defined once we fix the first N levels and since H is locally finite, this amounts to a finite
number of choices. This is of course a generalization of the extension theorem of [28], see
also [22, Theorem 7.3] for the branched case.

4. Applications

We now apply Theorem 3.5 to various kinds of Hopf algebras in order to link this result
with the contexts already existing in the literature.

4.1. Geometric rough paths. In this settings we fix a finite alphabet A – t1, . . . , du.
As a vector space H :“ T cpAq is the linear span of the free monoid MpAq generated by
A. The product on H is the shuffle product \\ : Hb H Ñ H defined recursively by
1 \\ v “ v \\ 1 “ v for all v P H, where 1 P MpAq is the unit for the monoid operation,
and

pau \\ bvq “ apu \\ bvq ` bpau \\ vq
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for all u, v P H and a, b P A, where au and bv denote the product of the letters a, b with
the words u, v in MpAq.

The coproduct ∆̄ : HÑ HbH is obtained by deconcatenation of words,

∆̄pa1 ¨ ¨ ¨ anq “ a1 ¨ ¨ ¨ an b 1` 1b a1 ¨ ¨ ¨ an `
n´1
ÿ

k“1
a1 ¨ ¨ ¨ ak b ak`1 ¨ ¨ ¨ an.

It turns out that pH, ¨, ∆̄q is a commutative unital Hopf algebra, and pH, ∆̄q is the cofree
coalgebra over the linear span of A. The antipode is the linear map S : HÑ H given by

Spa1 ¨ ¨ ¨ anq “ p´1qnan . . . a1.

Finally, we recall that H is graded by the length `pa1 ¨ ¨ ¨ anq “ n and it is also connected.
The homogeneous components Hpnq are spanned by the sets ta1 ¨ ¨ ¨ an : ai P Au.

Definition 3.1 specialises in this case to geometric rough paths (GRP) as defined in [25]
(see just below for the precise definition) and Theorem 3.5 coincides with [29, Theorem
6].

Definition 4.1. Let γ P s0, 1r and set N – tγ´1u. A geometric γ-rough path is a map
X : r0, 1s2 Ñ GN such that Xtt “ ε, it satisfies Chen’s rule

Xst “ Xsu ‹Xut

for all s, u, t P r0, 1s and the analytic bound |xXst, vy| À |t´ s|
γ`pvq for all v P HN .

We observe that Proposition 3.4 connects Definition 3.1 and Definition 4.1.

Proposition 4.2. A path X : r0, 1s2 Ñ GN is a geometric rough path if and only if
Xt – X0t is a pH, γq-Hölder path in the sense of Definition 3.1.

4.2. Branched rough paths. Let Tbe the collection of all non-planar non-empty rooted
trees with nodes decorated by t1, . . . , du. Elements of Tare written as 2-tuples τ “ pT, cq
where T is a non-planar tree with node set NT and edge set ET , and c : NT Ñ t1, . . . , du
is a function. Edges in ET are oriented away from the root, but this is not reflected in
our graphical representation. Examples of elements of T include the following

i, i
j,

i
j k,

i
j
k l

m.

For τ P Twrite |τ | “ #NT for its number of nodes. Also, given an edge e “ px, yq P ET
we set speq “ x and tpeq “ y. There is a natural partial order relation on NT where x ď y
if and only if there is a path in T from the root to y containing x.

We denote by Fthe collection of decorated rooted forests and we let H :“ HBCK denote
the vector space spanned by F. There is a natural commutative and associative product
on F given by disjoint union of forests, where the empty forest 1 acts as the unit. Then,
H is the free commutative algebra over T, with grading |τ1 ¨ ¨ ¨ τk| “ |τ1| ` ¨ ¨ ¨ ` |τk|.
Given i P t1, . . . , du and a forest τ “ τ1 ¨ ¨ ¨ τk we denote by rτ1 ¨ ¨ ¨ τksi the tree obtained
by grafting each of the trees τ1, . . . , τk to a new root decorated by i, e.g.

r jsi “ i
j, r j ksi “ i

j k.
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The decorated Butcher–Connes–Kreimer coproduct [10, 22] is the unique algebra morph-
ism ∆ : HÑ HbH such that

∆rτ si “ rτ si b 1` pidb r¨siq∆τ.
This coproduct admits a representation in terms of cuts. An admissible cut C of a tree
T is a non-empty subset of ET such that any path from any vertex of the tree to the
root contains at most one edge from C; we denote by ApT q the set of all admissible
cuts of the tree T . Any admissible cut C containing k edges maps a tree T to a forest
CpT q “ T1 ¨ ¨ ¨Tk`1 obtained by removing each of the edges in C. Observe that only one
of the remaining trees T1, . . . , Tk`1 contains the root of T , which we denote by RCpT q;
the forest formed by the other k factors is denoted by PCpT q. This naturally induces a
map on decorated trees by considering cuts of the underlying tree, and restriction of the
decoration map to each of the rooted subtrees T1, . . . , Tk`1. Then,

∆τ “ τ b 1` 1b τ `
ÿ

CPApτq

PC
pτq bRC

pτq.

This, together with the counit map ε : FÑ R such that εpτq “ 1 if and only if τ “ 1
endows Fwith a connected graded commutative non-cocommutative bialgebra structure,
hence a Hopf algebra structure [30].

