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Abstract

We revisit Rahimi and Recht (2007)’s kernel random Fourier features (RFF) method through the
lens of the PAC-Bayesian theory. While the primary goal of RFF is to approximate a kernel, we look
at the Fourier transform as a prior distribution over trigonometric hypotheses. It naturally suggests
learning a posterior on these hypotheses. We derive generalization bounds that are optimized by
learning a pseudo-posterior obtained from a closed-form expression. Based on this study, we consider
two learning strategies: The first one finds a compact landmarks-based representation of the data
where each landmark is given by a distribution-tailored similarity measure, while the second one
provides a PAC-Bayesian justification to the kernel alignment method of Sinha and Duchi (2016).

1 Introduction

Kernel methods (Shawe-Taylor and Cristianini, 2004), such as support vector machines (Boser et al.,
1992; Vapnik, 1998), map data in a high dimension space in which a linear predictor can solve the learning
problem at hand. The mapping space is not directly computed and the linear predictor is represented
implicitly thanks to a kernel function. This is the powerful kernel trick: the kernel function computes
the scalar product between two data points in this high dimension space. However, kernel methods
notoriously suffer from two drawbacks. On the first hand, computing all the scalar products for all the
learning samples is costly: O(n3) for many kernel-based methods, where n is the number of training data
points. On the other hand, one has to select a kernel function adapted to the learning problem for the
algorithm to succeed.

The first of these drawbacks has motivated the development of approximation methods making kernel
methods more scalable, such as Nyström approximation (Williams and Seeger, 2001; Drineas and Mahoney,
2005) that constructs a low-rank approximation of the Gram matrix1 and is data dependent, or random
Fourier features (RFF) (Rahimi and Recht, 2007) that approximates the kernel with random features
based on the Fourier transform and is not data dependent (a comparison between the two approaches
have been conducted by Yang et al., 2012). In this paper, we revisit the latter technique.

We start from the observation that a predictor based on kernel Fourier features can be interpreted
as a weighted combination of those features according to a data independent distribution defined by
the Fourier transform. We introduce an original viewpoint, where this distribution is interpreted as a
prior distribution over a space of weak hypotheses—each hypothesis being a simple trigonometric function
obtained by the Fourier decomposition. This suggests that one can improve the approximation by adapting
this distribution in regards to data points: we aim at learning a posterior distribution. By this means,
our study proposes strategies to learn a representation to the data. While this representation is not as
flexible and powerful than the ones that can be learned by deep neural networks (Goodfellow et al., 2016),
we think that it is worthwhile to study this strategy to eventually solve the second drawback of kernel
methods that currently heavily rely on the kernel choice.

This in mind, while the majority of work related to random Fourier features focus on the study
and improvement of the kernel approximation, we propose here a reinterpretation in the light of the

1The Gram matrix is the n× n matrix constituted by all the values of k computed on the learning samples.
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PAC-Bayesian theory (McAllester, 1999; Catoni, 2007). We derive generalization bounds that can be
straightforwardly optimized by learning a pseudo-posterior thanks to a closed-form expression.

The rest of the paper is organized as follows. Section 2 recalls the RFF setting. Section 3 expresses the
Fourier transform as a prior leading (i) to a first PAC-Bayesian analysis and a landmarks-based algorithm
in Section 4, (ii) to another PAC-Bayesian analysis in Section 5 allowing to justify the kernel alignment
method of Sinha and Duchi (2016) and to propose a greedy kernel learning method. Then Section 6
provides experiments to show the usefulness of our work.

2 Random Fourier Features

Problem setting. Consider a classification problem where we want to learn a predictor f : Rd → Y ,
from a d-dimensional space to a discrete output space (e.g., Y = {0, 1, . . . , |Y |−1}). The learning algorithm
is given a training set S = {(xi, yi)}ni=1 ∼ Dn of n i.i.d. samples, where D denotes the data generating
distribution over Rd × Y . We consider a positive-semidefinite (PSD) kernel k : Rd ×Rd → [−1, 1]. Kernel
machines learn predictors of the form

f(x) =

n∑
i=1

αik(xi,x) , (1)

by optimizing the values of vector α ∈ Rn.

