
HAL Id: hal-01908385
https://hal.science/hal-01908385

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure learning in hidden conditional random fields
for grapheme-to-phoneme conversion

Patrick Lehnen, Alexandre Allauzen, Thomas Lavergne, François Yvon, Stefan
Hahn, Hermann Ney

To cite this version:
Patrick Lehnen, Alexandre Allauzen, Thomas Lavergne, François Yvon, Stefan Hahn, et al.. Structure
learning in hidden conditional random fields for grapheme-to-phoneme conversion. Annual Conference
of the International Speech Communication Association, Aug 2013, Lyon, France. �hal-01908385�

https://hal.science/hal-01908385
https://hal.archives-ouvertes.fr


Structure Learning in Hidden Conditional Random Fields
for Grapheme-to-Phoneme Conversion

Patrick Lehnen1, Alexandre Allauzen2, Thomas Lavergne2,
Francois Yvon2, Stefan Hahn1, Hermann Ney1,2

1Human Language Technology and Pattern Recognition,
Computer Science Department, RWTH Aachen University, Aachen, Germany

2Univ. Paris-Sud, France and LIMSI/CNRS - Spoken Language Processing group
{lehnen,hahn,ney}@cs.rwth-aachen.de {allauzen,lavergne,yvon}@limsi.fr

Abstract

Accurate grapheme-to-phoneme (g2p) conversion is needed
for several speech processing applications, such as automatic
speech synthesis and recognition. For some languages, notably
English, improvements of g2p systems are very slow, due to the
intricacy of the associations between letter and sounds. In re-
cent years, several improvements have been obtained either by
using variable-length associations in generative models (joint-
n-grams), or by recasting the problem as a conventional se-
quence labeling task, enabling to integrate rich dependencies
in discriminative models. In this paper, we consider several
ways to reconciliate these two approaches. Introducing hidden
variable-length alignments through latent variables, our Hidden
Conditional Random Field (HCRF) models are able to produce
comparative performance compared to strong generative and
discriminative models on the CELEX database.
Index Terms: grapheme-to-phoneme conversion, G2P, HCRF,
discriminative models, hidden conditional random fields

1. Introduction
In recent years, Conditional Random Fields [1] (CRFs) have
been successfully applied to several language processing ap-
plications that can be formulated as sequence labelling tasks,
such as part-of-speech (POS) tagging [1], chunking [2], speech
recognition [3] and language modeling [4], to name a few.
Grapheme to phoneme conversion (g2p) does not so easily
lend itself to CRFs, since the training data not always con-
tain the alignment information between individual graphemic
and phonemic symbols. The usual approach is to automati-
cally compute these alignments prior to training for instance
using the BIO [5] labeling scheme. However, this solution re-
quires the alignments to be provided or computed by an external
knowledge source; furthermore, the choice of a specific labeling
scheme introduces an undesirable bias in the training data. As a
result, g2p is artificially expressed as a sequential letter classifi-
cation task and fails to capture the variable-length nature of the
linguistic grapheme. This issue is less of a problem for gener-
ative probabilistic models, which can model hidden alignment
through latent variables [6, 7], at the price of a much less re-
strictive set of predictive features. A natural way to get the best
of both worlds is to consider Hidden CRFs [8, 9, 10, 11], which
can take hidden variables into account and which was shown,
in [12], to deliver state-of-the-art performances at the expense
of a high computational cost. This approach remains unsatis-
factory, since the g2p mappings it captures are limited, and the

features it uses only consider single letters or phonemes as unit.
We introduce a novel approach inspired by the phrase-based
framework used in machine translation. This new HCRF model
handles arbitrary mapping between graphemic and phonemic
substrings since they are observed on the training data. The
variable-length units is directly integrated in the model, en-
abling us to capture more complex dependencies. Moreover,
by considering a pre-computed conversion table, the computa-
tional cost is drastically reduced.

In this paper, we compare performances achieved on the
CELEX database [13] by these different kind of HCRF to
a strong discriminative baseline [14] and the generative joint
multigram model [6, 7]. We also describe how these approaches
differ in terms of speed and the search space they explore. This
paper is organised as follows: section 2 provides a short de-
scription of the HCRF approach, while section 3 proposes three
implementations of this kind of models. Then features that are
used by the differents models are introduced in section 4 fol-
lowed by the presentation of the experimental set-up and results
in section 5.