As before we denote by H˚ the linear dual of Hwhich is an algebra via the convolution
product xX ‹ Y, τy “ xX b Y,∆τy and we denote by G the set of characters on H, that
is, linear functionals X P H˚ such that xX, σ ¨ τy “ xX, σyxX, τy. For each n P N the
finite-dimensional vector space Hn spanned by the set Fn of forests with at most n nodes
is a subcoalgebra of H, hence its dual is an algebra under the convolution product, and
we let Gn be the set of characters on Hn.

We have already defined branched rough paths in Definition 1.1. As in Proposition 4.2
for the geometric case, we have the following

Proposition 4.3. A path X : r0, 1s2 Ñ GN is a branched rough path if and only if
Xt – X0t is a rough path in the sense of Definition 3.1.

Proof. See the proof of Proposition 3.4. �

Directly applying Theorem 3.5 to the Butcher-Connes-Kreimer Hopf algebra H we
obtain

Corollary 4.4. Given γ P s0, 1r with γ´1 R N and a family of γ-Hölder paths pxi : i “
1, . . . , dq, there exists a branched rough path X above pxi : i “ 1, . . . , dq, i.e. X : r0, 1s2 Ñ
GN is such that xXst, iy “ xit ´ x

i
s for all i “ 1, . . . , d.

We end this section with a final remark

Remark 4.5. Given the level of generality in which Theorem 3.5 is developed, our results
also apply to the case when H is a combinatorial Hopf algebra as defined in [12]. In
particular, we also have a construction theorem for planarly branched rough paths [12]
which are characters over Munthe-Kaas and Wright’s Hopf algebra of Lie group integrators
[31].
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5. Anisotropic rough paths

We now apply our results to another class of rough paths which we call anisotropic
geometric rough paths (aGRPs for short). L. Gyurkó introduced a similar concept in [23],
which he called Π-rough paths; unlike us, he uses a “primal” presentation, i.e. paths
taking values in the tensor algebra T pRdq, and p-variation norms rather than Hölder
norms. Geometric rough paths over a inhomogeneous (or anisotropic) set of paths can be
traced back to Lyons’ original paper [28].

As in the geometric case, see Section 4.1, fix a finite alphabet A “ t1, . . . , du and denote
by MpAq the free monoid generated by A. We denote again by T cpAq the shuffle Hopf
algebra over the alphabet A.

Let pγa : a P Aq be a sequence of real numbers such that 0 ă γa ă 1 for all a, and let
γ̂ “ minaPA γa. For a word v “ a1 ¨ ¨ ¨ ak of length k define

ωpvq “
γa1 ` . . .` γak

γ̂
“

1
γ̂

d
ÿ

aPA

napvqγa (5.1)

where napvq “ |tj : vj “ au|, and observe that ω is additive in the sense that ωpuvq “
ωpuq ` ωpvq for each pair of words u, v P MpAq. The set

L – tv P MpAq : ωpvq ď γ̂´1
u

is finite; if Na – tγ̂´1u then L Ă T cpAqNa and

#L ď
dNa ´ 1
d´ 1 .

In analogy with Lemma 2.11, the additivity of ω implies
Lemma 5.1. The subspace HapAq Ă T cpAq spanned by L is a subcoalgebra of pH, ∆̄, εq.
Remark 5.2. If the alphabet A is clear from the context we will omit it from the notation
and write Ha instead.

Consequently, we will consider the dual algebra pH˚
a , ‹, εq. In this case, we define ga to

be the space of infinitesimal characters on Ha and let Ga “ exppgaq. As before, there is
a canonical injection ιa : H˚

a Ñ H˚ so we suppose that xX, vy “ 0 for all X P H˚ and
v R L. We grade Ha by word length and we observe that since ωpvq ě `pvq we have that
Ha Ă T cpAqNa

Since H is the conilpotent cofree coalgebra over the span of A, for each λ ą 0 there is
a unique coalgebra automorphism Ωλ : HÑ H such that Ωλa “ λγa{γ̂a for all a P A. In a
similar way as before we have that pΩλqλą0 is a one-parameter family of automorphisms
of H. There are also homogeneous norms

|X|– max
vPL

p`pvq! |xX, vy|q1{ωpvq (5.2)

and
}X} “ max

vPL
|xlogX, vy|1{ωpvq. (5.3)

These homogeneous norms are symmetric, but neither is sub-additive thus they do not
generate a metric on Ga.
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5.1. Signatures. In order to have a useful metric on Ga we consider signatures of smooth
paths. We observe that A Ă L. Let x “ pxa : a P Aq be a collection of (piecewise) smooth
paths, and define a map Spxq : r0, 1s2 Ñ H˚ by

xSpxqst, vy–

ż t

s

dxvksk
ż sk

s

dxvk´1
sk´1

¨ ¨ ¨

ż s2

s

dxv1
s1 .

In his seminal work [9], K. T. Chen showed that Spxq is a multiplicative functional, that
is, Spxqst P Ga. In particular logSpxqst P g thus its restriction to L is in ga and so we can
consider Spxq also as an element of Ga.