Fourier Features. When n is large, running a kernel machine algorithm (like SVM or kernel ridge
regression) is expensive in memory and running time. To circumvent this problem, Rahimi and Recht
(2007) introduced the random Fourier features as a way to approximate the value of a shift-invariant
kernel, i.e., relying on the value of δ = x− x′ ∈ Rd, that we write

k(δ) = k(x− x′) = k(x,x′)

interchangeably. Let the distribution p(ω) be the Fourier transform of the shift-invariant kernel k,

p(ω) =
1

(2π)d

∫
Rd
k(δ) e−iω·δd δ . (2)

Now, by writing k as the inverse of the Fourier transform p, and using trigonometric identities, we obtain:

k(x− x′) =

∫
Rd
p(ω)eiω·(x−x

′)dω = E
ω∼p

eiω·(x−x
′)

= E
ω∼p

[
cos
(
ω · (x−x′)

)
+i sin

(
ω · (x−x′)

)]
= E

ω∼p
cos
(
ω · (x− x′)

)
. (3)

Rahimi and Recht (2007) suggest expressing the above cos
(
ω · (x−x′)

)
as a product of two features. One

way to achieve this is to map every input example into

zω(x) =
(

cos(ω · x), sin(ω · x)
)
. (4)

The random variable zω(x) · zω(x′), with ω drawn from p, is an unbiased estimate of k(x− x′). Indeed,
we recover from Equation (3) and Equation (4):

E
ω∼p

zω(x) · zω(x′) = E
ω∼p

[
cos(ω · x) cos(ω · x′) + sin(ω · x) sin(ω · x′)

]
= E

ω∼p
cos
(
ω · (x− x′)

)
.

To reduce the variance in the estimation of k(x−x′), the idea is to sample D points i.i.d. from
p : ω1,ω2, . . . ,ωD. Then, each training sample xi ∈ Rd is mapped to a new feature vector in R2D :

φ(xi) =
1√
D

(
cos(ω1 · xi) , . . . , cos(ωD · xi) , sin(ω1 · xi) , . . . , sin(ωD · xi)

)
. (5)
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Thus, when D is “large enough”, we have

k(x− x′) ≈ φ(x) · φ(x′) .

This provides a decomposition of the PSD kernel k that differs from the classical one (as discussed in Bach,
2017). By learning a linear predictor on the transformed training set S 7→ {(φ(xi), yi)}ni=1 through an
algorithm like a linear SVM, we recover a predictor equivalent to the one learned by a kernelized algorithm.
That is, we learn a weight vector w = (w1, . . . , w2D) ∈ R2D and we predict the label of a sample x ∈ Rd
by computing

f(x) =

2D∑
j=1

wj φj(x) , (6)

in place of Equation (1).

3 The Fourier Transform as a Prior Distribution

As described in the previous section, the random Fourier features trick has been introduced to reduce
the running time of kernel learning algorithms. Consequently, most of the subsequent work study and/or
improve the properties of the kernel approximation (e.g., Yu et al., 2016; Rudi and Rosasco, 2017; Bach,
2017; Choromanski et al., 2018) with some notable exceptions, as the kernel learning algorithm of Sinha
and Duchi (2016) that we discuss and relate to our approach in Section 5.3.

We aim at reinterpreting the Fourier transform—i.e., the distribution p of Equation (2)—as a prior
distribution over the features space. It can be seen as an alternative representation of the prior knowledge
that is encoded in the choice of a specific kernel function, that we denote kp for now on. In accordance
with Equation (3), each feature obtained from a vector ω ∈ Rd can be seen as an hypothesis

hω(δ) := cos(ω · δ) .

From this point of view, the kernel is interpreted as a predictor performing a p-weighed aggregation of weak
hypotheses. This alternative interpretation of distribution p as a prior over weak hypotheses naturally
suggests to learn a posterior distribution over the same hypotheses. That is, we seek a distribution q
giving rise to a new kernel

kq(δ) := E
ω∼q

hω(δ) .

In order to assess the quality of the kernel kq, we define a loss function based on the consideration that
its output should be high when two samples share the same label, and low otherwise. Hence, we evaluate
the kernel on two samples (x, y) ∼ D and (x′, y′) ∼ D through the linear loss

`
(
kq(δ), λ

)
:=

1− λ kq(δ)

2
, (7)

where δ = x−x′ denotes a pairwise distance and λ denotes the pairwise similarity measure:

λ = λ(y, y′) :=

{
1 if y = y′,
−1 otherwise.

