
HAL Id: hal-01908398
https://hal.science/hal-01908398v1

Submitted on 30 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending a Multi-Agent Systems Simulation
Architecture for Systems-of-Systems Security Analysis

Jamal El Hachem, Vanea Chiprianov, Valdemar Vicente Garcia Neto,
Philippe Aniorte

To cite this version:
Jamal El Hachem, Vanea Chiprianov, Valdemar Vicente Garcia Neto, Philippe Aniorte. Extending
a Multi-Agent Systems Simulation Architecture for Systems-of-Systems Security Analysis. System of
Systems Engineering Conference, 2018, Paris, France. �hal-01908398�

https://hal.science/hal-01908398v1
https://hal.archives-ouvertes.fr


Extending a Multi-Agent Systems Simulation
Architecture for Systems-of-Systems Security

Analysis
Jamal EL HACHEM∗, Vanea CHIPRIANOV∗, Valdemar Vicente GRACIANO NETO†, Philippe ANIORTE∗

∗UNIV PAU & PAYS ADOUR, LIUPPA, PAU, FRANCE
{jamal.elhachem, vanea.chiprianov, philippe.aniorte}@univ-pau.fr
†University of São Paulo, São Carlos, Brazil, valdemarneto@usp.br

Abstract—Security is an important concern for software-
intensive Systems-of-Systems (SoS). Architectural analysis for
SoS secturity assessment should be performed at early stages
of development. Such activity could prevent vulnerabilities and
avoid potential cascading attack emergent behaviors, i.e., a
succession of security vulnerabilities that emerge from individual
constituents security fragilities, potentially causing interruption
and collapse of SoS operation.

Model simulation can prevent these issues by predicting,
at design-time, how SoS will behave regarding its reaction to
potential attacks. As security is a quality attribute, i.e., a property
that comes up from the relation between software parts, software
architecture analysis and simulation are an additional support for
the prediction of SoS security. However, despite recent advances
in such area, few simulation approaches have tackled simulation
of secure SoS architectures where the basis of the described
models are the SoS behavior or the interactions among the SoS
Constituent Systems (CS).

The main contribution of this paper is offering a big picture
of how recent advances on SoS security analysis via simulations
can form a robust framework for SoS security prediction. We
argue the pertinence of Multi-Agent Systems (MAS) for SoS
simulation due to similarities between MAS and SoS concepts,
and we report how MAS simulation enables the visualization of
emergent behaviors and how they impact the SoS security. Our
results to foster SoS security analysis include (i) an extension of a
MAS conceptual model and platform to include security concepts,
(ii) a Model-Driven Engineering (MDE) approach that adopts
automatic mappings between secure SoS architecture modeled
using an existing SysML-based modeling language, namely the
SoSSecML, and (iii) a MAS platform to support such analysis.

I. INTRODUCTION

The Systems-of-Systems (SoS) concept has been used since
1950s to describe the Systems that are primarily composed of
distributed, concurrent and independent systems that interact
to accomplish a common goal. Maier differentiates SoS by
their essential characteristics [1] referred to by the acronym
"OMGEE": Operational and Managerial independence of the
CSs, Geographic distribution, Evolutionary development and
Emergent behavior. Several other properties could characterize
SoS such as: global mission, autonomy, connectivity, het-
erogeneity and diversity [2]. SoS complexity arises mainly
from the fact that it is difficult to analyze their behavior
and predict their properties even if the properties of their
CS are given [3]. These specific characteristics introduce

considerable challenges into SoS engineering such as simu-
lating and analyzing the SoS architecture to identify emergent
behaviors [4][5].

Besides the analysis challenges rising from SoS complexity
and specific characteristics, an additional challenge is the
consideration and analysis of some important SoS quality at-
tributes such as security, safety, adaptability and performance.
In this work, we focus on SoS security. Indeed, as argued
in [6][7], SoS suffers from traditional security concerns related
to their complex CS, as well as additional emergent security
problems arising from their specific characteristics.

Over the last years, there has been a growing awareness
of SoS being exposed to severe security attacks resulting
in dangerous impact on SoS services and functionalities,
nation’s economical plans, and more importantly the citizen’s
safety. Some examples of recent massive attacks targeting
SoS application domains with widely-encompassing effects
are the following: The Dyn Cyberattack1 in 2016 targeting
the Internet-of-Things SoS application domain; the Stuxnet
attack2 in 2010 and its successor Irongate in 2016 and the
Google building attack3 in 2013. What is common to these
massive attacks is that they are usually established by single
vulnerabilities initially judged as insignificant or low-impact
for the systems (CS) on which they were identified, but the
cascade/sequence of several triggered vulnerabilities induced
by the use of the systems (CSs) in common/together (SoS
interactions) intensify the attack and magnify its effect.

Many of the CSs may suffer from small, known and
unresolved vulnerabilities. These known vulnerabilities could
be exploited and connected in an unknown way, resulting in a
cascading attack emergent behavior, being enabled by the CSs
interactions that are necessary to achieve the SoS global goal.
Some of these vulnerabilities could be hidden or unknown,
but plenty of them are known and not adequately addressed.
Moreover, the consequences of such attacks on the SoS cannot
be understood by means of the mere evaluation of the behavior
of each single CS, but require an assessment of the effect of
the interactions on the behavior of the whole SoS [8][9].