Consider the metric dapX, Y q “
ř

aPA |xX´Y, ay|
γ̂{γa on H˚

p1q, where we recall that Hp1q
is the vector space spanned by A. The anisotropic length of a smooth curve θ : r0, 1s Ñ H˚

1
is defined to be its length with respect to this metric and will be denoted by Lapθq. Observe
that since dapΩλX,ΩλY q “ λdapX, Y q we have that LapΩλθq “ λLapθq. We now define
another homogeneous norm |||¨||| : Ga Ñ R`, called the anisotropic Carnot–Carathéodory
norm, by setting

|||X||| – inftLapxq : xa P C8, Spxq0,1 “ Xu.

Since curve length is invariant under reparametrization in any metric space we obtain, as
in [20, Section 7.5.4].

Proposition 5.3. The infimum defining the anisotropic Carnot–Carathéodory norm is
finite and attained at some minimizing path x̂.

Proposition 5.4. The anisotropic Carnot–Carathéodory norm is homogeneous, that is,
|||ΩλX||| “ λ|||X|||.

Proof. Let x̂ be the curve such that |||X||| “ Lapx̂q. For any λ ą 0 and word v P L we have
xSpΩλx̂q0,1, vy “ λωpIqxSpx̂q0,1, vy “ xΩλSpx̂q0,1, vy “ xΩλX, vy,

thus |||ΩλX||| ď LapΩλx̂q “ λLapx̂q “ |||X|||. The reverse inequality is obtained by noting
that X “ pΩλ´1 ˝ ΩλqX. �

The anisotropic Carnot–Carathéodory norm can also be seen to be symmetric and
sub-additive, hence it induces a left-invariant metric ν on Ga.

Definition 5.5. An anisotropic geometric γ-rough path, with γ “ pγa, a P Aq, is a map
X : r0, 1s2 Ñ Ga such that

(1) Xtt “ ε,
(2) it satisfies Chen’s rule Xsu ‹Xut “ Xst for all ps, u, tq P r0, 1s3,
(3) |xX, vy| À |t´ s|γ̂ωpvq for all v P L.

Proposition 5.6. Anisotropic geometric γ-rough paths are in one-to-one correspondence
with γ̂-Hölder paths X : r0, 1s Ñ pGa, νq.

Proof. Let X be an anisotropic geometric γ-rough path and v a word. By definition we
have that |xXst, vy| À |t´ s|

γ̂ωpvq, hence |Xst| À |t´ s|
γ̂. The equivalence between | ¨ | and

|||¨||| implies that νpXs,Xtq “ |||Xst||| À |t ´ s|γ̂, hence t ÞÑ Xt is γ̂-Hölder with respect to
ν. The other direction follows in a similar manner. �
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5.2. Constructing anisotropic rough paths. Proceeding as in the proof of The-
orem 3.5 we can show

Theorem 5.7. Let pγa : a P Aq be real numbers such that γa P p0, 1q and 1 R
ř

aPA γaN.
Let pxa : a P Aq be a collection of real-valued paths such that xa is γa-Hölder. Then

(1) There exists an anisotropic rough path X such that xXst, ay “ xat ´x
a
s for all a P A.

(2) Given a collection of functions pga : a P Aq with ga P Cγa, let x̄at “ xat ` gat
and denote by gX the anisotropic geometric γ-rough path constructed in point (1)
above the path

x̄t “
ÿ

aPA

x̄at a P Hp1q, t P r0, 1s.

Then, for any two such functions g and g1 we have that g1pgXq “ pg ` g1qX.

Proof. We set γ̂ “ minaPA γa as above. The only difference in the proof of this theorem is
in the analytic step, because now we have to show that

νpYtm
k
,tm
k`1
q À 2´mγ̂

in order to apply Lemma 2 of [29]. We recall that the metric space pGa, νq only considers
the regularity of the components xX, vy where the weight ωpvq ă 1 by the very definition
of the homogeneous norms in (5.2)-(5.3). Looking at the proof of Theorem 3.5 we see that
this bound comes from the bound on BCHpn`1qpL

n
su, L

n
utq provided by Lemma 2.10. In

this case we have, for a word v P L of length n` 1 and s “ tm`1
2k , u “ tm`1

2k`1 and t “ tm`1
2k`2,

|xBCHpn`1qpL
n
su, L

n
utq, eIy| ď

ÿ

p`q“n`1

1
p!q!

ÿ

σPSn`1

|aσ|
p
ź

r1“1
|xLnsu, viσ´1pr1q

y|

n`1
ź

r2“p`1
|xLnut, viσ´1pr2q

y|

“
ÿ

p`q“n`1

1
p!q!

ÿ

σPSn`1

|aσ|
p
ź

r1“1
|x
vσ´1pr1q
u ´ x

vσ´1pr1q
s |

n`1
ź

r2“p`1
|x
vσ´1pr2q
t ´ x

vσ´1pr2q
u |

ď
ÿ

p`q“n`1

1
p!q!

ÿ

σPSn`1

|aσ|
p
ź

r1“1
|u´ s|

γv
σ´1pr1q

n`1
ź

r2“p`1
|t´ u|

γv
σ´1pr2q

“
ÿ

p`q“n`1

1
p!q!

ÿ

σPSn`1

|aσ| 2
´mpγv

σ´1p1q
`¨¨¨`γv

σ´1pn`1q
q
À 2´mγ̂ωpvq.

