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Abstract This paper discusses a coupled mechanics–phase-field model that can predict
microstructure evolution in metallic polycrystals and in particular evolution of lattice
orientation due to either deformation or grain boundary migration. The modeling frame-
work relies on the link between lattice curvature and geometrically necessary dislocations
and connects a micropolar or Cosserat theory with an orientation phase-field model.
Some focus is placed on the underlying theory and in particular the theory of disloca-
tions within a continuum single crystal plasticity setting. The model is finally applied to
the triple junction problem for which there is an analytic solution if the grain boundary
energies are known. The attention is drawn on the evolution of skew–symmetric stresses
inside the grain boundary during migration.

Keywords Crystal plasticity; Cosserat; Non-local theory; Phase-field method; Disloca-
tion Density Tensor.

1. Introduction

By controlled thermomechanical processing, the microstructure of metallic poly-

crystals can be manipulated in order to obtain certain desired material properties.

A typical example is cold working followed by annealing, where energy is stored in

the material during viscoplastic deformation and later released by nucleation and

growth of new grains during a process known as static recrystallization. Deforma-
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tion at elevated temperatures on the other hand may lead to concurrent (dynamic)

recrystallization [Humphreys and Hatherly, 2004].

Simulation models for microstructure evolution in metals can be formulated at

length scales from the atomistic up to the continuum level. Models at the lower

scales (atomistic simulations, molecular dynamics) are computationally demanding

due to their very high resolution and not feasible for polycrystals undergoing load

sequences which may last minutes or hours. On the other hand, a macroscopic

model which retains no information about the microstructure is too coarse. The

most promising models are therefore formulated at the mesoscopic level, resolving

the grain structure but not individual atoms, defects or dislocations.

Several authors have developed modeling approaches for recrystallization pro-

cesses which rely on coupling continuum single crystal plasticity with methods for

nucleation and/or grain boundary motion. For the nucleation, probabilistic meth-

ods or methods based on some selection criteria (such as stored energy or lattice

curvature) are often adopted. There exist a number of methods to deal with mi-

grating grain boundaries such as probabilistic cellular automata (CA) and Monte-

Carlo-Potts models, vertex models, phase-field and level-set models [Rollett, 1997;

Humphreys and Hatherly, 2004; Gottstein and Shvindlerman, 2010; Hallberg, 2011].

Out of these, phase-field and level-set models that do not explicitly track the mov-

ing fronts are the most well-suited for strongly coupled approaches as they result

in systems of partial differential equations which can in practice be solved by the

same methods as the crystal plasticity equations. The level set approach has been

used by Bernacki et al. [2009] for primary recrystallization in polycrystalline mate-

rials based on the finite element method. On the other hand, it is straightforward

to incorporate phase-field models in the thermodynamic framework of continuum

mechanics using the concept of generalized stresses by [Gurtin, 1996; Gurtin and

Lusk, 1999; Ammar et al., 2009a]. This approach has been explored by e.g. Am-

mar et al. [2009b, 2011]; de Rancourt et al. [2016]; Hektor et al. [2016] to model

diffusion-controlled phase transformations in elastoplastic media.

To model static recrystallization, the most common approach in the literature

is to couple a crystal plasticity modeling step with subsequent nucleation and grain

migration steps. For example, a strain gradient crystal plasticity finite element ap-

proach was used by Takaki et al. [2007, 2009] to compute the crystal orientations

and dislocation densities in a deformed polycrystal. The results were then mapped

onto another discretized grid and the microstructure was evolved using a phase field

approach. Nucleation sites were identified based on criteria of misorientation and

stored energy. A similar approach was explored by Güvenç et al. [2013, 2014]. A

dislocation based crystal plasticity finite element approach was followed by a nu-

cleation step using the calculated dislocation densities as an input variable. The

evolution of the microstructure was then modeled using a phase-field model in a

finite different scheme. Vondrous et al. [2015] combined a standard crystal plas-

ticity finite element model with a phase-field step solved by finite differences to



October 10, 2018 12:35 WSPC/INSTRUCTION FILE JMMP˙Ask˙2018

3

simulate static recrystallization in large samples and three dimensions. Another ap-

proach for sequential recrystallization was presented by Chen et al. [2015] who used

a spectral fast Fourier transform (FFT) based solver for both the crystal plasticity

and the phase-field equations. The treatment of the crystal plasticity was restricted

to small deformations and nucleation sites were predicted based on accumulated

plastic strain. Similar to the previous works mentioned, the crystal plasticity calcu-

lations preceded the phase-field calculations, although a staggered scheme was then

applied so that the mechanical equilibrium was ensured after each phase-field time

step. Abrivard et al. [2012a,b] adopted the formalism of [Gurtin and Lusk, 1999;

Ammar et al., 2009a] and solved the single crystal plasticity and phase-field equa-

tions by finite elements. The crystal orientations and stored energies were calculated

in the deformation step and then used as input in the phase-field simulations to find

the new microstructure.

Similar coupled approaches have been adopted for dynamic recrystallization.

Takaki et al. [2014] coupled an elasto-plastic finite element model with a phase-field

model solved by finite differences in a type of staggered scheme whereas Zhao et al.

[2016] coupled FFT-based crystal plasticity simulations with a statistical nucleation

model and phase-field simulations. Blesgen [2017] coupled a non-local Cosserat crys-

tal plasticity model with a recovery and nucleation step and grain boundary migra-

tion modeled by the level-set method in a staggered scheme.

While the sequentially or weakly coupled approaches listed above are able to

capture important features of the recrystallization process, they do not represent a

unified, thermodynamically consistent theory of microstructure evolution in poly-

crystals. Recently, Ask et al. [2018b] and Admal et al. [2018] have proposed such

strongly coupled models based on higher order single crystal plasticity theories and

an orientation phase-field method originally introduced by Kobayashi et al. [2000];

Warren et al. [2003]. Orientation phase-field models are well suited for coupling

with crystal plasticity models as they rely on a continuous representation of lat-

tice orientation both at grain boundaries and inside the grains. This is in contrast

to methods that rely on a cellular description of the microstructure with constant

orientation within each cell or grain, such as Monte-Carlo-Potts models, cellular

automata or vertex models.

The coupled crystal plasticity-phase-field approach proposed by Admal et al.

[2018] relies on a strain gradient plasticity approach in the spirit of [Cermelli and

Gurtin, 2001; Gurtin, 2002]. A non-standard free energy function based on a phase-

field order parameter and the tensor of so called geometrically necessary dislocations

is formulated inspired by the orientation phase-field model of [Kobayashi et al., 2000;

Warren et al., 2003]. This results in a model capable of predicting grain boundary

migration on the one hand due to capillary forces (grain boundary curvature) and on

the other hand due to shear-induced grain boundary motion and grain sliding. The

formulation relies on introducing the plastic slips on each slip system as kinematic

variables with their own associated microstress balances and the representation of
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grain boundaries in terms of geometrically necessary dislocations. Grain bound-

ary motion in the model by Admal et al. [2018] is accommodated by plastic slip

processes.