Furthermore, we define the kernel alignment generalization loss L∆(kq) on a “pairwise” probability dis-
tribution ∆, defined over Rd×[−1, 1] as

L∆(kq) := E
(δ,λ)∼∆

`
(
kq(δ), λ

)
. (8)

Note that any data generating distribution D over input-output spaces Rd × Y automatically gives rise
to a “pairwise” distribution ∆D. By a slight abuse of notation, we write LD(kq) the corresponding
generalization loss, and the associated kernel alignment empirical loss is defined as

L̂S(kq) :=
1

n(n− 1)

n∑
i,j=1
i 6=j

`
(
kq(δij), λij

)
, (9)

where for a pair of examples {(xi, yi), (xj , yj)} ∈ S2 we have δij := (xi − xj) and λij := λ(yi, yj).

Technical Report V 1 3
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Starting from this reinterpretation of the Fourier transform, we provide in the rest of the paper two
PAC-Bayesian analyses. The first one (Section 4) is obtained by combining n PAC-Bayesian bounds:
instead of considering all the possible pairs of data points, we fix one point and we study the generalization
ability for all the pairs involving it. The second analysis (Section 5) is based on the fact that the loss can
be expressed as a second-order U-statistics.

4 PAC-Bayesian Analysis and Landmarks

Due to the linearity of the loss function `, we can rewrite the loss of kq as the q-average loss of every
hypothesis. Indeed, Equation (8) becomes

LD(kq) = E
(δ,λ)∼∆D

`
(

E
ω∼q

hω(δ), λ
)

= E
ω∼q

E
(δ,λ)∼∆D

`(hω(δ), λ)

= E
ω∼q

LD(hω) .

The above q-expectation of losses LD(hω) turns out to be the quantity bounded by most PAC-Bayesian
generalization theorems2, excepted that such results usually apply to the loss over samples instead of
distances. Hence, we use PAC-Bayesian bounds to obtain generalization guarantees on LD(kq) from its
empirical estimate of Equation (9), that we can rewrite as

L̂S(kq) =
1

n(n− 1)

n∑
i,j=1
i 6=j

`
(

E
ω∼q

hω(δ), λij

)
= E

ω∼q
L̂S(hω) .

However the classical PAC-Bayesian theorems cannot be applied directly bound LD(kq), as the empirical

loss L̂S(kq) would require to be computed from i.i.d. observations of ∆D. Instead, the empirical loss
involves dependent samples, as it is computed from n2−n pairs formed by n elements from D.

4.1 First Order Kullback-Leibler Bound

A straightforward approach to apply classical PAC-Bayesian results is to bound separately the loss asso-
ciated with each training sample. That is, for each (xi, yi) ∈ S, we define

LiD(hω) := E
(x,y)∼D

`
(
hω(xi − x), λ(yi, y)

)
,

and L̂iS(hω) :=
1

n−1

n∑
j=1,j 6=i

`
(
hω(xi − xj), λ(yi, yj)

)
.

Thus, the next theorem gives a generalization guarantee on LiD(kq) relying namely on the empirical

estimate L̂iS(kq) and the Kullback-Leibler divergence KL(q‖p) = Eω∼q ln q(ω)
p(ω) between the prior p and

the learned posterior q. Note that the statement of Theorem 1 appeared in Alquier et al. (2016), but can
be recovered easily from Lever et al. (2013).

Theorem 1. For t > 0, i ∈ {1, . . . , n}, and a prior distribution p over Rd, with probability 1−ε over the
choice of S ∼ Dn, we have for all q on Rd :

LiD(kq) ≤ L̂iS(kq) +
1

t

(
KL(q‖p) +

t2

2(n−1)
+ ln

1

ε

)
.

Proof. From Alquier et al. (2016), combine Theorem 4.1 and Lemma 1.

Because LD(kq) = 1
n

∑n
i=1 Eω∼q LiD(hω), we obtain the following corollary by the union bound, ap-

plying n times Theorem 1 with ε := ε
n .

2This quantity is sometimes referred as the Gibbs risk in the PAC-Bayesian literature.
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Corollary 2. For t > 0 and a prior distribution p over Rd, with probability 1−ε over the choice of S ∼ Dn,
we have for all q on Rd :

LD(kq) ≤ L̂S(kq) +
1

t

(
KL(q‖p) +

t2

2(n−1)
+ ln

n

ε

)
.

Pseudo-Posterior for KL-bounds. Since the above theorem is valid for any distribution q, one can
compute the bound for any learned posterior distribution. Note that the bound promotes the minimization
of a trade-off—parametrized by a constant t—between the empirical loss L̂S(kq) and the KL-divergence
between the prior p and the posterior q:

L̂S(kq) +
1

t
KL(q‖p) .