This implies that at each stage we have }Ytm
k
,tm
k`1
} À 2´mγ̂, which is stronger than (3.4)

above, and the equivalence of norms implies the desired bound. The rest of the proof
follows through.

Now let g, g1 be two collections of functions as in the statement of the theorem. We
have the identity

xrg1pgXqst, ay “ xpgXqt, ay ` pg
1
q
a
t “ xat ` g

a
t ` pg

1
q
a
t “ xrpg

1
` gqXst, ay.

Since both g1pgXq and pg1 ` gqX are constructed iteratively by adding at each step a
function Z satisfying (3.3) on the dyadics, if we let Ln and L̄n denote the logarithms
corresponding to g1pgXq and pg1` gqX, Lemma 2.10 and the previous identity imply that

BCHn`1pL
n
su, L

n
utq “ BCHn`1pL̄

n
su, L̄

n
utq
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and so g1pgXq “ pg1 ` gqX. �

Corollary 5.8. Let pxa : a P Aq be a collection of real-valued paths such that xa P Cγa,
and let X be the anisotropic geometric γ-rough path on GapAq given by Theorem 5.7. If
b R A is a new letter let A0 “ A Y tbu. Given 0 ă γb ă 1 such that 1 R

ř

aPA0 γaN and
xb P Cγb, let X0 be the anisotropic geometric rough path on GapA

0q over pxa : a P A0q

given by Theorem 5.7. Then, the restriction of X0 to words from MpAq coincides with X.

Proof. If Ln and L̄n denote the logarithms used in the construction of X and X0 respect-
ively, and v P MpAq is a word not containing b, the BCH formula gives

xBCHpn`1qpL̄
n
su, L̄

n
utq, vy “

ÿ

p`q“n`1

1
p!q!

ÿ

σPSn`1

aσ

p
ź

r1“1
px

vσpr1q
u ´ x

vσpr1q
s q

n`1
ź

r2“p`1
px

vσpr2q
t ´ x

vσpr2q
u q

“ xBCHpn`1qpL
n
su, L

n
utq, vy.

Therefore, at each step in the proof of Theorem 5.7 the paths Xn and pX0qn are such
that for words v P MpAq one has xpX0qnst, vy “ xX

n
st, vy for all s, t P r0, 1s. �

6. Branched rough paths

In this section we develop further results specifically for branched rough paths as intro-
duced in Section 4.2 by using our general results from Section 3. We analyse in detail the
Hairer-Kelly map introduced in [25], which plays a very important role in our construction,
and we use it to prove Theorem 1.2 and Corollary 1.3.

6.1. The Hairer–Kelly map. We denote by B the vector space spanned by T and for
each n P N we denote by Bn the finite-dimensional vector space spanned by the set Tn
of trees with at most n edges. Recall that given an alphabet A we denote by T cpAq the
shuffle Hopf algebra generated by A, defined in Section 4.1.

We recall the following result from [25, Lemma 4.9].

Lemma 6.1. There exists a graded morphism of Hopf algebras ψ : HÑ T cpTq satisfying
ψpτq “ τ `ψn´1pτq for all τ P Tn, where ψn´1 denotes the projection of ψ onto T cpTn´1q.

We call ψ the Hairer-Kelly map. Observe that since ψ is a Hopf algebra morphism, in
particular a coalgebra morphism, then

pψ b ψq∆1τ “ ∆̄1ψpτq “ ∆̄1ψn´1pτq, τ P Bn,

since trees are primitive elements in T cpTq. In fact, from the proof of [25, Lemma 4.9] we
are able to see that in fact ψn´1 is given by the recursion ψn´1 “ pψ b idq∆1 on Bn.
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Example 6.2. Here are some examples of the action of ψ on some trees:

ψp iq “ i

ψp a bq “ ψp aq \\ ψp bq “ a b b ` b b a

ψ
`

a
b
˘

“ a
b ` b b a

ψ
´

a
c
d
b

¯

“
a
c
d
b ` b b

a
c
d
` d b a

c d ` c
d b a

b ` d b c b a
b ` d b b b a

c ` b b d b a
c

` c
d b b b a ` b b c

d b a ` d b c b b b a ` d b b b c b d

` b b d b c b a.

In order to describe the image of ψ we introduce the following extended decorations
on the nodes. Recall that a decorated forest is a pair τ “ pF, cq where F is a finite
non-planar rooted forest and c : NF Ñ t1, . . . , du. We call a triple pF, c, oq an extended
decorated forest if pF, cq is a decorated forest and o : NF Ñ N; we call o an extended
decoration and we also use the notation τ o “ pF, c, oq where τ :“ pF, cq.

Definition 6.3. An extended decoration on a forest is said to be admissible if

(1) opNF q is an interval containing 1, we let m “ mo – max opNF q ď |τ |;
(2) the function o is increasing, that is, opxq ď opyq whenever x ď y, and
(3) for each 1 ď j ď m the set Oj “ tx P NF : opxq “ ju spans a subtree τ oj Ă τ o.

It is clear that the extended decoration o is completely independent of the first decor-
ation c and only depends on the forest F so we denote by OpF q the collection of all the
admissible extended decorations on the forest τ “ pF, cq.

Note that condition (2) implies that o must be increasing in each factor since nodes
from different trees are not comparable, and condition (3) implies that decorations must
not appear twice in different factors since each set Oj must span a subtree and not a
subforest. It is fairly clear that for each admissible extended decoration the trees τj form
a partition of τ into mo disjoint subtrees.