1money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html
2http://large.stanford.edu/courses/2015/ph241/holloway1/
3https://www.wired.com/2013/05/googles-control-system-hacked/



In our work, we focus on this kind of security attacks, which
has a possible extensive impact on SoS. We call this security
concern a cascading attack and we define it as follows: A
cascading attack is an attempt to destroy, expose, alter, disable,
steal or gain unauthorized access to or make unauthorized
use of an asset by exploiting an unknown succession/sequence
of security vulnerabilities triggered in different constituent
systems, and connected through the interactions between these
CSs when collaborating to accomplish the SoS global goal(s).

The aim of this study is to address the SoS analysis chal-
lenge while considering SoS emergent behavior, CSs manage-
rial and operational independence and security properties. We
focused on the following research question: How can secure
SoS architectures be simulated and consequently analyzed, so
as to discover security, emergent, unknown cascading attacks,
early at the architecture phase, in order to avoid time and
cost wastage of later changes and to prevent massive damages
targeting the SoS functionalities and impacting people’s safety
and security?

To answer this question, we performed a review of the
SoS analysis approaches and argued the usefulness of Multi-
Agent Systems (MAS) for SoS simulation due mainly to
the similarities between MAS and SoS concepts. Afterwards,
we proposed and implemented a MAS security extension to
express cascading attacks related concepts in order to properly
execute and analyze secure SoS architectures. Additionally, we
defined and implemented a matching mechanism that helps
identifying the possible concatenation/sequence of triggered
vulnerabilities in order to discover emergent unknown security
cascading attacks. Finally, we used Model-Driven Engineering
(MDE) to implement a generator tool (a set of Model-To-Text
transformation rules) to (semi)automatically map the secure
SoS architectures modeled using an SysML-based modeling
language, the SoSSecML [10], to the extended MAS platform.

The remainder of this paper is organized as follows: Section
II discusses the related work for secure SoS analysis. Section
III presents our proposed MAS security extension. In Section
IV we present our model-based generator tool. Section V
presents our final remarks and Section VI concludes the paper.

II. INVESTIGATING ANALYSIS APPROACHES FOR
SECURE SOS ARCHITECTURE SIMULATION

Model simulation is a powerful analysis technique for
developing a level of understanding of the real behavior of
a complex system by analyzing the approximate working
conditions [5][11]. Several initiatives have been proposed to
address SoS simulation and analysis, but only few novel
studies consider SoS security. In this section, we review the
analysis approaches for secure SoS and we evaluate them
regarding their ability to analyze SoS taking into account SoS
OMGEE characteristics as well as their ability to achieve
security analysis. Subsequently, we examine the strengths
and limitations of each studied approach in addressing the
emergent behavior, in particular the emergent cascading at-
tacks resulting from the SoS interactions. Moreover, even if
the number of these studies is limited and their basis are

diverse, we regrouped them, based on common features, in
the following sub-categories: 1) Approaches based on threat
analysis processes; 2) Graph-based approaches and 3) Goal-
oriented/Agent-based approaches.

A. Approaches based on threat analysis processes
Kobetski and Axelsson investigate in [12] the challenges

towards safe and secure SoS. They propose to use the sys-
tem theoretic safety analysis method to systematically view
possible undesired losses in SoS. The method consists in 1)
identifying a set of possible undesirable losses (accidents) and
system hazards that may lead to an accident; 2) deducing a
set of safety requirements; 3) identifying a control structure
to avoid the hazardous states in the SoS; 4) exploring the
control actions again to identify the situations that may lead
to hazards. This recent work discusses general approaches to
undertake each step without detailing the methods, techniques
and tools to be used; neither detailed guidance on how the
possible losses and control structures should be identified and
defined. In addition, the authors recognize that their method
needs further development to be applicable to SoS mainly due
to the managerial and operational characteristics. Moreover,
they mention the applicability of their approach to analyze the
security of SoS without arguing this point.

Mori et al. [13] propose a framework for evolutionary
SoS threat analysis. They apply the formal concepts analysis
technique to study the impact of adding or removing assets in
an SoS scenario in terms of threats and/or vulnerabilities that
can arise from this evolution. The analysis algorithm takes
as input a scenario affected by the structural and emerging
threats (statically identified), their corresponding mitigation
strategies and the scenario to achieve. It gives as output the
distribution of the threats across the scenarios. The proposed
approach for runtime analysis mainly considers the evolution-
ary characteristic of SoS. However, the evolution in the SoS
scenario is enacted by the SoS administrator, thus there is
a need of centralized authority. The authors do not explain
clearly how the managerial and operational independence
of the SoS are considered when defining and affecting the
threats. Moreover, the approach analyzes the distribution of
known threats/vulnerabilities over the CSs at runtime without
considering all the defined vulnerabilities, not only those
triggered and linked due to the interactions among the CSs.