In the present work a coupled crystal plasticity-phase-field model introduced

by Ask et al. [2018b] is revisited. In order to take into account non-local effects, a

Cosserat or micropolar [Cosserat and Cosserat, 1909; Eringen and Kafadar, 1976;

Eringen, 1976; Forest et al., 1997] approach is adopted and the lattice orientation

changes of the crystal are associated on the constitutive level with the Cosserat

microrotations, which enter as additional degrees of freedom. It was shown in Ask

et al. [2018b] that such a modeling approach allows evolution of lattice orientation at

a material point both due to viscoplastic deformation and grain boundary migration.

The considered driving forces for grain boundary migration were capillary forces

as well as stored energy due to scalar dislocation densities accumulated during

deformation. The model allows for reorientation of the crystal lattice due to plastic

slip processes but grain boundary migration mechanism is not associated directly

with plastic slip. A linearized version of the model by Ask et al. [2018a] is used in

this work and applied to the solution of the triple junction problem where three

grains meet at a common point. The objective is to study the development and

relaxation of skew–symmetric stresses predicted by the model in the moving grain

boundaries and at the triple junction.

This article is structured as follows. The first two sections discuss important

aspects of the phase-field method and crystal plasticity theory, respectively. The

third section presents the coupled Cosserat crystal plasticity–phase-field framework.

This is followed by a section dedicated to the numerical solution of the called triple

junction problem. The paper is concluded with a summary of the presented theory

and the outlook for future work.

Notation

Vectors and second order tensors are denoted by a and A∼ , with the transpose A∼
T .

Third order tensors are given by a
∼

and fourth order tensors by C≈ . In particular, I∼
is the second order identity tensor and ε

∼
is the third-order Levi-Civita permutation

tensor. The latter is used to express skew-symmetric tensors as pseudo-vectors

×
A = −1

2
ε
∼

: skew(A∼ ) = −1

2
ε
∼

: A∼ , (1)

and vice versa

skew(A∼ ) = −ε
∼
·
×
A . (2)

Double contraction is denoted A∼ : B∼ and simple contraction is written as b = A∼ ·a.

The scalar product of two vectors is a · b = aT b. On the other hand A∼ = a∼ ⊗ b∼
indicates the dyadic or tensor product of two vectors. The gradient of a vector is

written as a ⊗ ∇ and the divergence of a vector or tensor is written as ∇ · a or

A∼ ·∇, respectively (differentiation of a tensor is assumed to act on the second index).
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The curl operator is denoted ∇×A∼ . In the case a distinction is made between the

deformed and reference configurations, differentiation with respect to the reference

coordinates is denoted ∇0.

2. Phase-field approaches for grain boundary migration

There exist several mathematical approaches that deal with the dynamics of moving

interfaces. One such approach is the phase-field method. A phase-field model of

Allen-Cahn type [Allen and Cahn, 1979] considers a non-conserved order parameter

φ (the phase-field) which takes distinct values for each phase in the bulk and varies

fast but continuously over interface regions. The free energy of the system associated

with phase-field is given by

FPF =

∫
Ω

ψPF (φ,∇φ)dΩ =

∫
Ω

[
f(φ) +

a2

2
|∇φ|

]
dΩ . (3)

It is then postulated that the dynamics of the phase-field can be found from the

(vanishing) variational derivative of FPF according to

ηφ φ̇ = −δF
δφ

, (4)

where ηφ is a viscosity type parameter that controls the time scale of relaxation

towards equilibrium and thereby the mobility of the interface. The contribution

f(φ) to the energy density essentially determines the composition of different phases

in the bulk. For two separate phases, such as liquid or solid, f(φ) is in general a

double well polynomial with one local minima for each of the two corresponding

values of φ. The gradient term a2

2 |∇φ| represents the interface energy and localizes

the grain boundaries to regions of width proportional to the parameter a.

In a solid polycrystal of a single phase material, grains are distinguished by their

relative lattice orientations. The above standard model is not directly applicable to

the problem of grain boundary migration in this case. Instead, extended approaches

based on the general idea of the generic phase-field model have been proposed. In

the so-called multiphase-field method, the orientations are represented indirectly by

assigning each orientation or grain an order parameter whereas in the orientation

phase-field approach, the crystal orientation itself is considered an order parameter.

A brief outline of both methods will be given below. The discussion will focus on

grain boundary migration in solid polycrystals, although both models have a wider

scope of possible applications.

2.1. Multiphase-field model

Adopting the multiphase-field (MPF) approach [Steinbach et al., 1996; Steinbach

and Pezzolla, 1999], each crystal or rather crystal orientation can be represented by

one of in total N non-conserved phase-field variables φi, i = 1, . . . , N . The φi are

not independent as the sum of all fields at any one point is one, i.e.
∑N
i φi = 1.
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Each phase-field furthermore takes the value one for a unique grain or orientation

and is zero in all other grains. Several phases at once are present only at interfaces

(two fields at a boundary between two grains, three fields at a triple junction and

so on). The phase fields are not themselves the orientation but rather represent

the volume fraction of phase i, corresponding to a given orientation, present at a

material point. The following equations govern a multiphase-field problem with N

individual phases [Steinbach, 2009]. First, the energy is given by

FMPF =

∫
Ω

N∑
i=1

4σij
a

[
−a

2

π
∇φi · ∇φj + φi φj

]
dΩ . (5)

Note that for N = 2 and φj = 1 − φi, the term φi φj represents a double obstacle

potential rather than a double well [Steinbach and Pezzolla, 1999]. The parameters

σij and a represent the interface energy between the phases and the interface width,

respectively. Second, the evolution of the phase-field φi can be found from

φ̇i = −
N∑
j=1

π2

8 aN
Mij

[
δFMPF

δφi
− δFMPF

δφj
,

]
(6)

where Mij is the mobility of the interface.

It is possible to account for a large number N of phase fields and thus individual

orientations, but the multiphase-field approach still has limitations when it comes

to representing a real microstructure. In particular this is the case when viscoplastic

deformations are taken into account as these may lead to considerable microstruc-

tural changes including heterogeneous lattice orientation developing even within

grains. In the multiphase-field model grains are considered as having homogeneous

orientation and reinitializing the grain structure would be necessary to take into

account the formation of new subgrains due to deformation. It is not evident how

a strongly coupled theory would deal with updating the orientation at individual

material points due to concurrent viscoplastic deformation and grain boundary mi-

gration. The multiphase-field model has nevertheless been successful in sequentially

coupled approaches [Takaki et al., 2009; Takaki and Tomita, 2010; Güvenç et al.,

2013, 2014; Vondrous et al., 2015] to model static or dynamic recrystallization.

2.2. Orientation phase-field model

In the model by Kobayashi et al. [2000] and Warren et al. [2003] (which will be re-

ferred to hereafter as the KWC model), the basic phase-field model is extended by

considering also the crystal orientation to behave as a phase-field, varying continu-

ously over interfaces between grains and having its own relaxational dynamics. It is

clear that this approach differs considerably from the multiphase-field model. First,

only two fields are necessary to represent the crystal structure. For a pure solid, the

field φ ∈ [0, 1] is considered a coarse grained order parameter which takes the value

one in a perfect crystal and goes to zero in the grain boundaries. The KWC model

was formulated in two dimensions, allowing the crystal orientation everywhere to be
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θ

φ
1

Fig. 1. Schematic representation of the profiles of the orientation θ and order parameter φ phase
fields in the KWC model for a single-phase solid polycrystal.

represented by the scalar field θ representing a rotation around the out-of-plane axis

relative to a fixed frame. Second, this representation of the crystal orientation as a

continuous field allows for heterogeneities to develop even inside grains. This makes

the KWC approach particularly well suited to couple with a viscoplastic continuum

mechanics theory. A schematic representation of the profiles of the phase-fields in

the KWC model is shown in figure 1 for a single-phase solid.