It is well-known that for fixed t, p and S the minimum bound value is obtained with the pseudo-Bayesian
posterior q∗, such that for ω ∈ Rd,

q∗(ω) =
1

Z
p(ω) exp

(
−t L̂S(hω)

)
, (10)

where Z is a normalization constant.3 Note also Corollary 2’s bound converges to the generalization loss
LD(kq) at rate O( lnn√

n
) for the parameter choice t =

√
n.

Due to the continuity of the feature space, the pseudo-posterior of Equation (10) is hard to compute.
To estimate it, one may use of Monte-Carlo (e.g., Dalalyan and Tsybakov, 2012) or variational Bayes
methods (e.g., Alquier et al., 2016). In this work, we explore a simpler method: we work solely from a
discrete probability space.

4.2 Landmarks-Based Learning

We now propose to leverage on the fact that Theorem 1 bounds the kernel function for the distances to
a single data point, instead of learning a kernel globally for every data points as in Corollary 2. We thus
aim at learning a collection of kernels (which we can also interpret as similarity functions) for a subset of
the training points. We call landmarks these training points. The aim of this approach is to learn a new
representation of the input space, that maps the data-points into compact feature vectors, from which we
can learn simple predictor.

Concretely, along with the learning sample S of n examples i.i.d. from D, we consider a landmarks
sample L = {(xl, yl)}nLl=1 of nL points i.i.d. from D, and a prior Fourier transform distribution p. For
each landmark (xl, yl) ∈ L, let sample D points from p, denoted ΩL = {ωlm}Dm=1 ∼ pD. Then, consider a
uniform distribution P on the discrete hypothesis set ΩL, such that P (ωlm) = 1

D and hlm(δ) := cos(ωlm ·δ).

We aim at learning a set of kernels {k̂Ql}nLl=1, where each k̂Ql is obtained from a distinct xl ∈ L with a
fixed parameter β > 0, by computing the pseudo-posterior distribution Ql given by

Qlm =
1

Zl
exp

(
− β
√
n L̂lS(hlm)

)
, (11)

for m=1, . . . , D ; Zl being the normalization constant. Note that Equation (11) gives the minimum of
Theorem 1 with t = β

√
n. That is, β = 1 corresponds to the regime where the bound converges.

Moreover, similarly to Corollary 2, generalization guarantees are obtained simultaneously for the nL
computed distributions thanks to the union bound and Theorem 1. Thus, with probability 1−ε, for all
{Ql}nLl=1:

LlD(k̂Ql) ≤ LS(k̂Ql) +
1

t

(
KL(Ql‖P ) +

t2

2(n−1)
+ ln

nl
ε

)
,

where KL(Ql‖P ) = lnD +

D∑
j=1

Qlj lnQlj .

3This trade-off is the same one involved in some other PAC-Bayesian bounds for i.i.d. data (e.g., Catoni, 2007). As
discussed in Zhang (2006); Grünwald (2012); Germain et al. (2016), there is a similarity between the minimization of such
PAC-Bayes bounds and the Bayes update rule.

Technical Report V 1 5



Letarte, Morvant, Germain Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior

Once all pseudo-posterior are computed thanks to Equation (11), our landmarks-based approach is to
map samples x ∈ Rd to nL similarity features:

ψ(x) :=
(
k̂Q1(x1−x), . . . , k̂QnL (xnL−x)

)
, (12)

and to learn a linear predictor on the transformed training set. Note that, this mapping is not a kernel
map anymore and is somehow similar to the mapping proposed by Balcan et al. (2008b,a); Zantedeschi
et al. (2018) for a similarity function that is more general than a kernel but fixed for each landmark.

5 Learning Kernel (Revisited)

In this section, we present PAC-Bayesian theorems that allows to bound directly the kernel alignment
generalization loss LD(kq) on a “pairwise” probability distribution ∆D—as defined by Equation (8)—

even if the empirical loss L̂D(kq) is computed on dependent samples. These bounds suggest a kernel
alignment (or kernel learning) strategy similar to the one proposed by Sinha and Duchi (2016).

5.1 Second Order Kullback-Leibler Bound

The following result is based on the fact that L̂S(hω) := 1
n(n−1)

∑n
i6=j `(hω(δij), λij) is an unbiased

second-order estimator of E(δ,λ)∼∆D `(hω(δ), λ), allowing us to build on the PAC-Bayesian analysis for
U-statistics of Lever et al. (2013). Indeed, the next theorem gives a generalization guarantee on LD(kq).