Let F be a forest. For A Ă F a subforest we denote the boundary of A in F by

BFA “ te P EF : speq P NA, tpeq R NAu.

Lemma 6.4. Let F be a forest, o P OpF q an admissible extended decoration on F and
let Tj be the subtree spanned by Oj as in Definition 6.3. Then BFTj is an admissible cut.

Proof. Denote by Fą the subforest of F spanned by all x P NF zNFj such that y ă x
for some y P Tj. If x R Fą then the unique path from the root to x does not contain
edges in BFTj. If x P Fą, suppose that the unique path from the root to x contains
two or more edges from BFTj. Pick any two distinct such edges e1, e2 P ETj and let
y1 “ spe1q, y2 “ spe2q P NTj . Then, the paths going from the root to x through y1 and
through y2 form a cycle in F , which is a contradiction. �
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Proposition 6.5. We have the following representation:

ψpτq “
ÿ

oPOpF q

τm b ¨ ¨ ¨ b τ1 (6.1)

In particular, each term in this expansion satisfies |τi| ą 0 and |τ1| ` ¨ ¨ ¨ ` |τm| “ |τ |.

As an example, observe that the following extended decorations are admissible:

pa, 1q pb, 2q,
pa, 1q

pc, 1q
pd, 2q

pb, 3q,
pa, 1q

pc, 1q
pd, 3q

pb, 2q,

whereas the following are not:

pa, 1q pb, 1q,
pa, 1q

pc, 1q
pd, 5q

pb, 3q,
pa, 1q

pc, 1q
pd, 2q

pb, 2q,
pa, 1q

pc, 3q
pd, 2q

pb, 1q.

Observe that the two terms in the first example give exactly the terms

b b d b a
c , and d b b b a

c

in Example 6.2.

Proof of Proposition 6.5. The proof is by induction on the number of edges of τ , the base
case being trivial (see Example 6.2).

Suppose identity (6.1) is true for all forests with at most k edges, and let τ be a tree
with k` 1 edges. Let A˚pτq “ ApτqY tHu where A is the set of admissible cuts of τ , and
set RHpτq “ τ , PHpτq “ 1. By definition

ψpτq “
ÿ

CPA˚pτq

ψpPC
pτqq bRC

pτq

and by the induction hypothesis

ψpτq “
ÿ

CPA˚pτq

ÿ

oPOpPCpτqq

τm b ¨ ¨ ¨ b τ1 bR
C
pτq

Given σ P A˚pτq and o P OpPCpτqq there is a unique extended decoration õ P Opτq
such that τ1 “ RCpτq. This extended decoration is defined by õpxq “ 1 if x P NRCpτq and
õpxq “ opxq`1 if x P NτzNRCpτq. Conversely, given õ P Opτq we have that Bτ1 P Apτq and
the extended decoration such that opxq “ õpxq ´ 1 for x P NτzNτ1 belongs to OpPCpτqq.
Therefore we have the identity

ψpτq “
ÿ

õPOpτq

τ1 b ¨ ¨ ¨ b τmõ
.

This concludes the proof. �
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6.2. Branched rough paths are anisotropic geometric rough paths. The next
theorem is almost the same statement as Theorem 4.10 in [25], the only difference being
that we construct an anisotropic geometric rough path X̄ while Hairer-Kelly need only
that X̄ is geometric in the usual sense (see also [25, Remark 4.14].

Theorem 6.6. Let γ P s0, 1r with γ´1 R N, and let X be a branched γ-rough path. There
exists an anisotropic geometric rough path X̄ : r0, 1s2 Ñ GapTNq with exponents γ “ pγτ “
γ|τ |, τ P TNq, and such that

xX, τy “ xX̄, ψpτqy, @ τ P F.

Proof. We construct X̄ iteratively as follows. Let X̄p1q be the anisotropic geometric rough
path indexed by T1 “ t 1, . . . , du over the paths pxit – xXt, iy : i “ 1, . . . , dq with expo-
nents pγ i “ γq given by Theorem 5.7 (alternatively we could use have used Theorem 3.5
since all the exponents are equal). This will give us an anisotropic rough path path
X : r0, 1s2 Ñ GapT1q with exponents pγτ “ γ, τ P T1q.

Suppose we have constructed anisotropic geometrics rough paths X̄pkq : r0, 1s2 Ñ GapTkq

over the paths pxτ : τ P Tkq such that xτt ´ xτs “ xXst, τy ´ xX̄
pk´1q
st , ψk´1pτqy for k “

1, . . . , n. This is true for n “ 1 by the previous paragraph, since ψp iq “ i for all
i “ 1, . . . , d.

If we let F τ
st “ xXst, τy and Gτ

st “ xX̄
pnq
st , ψnpτqy for τ P Tn`1 we have, by Chen’s rule,

that
δF τ

sut “ xXsu bXut,∆1τy “ xX̄pnq
su ˝ ψ b X̄

pnq
ut ˝ ψ,∆1τy.