As the orientation is measured relative to some fixed frame, only its gradient

enters the energy density. Kobayashi et al. [2000] showed that two terms are neces-

sary to include, a linear term in |∇θ| in order to energetically favor localized grain

boundaries, and (at least) a higher order term |∇θ|2 to smooth the profiles of η and

θ to allow for the grain boundaries to be mobile. For small misorientations, ∇θ is

a measure of the lattice curvature. Later in this paper the relation between lattice

curvature and dislocations will be elaborated and the connection to higher order

crystal plasticity theories will be discussed.

The specific dimensionless (overbar indicates non-dimensionalized operators and

parameters) KWC energy takes the form

FKWC =

∫
Ω

[
f(φ) +

a2

2
|∇φ|2 + s g(φ)|∇θ|+ ε2

2
h(φ)|∇θ|2

]
dΩ . (7)

The functions g(φ) and h(φ) are required to be monotonically increasing with the

variable φ. The function f(φ) has a single minimum at φ = 1 (for the application

of grain boundary migration in solids). Equilibrium is characterized by a vanishing

variational derivative and it is postulated according to the standard phase-field ap-

proach that relaxation is governed by rate equations of the following (dimensionless)
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form

Qηφ φ̇ = − δFKWC

δφ
= a2∆φ− ∂f

∂φ
− s ∂g

∂φ
|∇θ| − ε2

2

∂h

∂φ
|∇θ|2 , (8)

P ηθ φ
2 θ̇ = − δFKWC

δθ
= ∇ ·

[
ε2 h(φ)∇θ + s g(φ)

∇θ
|∇θ|

]
. (9)

In the above equations,Q and P are mobility functions which, in general, can depend

on the state variables such that Q = Q(φ,∇φ,∇θ;T ) and P = P (φ,∇φ,∇θ;T )

with T being the temperature. The presence of the linear term |∇θ| results in an

infinite diffusion type of equation for the evolution of the field θ which requires some

numerical regularization [Kobayashi and Giga, 1999]. Due to the coupling functions,

both fields will have interfaces at the same locations but the width of the interface

region will in general be smaller for θ than for φ [Lobkovsky and Warren, 2001].

3. Crystal plasticity and dislocation densities

In this section classic crystal plasticity theory is briefly introduced and in particular,

the link between the plasticity theory and dislocation densities is elaborated. Two

types of dislocations were identified by Ashby [1970]: so–called statistically stored

dislocations (SSDs) which are accumulated within grains during viscoplastic defor-

mation due to random trapping, and geometrically necessary dislocations (GNDs)

which are associated with incompatible deformations and can be expressed in terms

of plastic strain gradients and lattice curvature.

3.1. Kinematics of single crystal plasticity

Let X be the position of a material point in an undeformed body B0 and x its

position in the current, deformed state Bt and let the map x = ϕ(X, t) describe

the motion of material points between the reference and deformed configurations.

The deformation gradient tensor F∼ = ϕ ⊗ ∇0; J = detF∼ > 0 is the material

gradient of this map.

In plasticity, a multiplicative split F∼ = F∼
e · F∼ p is generally adopted [Kröner,

1959; Lee, 1969] whereby a fictitious, stress-free intermediate configuration is intro-

duced. This intermediate configuration is not unique as any rigid rotation of the

body will result in another stress-free configuration. Some choice therefore has to

be made to ensure the uniqueness of the multiplicative decomposition. In crystal

plasticity it is convenient to adopt an isoclinic intermediate configuration [Mandel,

1972, 1973] based on the observation that plastic deformation takes place by dislo-

cation slip processes that leave the orientation of the lattice vectors intact compared

to the reference state. This is demonstrated schematically in figure 2. There is thus

a clear distinction between lattice directions on the one hand and material lines on

the other, since lattice directions are not necessarily made up of the same points

in the reference and deformed configurations and the glide of dislocations during
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F∼
eF∼

p

F∼ = F∼
e · F∼ p

Fig. 2. In the isoclinic intermediate configuration the lattice directors retain their orientation
with respect to the undeformed configuration.

plastic deformation does not distort the lattice although it may shear material lines.

The evolution of plastic deformation by slip on N possible slip systems can be

described in the intermediate configuration by

Ḟ∼
p · F∼ p−1 =

N∑
α=1

γ̇α`α ⊗ nα , (10)

where `α and nα are the slip direction and slip plane normal and γ̇α is the slip rate

which must be specified. Typically, for each load situation, γ̇α is non-zero only for

a sub-set of preferred slip systems.

In this work the coupled model is presented for small strains and small rotations

(there is no distinction between referential and material configurations in the lin-

earized theory). With u being the displacement vector, the symmetric small strain

tensor is given by ε∼ = sym(u ⊗ ∇) = ε∼
e + ε∼

p and ϑ∼ = skew(u ⊗ ∇) = ϑ∼
e + ϑ∼

p is

skew-symmetric and represents small rotations. The rate of the rotation ω∼ = ϑ̇∼ is

the spin tensor. The linearized plastic rate of deformation and spin tensors are then

given by

ε̇∼
p = sym

(
N∑
α=1

γ̇α`α ⊗ nα
)
, (11)

ω∼
p = ϑ̇∼

p = skew

(
N∑
α=1

γ̇α`α ⊗ nα
)
. (12)

The elastic contributions follow from the additive decompositions, i.e. ε̇∼
e = ε̇∼− ε̇∼p

and ω∼
e = ϑ̇∼

e = ω∼ − ω∼p.

3.2. Lattice curvature and the dislocation density tensor

The elastic and plastic parts of F∼ are in general not compatible (they are not the

gradients of a vector field). A closed circuit C in B0 is therefore in general mapped

onto an open circuit in the intermediate configuration by F∼
p, and this is likewise

true for the inverse mapping of a closed circuit c in Bt by F∼
e−1. In the continuum
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description, the true Burgers vector for a smooth, oriented surface s in Bt, with

boundary c and containing dx, can then be defined from the closure failure as

b =

∫
c

F∼
e−1 · dx = −

∫
s

[
∇× F∼ e−1

]
· ds =

∫
s

α∼ · ds , (13)

where n is the outward normal and α∼ is the dislocation density tensor which can

thus be defined as

α∼ ≡ −∇× F∼ e−1 = − 1

J

[
∇0 × F∼ p

]
· F∼ T , (14)

where the last equality can be found from push-back and pull-forward operations

in (13). If the elastic stretches and rotations are smalla, which can be expected for

metals, the dislocation density tensor can be approximated as

α∼ ≈ ∇× ϑ∼e . (15)

For small deformations the lattice curvature is given by the gradient of the pseudo-

vector of the elastic rotation, i.e.