2. Hidden Conditional Random Fields
Hidden Conditional Random Fields (HCRFs) [8, 9, 10, 11]
estimates the conditional probability of a phoneme sequence
y ∈ YN1 given the observed grapheme sequence x ∈ XM1 by
considering a set of latent variable s that represents in our case
the segmentation of x and y:

p(y|x) =
∑

s∈S
p(y, s|x) =

∑

s∈S
expH(y, s, x)

∑

s̃∈S

∑

ỹ

expH(ỹ, s̃, x)
(1)

The summation over the segmentations s is restricted by a set
S defined by the actual implementation of HCRFs. This pub-
lication will include three implementations of S which are de-
scribed in Sec. 3. The hypotheses are ranked with the help of
a general feature description H(y, s, x) = λth(y, s, x) com-
posed of binary features h(y, s, x) ∈ {0, 1} with their respec-
tive weights λ. Estimation of the parameters λ is by maximiza-
tion of the conditional log-likelihood L over the training corpus
{yk, xk}Kk=1 taking into account Elastic-Net parameter priors:

L(λ) =

K∑

k=1

log p(yk|xk)− c1||λ||11 −
1

2
c2||λ||22,
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Figure 1: In System A the source symbol sequence is repre-
sented as a chain 1(a), the input chain is augmented by the tar-
get vocabulary (A, B, C, D) and weighted by prior and source-
to-target features 1(b). To support segmentations s every target
symbol is extended with a label representing the beginning b,
the continuation c, and a doubling of a source label and begin-
ning of a new target label d. In case the doubling was selected
an alternative path is used with two arcs per source word 1(c).

where yk denotes the reference grapheme sequence for the kth
training example and c1 and c2 are hyperparamters that weight
the regularization terms. The optimal inference rule is then to
select the best sequence of phonemes ŷ according to:

ŷ = argmax
y

{p(y|x)} = argmax
y

{∑

s∈S
p(y, s|x)

}
(2)

The summation over all the segmentation implied by equation 2
might be computationally expensive. Therefore, the Viterbi ap-
proximation can be applied with the following inference rule:

ŷ = argmax
y

{
max
s∈S

p(y, s|x)
}

(3)

The objective function is optimized using resilient back-
propagation, (R-PROP), a gradient descent algorithm. With the
addition of a latent variable, the conditional log-likelihood is
not convex like in standard CRF but expermiental result doesn’t
show sensitivity to the starting point.

3. Three ways to cope with hidden structure
As introduced in equation 1, the hidden variables S defines the
search space explored by the model, i.e. the possible segmen-
tations of the grapheme and phoneme sequences and their as-
sociations. Without any restriction, this problem is untractable.
However, word internal structure and its associated pronuncia-
tion suggests that this search space can be safely restricted in
some way, hence allowing exact computation of the gradient
and inference. Thus, in this paper we consider three different
ways to restrict the search space.

As a baseline approach (see [15, 12] for further details),
an external tool provides the alignment of the training exam-
ples that are used to recast the problem as a sequence labelling

(a)

(b)

(c)

Figure 2: As in System A the utterance is represented in Sys-
tem B with an acceptor 2(a), which is composed with a segmen-
tation transducer to consider all segmentations supported in the
conversation table 2(b). The result is composed with the con-
version table to include all conversions 2(c), and the final result
is weighted with the HCRF features (Sec. 4).

task using the so-called BIO scheme [5]1. With this assump-
tion, the model consists of a standard linear chain CRF (LC-
CRF). Its main drawbacks is that it cannot handle the case where
the phoneme sequence is longer than the grapheme sequence.
The second approach (System A), described in [12] and in sec-
tion 3.1, proposes an extension of the BIO scheme where, S is
by construction restricted such that any segment of graphemes
can be associated to a segment of at most two phonemes. With-
out using an external tool to provide alignments, this restriction
yields state of the art performances.

In this paper, we introduce a new model (System B) de-
scribed in section 3.2 and inspired by the phrase based ap-
proach in machine translation that allows arbitrary segmenta-
tion of both the grapheme and phoneme sequences, as long as
they are observed in the training set.

3.1. Description of HCRF (System A)

System A (introduced in [12]) uses phonemes annotated with
special segmentation labels inspired by the BIO scheme [5]
organized as in Hidden Markov Models (HMMs). Leaving
the modeling of the phrase information to phrase-like features
(Sec. 4 for more details). First, the grapheme sequence is repre-
sented as a chain of symbols in a finite state transducer [16]
(Fig. 1(a)). Second each arc is duplicated for each possible
phoneme symbol and weighted with the features taking only
one phoneme symbol into account (Fig. 1(b)). In a third step
all the phoneme symbols are extended with three labels indi-
cating the beginning of a new phoneme b, its continuation c,
and the doubling of a phoneme that implies the beginning of a
phoneme d. The arcs labeled with the doubling label d start an
alternative path with two arcs per phoneme (Fig. 1(c)). The fi-
nal result is composed with a n-gram acceptor weighted with the
features taking only phonemes into account, and in a last step

1In this case, S is not hidden but derived from the alignments
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all remaining features are applied. Known from HMMs the arcs
indication continuation/beginning/doubling are weighted with a
penalty δ0/δ1/δ2 (designed as HCRF features).