Theorem 3 (Lever et al. 2013). For t > 0 and a prior distribution p over Rd, with probability 1−ε over
the choice of S ∼ Dn, we have for all q on Rd :

LD(kq) ≤ L̂S(kq) +
1

t

(
KL(q‖p) +

t2

2n
+ ln

1

ε

)
.

Proof. See Theorem 7 of Lever et al. (2013), using the fact that the loss function ` lies in [0, 1].

The above Theorem 3 is similar to Corollary 2. Indeed, both are minimized by the same pseudo-
posterior q∗ (Equation 10). The main difference is that we get rid of the lnn constant in Theorem 3,
making the bound to converge at rate O( 1√

n
) when t =

√
n.

5.2 Second Order Bounds for f-Divergences

In the following, we build om a recent result of Alquier and Guedj (2018) to express a new family of
PAC-Bayesian bounds for our dependent samples, where the KL term is replaced by other f -divergences.

Given a convex function f such that f(1) = 0, the corresponding f -divergence is given by

Df (q‖p) := E
ω∼p

f

(
q(ω)

p(ω)

)
.

The following theorem applies to f -divergences such that f(x) = xµ − 1.

Theorem 4. For µ > 1 and a prior distribution p over Rd, with probability 1−ε over the choice of S ∼ Dn,
we have for all q on Rd :

LD(kq) ≤ L̂S(kq) +



(
1

2
√
n

)µ−1 (
Dµ(q‖p) + 1

) 1
µ

(
1

ε

)1− 1
µ

if 1 < µ ≤ 2,

(
1

4n

)1− 1
µ (

Dµ(q‖p) + 1
) 1
µ

(
1

ε

)1− 1
µ

if µ > 2,

where Dµ(q‖p) := E
ω∼p

(
q(ω)

p(ω)

)µ
− 1 .
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Proof. Let Mµ := E
ω∼p

E
S′∼Dn

∣∣∣LD(hω)− L̂S′(hω)
∣∣∣µ.

We start from Alquier and Guedj (2018, Theorem 1):

LD(kq) ≤ L̂S(kq) +

(
Mµ

ε

)1− 1
µ (

Dµ(q‖p) + 1
) 1
µ

. (13)

Let us show Mµ ≤
(

1
2
√
n

)µ
for 1 < µ ≤ 2 :

Mµ = E
ω∼p

E
S′∼Dn

[(
LD(hω)− L̂S′(hω)

)2
]µ

2

≤ E
ω∼p

[
E

S′∼Dn

(
LD(hω)− L̂S′(hω)

)2
]µ

2

(14)

= E
ω∼p

[
Var
S′∼Dn

(LS′(hω))
]µ

2

≤ E
ω∼p

[
1

4n

]µ
2

(15)

=

[
1

4n

]µ
2

. (16)

Line (14) is obtained by Jensen inequality (since 0 < µ
2 ≤ 1), and the inequality of Line (16) is proven by

Lemma 6 of the supplementary material. Note that the latter is based on the Efron-Stein inequality and
Boucheron et al. (2013, Corollary 3.2).

The first case of Theorem 4 statement (1 < µ ≤ 2) is obtained by inserting Line (16) in Equation (13).

The second case (µ > 2) is obtained by upper-boundingMµ byM2 = 1
4n , as |LD(hω)−L̂S′(hω)| ≤ 1 .

As a particular case, with µ = 2, we obtain from Theorem 4 a bound that relies on the chi-square
divergence:

Corollary 5. Given a prior distribution p over Rd, with probability 1−ε over the choice of S ∼ Dn, we
have for all q on Rd :

LD(kq) ≤ L̂S(kq) +

√
χ2(q‖p) + 1

4n ε
,

where χ2(q‖p) = Eω∼p

(
q(ω)
p(ω)

)2

− 1 .

It is noteworthy that above result looks alike other PAC-Bayesian bounds based on the chi-square
divergence in the i.i.d. setting, as the one of Honorio and Jaakkola (2014, Lemma 7), Bégin et al. (2016,
Corollary 10) or Alquier and Guedj (2018, Propostion 4).

5.3 PAC-Bayesian Interpretation of Kernel Alignment Optimization

Sinha and Duchi (2016) propose a kernel learning algorithm that weights random kernel features. To do
so, their algorithm solves a kernel alignment problem. As explained below, this method is coherent with
the PAC-Bayesian theory exposed by our current work.