κ∼ ≡
×
ϑe ⊗∇ . (16)

From equations (15) and (16) follows the Nye relation [Nye, 1953]

α∼ = κ∼
T − tr(κ∼) I∼ , κ∼ = α∼

T − 1

2
tr(α∼) I∼ . (17)

GND development due to local deformation incompatibility results in size-

dependent material behavior. Higher order continuum crystal plasticity models

which can take into consideration the effect of the dislocation density tensor are

needed in this case, such as plastic strain gradient models [Fleck and Hutchinson,

1997] or Cosserat crystal plasticity [Forest et al., 1997, 2001; Mayeur and McDowell,

2014]. The latter approach is used in this work and will be presented in the next

section.

It appears that the lattice curvature tensor can be seen as an approximation

of the full dislocation density tensor. Free energy potentials involving the norm

and the square of the norm of the GND density tensor were considered by Forest

and Guéninchault [2013]; Wulfinghoff et al. [2015] in order to describe size effects

in gradient crystal plasticity. They are closely related to the rank one and rank

two lattice curvature potentials used in the KWC model. Relations between strain

gradient, Cosserat and micromorphic crystal plasticity were established in [Forest,

2008; Cordero et al., 2012].

aand in fact, if the elastic strain gradient also is small enough
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3.3. Dislocations and work hardening

As the dislocation density increases (both GND and SSD), additional plastic glide

becomes more difficult and the material hardens. This can be taken into consider-

ation by assuming that the critically resolved shear stress ταc (the critical value of

the stress projected on slip system α for which plasticity occurs) is proportional to

the scalar dislocation density ρ according to [Taylor, 1934; Franciosi et al., 1980]

ταc = µ b

√√√√ N∑
β=1

hαβ ρβ , (18)

where N is the number of slip systems, µ is the shear modulus, b is the norm of

the Burgers vector of the considered slip system family. The interaction matrix hαβ

accounts for the anisotropic interaction between slip systems.

The evolution of dislocation content on slip system α can be described by com-

peting mechanisms of multiplication and annihilation according to Kocks and Meck-

ing [2003] and Teodosiu and Sidoroff [1976] as

ρ̇α =
1

b

 1

K

√∑
β

ρβ − 2dρα

 |γ̇α| , (19)

where the parameter K is a dislocation mobility constant and d is the critical

annihilation distance between opposite sign dislocations.

Energy stored during viscoplastic deformation is also one of the most signifi-

cant driving forces for grain boundary migration [Humphreys and Hatherly, 2004;

Gottstein and Shvindlerman, 2010]. The stored energy and thereby driving pressure

due to a dislocation density ρ can be expressed approximately as

ψρ ≈
1

2
µ b2 ρ . (20)

Gottstein and Shvindlerman [2010] gives typical values of the driving pressure due

to stored dislocations that are several magnitudes larger than the driving pressures

due to grain boundary energy.

4. The coupled Cosserat–phase-field theory

This section is dedicated to an overview of the coupled Cosserat–phase-field model

proposed by Ask et al. [2018b] with some modifications that are detailed below. The

model is valid for the case of small strains, small rotations and small curvatures.

The model can be formulated within the large deformation framework, as proposed

in [Ask et al., 2018a].

4.1. Kinematics, deformation measures and balance laws

The Cosserat rotation tensor R∼ describes the rotation of a triad of directors at-

tached to each material point from the initial to the deformed state. This rotation
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is, a priori, independent of the displacements so that six degrees of freedom are nec-

essary to describe the motion of the material point: the displacement vector u and

the microrotation pseudo-vector Θ. In the small deformation setting the Cosserat

rotation tensor is then given by

R∼ = I∼ − ε∼ ·Θ , (21)

and the linearized deformation measures are given by [Eringen and Kafadar, 1976;

Forest et al., 1997]

e∼ = u⊗∇+ ε
∼
·Θ , κ∼ = Θ ⊗∇ . (22)

In the small strain setting the decomposition of the deformation into elastic and

plastic contributions is additive and given by

e∼ = e∼
e + e∼

p . (23)

For simplicity, an elasto-plastic decomposition of the curvature tensor will not be

pursued here, although possible following [Forest and Sievert, 2003]. Ask et al.

[2018b] introduced a third contribution in the decomposition of e∼ in the form of a

skew-symmetric eigendeformation with its own evolution equation. Here, a modi-

fied evolution law for the plastic deformation will be considered instead. The two

approaches lead to formally identical governing equations.

By simple inspection, it is evident that the symmetric part of the Cosserat

deformation is the usual small strain tensor, i.e.

sym(e∼) = ε∼ , (24)

whereas the skew-symmetric part is

skew(e∼) = ϑ∼ + ε
∼
·Θ . (25)

Its rate can be written as

ė∼ = ε̇∼ + ω∼ + ε
∼
· Θ̇ , (26)

with the skew-symmetric part represented by a pseudo-vector

×̇
e =

×
ω − Θ̇ . (27)

This latter expression relates the relative rotation of the material and the motion

of the microstructural directors that is described by the Cosserat rotation. In par-

ticular, taking into account plasticity and introducing the elastic and plastic spin

pseudo-vectors
×
ω p :=

×̇
e p and

×
ω e :=

×
ω − ×

ω p, respectively, the rate of the skew-

symmetric deformation can be expressed as

×
ω e − Θ̇ =

×̇
e e . (28)
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The above expression provides a link between the lattice and microrotation rates

that enables a formulation where the Cosserat directors remain parallel to the lat-

tice vectors as the body deforms. This is achieved by enforcement of the internal

constraint

×
e e ≡ 0. (29)

either on the constitutive level [Forest et al., 1997, 2000; Mayeur et al., 2011; Mayeur

and McDowell, 2014; Blesgen, 2014] or directly using Lagrange multipliers.

Finally, in order to account for migrating grain boundaries the Cosserat theory

is enhanced with a phase-field variable φ ∈ [0, 1] which is interpreted in this context

as a coarse-grained measure of crystalline order. In the bulk of an undeformed grain

the order parameter takes the value φ = 1 whereas φ < 1 in grain boundaries

or even inside plastically deformed grains due to build-up of so called statistically

stored dislocations.