B. Graph-based approaches
Nicklas et al. in [14] propose an approach, based on use-

cases scenarios, that consider the safety and security aspects
in smart home applications. The approach includes four steps:
1) use cases description to specify a virtual SoS composed of
many cyber physical systems; 2) manual derivation of risks
related to the SoS use cases, and suggestion of safety use
cases with specific security measures to overcome these risks;
3) security assessment of the SoS use cases using attack trees,
based on attack scenarios; 4) integration of safety use cases
to harmonize the security structure to the safety requirements.
This approach seams promising for assessing the risks related



to a specific SoS application domain and based on defined
attack scenarios. However, the idea lacks deeper investigation
specially to propose proper methods for each step as well as
to implement proper tools.

In [8], Guariniello et al. modified the Functional Depen-
dency Network Analysis to make it applicable for SoS to
analyze the internal and external impact of cyber attacks on
the SoS interdependencies. To perform the analysis, the SoS is
represented as a directed network with nodes to represent the
CSs or their capability and links to represent the dependencies
with two values indicating the strength and criticality of each
dependency. Then, based on a set of formulas, the result is
a percentage indicating the degradation in the CS operability.
In this study, the security is barely considered by adding a
weight indicating the availability of data to model the effect
of an attack. This value could be defined by an expert or
through data simulation as mentioned by the authors. There
are no security concepts describing the vulnerabilities or the
attack, neither the SoS emergent behavior.

Similar to [8], Dahmann et al. [15] propose a general
framework to assess the security risk of a single security
incident on multiple constituent systems. The authors propose
the use of the Functional Dependency Network Analysis to
measure the operational effectiveness of the missions in the
SoS. The analysis intended to assess the ability of the SoS to
operate effectively if one or more CS fail.

C. Goal-oriented/Agent-based approaches

Abercrombie and Sheldon in [16] use the game theory
implemented in dynamic Agent Based Game Theoretic sim-
ulations to analyze the information security of smart grids.
Two players game, an attacker (any hacker)-defender (SoS
administrator) interaction scenario is described using agents
to assess the risk in an SoS in terms of the probability of a
successful attack. Even if this approach seems promising to
calculate the cumulative probability of successful attacks at a
specific time of a scenario simulation, the attacker/defender
model, in its current form, is too simple to represent an SoS
with its CSs and their interactions. Moreover, the analysis does
not reveal specific information on the vulnerabilities and how
they are triggered, leading to the successful elementary attacks.

Meland et al. introduce in [17] an approach to analyze the
threats at the requirement level of the SoS development. They
extend an agent-based modeling language, with threat analysis.
The extension consists in an algorithm to calculate how the
impact of a threatening event is propagated in the model.
This analysis is based on a set of identified threatening event
and assumptions/propagation rules over goal decomposition
trees which make it limited to the specified rules. Moreover,
the authors do not detail how these rules were selected and
defined, neither why they are suitable for the air traffic
management domain (which could be considered an SoS).
In addition, the proposed analysis process ends when all the
elements are visited, which expose it to the combinatorial
explosion issue in the context of SoS.

D. Discussion

The general analysis of the identified categories could be
summarized as follows:

1) The approaches based on threat analysis
processes [12][13] only focus on static scenarios to
analyze the distribution of threats and hazardous states.
They lack guidance and methodologies to support the
unknown emergent behavior and do not consider the
interactions and security details that trigger the threats
and attacks;

2) Graph-based approaches [8][14][15] suffer from issues
related to the combinatorial explosion, specially in the
context of complex SoS where there is a high number of
possibilities and interactions;

3) Goal-oriented/Agent-based approaches [16][17] seem to
be promising to analyze the SoS interactions and related
security issues through simulations.

A deeper conclusion about the studied approaches is that
many of them touch on security only in a broad way. Most of
the results are restrained to the effects in term of impact on
the operability of the existing SoS operations. The majority
of the studied approaches do not explicitly or clearly con-
sider the OMGEE SoS specific characteristics in the analysis.
Moreover, they lack pertinent details to analyze SoS inter-
actions and emergent behavior arising from CSs operations
and interactions without a centralized overview of the SoS
(CSs operational and managerial independence), as well as
to support the early discovery and anticipation of unforeseen
security problems.

III. PROPOSAL: MULTI-AGENT SYSTEMS EXTENSION
FOR SOS SECURE ARCHITECTURE ANALYSIS AND

CASCADING ATTACKS DISCOVERY

Agent-based simulation approaches were extensively used
with the intention to execute the architectural choices and
understand the impact of an individual system behavior on
the global behavior. For that such approaches form a solid
basis when exploring the CS and SoS behaviors [18]. By
performing agent-based simulation, the SoS behavior could
be understood and analyzed to enable the improvement of the
SoS architectures (structure and behavior/functionalities) while
maintaining control and minimizing vulnerability of the SoS.

Among the agent-based approaches, Multi-Agent Systems
(MAS) simulation seems the most suited and actively used
technique to express SoS aspects. Indeed, an agent is any
autonomous entity that plays certain roles and interacts with
other agents to achieve individual or common goals [19].
MAS are distributed intelligent systems composed of agents
that cooperate and coordinate to solve their local goals as
well as global goals. Therefore, they provide the means to
represent the SoS architectures if the concepts of the models
are faithfully mapped to the agent-based concepts. In the
following sub-sections, we will present MAS and argue their
usefulness for SoS simulation.