3.2. Description of HCRF (System B)

This system is inspired by the phrase based machine transla-
tion framework. In a preliminary step, the training corpus is
aligned, e.g. with GIZA++ [17], to build the conversion table2

that consists in a set of segments of graphemes and their as-
sociated conversion in phoneme segments. It is worth noticing
that the external alignment is only used to derive this conversion
table and never used by the following steps.

For inference and decoding purpose, the System B is imple-
mented as a finite-state transducer cascade involving the follow-
ing steps: the grapheme sequence is represented as an acceptor,
that is composed with a segmentation transducer to consider
all the segmentations; the conversion table is then applied by
composition to generate the full search space that contains all
the possible conversions of the input grapheme sequence; fi-
nally, the HCRF model is used to score this search space. For
inference, the Viterbi hypothesis can be computed by finding
the shortest path in this search space. Moreover, two additional
steps can be carried on: the determinization that computes the
summation of equation 2; and a composition with a n-gram
model of phoneme sequence. This architecture is closely re-
lated to the proposal of [18].

4. Features
The features supporting the conditional probability h(y, s, x) ∈
{0, 1} are a critical choice for CRF systems. Up to the au-
thors knowledge, in [14] the currently best result on Celex was
published. [14] use only surface features taking only the used
letters on source side and the phonemes on target side into ac-
count. The authors decided to construct their systems based on
the same kind of features. Basically three sets of features are
used:

source-n-gram Features depending only on one target symbol
yn and a combination of source symbols xsn+γ2

sn+γ1
relative

to the currently aligned source word (with γ1 ≤ γ2).

target-n-gram Features only describing the relation of a con-
secutive set of target symbols ynn−δ including the current
target symbol yn.

joint-n-grams Combinations of source-n-grams and target-n-
grams.

System A models the search space directly via the source
and target symbols. The choice of the parameters was γ1, γ2 =
−5, . . . , 5, γ1+γ2+1 ≤ 6, and δ ≤ 3. System A does not use
joint-n-grams.

System B models the search space by tuples of source and
target symbols, which is commonly known as phrases. Thus
the smallest unit for a features is the source part of a phrase and
the target part of a phrase. Using the source and target part of
the phrase in the description of source-n-grams, target-n-grams
and joint-n-grams as xm and yn, the parameters are γ1, γ2 =
−1, . . . , 1, δ ≤ 1 and the joint-n-grams are all combinations of
the source- and target-n-grams. In average the size of a source
phrase with System B is 1.84 source symbols, letting the source
features span over 5.53 source symbols in average. Which is
about the same size as in System A.

2Within the machine translation terminology, the conversion table
corresponds to the set of phrase pairs or the phrase table.

5. Experimental Results
To evaluate the different approaches described in this paper,
experimental results are reported using the English Celex cor-
pus [19]. This data set is divided in three parts according to the
previously published results of [20, 14] and it contains 39 995
training samples, 15 000 words for test and 5 000 word that are
used as development set. The output vocabulary is made of 53
symbols (phonemes). All the results are reported in terms of
both the Levenshtein based phoneme error rate (PER) and the
word error rate (WER).

5.1. Build-Up of System A

For System A the regularization parameters c1 and c2 were op-
timized with respect to the error rate on the development set to
c1 = c2 = 1

16
, and a save number of iterations was estimated

as 75. With 75 iterations all metrics (PER, WER, number of
features, conditional log-likelihood) were converged. To avoid
local optima the features with respect to the currently aligned
source word (yn, xan) were initialized with IBM-1 probabil-
ities λ = − log(p(e|f)). It turned out that long contexts on
source and target are needed to gain good performance. The re-
sult in line 4 of Tab. 1 is poor and improves greatly with source-
n-grams (n up to 6) in line 5 of Tab. 1 and are further improved
with target-n-grams in line 6 and 7 of Tab. 1. In earlier exper-
iments the need for δ0/δ1/δ2 penalties was verified, as without
the penalties, e.g. the performance of line 6 of Tab. 1 is reduced
to a ten times larger PER (≈ 25%).

Eq. 2 suggest the use of the summation over all possible
segmentations in search to be symmetric to the training condi-
tions. Actually the full summation is computationally infeasi-
ble as it involves the determinization over a complex automa-
ton, permitting to generate from one target symbol to two times
as many target symbols as in the source sentence. We gener-
ate a k-best list with k = 400 and performed determinization
within the k-best through summing up all equal hypotheses.
As is shown in line 8 of Tab. 1 the determinization does not
change the system performance significantly. As most of the
time p(y, s|x) ≥ 50% for the first best in the k-best list, only a
small amount of the probability mass could change the recogni-
tion result.