The balance equations and corresponding boundary conditions for the coupled

formulation are found by applying the method of virtual power on the set of virtual

field variables

V = {φ̇,∇φ̇, u̇, u̇⊗∇, Θ̇, Θ̇ ⊗∇} , (30)

and their associated generalized stresses [Ask et al., 2018b; Abrivard et al., 2012a;

Ammar et al., 2009a]. By adopting the formalism of Gurtin [1996]; Gurtin and Lusk

[1999] for the phase-field, the integration of the phase-field equations in the overall

approach is straightforward. The resulting field and boundary equations are given

by

∇ · ξ
φ

+ πφ + πext
φ = 0 in Ω , (31)

σ∼ · ∇+ f ext = 0 in Ω , (32)

m∼ · ∇+ 2
×
σ + cext = 0 in Ω , (33)

ξ
φ
· n = πcφ on ∂Ω , (34)

σ∼ · n = f c on ∂Ω , (35)

m∼ · n = cc on ∂Ω . (36)

The stress σ∼ associated with the Cosserat deformation e∼ is not the usual Cauchy

stress and contains a skew-symmetric contribution that also appears in the balance

equation for the couple-stress m∼ which is work conjugate to the curvature/wryness

tensor κ∼. The microstresses πφ and ξ
φ

in (31) are associated with the phase-field

φ and its gradient ∇φ, respectively. External body forces and couples are denoted

by superscript 〈•〉ext and contact forces and couples by superscript 〈•〉c, with n the

outward normal to the boundary ∂Ω of the body Ω.
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4.2. Constitutive and evolution equations

The general constitutive equations used in this work comply with the thermody-

namic principles [Ask et al., 2018b]. In order to recover the phase-field dynamics

it is assumed that the stress πφ contains energetic and dissipative contributions so

that

πφ = πeqφ + πneqφ . (37)

The following expressions are proposed for the energetic quantities

πeqφ = −∂ψ
∂φ

, (38)

ξ
φ

=
∂ψ

∂∇φ , (39)

σ∼ =
∂ψ

∂e∼
e
, (40)

m∼ =
∂ψ

∂κ∼
, (41)

assuming that

ρΨ = ψ(φ,∇φ, e∼e,κ∼, rα) , (42)

where Ψ is the Helmholtz energy density and rα are internal variables related to

the inelastic behavior. For the dissipative processes it is assumed that there exists

a dissipation potential

Ω = Ωp(σ∼) +Ωα(Rα) +Ωφ(πneqφ ) , (43)

where

Rα =
∂ψ

∂rα
(44)

are thermodynamic forces associated with rα and evolution equations, including the

flow and hardening rules, are derived from the dissipation potential

ė∼
p =

∂Ωp

∂σ∼
, ṙα = −∂Ω

α

∂Rα
, φ̇ = − ∂Ωφ

∂πneqφ

. (45)

The potential Ω chosen in the following fulfills convexity conditions which ensure

positive dissipation. The formulation presented here differs somewhat from the one

presented in [Ask et al., 2018b] in that there are fewer contributions to the dissipa-

tion potential. This is for two reasons. First, a dissipative contribution to the stress

σ∼ was considered in the previous work which led to a separate evolution law for the

relative rotation in the spirit of the KWC model. This contribution is necessary in

the KWC model but superfluous in the coupled approach and therefore not con-

sidered here. Second, the separate eigendeformation type tensor introduced in [Ask

et al., 2018b] is considered as a part of the plastic deformation in this work and its

evolution is derived from Ωp.
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4.3. Coupled model

The free energy density for the coupled problem is given by Ask et al. [2018b]

ψ(φ,∇φ, e∼e,κ∼, rα) = f0

[
f(φ) +

a2

2
|∇φ|2 + s g(φ)||κ∼||+

ε2

2
h(φ)||κ∼||2

]
+

1

2
ε∼
e : E≈

s : ε∼
e + 2µc

×
e e · ×e e + ψρ(φ, r

α) .

(46)

The first line can be considered a generalization to three dimensions of the KWC

energy (7). It contains a grain boundary term due to the phase-field φ and a con-

tribution due to the lattice curvature tensor κ∼. The coupling functions g(φ) and

h(φ) are required to be non-negative and to increase monotonously with φ. The pa-

rameter f0 has dimension [Pa] and a, s and ε have dimension [m]. While the main

motivation for including the linear term corresponding to ||∇κ∼|| in the KWC model

was to localize the grain boundaries, the relationship between the lattice curvature

and the GND density tensor allows for a physical interpretation where the linear

term represents the self energy of the GNDs and the quadratic term is an interaction

energy [Ohno and Okumura, 2007; Mesarovic et al., 2015; Wulfinghoff et al., 2015].

The link between the KWC model and a higher order crystal plasticity theory was

also recognized in the work of Admal et al. [2018], who formulated a similar coupled

approach using the full GND density tensor. A consequence of including the linear

term is that the energy density (46) becomes non differentiable at zero curvature

and in the numerical treatment it is therefore replaced by a regularized quantity

[Kobayashi and Giga, 1999; Abrivard et al., 2012a; Wulfinghoff et al., 2015; Admal

et al., 2018; Ask et al., 2018b] to avoid the singularity at ||κ∼|| = 0.

The second line in (46) contains the energy contribution due to symmetric and

skew-symmetric elastic deformation. A standard quadratic form is adopted for the

symmetric strain with the (possibly anisotropic) elasticity tensor E≈
s. By choosing

the Cosserat parameter µc to be large enough, the skew-symmetric part of the

deformation is penalized and the Cosserat microrotation is required to follow the

lattice orientation, thus approaching the constraint (29). The following state laws

are obtained

sym(σ∼) =E≈
s : ε∼ , (47)

×
σ = 2µc

×
ee (48)

m∼ = f0

[
s g(φ)

1

||κ∼||
+ ε2 h(φ)

]
κ∼ , (49)

πeqφ = − f0

[
1− φ− s ∂g

∂φ
||κ∼|| −

ε2

2

∂h

∂φ
||κ∼||2

]
−

N∑
α=1

1

2
µ rα2 , (50)

ξ
φ

= f0 a
2∇φ . (51)

The very last term in (46) is the stored energy due to accumulated dislocations. It
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is taken to be

ψρ(φ, r
α) = φ

N∑
α=1

1

2
µ rα2 . (52)

where N is the number of slip systems and rα are internal variables. Note that there

is a coupling with the phase-field variable φ. This coupling ensures that the stored

energy acts as a driving force for grain boundary migration. The internal variables

are assumed to be related to the scalar dislocation densities via

rα = b

√√√√ N∑
β=1

hαβρβ . (53)

This leads to the following Taylor hardening expression

Rα =
∂ψ

∂rα
= φ µ rα = φ µ b

√√√√ N∑
β=1

hαβρβ . (54)

for the thermodynamic force Rα which is now interpreted as the critical resolved

shear stress on slip system α.

The plastic dissipation potential Ωp is assumed to be given by

Ωp =

N∑
α=1

Kv

n+ 1

〈 |τα| −Rα
Kv

〉n+1

+
1

2
η−1
? (φ,∇φ,κ∼)

×
σ · ×σ , (55)

where 〈•〉 = Max(•, 0) and τα is the resolved shear stress on slip system α that can

be calculated as

τα = `α · σ∼ · nα , (56)

where `α and nα are respectively the slip direction and normal to the slip plane.