A. MAS Conceptual Model

Figure 1 presents the extension that we performed based on
the MAS specifications4 to include security aspects for SoS
simulation modeling. We represent in the figure - concepts
in black and white - a part of the MAS conceptual model
that we designed using Ecore5. For this conceptual model we
focused on the essential MAS concepts that might be used
and/or extended to express the SoS concept semantics and
therefore allow a proper simulation and analysis of secure SoS
architectures, mainly Agent, Behavior and ACLMessage.

Fig. 1. Part of the MAS conceptual model with our security extension

Actually, in MAS, the Agents are behavior-oriented, their
behaviors are created by extending the Behavior class and
adding it to a behavior pool to be then executed concurrently
based on a scheduler/execution model. A behavior can be
simple or composite in which case is formed by a combination
of simple behaviors.

The communication between agents is done by the exchange
of asynchronous messages. The format of those messages
is defined by the Agent Communication Language (ACL),
conforming to the FIPA standardization, and they are imple-
mented as objects of the ACLMessage class. Each agent has a
MessageQueue where the messages coming from other agents
are stocked.

All agent-level operations, such as sending messages, mov-
ing and even starting and terminating, are defined by a service
(such as the service helper). The agent and its services infor-
mation are registered in the DFService (Domain Facilitator).

B. Applying Agent-based analysis to Systems-of-Systems:
Alignment of concepts between SoS and MAS

To perform useful analyses of the secure SoS emergent
behavior arising from CS interactions, the analysis approach
should provide a solid alignment between the SoS modeling
domain and the simulation domain where the models will be

4MAS is defined by the the Foundation for Intelligent Agents (FIPA:
http://www.fipa.org/repository/standardspecs.html)

5http://www.eclipse.org/modeling/emf/

executed and analyzed. Indeed, the analysis of the architectures
conceived using any modeling language should underly the
semantics of the model and its specification features [20]. The
execution (executable artifacts) of the defined architectures
should hold the properties described in the models [21].

Consequently, we performed an analysis of SoS and MAS
domains, an we obtained a number of similarities between
their artifacts. Similar to CSs of an SoS, agents in MAS are
distributed, independent, autonomous and evolutionary:

• Local views: No agent has a full global view of the
system;

• Decentralization: There is no designated controlling
agent;

• Self organization: The overall orders in MAS arise from
the interactions between the agents;

• Large problem solving: MAS intend to solve realistic and
large scale problems that are beyond the capabilities of
an individual agent;

Moreover, MAS are suitable approaches to express the SoS
OMGEE specific characteristics, as described below:

• CSs operational and managerial independence could be
expressed by the fact that agents in the MAS have their
own goals. Like a CS, no agent has a global vision of
the system;

• SoS geographical distribution could be translated into
distributed agents;

• SoS evolutionary development could be denoted by the
flexibility, evolution and openness of MAS systems;

• Emergent behavior could be expressed by agents auton-
omy and pro-activity.

• SoS context could be represented by agents environment.
Accordingly, we aligned the SoS concepts with the cor-

responding MAS concepts based on the similarities between
them allowing by that an adequate alignment between both
SoS and MAS domains. Table I exhibits the essential similar-
ities/alignments between the SoS and MAS concepts.

1) Constituent System to Agent: This first alignment is
between the CS concept of the SoS domain and the Agent
concept of the MAS domain.

Indeed, a CS is an operationally independent software
system that is intended to achieve a complex task. It oper-
ates independently to realize its own goals - what is called
individual goals in SoS and agent paradigms, and it interacts
cooperatively with other CSs to achieve a higher goal that
none of the CSs is able to accomplish in isolation (global
goal). In addition, a CS is managerially independent because
different CSs could belong to different organizations and they
are managed by those organizations. Moreover, due to this
managerial independence, none of the CSs has a global view
of the whole SoS composition and interactions (local views).

Likewise, an agent is an autonomous software system that
acts following its own list of behaviors or upon its perception
of its environment what is called operational independence in
the SoS paradigm. In MAS, the agents are self-organized, in
addition they could be classified in different structural dimen-



TABLE I
ESSENTIAL SIMILARITIES BETWEEN SOS AND MAS CONCEPTS

SoS concept MAS concept Similarities

SoS MAS
Distributed systems composed of multiple independent/autonomous sys-
tems that interact/communicate to accomplish individual/local goals and
global/collaborative goals.

Constituent System Agent Operational independence/autonomy ; individual-global operations/local-
collaborative behaviors; managerial independence/local views.

Functionality/operation Behavior/Task Simple-complex operations/simple-composite behaviors; sequential and paral-
lel/concurrent operations/behaviors.

CS interactions ACL Messages Express interactions/communications between the operations/behaviors defined
on CS/Agent interfaces.

sions/organizations that can be distributed over the network
(managerial independence).

2) Functionality to Behavior: Another correspondence is
between the functionality/operation concept of the SoS domain
and the behavior/task concept of the MAS domain.

Actually, a CS operation could describe the CS mission
or global functionality representing the operation on the CS
interface with witch it participates in the realization of the
SoS global goal. Furthermore, a CS can participate in the
achievement of several individual goals at the same time,
accordingly it can interact with several other CSs and execute
several operations in parallel.