Since ψ is in particular a coalgebra morphism between pH,∆q and pT cpTq, ∆̄q we obtain
the identity δF τ

sut “ xX̄
pnq
su b X̄

pnq
ut , ∆̄1ψpτqy, which then, by Lemma 6.1 becomes

δF τ
sut “ xX̄

pnq
su b X̄

pnq
ut , ∆̄1ψnpτqy “ δGτ

sut. (6.2)
since every τ P T is primitive in pT cpTq, ∆̄q being a single-letter word.

The finite increment operator δ has the following property: if J : r0, 1s2 Ñ R is such
that δJ “ 0 then there exists f : r0, 1s Ñ R such that Jst “ ft ´ fs, and the function
f is unique up to an additive constant shift, see also [22, formula (5)]. Thus, by this
fundamental property, for each τ P Tpn`1q there exists a function xτ : r0, 1s Ñ R such that
xτt ´ x

τ
s “ F τ

st ´G
τ
st and then

|xτt ´ x
τ
s | ď |xXst, τy| ` |xX̄

pnq
st , ψnpτqy| À |t´ s|

γ|τ |

since ψnpτq preserves the number of nodes by Proposition 6.5.

Repeatedly using Corollary 5.8 we obtain an anisotropic geometric rough path X̄pn`1q :
r0, 1s Ñ GapTn`1q over pxτ : τ P Tn`1q whose restriction to T cpTnq coincides with X̄pnq.

Finally notice that if τ P Tn`1 is a tree then
xX̄

pn`1q
st , ψpτqy “ xX̄

p|τ |q
st , τy ` xX̄

p|τ |q
st , ψ|τ |´1pτqy

“ xτt ´ x
τ
s ` xXst, τy ´ px

τ
t ´ x

τ
sq “ xXst, τy
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and the corresponding identity for arbitrary forests follows by multiplicativity. The an-
isotropic geometric rough path sought for is X̄ “ X̄pNq. �

We note that our proof is shorter and simpler than that of [25, Theorem 4.10], so we
will now dedicate a few paragraphs to highlight the differences between our approach and
that of Hairer and Kelly. They define first

X̂1
t “ expN

˜

ÿ

aPA

xat a

¸

P GN
pT1q

then they note that this is not γ-Hölder with values in GNpT1q, but it is γ-Hölder
with values in GNpT1q{K1, where K1 :“ expNpW2 ` ¨ ¨ ¨ ` WNq, see (2.3). By the
Lyons-Victoir extension theorem there exists a γ-Hölder path X̄1

t Ñ GNpT1q such that
πGN pT1qÑGN pT1q{K1pX̄1q “ X̂1. Then, in order to add a new tree τ with |τ | “ 2, they define

pδX̄τ
qst “ xXst, τy ´ xX̄

p1q
st , ψ1pτqy

and this defines the new function t ÞÑ xX̂t, τy. Then they define

X̂2
t “ expN

˜

ÿ

aPA

xat a `
ÿ

|τ |“2
xX̂t, τy τ

¸

P GN
pT2q

and again they note that this path is not γ-Hölder with values in GNpT2q, but it is with
values in GNpT2q{K2, where K2 :“ expNpW3 ` ¨ ¨ ¨ `WNq, and again the Lyons-Victoir
extension theorem yields a γ-Hölder path X̄2

t Ñ GNpT2q such that πGN pT2qÑGN pT2q{K2pX̄2q “

X̂2. Finally they construct recursively in this way X̂k and X̄k for all k ď N .

At this point we see the difference with our approach. We do not define X̂2
t nor X̂k

but rather we construct X̄ step by step, namely on all GkpTnq with 1 ď k, n ď N ,
first by recursion on k for fixed n and then by recursion on n; at each step we enforce
the Hölder continuity on GkpTnq and the compatibility with the previous levels. This
is done using the Lyons-Victoir technique, but in a very explicit and constructive way,
in particular without ever using the axiom of choice, since we have the explicit map
expk`1 ˝ logk : GkpTnq Ñ Gk`1pTnq which plays the role of the injection iG{K,G : G{K Ñ G
in [29, Proposition 6].

7. An action on branched rough paths

In this section we prove Theorem 1.2.

Given γ P s0, 1r, let N “ tγ´1u and denote by Cγ the set of collections of functions
pgτ qτPTN such that gτ P Cγ|τ | and gτ0 “ 0 for all τ P TN . It is easy to see that Cγ is a
group under pointwise addition in t, that is,

pg ` hqτ :“ gτ ` hτ .

As a consequence of Theorem 5.7, pg, X̄q ÞÑ gX̄ is an action of Cγ on the space of
anisotropic geometric rough paths.
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We use the Hairer-Kelly map ψ of Lemma 6.1 to induce an action of Cγ on branched
rough paths. Given a branched rough path X and g P Cγ we let gX be the branched
rough path defined by

xgXst, τy “ xgX̄st, ψpτqy,

where X̄ is the anisotropic geometric rough path given by Theorem 6.6. As a simple
consequence of Theorem 5.7 we obtain

Proposition 7.1. Let X P BRPγ.

(1) We have g1pgXq “ pg1 ` gqX for all g, g1 P Cγ.
(2) If pgτ qτPTN P Cγ is such that there exists a unique τ P TN with gτ ı 0, then

xpgXqst, τy “ xXst, τy ` g
τ
t ´ g

τ
s

and xgX, σy “ xX, σy for all σ P T not containing τ as a subtree.