Note that the stress tensor is not symmetric so that a contribution to the resolved

shear stress arises from the double contraction of the skew–symmetric stress with

the skew–symmetric part of the tensor `α⊗nα. This contribution can be interpreted

as a size–dependent kinematic hardening, as shown in [Sedláček and Forest, 2000;

Sedláček et al., 2002; Forest and Sedláček, 2003; Forest, 2008]. The second term

in (55) is supposed to be active only in the grain boundary regions which can

be achieved by constructing η?(φ,∇φ,κ∼) in terms of its arguments so that it is

small inside the grain boundaries and large inside the grains. The pseudo-vector
×
σ

contains the skew-symmetric contributions to the stress. The evolution of plastic

deformation follows from (45) and (55)

ė∼
p =

N∑
α=1

γ̇α `α ⊗ nα + η−1
? (φ,∇φ,κ∼) skew(σ∼ ) , (57)

with the slip rate given by

γ̇α =

〈 |τα| −Rα
Kv

〉n
sign τα . (58)
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Whereas the first part of (57) is a classic crystal flow rule the second part is included

to take into account the reorientation which takes place in the interface region during

grain boundary migration as a result of atomic reshuffling processes. It is a purely

skew-symmetric contribution, i.e. it acts only on the plastic spin. Specifically, the

skew-symmetric plastic deformation can be written as

×
ep =

×
eslip +

×
e? , (59)

with

×̇
eslip =

×
ωp − ×

ω? , ω∼
p − ω∼? = skew(

N∑
α=1

γ̇α `α ⊗ nα ) , (60)

×̇
e? =

×
ω? ,

×
ω? = η−1

? (φ,∇φ,κ∼)
×
σ . (61)

The quantity
×
e? which is here associated with the plastic spin was introduced in the

form of an eigendeformation with an associated evolution law in [Ask et al., 2018b].

In order to compare the two formulations, consider the elastic skew-symmetric de-

formation which is given by

×
ee =

×
ϑe −Θ =

×
ϑ− ×

ep −Θ =
×
ϑ− ×

eslip − ×
e? −Θ . (62)

When the Cosserat microrotations are taken to represent the lattice orientation

measured relative to a fixed frame, they are in general non-zero in the reference

configuration. If the deformations are zero it must hold that
×
ϑ(t = 0) = 0. In [Ask

et al., 2018b], this was resolved by adopting the following initial conditions

×
e?(t = 0) = −Θ(t = 0) . (63)

The same assumption can be made in this case, however unlike in [Ask et al., 2018b],

this will also have as a consequence that

×
ep(t = 0) = −Θ(t = 0) , (64)

since here the skew-symmetric plastic deformation does not only contain the con-

tribution due to plastic slip. Non-zero initial conditions on the plastic deformation

were also adopted in [Admal et al., 2018] in order to accommodate a polycrystal

made of differently oriented grains.

From (62) it is clear that an evolution of the Cosserat microrotation due to

a migrating grain boundary would result in a non-zero
×
ee and thereby a skew-

symmetric stress in the region swept by the moving front. Due to (61), this stress

is relaxed by evolution of
×
e?.

The evolution of the scalar dislocation densities ρα is assumed to follow a mod-

ified Kocks-Mecking-Teodosiu evolution law [Abrivard et al., 2012a,b; Ask et al.,
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2018b] such that

ρ̇α =


1
b

(
1
K

√∑
β ρ

β − 2dρα
)
|γ̇α| − ρα CD A(|κ∼|) φ̇ if φ̇ > 0

1
b

(
1
K

√∑
β ρ

β − 2dρα
)
|γ̇α| if φ̇ ≤ 0

(65)

The additional term compared to (19) accounts for static recovery due to disloca-

tions being annihilated in the wake of a migrating grain boundary. Full recovery is

obtained for sufficiently high values of the parameter CD. The function A(|κ∼|) is

chosen so that it localizes the static recovery process to the grain boundary regions.

The evolution of the phase-field φ is chosen to be governed by a quadratic

dissipation potential [Gurtin, 1996; Abrivard et al., 2012a]

Ωφ =
1

2
η−1
φ (φ,∇φ, ]Γ∼ e)π

neq
φ

2 , (66)

so that

ηφ(φ,∇φ, ]Γ∼ e)φ̇ = −πneqφ . (67)

5. Numerical solution of the triple junction problem

The model presented in the previous section has been implemented for numerical

simulations by finite elements in the Z-set code [Z–set package, 2013]. Details on the

numerical implementation can be found in [Ammar et al., 2009a; Ask et al., 2018b].

Since the implementation is in two dimensions, rotation only takes place around one

axis (in this case the z−axis) and the Cosserat pseudo-vector of microrotations only

has one non-zero contribution θ such that Θ = [ 0 0 θ ]T . Figure 3 shows the geome-

try of the triple junction problem. Dirichlet conditions are assumed for φ, θ and the

displacements u, with ux = uy = 0 along the boundaries. The computational do-

main is assumed to be 10×10 µm2 and is discretized by 50×50 quadratic elements

with reduced integration. The simulations are performed on a non-dimensionalized

system according to Ask et al. [2018b], with x = x/Λ and y = y/Λ where Λ = 1 µm.

The term η?(φ,∇φ,κ∼) in (61) is taken to be

η?(∇θ) = η̂?

[
1−

[
1− µp

ε

]
exp(−βP ε |∇θ|)

]
, (68)

with the coefficients chosen such that µp/ε = 1000 and βP ε = 1000.

The model parameters are given in 1. Values that are reasonable for pure copper

have been chosen although a formal fit to experimental data has not been carried

out. Dimensionless time t = t/τ0 is used in the simulations. A physical time scale

can be set by choosing the parameter τ0. Initial conditions must be provided for φ,

θ and the viscoplastic pseudo–vector
×
e?. The initial fields φ(t = 0) and θ(t = 0)

are constructed by means of sinh and tanh functions, respectively, whereas
×
e? is

initialized so that
×
ee(t = 0) = 0.



October 10, 2018 12:35 WSPC/INSTRUCTION FILE JMMP˙Ask˙2018

19

x

y

2 µm 8 µm

10
µ
m

0◦

−θ0

θ0

γ1

γ2

γ3

χ3

χ2

χ1

Fig. 3. Geometry and initial conditions for the triple junction problem (left) and definition of
angles and grain boundaries for the Herring’s equation (right).

Table 1. Model parameters.

f0 a s ε ηφ η̂? µ λ µc

Unit [MPa] [µm] [µm] [µm] [MPa s] [MPa s] [GPa] [GPa] [GPa]
Value 1.8 0.3 2. 2. 0.1 f0 τ0 0.1 f0 τ0 46.1 69.2 1.8

The linear term ||κ∼|| in the energy density (46) is regularized according to the

same scheme proposed by Warren et al. [2003] that was used in Ask et al. [2018b],

where ||κ∼|| is replaced by the function Ac(||κ∼||) with

Ac(ξ) =


c

2
ξ2 for 0 ≤ ξ ≤ 1/c ,

ξ − 1

2c
for ξ > 1/c ,

(69)

where c is a large and positive constant (in the simulations c = 104 is used).

5.1. Equilibrium of the triple junction

In two dimensions the triple junction problem concerns finding the equilibrium

solution when three grains have a common intersection. The solution will be of

the format shown schematically in figure 3 (right). If the grain boundary energies

γi are known, the Herring equation [Herring, 1951] can be used to calculate the

corresponding angles of the intersection according to

γ1

sin(χ1)
=

γ2

sin(χ2)
=

γ3

sin(χ3)
. (70)

Note that only for equal grain boundary energies (which would be the case for equal

misorientation between all grains) the angles χi are equal and each 120◦. Here, an

initial geometry according to figure 3 will be used, with the left-hand side grain

having an initial orientation of 0◦ and the other two grains ±θ0. This will result in
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Fig. 4. The equilibrium solution with θ0 = ±5◦ (left) and θ0 = ±7.5◦ (right). It is evident from
the images that the angles of the triple junction are different for the different grain misorientations.
Due to the diffuse nature of the interfaces and the discrete finite element mesh, the exact point
of the triple junction and thereby the angles can only be measured approximately. For θ0 = ±5◦,
the triple junction is at approximately x = 4 ± 0.1 and for θ0 = ±7.5◦, it is at approximately
x = 2± 0.1 (origin is at the center of the computational domain).