Similarly, a behavior in MAS describes a task that an
agent can accomplish. These behaviors can be simple (such
as TickerBehavior, OnShotBehavior, CyclicBehavior) or com-
posite (such as ParallelBehavior, SequentialBehavior) to create
complex tasks by composing simple behaviors. An agent can
execute several behaviors concurrently.

3) Interactions and ACL Messages: Another similarity is
between CS interactions and agents interactions.

In the SoS, the CSs are dispersed and they exclusively com-
municate information (geographic distribution specific charac-
teristic). With respect to this idea, the interactions between
different operations defined on different CS interfaces are
expressed through the interaction concept.

Likewise, the agent communications in MAS are achieved
through the exchange of ACL messages. Indeed, the agents
interact with other agents belonging to the same platform or to
different agent containers/platforms by way of ACL messages
and message transport services. The structure of the messages
is a set of key values written in FIPA-ACL. The content of
the message is expressed in a content language, and content
expressions can be grounded by referenced ontologies.

C. MAS Conceptual Model Security Extension
As stated in section II, MAS is an appropriate choice for

SoS simulation as previously argued, although MAS lack
concepts to express SoS security aspects.

However, to express the dynamics and execute the whole
behavior of secure SoS architectures in such a way as to enable
some types of emergent behavior to manifest and therefore be-
come analyzable (in particular the unknown security cascading
attack), it is crucial to express the semantics of the secure SoS
architectures security concepts. Therefore, it is necessary to

assign executable MAS notations to the SoS security attack
concepts specified in the SoS architectures.

Nonetheless, existing MAS approaches lack such concepts.
In the past years many attempts have been made to in-
clude security into MAS. However, the following recent sur-
veys [22][23][24] show that most of the proposed approaches
focus on securing the agent communications, using techniques
such as cryptographic signature, message encryption and ac-
cess control to facilitate agent authentication and authorization.

Only few researchers propose deeper security approaches
for MAS development. Mouratidis et al. [25] and Beydoun
and Low in [26] propose a security-aware general approach for
MAS consisting in a framework independent MAS conceptual
model. Despite its potential in representing MAS security
requirements, the proposed approach remains at the conceptual
level without a MAS platform and tools to support its usage.

For these reasons, we propose an extension of the MAS con-
ceptual model to express SoS security attack related concepts.
Our extension (see figure 1 - bold concepts in red) mainly cov-
ers the vulnerability, pre-condition and post-condition concepts
detailed in what follows:

• The concept Vulnerability represents a back door or weak-
ness that menaces an agent behavior. For each behavior
we can assign one or many vulnerabilities. A vulnerability
is_triggered by a matching mechanism. This matching
mechanism matches the pre-conditions of a vulnerability
"i" in the possible cascade with the post-conditions of the
previous vulnerabilities in that cascade, triggered through
the interactions between the agents, allowing by that the
discovery of the possible sequence of vulnerabilities that
might be triggered due to the agent interactions.

• PreCondition defines the condition which
activates/triggers a vulnerability. A vulnerability may
have one or many pre-conditions, and a pre-condition
is assigned to one and only one vulnerability via the
relationship activates;

• PostCondition defines the condition which results from
an activated/triggered vulnerability. A vulnerability may
results_in one or many post-conditions, and a post con-
dition is related to one and only one vulnerability.

Our extension of the MAS MetaModel refines the gen-
eral security-aware framework-independent MAS MetaModel
proposed by Beydoun [26]. It could be re-used and further
extended to model and analyze other security concepts such



as security requirements and mechanisms.

IV. AUTOMATIC MAPPINGS FROM SECURE SOS
ARCHITECTURES TO MAS SIMULATION

To show the applicability of the MAS security extension
that we are proposing, we implemented this extension in a
well-known MAS platform to allow the execution/simulation
of secure SoS architectures and the discovery of the possible
related cascading attacks.

To further benefit from the execution/simulation, it is fun-
damental to define an easy mapping between the modeling
and the execution phases to modify/adjust the secure SoS
architecture and re-analyze it until reaching an acceptable level
of security. These iterations allow continual refinement of the
secure SoS architectures, addressing therefore the SoS security
problems early at the architectural phase of the development
life cycle to save cost, development time, and protect the SoS
from high impact attacks.

To ensure this iterative aspect, we selected the Systems-of-
Systems Security Modeling Language (SoSSecML) existing
modeling language for secure SoS architectures modeling,
and we took advantage of Model Driven Engineering (MDE)
mechanisms, in particular the semi-automatic transformation
mechanism, to define and implement a model-based code
generator tool - a set of Model-To-Text transformation rules -
to automatically generate executable MAS artifacts (that could
be simulated in our extended MAS platform) from secure SoS
architectures designed using SoSSecML.

A. Implementing the MAS security extension in the Java
Agent DEvelopment Framework (JADE)

A good collection of simulation frameworks/platforms for
the execution of MAS can be found in [27][28]. We adopted
the JADE simulation platform to implement our MAS security
extension because JADE has been classified as the most
popular and the leading open source MAS framework, widely
used and actively maintained [27][19].