Kernel alignment algorithm. Let us consider a Fourier transform distribution p, from which N points
are sampled, denoted Ω = {ωm}Nm=1 ∼ pN . Then, consider a uniform distribution P on the discrete
hypothesis set Ω, such that P (ωm) = 1

N and hm(δ) := cos(ωm · δ). Given a dataset S, and constant
parameters µ > 1, ρ > 0, the optimization algorithm proposed by Sinha and Duchi solves the following
problem.

maximize
Q∈RN+

n∑
i=1

n∑
j=1

λij

N∑
m=1

Qmhm(δij) , (17)

such that

N∑
m=1

Qm = 1 and Dµ(Q‖P ) ≤ ρ . (18)
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The iterative procedure proposed by Sinha and Duchi finds an ε-suboptimal solution to the above problem
in O(N log( 1

ε )) steps. The solution provides a learned kernel

k̂Q(δ) :=
1

N

N∑
m=1

Qmhm(δ) .

Sinha and Duchi propose to use the above alignment method to reduce the number of features needed
compared to the classical RFF procedure (as describe in Section 2). Albeit this method is a kernel learning
one, empirical experiments show that with a large number of random features, the classical RFF procedure
achieves as good prediction accuracy. However, one can draw (with replacement) D < N features from Ω
according to Q. For a relatively small D, learning a linear predictor on the random feature vector (such as
the one presented by Equation (5)) obtained from Q achieves better result than the classical RFF method
on the same number D of random features.

PAC-Bayesian interpretation. The optimization problem of Equations (17–18) deals with the same
trade-off as the one promoted by Theorem 4. Indeed, maximizing Equation (17) amounts to minimizing
the constraint of Equation (18) controls the f -divergence Dµ(Q‖P ), which is the same complexity measure
involved in Theorem 4. Furthermore, the empirical experiments performed by Sinha and Duchi (2016)
focus on the χ2-divergence (the case µ=2), which corresponds to tackling the trade-off expressed by
Corollary 5.

5.4 Greedy Kernel Learning

The method proposed by Sinha and Duchi (2016) can easily be adapted to minimize the bound of Theo-
rem 3 instead of the bound of Theorem 4. We describe this kernel learning procedure below.

Given a Fourier transform prior distribution p, let sample N points Ω = {ωm}Nm=1 ∼ pN . Let
P (ωm) = 1

N and hm(δ) := cos(ωm · δ). Given a dataset S, and constant parameters β > 0, compute the
pseudo-posterior

Qm =
1

Z
exp

(
− β
√
n L̂S(hm)

)
, (19)

for m = 1, . . . , N .
Then, we sample with replacement D < N features from Ω according to the pseudo-posterior Q. The

sampled features are used to map every x ∈ Rd of the training set into a new vector φ(x) ∈ R2D according
to Equation (5). The latter transformed dataset is then given as input to a linear learning procedure.

In summary, this learning method is strongly inspired by the one described in Section 5.3, but the
posterior computation phase is faster, as we benefit from a closed-form expression (Equation 19 versus

Equations (17–18)). Once L̂S(hm) is computed for all hm, we can vary the parameter β and get a new
posterior in O(N) steps.

6 Experiments

All experiments use a Gaussian (a.k.a. RBF) kernel of variance σ2:

kσ(x,x′) = exp

(
− 1

2σ2
‖x− x′‖2

)
,

for which the Fourier transform is given by

pσ(ω) =

(
σ2

2π

) d
2

exp

(
−1

2
σ2‖ω‖2

)
= N (ω;0, 1

σ2 I) . (20)

Apart from the toy experiment of Figure 1, the experiments on real data are conducted by splitting the
available data into a training set, a validation set and a test set. The kernel parameter σ is chosen among
{10−7, 10−6, . . . , 102} by running an RBF SVM on the training set and keeping the parameter having
the best accuracy score on the validation set. That is, this σ defines the prior distribution given by
Equation (20) for all our pseudo-Bayesian methods. Unless otherwise specified, all the other parameters
are selected using the validation set. More details about the experimental procedure are given in the
supplementary material.
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Figure 1: First row shows selected RBF-Landmarks kernel outputs, while second row shows the corre-
sponding learned similarity measures on random Fourier features (PB-Landmarks). The rightmost column
displays the classification learned by a linear SVM over the mapped dataset.
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Figure 2: Behavior of the Landmarks-based approach according to the percentage of training points
selected as landmarks on the dataset “ads”.

6.1 Landmarks-Based Learning

We present a study of the learning methodology detailed in Section 4.2.