Proof. The first claim follows from point (1) in Theorem 5.7. In order to prove the second
claim, let g “ pgτ qτPTN P Cγ be such that there exists a unique τ P TN with gτ ı 0. Then
by the property of g we have

xgX, τy “ xgX, ψpτqy

“ xgX, τ ` ψ|τ |´1pτqy

“ xX̄, τy ` δgτ ` xgX̄, ψ|τ |´1pτqy

where δgτst :“ gτt ´ gτs . By Proposition 6.5 the tree τ does not appear as a factor in
any of the tensor products appearing in ψ|τ |´1pτq, hence one can recursively show that
xgX̄, ψ|τ |´1pτqy “ xX̄, ψ|τ |´1pτqy so that the above expression becomes

xgX, τy “ xX̄, τ ` ψ|τ |´1pτqy ` δg
τ

“ xX, τy ` δgτ .

For the last assertion, it is enough to note that σ P T contains τ P T if and only if τ
appears in the expression for ψpτq; this can be expressed more precisely by saying that
σ R T cpTNztτuq. But if σ P T cpTNztτuq, then xgX, ψpτqy “ xX,ψpτqy. �

Proposition 7.2. The action of Cγ on branched γ-rough paths is transitive: for every
pair of branched γ-rough paths X and X 1 there exists g P Cγ such that gX “ X 1.

Proof. We define g P Cγ inductively by imposing the desired identity. For trees τ P T1 “

t 1, . . . , du we set gτt “ xX 1
0t, τy ´ xX0t, τy P C

γ so that

xgX, τy “ xgX̄, ψpτqy “ xgX̄, τy “ xX̄, τy ` δgτ “ xX 1, τy

where δgτst :“ gτt ´ g
τ
s . Suppose we have already defined gτ for all τ P Tn for some n ě 1,

satisfying the constraints in the definition of Cγ. For a tree τ with |τ | “ n` 1 we define

F τ
st “ xX

1
st, τy ´ xX̄st, τy ´ xgX̄st, ψnpτqy.
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Then

δF τ
sut “ xX

1
su bX

1
ut,∆1τy ´ xgX̄su b gX̄ut, ∆̄1ψnpτqy

“ xX 1
su bX

1
ut,∆1τy ´ xgX̄su b gX̄ut, ∆̄1ψpτqy

“ xX 1
su bX

1
ut,∆1τy ´ xgX̄su ˝ ψ b gX̄ut ˝ ψ, ∆̄1τy

“ xX 1
su bX

1
ut,∆1τy ´ xgXsu b gXut, ∆̄1τy “ 0

by the induction hypothesis. Hence there is gτ : r0, 1s Ñ R such that gτ0 “ 0 and

gτt ´ g
τ
s “ xX

1
st, τy ´ xX̄st, τy ´ xgX̄st, ψnpτqy (7.1)

whence g P Cγ|τ |; by construction

xgX, τy “ xgX̄, ψpτqy “ xgX̄, τy ` xgX̄, ψnpτqy

“ xX̄, τy ` δgτ ` xgX̄, ψnpτqy “ xX
1, τy,

where δgτst “ gτt ´ g
τ
s . This concludes the proof. �

Proposition 7.3. The action of Cγ on branched γ-rough paths is free, namely if gX “

g1X then g “ g1.

Proof. This follows from the fact that by (7.1) the function gτ is defined up to a constant
shift. Therefore, the condition gτ0 “ 0 determines gτ uniquely. �

Together, Proposition 7.1, Proposition 7.2 and Proposition 7.3 imply Theorem 1.2.

7.1. The BCFP renormalisation. In [3] a different kind of modification is proposed.
There, a new decoration 0 is considered so rough paths –branched and geometric– are over
paths taking values in Rd`1. Recall that since branched rough paths are seen as Hölder
paths taking values in the character group of the Butcher-Connes-Kreimer Hopf algebra,
we may think of them as an infinite forest series of the form

Xst “
ÿ

τPF

xXst, τyτ (7.2)

where we regard τ as a linear functional on H, such that xτ, σy “ 1 if σ “ τ and zero else.
The aforementioned modification procedure then acts as a translation of the series (7.2).
Specifically, for each collection v “ pv0, . . . , vdq P pB

˚qd`1 an operator Mv : H˚ Ñ H˚ is
defined, such that for a γ-branched rough path, pMvXqst – MvpXstq is a γ{N -branched
rough path.

In the particular case where vj “ 0 except for v0, the action of this operator can be
described in terms of an extraction/contraction map2 Ψ : HÑ HbH. This map acts
on a tree τ by extracting subforests and placing them in the left factor; the right factor

2In [3] this map is named δ but we choose to call it Ψ in order to avoid confusion with the operator
defined here.
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is obtained by contracting the extracted forest and decorating the resulting node with 0.
As an example, consider

Ψp
i
j kq “ 1b

i
j k ` i b 0

j k ` j b i
0 k ` k b i

j 0 `
i
j b 0

k ` i
k b 0

j

` i j b 0
0 k ` i k b 0

j 0 ` j k b i
0 0 `

i
j
k b 0

0 ` i
k j b 0

0 `
i
j k b 0.