Table 2. Solution to the Herring equilibrium and numerical
(FE) results.

±θ0 γ1 γ2 χ2 xTP χ2 (FE)

5◦ 0.115 0.071 144◦ 4± 0.1 144.5◦ ± 0.3◦

7.5◦ 0.138 0.096 136◦ 2± 0.1 135◦ ± 0.6◦

two identical angles χ2 = χ3 and some manipulation of equation (70) results in

cos(χ2) = −1

2

γ1

γ2
, (71)

with χ1 = 360◦ − 2χ2.

The corresponding grain boundary energies for the chosen misorientations θ0 can

be calculated using the results of asymptotic expansion of the orientation phase-field

model by Lobkovsky and Warren [2001]. The derivation of the asymptotic solution

is rather long and will not be repeated here, the reader is referred to [Ask et al.,

2018b] for more details. Due to the strongly coupled nature of the two fields φ and θ

in the model, the solution in the sharp interface limit must be resolved numerically.

The calculated dimensionless grain boundary energies γ1 and γ2 for θ0 = ±7.5◦ and

θ0 = ±5◦ are given in table 2, together with the corresponding angle χ2 calculated

from (71).

Figure 4 shows the equilibrium solutions for θ0 = ±5◦ (left) and θ0 = ±7.5◦

(right). It is evident from the figure that different misorientations result in different

angles χi, as expected. Due to the diffuse nature of the interfaces and the discrete

finite element mesh, the exact point of the triple junction and thereby the angles

can only be measured approximately. For θ0 = ±5◦, the triple junction is at ap-

proximately xTP = 4 and for θ0 = ±7.5◦, it is at approximately xTP = 2 (the origin

is at the center of the computational domain). With the initial geometry given by
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Fig. 5. The influence of the parameter η̂? on the mobility of the grain boundaries. The top figure
shows the profile of the phase-field φ along y = 0 at t = 10 for different ratios rη = η̂?/ηφ. The
triple junction is approximately positioned where the gradient of the phase-field is maximum. The
bottom figure shows the profile of φ along y = 0 at t = 1, 10 and 50 for rη = 100 (red lines)
rη = 10 (black lines) and rη = 1 (blue lines). For t = 10 and 50 black and blue lines overlap.

figure 3, and recalling that Dirichlet boundary conditions are used, the angle χ2

found in the simulations can then be calculated as

χ2 ≈ arctan((xTP + 3)/5) + π/2 . (72)

The resulting approximate values for χ2 are presented in table 2. The agreement is

very good between the (semi-)analytic results and the simulations.

5.2. Parameter study and grain boundary mobility

In the proposed coupled model there is no separate relaxational dynamics for θ.

Instead, local reorientation in the grain boundary to allow for migration is made

possible by the evolution law for the plastic deformation and specifically the plastic

spin term ω∼
?. Ideally, the mobility of the grain boundary should be determined only

by the phase-field relaxational (mobility) parameter ηφ. However, if the relaxation

of the plastic spin is too slow, this will slow down or prevent the grain boundary

from migrating.

Simulations where carried out with η̂? varying by several orders of magnitude

in order to study its impact on the grain boundary migration. The other model

parameters are those in table 1. For the angles, θ0 = ±7.5◦ was used. Note that

the absolute value of η̂? is of less interest than the ratio rη = η̂?/ηφ. Measuring the
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Fig. 6. Evolution of the triple junction over time, from left to right t = 0.1, 1, 10 and 50. The
top plots show φ ∈ [0, 1] and the bottom plots show θ ∈ [−7.5◦, 7.5◦].

exact position of the triple junction during the simulations is not practical, instead

the profile of the phase-field φ along y = 0 is traced over time for different values of

rη. The triple junction is approximately positioned where the gradient of the phase-

field is maximum. In figure 5 (top), the profile of φ along y = 0 at t = 10 is shown

for rη = 1000, 100, 10, 1 and 0.1, respectively. For all rη ≤ 10, the same profile is

recovered. Figure 5 (bottom) shows the the profile of φ along y = 0 at t = 1, 10

and 50 for rη = 100 (red lines) rη = 10 (black lines) and rη = 1 (blue lines). Again,

there is not much difference between rη = 10 and rη = 1. This gives an indication

that, provided η̂? is chosen sufficiently small with respect to ηφ, this parameter does

not influence the grain boundary mobility. Similar results were found by Ask et al.

[2018b], however in that work there was an additional relaxational equation for

the Cosserat orientation which is not included here. This feature makes the model

simpler for practical use compared to the original KWC formulation.

5.3. Stresses in the grain boundary

Figure 6 shows the evolution of the triple junction over time, from left to right

t = 0.1, 1, 10 and 50. The phase-field φ is shown in the top row and the orientation

θ in the bottom row. A misorientation of θ0 = ±7.5◦ was used together with the

material parameters in table 1. It appears that the correct angles χi are stabilized

first and then the triple point migrates to minimize the grain boundary curvature.

The grain boundary migration is not expected to give rise to any significant

strains in the simulations for the triple junction problem. However, there are still

stresses present. The microstress πφ which belongs to the phase-field φ and is given

by equation (50) is non-zero in the grain boundary region. The dissipative part

of this stress drives the evolution of φ according to (67). The progress of the mi-
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Fig. 7. Microstress πφ ∈ [−5.4, 1.8] MPa at time t = 0.1, 1, 10 and 50 (left to right). Note that as
the solution stabilizes, the dissipative part πneqφ goes to zero and only the energetic contribution
remains.

-0.36 0.36-0.30 -0.23 -0.16 -0.10 -0.03 0.03 0.10 0.16 0.23 0.30

Fig. 8. Microstress ξ
φ
∈ [−0.36, 0.36] MPa at time t = 0.1, 1, 10 and 50 (left to right). The top

row shows the x-component and the bottom row shows the y-component.

crostress πφ over time is shown in figure 7 and the progress of the components of

the generalized stress ξ
φ

are shown in figure 8. The microstresses are governed by

the balance equation (31). Taking into consideration (31) and (67) together with

the additive decomposition (37) of πφ, the evolution of the phase-field φ is given by

ηφ φ̇ = −πneqη = ∇ · ξ
η

+ πeqφ . (73)

Both capillary forces (grain boundary curvature) and stored energy drive the evolu-

tion of the phase-field. Equation (73) highlights the competing contributions from

interface and bulk terms, associated respectively with ∇φ via ξ
φ

on the one hand

and φ and the associated microstresses πφ on the other hand. The couple-stress m∼
is governed by (33). Due to the coupling between terms in φ and terms in ||κ∼|| in



October 10, 2018 12:35 WSPC/INSTRUCTION FILE JMMP˙Ask˙2018

24

x

y

z

rη = 100

x

y

z

rη = 10

x

y

z

rη = 1

-4.5 4.5-3.7 -2.9 -2.0 -1.2 -0.4 0.4 1.2 2.0 2.9 3.7

Fig. 9. Skew-symmetric stress contribution
×
σ (in MPa) at t = 0.1 for three different values of

rη = η̂?/ηφ. From left to right, top to bottom: rη = 100, 10 and 1.

the energy density (46), the couple-stress m∼ contains mixed contributions. In the

orientation phase-field inspired model, this coupling is what ensures that the orien-

tation evolves along with φ (and vice versa). However, in the original KWC model

only gradients of orientation entered the energy function, not the orientation itself.