Toy experiment. To get some insight from the landmarks-based procedure, we generate a 2D dataset
Stoy, illustrated by Figure 1. We randomly select five training points L={x1,x2,x3,x4,x5} ⊂ Stoy, and
compare two procedures, described below.

• RBF-Landmarks: Learn a linear SVM on the empirical kernel map given by the five RBF kernels
centered on L. That is, each x ∈ Stoy is mapped such that

x 7→
(
kσ(x1,x), kσ(x2,x), kσ(x3,x), kσ(x4,x), kσ(x5,x)

)
.

• PB-Landmarks: Generate 20 random samples according to the Fourier transform of Equation (20).
For every landmark of L, learn a similarity measure thanks to Equation (11) (with β = 1), minimizing
the PAC-Bayesian bound. We thus obtain five posterior distributions Q1, Q2, Q3, Q4, Q5, and learn
a linear SVM on the mapped training set obtained by Equation (12).
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Table 1: Test error of the landmarks-based approach.

Dataset
Landmarks based

SVM RBF PB PBβ=1 PBD=64

ads 3.05 10.98 4.88 5.12 5.00
adult 19.70 19.60 17.99 17.99 17.99
breast 4.90 6.99 3.50 3.50 2.80
farm 11.58 17.47 15.73 14.19 15.73
mnist17 0.34 0.74 0.42 0.32 0.32
mnist49 1.16 2.26 1.80 2.09 2.50
mnist56 0.55 0.97 1.06 1.55 1.03
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Figure 3: Train and test error of the kernel learning approaches according to the number of random
features D.

Hence, the RBF-Landmarks method corresponds to the prior, from which we learn a posterior by
landmarks by the PB-Landmarks procedure. Right-most plots of Figure 1 shows that the PB-Landmarks
setting successfully finds a representation from which the linear SVM can predict well.

Experiments on real data. We conduct similar experiments as the above explained one on seven real
binary classification datasets.

Figure 2 studies the behavior of the approaches according to the number of selected landmarks. We
select a percentage of the training points as landmarks (from 1% to 25%), and we compare the classifi-
cation error of a linear SVM on the mapping obtained by the original RBF functions (as in the RBF-
Landmarks method above), with the mapping obtained by learning the landmarks posterior distributions
(PB-Landmark method). We also compare the case where the landmarks are selected at random among
the training data (curves postfixed “-R”), to another scenario where we use the centroids obtained with
a k-Means clustering algorithm as landmarks (curves postfixed “-C”). Note that, the latter case is not
rigorously backed by our PAC-Bayesian theorems, since the choice of landmarks is now dependent of the
whole observed training set. The results show that the classification error of both cases are similar, but the
clustering strategy leads to a more stable behavior, probably since the landmarks are more representative
of the original space. Moreover, the pseudo-Bayesian method improves the results on almost all datasets.

Table 1 compares the error rate of a SVM (trained along with the full Gram matrix and a properly
selected σ on the validation set) with four landmarks-based approaches: (RBF) the landmarks are RBF
kernel of parameter σ; (PB) the PB-Landmarks approach where the number of features per landmarks D
and the β parameter are selected using the validation set; (PBβ=1) the PB-Landmarks approach where
β=1 is fixed and D is selected by validation; and (PBD=64) the PB-Landmarks approach where D=64
is fixed and β is selected by validation. For all landmarks-based approaches, we select the landmarks by
clustering, and use 10% of the training set size as the number of landmarks; we want to study the methods
in the regime where it provides relatively compact representations. The result shows that learning the
posterior improves the RBF-Landmarks (except on “mnist56”) and that the validation of both β and D
parameters are not mandatory to obtain satisfactory results. The SVM RBF is generally the best (except
on “breast” and “mnist17”), but requires a far less compact representation of the data as it uses the full
Gram matrix.
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6.2 Greedy Kernel Learning

Figure 3 presents a study of the kernel learning method detailed in Section 5.4, inspired from the one
of Sinha and Duchi (2016). We first generate N=20000 random features according to pσ as given by
Equation (4), and we learn a posterior using two strategies: (OKRFF) the original optimized kernel
of Sinha and Duchi given by Equations (17-18), where ρ is selected on the validation set; and (PBRFF)
the pseudo-posterior given by Equation (19) where β is selected on the validation set. For both obtained
posteriors, we subsample an increasing number of features D ∈ [1, 5000] to create the mapping given by
Equation (5), on which we learn a linear SVM. We also compare to (RFF) the standard random Fourier
features as described in Section 2, with D randomly selected features according the prior pσ.