Extending v “ v0 P B˚ to all of H˚ as an algebra morphism it is shown that
xpMvXqst, τy “ xXst, pv b idqΨpτqy. (7.3)

Furthermore, in this case MvX is a γ-branched rough path if coefficients corresponding
to trees with decoration zero are required to satisfy the stronger analytical condition

sup
0ďs,tď1

|xXst, τy|

|t´ s|p1´γq|τ |0`γ|τ |
ă 8, (7.4)

where |τ |0 counts the times the decoration 0 appears in τ . Essentially, this condition
imposes that the components corresponding to the zero decoration be Lipschitz on the
diagonal s “ t.

We now show how this setting can be recovered from the results of Section 7. Let X
be a γ-branched rough path on Rd`1 satisfying (7.4). Since MvX is again a γ-branched
rough path, by Proposition 7.2 there exists a collection of functions g P Cγ such that
gX “MvX. Moreover, this collection is the unique one satisfying

gτt ´ g
τ
s “ xXst, pv b idqΨpτqy ´ xXst, τy ´ xgX̄st, ψ|τ |´1pτqy (7.5)

for all τ P TpRd`1q where we have used (7.3) in order to express MvX in terms of Ψ.
Theorem 28 in [3] ensures that the first term on the right-hand side is in Cγ|τ |

2 hence g is
actually in Cγ|τ | as required.

The approach of [3] is based on pre-Lie morphisms and crucially on a cointeraction
property, which has been explored by [6], see in particular [3, Lemma 18]. The coint-
eraction property can be used for time-independent modifications, indeed note that the
functional v in [3] always constant.

Let us see why this is the case. The approach of [3] is based on a cointeraction prop-
erty studied by [5, 6, 18] between the Butcher-Connes-Kreimer coproduct and another
extraction-contraction coproduct δ : HÑ HbH. The formula is the following

pidb∆qδ “M1,3pδ b δq∆.
Let us consider now a character v P H˚. If we multiply both sides by pv b id b idq and
set M˚

v “ pv b idqδ : HÑ H as in [3, Proposition 17], then we obtain
∆M˚

v “ pM
˚
v bM

˚
v q∆,

namely M˚
v is a coalgebra morphism on H. Then one can define a modified rough path

as vX :“MvX “ X ˝M˚
v . The crucial Chen property is still satisfied since

pvXqst “ pv bXstqδ “ pv bXsu bXutqpidb∆qδ
“ pv bXsu bXutqM1,3pδ b δq∆
“ ppv bXsuq b pv bXutqqpδ b δq∆
“ ppvXqsu b pvXqutq∆
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However this does not work if v : r0, 1s2 Ñ H˚ is a time-dependent character. Indeed in
this case we set pvXqst :“ pvst b idqδ and we obtain

pvXqst “ pvst bXstqδ “ pvst bXsu bXutqpidb∆qδ
“ pvst bXsu bXutqM1,3pδ b δq∆
“ ppvst bXsuq b pvst bXutqqpδ b δq∆

but we can not conclude that this is equal to ppvXqsu b pvXqutq∆. Our construction, as
explained after formula (1.8), is not purely algebraic but is based on a (non-canonical)
choice of generalised Young integrals with respect to the rough path X. Moreover our
transformation group, infinite-dimensional, is much larger than that finite-dimensional
group studied in [3].

8. Perspectives

In this paper we have shown that the space of branched γ-rough paths has is a principal
homogeneous space with respect to the linear group Cγ. This is related to the analytical
properties of the operator δ defined in (1.2), which is invertible under the conditions of
Gubinelli’s Sewing Lemma, but not in general, and in particular not in the context of the
Chen relation on trees with low degree.

It would be now interesting to see how this action can be translated on the level of
controlled paths [21]. The space of paths controlled by a rough path X P BRPγ should
be interpreted as the tangent space to BRPγ at X, and the action on rough paths should
induce an action on controlled paths. In particular it should be possible to write an action
on solutions to rough differential equations.

The proof of Proposition 7.2, and in particular (7.1), gives a recursive way of computing
the unique g P Cγ translating a given branched γ-rough path into another. An interesting
feature of the BCFP scheme is that is given in terms of a coaction so explicit calculations
are somewhat easier in this more restricted case as one can compute gτ for each tree τ P TN
directly by extracting and contracting subforests of τ without doing any recursions (see
(7.5).) However, we do not have a computational rule for an important case: suppose
that X is branched rough path lift of a stochastic process with a.s. Cγ´ trajectories; it
would be nice to have a way of finding g P Cγ such that gX is centred with respect to the
underlying distribution of the process, provided this is possible. Even this last problem,
namely giving precise conditions under which this centring is possible is interesting in
itself. This should be related to the notion of Wick polynomials and deformations of
products as considered in [16].

More generally, in the physics literature there are various renormalisation procedures
which allow to obtain convergent iterated integrals from divergent ones by subtracting
suitable “counterterms”. In the context of rough paths, implementing one of the most
accepted such procedures due to Bogoliubov–Parasiuk–Hepp–Zimmermman (BPHZ) has
been carried out by J. Unterberger in [34, 35] by means of the Fourier normal ordering
algorithm and using a technique relating the trees in the Butcher–Connes–Kreimer Hopf
algebra to certain Feynman diagrams. In our context, this could provide a canonical
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choice for g P Cγ implementing the BPHZ renormalization procedure in a way analogous
to what is done in [5] for Regularity Structures.
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