Therefore, to implement our MAS security extensions, we
extended the JADE simulator by defining the following Java
classes:

• public abstract class Vulnerability: this class defines a
list of vulnerabilities. Each vulnerability is linked to an
agent behavior and possesses an "is_triggered" boolean
value (false by default) and a vul_matching mechanism.
This result is reported in the JADE log_file;

• public abstract class PreCondition<L>: to specify the list
of pre-conditions that activates each vulnerability. <L>
represents a generic type therefore we can model the
conditions as different types, or implement in the future
another (hierarchy of) classes to express these conditions;

• public abstract class PostCondition<L>: the list of post-
conditions, the results of a triggered vulnerability;

• public boolean vul_matching: this mechanism identi-
fies and logs "if" and "when" a vulnerability is trig-
gered based on a matching between the pre- and post-
conditions. This matching allows the discovery of the

possible sequence of vulnerabilities (the cascading at-
tacks) that might be triggered due to the agent interac-
tions. It takes as input a list of post-conditions and returns
as output a "true" or "false" value of the boolean variable
is_triggered. Indeed, for each vulnerability, for each pre-
condition assigned to this vulnerability, it tests if this pre-
condition matches any of the post-conditions received in
input - the post conditions of the triggered vulnerabilities
related to previously executed operations. Once there is
a match, is_triggered is set to "true".
The importance of this mechanism resides in the fact that
it discovers those cascading attacks resulting only from
the execution of CSs operations, avoiding in this way
the combinatorial explosion of existing attacks analysis
approaches.

B. SoSSecML for Secure SoS Architectures Modeling

To exhibit the proper SoS semantics and improve the
simulation results, there is a need for well defined speci-
fications of the secure SoS architecture. For this purpose,
SoSSecML is a novel modeling language that has been defined
by [29] to support the specification of secure SoS architectures.
SoSSecML extends the System Modeling Language (SysML)
with structural and behavioral concepts and relationships spe-
cialized for SoS such as constituent system, operation and
organization, and others particular for security such as vulnera-
bility, pre-conditions, post-conditions and security mechanism.
Consequently, SoSSecML serves as an appropriate modeling
language choice to design secure SoS architectures. Having
those architectures, we can perform our MAS security analy-
sis, because SoSSecML specifies the essential concepts needed
for our analysis.

The main concepts of SoSSecML are:

• The Constituent System concept that represents the CSs
as "black boxes" with several operations/action on their
interfaces, serving to model the interactions with other
CSs.

• The Organization concept to denote the organization to
which each CS belongs, illustrating by that the manage-
rial and operational independence of the CSs;

• The Action concept and Control Flow relationship to
represent the CS operations and interactions.

• Security concepts to support ulterior analysis of security
problems. For each operation one or several vulnerability
with a list of pre-conditions and post-conditions are
assigned using menaces relationship. In addition to a
Security Mechanism that helps preventing a vulnerability.

In order to gain the maximum engineering value from
this modeling language, it is required to have well-defined
mappings between the models designed using the language and
their realizations [5]. A well defined and relatively easy map-
ping between the modeling and execution concepts increases
the likelihood that the modeling domain concepts (in our case
secure SoS) will be accurately captured by the simulation
domain (in our case extended MAS platform). Consequently,



Fig. 2. CS to Agent MTT Rule

the SoS behavior and the related emergent security issues man-
ifest through the simulation and become analyzable, allowing
the discovery of the possible cascading attacks. Therefore we
detail in the next subsections the mappings from SoSSecML
to the extended platform.

C. Generator tool: Transformation Rules from SoSSecML
concepts to the extended MAS platform notations

With respect to MDE, model transformations are one of
the key mechanisms to define a set of rules that allow the
mapping from a source model to a target model. Among the
model transformation types [30], the one on which we are
focusing here is the Model-To-Text (MTT) transformations
(code generation). Each MTT rule allows a "vertical" transfor-
mation, from a concept of SoSSecML (high level of abstrac-
tion), towards a Java class of the extended JADE platform
(implementation/simulation level of abstraction). To perform
the mappings between the secure SoS and MAS concepts,
we defined and applied transformation rules using Acceleo6:
an Eclipse-based open source tool. Acceleo use a template-
based approach for the automatic code generation [30]. In
such approach, the mapping between source model and the
produced text/code is captured through templates-rules. These
rules, together with the source model are given as input to
a template engine/generator which produces the code in the
corresponding output language.

Figure 2 presents the first mapping rule. This rule allows
the mapping from the CS concept of SoSSecML to the agent
class of the extended JADE platform (jade.core.Agent class).
As we can see in the figure, this MTT rule generates the name
and the java package of the class. It sets the name and path to
the class file and the import statements for the packages that
are used in the class. It also generates the class body and the
statements that add the behaviors to the agent class.

In a similar way, we implemented using Acceleo the
MTT rules that ensure the following mappings from
SoSSecML concepts to the extended JADE classes: the
CS functionalities/operations are mapped to agents behav-
iors (jade.core.behaviour.Behaviour); the flows/interactions
are mapped toACL Messages; and the vulnerability, pre and
post-conditions of SoSSecML are mapped to the vulnerability,
pre and post-conditions classes that we introduced to the MAS

6http://www.eclipse.org/acceleo/

platform. Moreover, since we are interested only in discovering
the sequence of vulnerabilities that are triggered because of
the CS interactions, this latter rule is defined in a way to map
only the post-conditions of the triggered vulnerabilities linked
to the executed operations.