We see that our PBRFF approach behaves similarly as OKRFF, with a slight advantage for the latter.
However, we recall that computing the posterior of former method is faster. Both kernel learning methods
have better accuracy than the classical RFF algorithm for a small number of random features, and similar
ones for a large number of random features.

7 Conclusion and Perspectives

We elaborated an original viewpoint of the random Fourier features, proposed by Rahimi and Recht (2007)
to approximate a kernel. By looking at the Fourier transform as a prior distribution over trigonometric
functions, we present two kinds of generalization theorems for random Fourier features, that bound a
loss function attesting the quality of the kernel alignment. Based on classical first-order PAC-Bayesian
results, we derived a landmarks-based strategy that learns a compact representation of the data. Then,
we proposed two second-order generalization bounds. The first one is based on the U-statistic theorem
of Lever et al. (2013). The second one is a new PAC-Bayesian theorem for f -divergences (replacing
the usual KL-divergence term). We show that the latter bound provides a theoretical justification to the
kernel alignment method of Sinha and Duchi (2016), and we also empirically evaluate a similar but simpler
algorithm where the alignment distribution is obtained by the PAC-Bayesian pseudo-posterior closed-form
expression.

We believe that considering the Fourier transform of a kernel as a (pseudo-)Bayesian prior can lead
to other contributions that the ones explored here. Among them, it might open new perspectives on
representation and metric learning. Another interesting perspective would be to extend our study to
wavelet transforms (Mallat, 2008).
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A Supplementary Material

A.1 Mathematical Results

Lemma 6. For any data-generating distribution D:

Var
S′∼Dn

(LS′(hω)) ≤ 1

4n
.

Proof. Given S′ = {(xi, yi)}ni=1 ∼ Dn, we denote

Fω
(
S′) := Fω

(
(x1, y1), . . . , (xn, yn)

)
:= LS′(hω)

=
1

n(n− 1)

n∑
i 6=j

`
(
hω(xi−xj), λ(yi, yj)

)
.

The function Fω above has the bounded differences property. That is, for each i ∈ {1, . . . , n} :

sup
S′,

(x∗,y∗)∈Rd×Y

∣∣∣Fω((x1, y1), . . . , (xn, yn)
)
−Fω

(
(x1, y1), . . . , (xi−1, yi−1), (x∗, y∗), (xi+1, yi+1), . . . , (xn, yn)

)∣∣∣≤ 1

n
,

Thus, we apply the Efron-Stein inequality (following Boucheron et al., 2013, Corollary 3.2) to obtain

Var
S′∼Dn

(Fω(S′)) ≤ 1

4

n∑
i=1

(
1

n

)2

=
1

4n
.

A.2 Experiments

In Section 6 we use the following datasets:

ads http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
The first 4 features which have missing values are removed.

adult https://archive.ics.uci.edu/ml/datasets/Adult

breast https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

farm https://archive.ics.uci.edu/ml/datasets/Farm+Ads

mnist http://yann.lecun.com/exdb/mnist/
As Sinha and Duchi (2016), binary classification tasks are compiled with the following digits pairs:
1 vs. 7, 4 vs. 9, and 5 vs. 6.

We split the datasets into a training and testing set with a 75/25 ratio except for adult which has a
training/test split already computed. We then use 20% of the training set for validation. Table 2 presents
an overview. We use the following parameters values range for selection on the validation set:

• C ∈ {10−5, 10−4, . . . , 104}

• σ ∈ {10−7, 10−6, . . . , 102}

• ρ ∈ {10−4, 10−3, . . . 100}

• β ∈ {10−3, 10−2, . . . , 103}

• D ∈ {8, 16, 32, 64, 128}
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Table 2: Datasets overview.

Dataset ntrain nvalid ntest d

ads 1967 492 820 1554
adult 26048 6513 16281 108
breast 340 86 143 30
farm 2485 622 1036 54877
mnist17 9101 2276 3793 784
mnist49 8268 2068 3446 784
mnist56 7912 1979 3298 784
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Figure 4: First row shows selected RBF-Landmarks kernel outputs, while second row shows the corre-
sponding learned similarity measures on random Fourier features (PB-Landmarks). The rightmost column
displays the classification learned by a linear SVM over the mapped dataset.
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Figure 5: Train and test error of the kernel learning approaches according to the number of random
features D on the remaining 4 datasets.
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Figure 6: Behavior of the landmarks-based approach according to the percentage of training points selected
as landmarks on the remaining 6 datasets
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