The energy could therefore always be lowered by rotating adjacent grains toward

a smaller misorientation. In the present model, this bulk rotation is prevented by

the Cosserat coupling term which ensures that, in the bulk, the Cosserat directors

remain parallel to the lattice vectors.

When the grain boundaries migrate and the orientation changes, the skew-

symmetric stress
×
σ becomes non-zero. This in turn drives the evolution of ω∼

? which

relaxes the skew-symmetric stress and allows for the grain boundary to migrate. In

the two dimensional simulations, there is only one non-zero contribution
×
σ =

×
σz to

×
σ. The rate at which the skew-symmetric stress vanishes depends on the parame-

ter η̂?. If this viscosity type parameter is large relative to the parameter ηφ which

controls the grain boundary mobility, the stress does not have time to relax and it

remains, slowing down the grain boundary migration as evidenced by the fact that a

larger ratio rη = η̂?/ηφ implies a slower evolution towards equilibrium. The effect of

the parameter η̂? is demonstrated in figure 9 which shows the skew-symmetric stress

contribution
×
σ at t = 0.1 for three different values of rη = η̂?/ηφ. In particular, for

rη = 1, the skew-symmetric stress has already relaxed after t = 0.1.

By construction, the choice of the viscosity type parameter η̂? influences the

relaxation time for the skew-symmetric stress in the grain boundaries. It is demon-

strated that this in turn plays a role for the grain boundary migration which is

slowed down if the skew-symmetric stress does not relax sufficiently fast.

The components of the couple-stress tensor m∼ (the only non-zero components

are mzx and mzy which are referred to as the x− and y−components, respectively)

are given in figure 10. The divergence of m∼ vanishes with vanishing skew-symmetric

stress according to (33). Unlike ξ
φ
, the couple-stress m∼ is not localized to the grain

boundary regions. Due to the Dirichlet conditions, there are some boundary effects,
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-3.6 3.6-3.0 -2.3 -1.6 -1.0 -0.3 0.3 1.0 1.6 2.3 3.0

Fig. 10. The non-zero contributions to the couple-stressm∼ ∈ [−3.6, 3.6] MPa at time t = 0.1, 1, 10

and 50 (left to right). The top row shows the x-component (mzx) and the bottom row shows the
y-component (mzy).

0 3.60.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3

0 1e-045e-05

Fig. 11. The norm of the couple-stress m∼ (in MPa) and and the norm of the curvature tensor

||κ∼|| (right) at time t = 50 (left). The scale for normalized ||κ∼|| has been set so that the maximum

value is 10−4 corresponding to the cutoff in the numerical regularization. There is some irregularity
in the cutoff region which may be in part due to the interpolation from the integration points of
the finite elements to the nodes but also to actual noise in the solution.

but more importantly there is a separation between the solution in the boundary

and in the bulk. This can be explained by the numerical regularization (69). Figure

11 shows the norm of m∼ next to ||κ∼||, where the scale has been adjusted so that

the normalized ||κ∼|| ≥ 10−4 (the cutoff for the regularization) is shown in black.
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6. Summary and outlook

The coupling of phase-field and mechanical models for the simulation of grain

boundary migration under load still is a largely open theoretical question. The

most popular multiphase field approach does not properly account for the role of

the development of lattice curvature inside the grains in recrystallization processes.

In the present work, the full coupling is performed within the Cosserat mechani-

cal framework thus extending the KWC approach. A slightly modified version of

the coupled crystal plasticity–phase-field model proposed in [Ask et al., 2018b] was

presented. By a short review of the underlying theory, the motivation for using an

orientation phase-field model together with the Cosserat crystal plasticity theory

was elaborated. The coupling between the orientation phase-field model and the

Cosserat theory is very natural as they both contain orientation as a degree of

freedom. The model has earlier been demonstrated to have the ability to predict

grain boundary migration due to both grain boundary energy and stored energy

gradients due to scalar dislocation densities. In this work it was demonstrated that

the model correctly predicts the equilibrium solution to the well-known triple junc-

tion problem. It was also demonstrated how the material parameters may influence

the grain boundary migration and for which choices of material parameters skew-

symmetric stresses in the grain boundary vanish or remain and counteract grain

boundary mobility, respectively. The current implementation of the model can be

used to simulate grain boundary migration in two-dimensional polycrystals. Three-

dimensional simulations remain challenging due to the need for a fine discretization

of the mobile interface regions and the numerical complexity of the coupled model.

In addition, the interpretation of the diffuse orientation across a boundary region

in three dimensions requires some attention.

The coupling of a higher order crystal plasticity theory and an orientation phase-

field model was also successfully pursued by Admal et al. [2018]. In the proposed

model by Admal et al. [2018], the grain boundary migration is always associated

with plastic slip in the region swept by the grain boundary. Grain boundary mi-

gration may take place due to grain boundary curvature (due to the phase-field

contribution) or in the form of shear induced grain boundary migration. Stored

energy is not included as a driving force but could be added in a similar fashion

as in the present work. The model proposed in the present work accounts for grain

boundary migration due to capillary forces (grain boundary curvature) or stored

dislocation densities. Shear induced grain boundary migration is not considered.

The lattice orientation may change due to plastic slip processes but grain boundary

migration is not associated with slip processes in the interface region.

In the Cosserat crystal plasticity the GND density tensor is approximated by

the curvature tensor, whereas the strain gradient plasticity model uses the full GND

density tensor which is more exact. On the other hand, the model by Admal et al.

[2018] considers the plastic slips of each slip system as degrees of freedom, each of

them associated with a balance equation. This is in contrast with the present work
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which considers only three additional degrees of freedom (the components of the

Cosserat orientation vector) for any number of slip systems. This is true also for

the corresponding large deformation theory [Ask et al., 2018a].

Although the formulations presented in this work and in Admal et al. [2018]

are not identical and have been applied to slightly different problems of coupled

deformation and grain boundary migration, it is clear that this type of modeling

framework is promising and represents a major step toward a truly unified the-

ory applicable to microstructure evolution during deformation and recrystallization

processes.

The finite deformation theory of the model is the subject of the work [Ask et al.,

2018a]. Its corresponding numerical implementation is a challenging task which will

make possible the simulation of processes such as cold rolling involving very large

plastic strains and lattice rotation and curvature. The main numerical challenges

regarding the model itself stems from the strong coupling and the singular diffusive

type equation resulting from the particular energy density of the orientation phase

field model. In addition, there are challenges related to the need for high resolution

at interface regions which may be solved by incorporating adaptive meshing tech-

niques. It should also be noted that although the model is presented for isothermal

conditions in this work (for brevity), temperature effects remain to be incorporated

at various suitable places in the model.
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