Therefore, by giving these MTT rules, together with the se-
cure SoS architecture architectures (defined using SoSSecML)
as input to the Acceleo generator, the produced Java classes
could be directly executed in the extended JADE platform. The
simulation/execution results are logged to allow a system-level
interpretation/analysis of the secure SoS architectures modeled
at the abstract level.

The JADE platform includes a default specific agent, called
sniffer agent used for logging or simply documenting the
conversations between agents. However, for a better analysis,
we sought a more advanced logging tool to offer a personalized
log file, allowing an effortless and more efficient analysis of
the simulation results. Accordingly, we integrated to JADE a
custom logger that implements the open source Log4J library7.

Having the custom log file issued from the simulation of
the secure SoS architecture will reveal the triggered vul-
nerabilities, the pre-post conditions matching that triggered
the vulnerabilities, as well as the CSs and interactions to
which these vulnerabilities belong. Having these information
captured in the log files, the security experts will be able
to analyze the real behavior of the described architectures,
as well as to interpret the discovered emergent sequence
of vulnerabilities triggered and connected through the CS
interactions and in consequence of validated pre-conditions.

V. FINAL REMARKS

As shown in this paper, the proposed MAS conceptual
model security extension and the corresponding tools is a
first step towards answering our initial RQ. The use of MAS
simulation to execute the secure SoS architectures allows
the simulation of the secure SoS behavior. Moreover, the
matching mechanism that we defined and implemented, leads
to significant results in terms of discovery of high impact
unknown cascading attacks arising from the succession of
known unresolved vulnerabilities in the independent CSs, that
could be connected due to the CSs interactions to achieve the
SoS global goal. The importance of this mechanism resides
in the discovery of the attacks arising only from the enabled
vulnerabilities related to the executed operations, avoiding by
that the combinatorial explosion that results from the analysis
of all possible attack paths.

The proposed MAS security analysis approach handles the
managerial and operational independence characteristics of
an SoS by simulating autonomous CS/agents and analyzing
their interactions needed for the realization of the SoS/MAS
global goal. It also respects the geographic distribution char-
acteristic since JADE allows the distributed simulation for the
execution of the models. Moreover, the proposed approach
addresses the emergent behavior of SoS through the analysis

7https://logging.apache.org/log4j/1.2/download.html



of the cascading attack security emergent behavior. Also, our
approach partially covers the evolutionary development of the
SoS since, by virtue of the iterative automatic mappings that
we defined, it allows an easy mapping between the modeling
and analysis phases, to analyze several architecture alternatives
until reaching an acceptable level of security.

Our work is innovative, however, it is imperative to mention
that our approach has certain limitations. Firstly, we do not
fully address the emergent behavior characteristic. Being a
first step in considering SoS security problems, we focused on
one kind of emergence resulting from the known interactions
and vulnerabilities. We plan to perform further investigations
to cover the emergence resulting from unknown interactions
and vulnerabilities. Secondly, in this work we defined the
mappings between one specific existing language (SoSSecML)
and our MAS security extended platform. It is maybe worth
to generalize the mappings for several other languages and
consider other security properties. Thirdly, our approach and
tools need to be validated by a case study and industrial use.

VI. CONCLUSION
In this paper we addressed the SoS security analysis chal-

lenge, mainly the cascading attack security issue which has
a high impact in the context of SoS. To prevent these attacks
early and avoid time and cost wastage, we argued in details the
usefulness of Multi-Agent Systems (MAS) for SoS simulation
due to the similarities between MAS and SoS concepts. More-
over, we extended MAS with security concepts to express the
semantics of cascading attacks related concepts, and we im-
plemented these extensions in the JADE open source platform
compatible with the MAS standard (FIPA). Additionally, we
defined and implemented a vulnerability matching mechanism
and a custom log file issued from the simulation of the secure
SoS architecture to capture and reveal information needed
to predict and analyze the possible cascades of triggered
vulnerabilities (sequences of vulnerabilities triggered and con-
nected through the CS interactions, in consequence of one
or many successful matching and validated pre-conditions).
Finally, we completed our contribution by a generator tool
allowing an iterative automatic mapping between the secure
SoS architectures modeling and analysis phases.

REFERENCES

[1] M. Maier, “Architecting principles for SoS,” Systems Engineering, vol. 1,
pp. 267 – 284, 1998.

[2] J. Axelsson, “A systematic mapping of the research literature on system-
of-systems engineering,” in 10th System of Systems Engineering Con-
ference (SoSE), Texas, USA, 2015, pp. 18–23.

[3] F. Oquendo, “Architecturally describing the emergent behavior of
software-intensive system-of-systems with sosadl,” in 2017 12th System
of Systems Engineering Conference (SoSE),Hawaii, USA, 2017, pp. 1–6.

[4] J. Dahmann, “System of systems pain points,” INCOSE International
Symposium, vol. 24, no. 1, pp. 108–121, 2014.

[5] C. Nielsen, P. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska, “Sys-
tems of systems engineering: Basic concepts, model-based techniques,
and research directions,” ACM Computing Surveys, vol. 48, no. 2, 2015.

[6] J. ElHachem, “Towards Model Driven Architecture and Analysis of SoS
Access Control,” in International Conference on Software Engineering
Doctoral Symposium, vol. 2, Florence, Italy, 2015, pp. 867–870.

[7] V. Chiprianov, L. Gallon, M. Munier, P. Aniorte, and V. Lalanne,
“Challenges in Security Engineering of Systems-of-Systems,” in 3ème
Conférence en IngénieriE du Logiciel, Paris, France, 2014, pp. 137–151.

[8] C. Guariniello and D. DeLaurentis, “Communications, information, and
cyber security in systems-of-systems: Assessing the impact of attacks
through interdependency analysis,” Procedia Computer Science, vol. 28,
pp. 720 – 727, 2014, conference on Systems Engineering Research.

[9] H. Kopetz, O. Höftberger, B. Frömel, F. Brancati, and A. Bondavalli,
“Towards an understanding of emergence in Systems-of-Systems,” in
10th System of Systems Engineering Conference (SoSE), Texas, USA,
2015, pp. 214–219.

[10] J. ElHachem, Z. Pang, V. Chiprianov, A. Babar, and P. Aniorte, “Model
Driven Software Security Architecture of Systems-of-Systems,” in Asia
Pacific Software Engineering Conference, Hamilton, New Zealand, 2016,
pp. 89–96.

[11] G. Muller and C. Dagli, “Simulation for a coevolved system-of-systems
meta-architecture,” in 11th System of Systems Engineering Conference
(SoSE), Kongsberg, Norway, 2016, pp. 1–6.

[12] A. Kobetski and J. Axelsson, “Towards safe and secure systems of sys-
tems: Challenges and opportunities,” in Proceedings of the Symposium
on Applied Computing, ser. SAC, 2017, pp. 1803–1806.

[13] M. Mori, A. Ceccarelli, T. Zoppi, and A. Bondavalli, “On the impact
of emergent properties on SoS security,” in 11th System of Systems
Engineering Conference (SoSE), Kongsberg, Norway, 2016, pp. 1–6.

[14] J. Nicklas, M. Mamrot, P. Winzer, D. Lichte, S. Marchlewitz, and
K. Wolf, “Use case based approach for an integrated consideration of
safety and security aspects for smart home applications,” in 11th System
of Systems Engineering Conference (SoSE), Kongsberg, Norway, 2016,
pp. 1–6.

[15] J. Dahmann, G. Rebovich, M. McEvilley, and G. Turner, “Security
engineering in a system of systems environment,” in Systems Conference
(SysCon), 2013 IEEE Intl, 2013.

[16] R. Abercrombie and F. Sheldon, “Security analysis of smart grid
cyber physical infrastructures using game theoretic simulation,” in IEEE
Symposium Series on Computational Intelligence, 2015, pp. 455–462.

[17] P. Meland, E. Paja, E. Gjære, S. Paul, F. Dalpiaz, and P. Giorgini, “Threat
analysis in goal-oriented security requirements modelling,” International
Journal on Secure Software Engineering, vol. 5, no. 2, pp. 1–19, 2014.

[18] W. Baldwin, B. Sauser, and R. Cloutier, “Simulation Approaches for
SoS: Events-Based versus Agent Based Modeling,” In Computer Sci-
ence, vol. 44, pp. 363 – 372, 2015.

[19] F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with Jade. John Wiley & Sons, 2007.

[20] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[21] INCOSE Systems Engineering Body of Knowledge, version 1.6. IN-
COSE UMS, March 2016.

[22] Y. Hedin and E. Moradian, “Security in multi-agent systems,” Proceed-
ings of the 19th Annual Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, KES, Singapore, vol. 60, pp. 1604
– 1612, 2015.

[23] O. Ogunnusi and S. Razak, “Attacks and security solutions for agent
communication in multi-agent systems,” Proceedings of International
Journal of Soft Computing, vol. 10, pp. 99–109, 2015.

[24] S. Bijani and D. Robertson, “A review of attacks and security approaches
in open multi-agent systems,” Artificial Intelligence Review, vol. 42,
no. 4, pp. 607–636, 2014.

[25] H. Mouratidis, M. Kolp, P. Giorgini, and S. Faulkner, “An architectural
description language for secure multi-agent systems,” Web Intelligent
and Agent System, vol. 8, no. 1, pp. 99–122, 2010.

[26] G. Beydoun and G. Low, “Generic modelling of security awareness in
agent based systems,” Information Sciences, vol. 239, pp. 62 – 71, 2013.

[27] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal
of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015.

[28] R. Bordini, L. . Braubach, M. Dastani, A. Seghrouchni, J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, and R. Ricci, “A survey of programming
languages and platforms for multi-agent system,” vol. 30, 2006, pp. 33–
44.

[29] J. E. Hachem, T. A. Khalil, V. Chiprianov, A. Babar, and P. Aniorte,
“A model driven method to design and analyze secure architectures of
systems-of-systems,” in 22nd International Conference on Engineering
of Complex Computer Systems (ICECCS 2017), Fukuoka, Japan, pp.
166–169.

[30] T. Mens and P. Van Gorp, “A taxonomy of model transformation,”
Electron. Notes Theor. Comput. Sci., vol. 152, pp. 125–142, 2006.