5.2. Build-Up of System B

To build the System B, the first step aims to create the conver-
sion table that consists in a set of segment of graphemes and
their associated conversion in phoneme segments. This step
is carried on by running GIZA++ with the standard setup to
estimate the alignments between grapheme and phoneme se-
quences in both direction. Then the grow-diag-final-and heuris-
tic [21] is applied to extract the conversion table. For all the
results published in this article, the size of the segments on both
sides (grapheme and phoneme) are limited to 3. This value was
tuned experimentally on the development set.

For the decoder used during the inference and training
steps, most operations directly use functionalities of the Open-
Fst library [22], except for the Forward-Backward algorithm
and the interactions with the HCRF model, which rely on a
in-house implementation3. The inference defined by Eq. 2 can
be implemented with the determinization operation. However,

3The Forward-Backward algorithm can be implemented as a WFST
operation using the shortest path algorithm in the log semi-ring. How-
ever, this operation being the most time consuming step in training,
resorting to a tailored implementation yields a huge speed-up.
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given the size of the search space, this operation can be very
time consuming. For efficiency purposes, we use an approxi-
mate determinization that first extracts the k-best hypotheses,
with k = 400. During the inference step, a n-gram model of
phoneme sequence can be applied by composition after the de-
terminization. The n-gram models are estimated with Kneser-
Ney discounting [23] using all the training set.

To restrict the size of the conversion table, the segment pairs
extracted from the alignment are limited to a size of 3. With
this restriction the references cannot be always produced given
the conversion table. A practical solution, used in many stud-
ies, is to resort to oracle references, corresponding to the best
reachable solution w.r.t to a given metric, the BLEU [24] in the
following experiments.

5.3. Influence of the latent variable

A popular way of modeling segmentations is to separate the
estimation of the segmentation and estimation of the target se-
quence. As a baseline the approach based on generative joint-
n-grams [20] estimated a segmentation on the training corpus
respecting the target sequence reference yk. Based on the ref-
erence and the segmentation a LCCRF p(y, s|x) is estimated.
During search the generative joint-n-grams propose a hypothe-
sis including a best segmentation and best target sequence. The
best target sequence is omitted and only the best segmentation
is used to duplicate source symbols to provide slots for the es-
timation of target symbols in which the LCCRF is used to find
an optimal target labeling.

The resulting LCCRF (line 3 of Tab. 1) uses exactly the
same features as the HCRF in line 7 of Tab. 1 except the δ0/δ1/δ2
penalties, with a significant degradation in performance with
respect to PER and WER. Actually it is advantageous to model
the segmentation within the CRF. Moreover, we can observe
that the performances of System B are significantly worst than
the others. One difference with the others is the feature set that
uses segment as units instead of a single grapheme or phoneme.
The other difference is the way the search space is built that
makes System B drastically faster.

5.4. Comparison of the search spaces

For the sake of comparison, we provide statistics that character-
ize the search spaces explored by the System A and System B
for two examples. For the word aback, System A consider a
search space of 13274 nodes and 207356 arcs that corresponds
to 1.74 × 1017 pathes. For the same word, System B only
explores 36686 pathes with 93 nodes and 1042 arcs. For the
word bent, System A consider a search space of 10336 nodes
and 155936 arcs that corresponds to 6.22× 1013 pathes, while
the corresponding search space explored by System B contains
7914 pathes made of 92 nodes and 1016 arcs. The huge reduc-
tion of the search space explains why System B is more than a
thousand times faster than System A for training and inference.

It is worth noticing that, while System A consider all the
possible segmentations of the grapheme sequence, System B
drastically reduces the number of segmentation by allowing a
limited segment length and by considering only the segments
observed in the training data. For instance, in these experi-
ments, System B uses an inventory of 5184 grapheme segments
and in average 408 different segmentations on the test set for
an average word length of 8.3 graphemes. Moreover, while the
System A tends to select for the test set 1-to-1 alignments (in
80% of the case) and 2-to-1 alignments (in 17% of the case),
the repartition for the System B differs: 36% of 1-to-1, 29% of

Table 1: Results on the Celex corpus. Line 1 and 2 provide base-
line results where [20] is the best found generative approach,
and [14] the best found discriminative approach on this task.
Line 3 provides a result for a system leaving the modulation of
the segmentation to a the model [20] and using the same fea-
tures as in 7 except segmentation specific features (Sec. 5.3).
The next two blocks describe the build-up of the System A and
System B including their best result (Sec. 5.4).

PER[%] WER[%]
Dev Eva Dev Eva

1 [14] 10.8
2 joint n-grams [20] 2.5 11.4

3 LCCRF 2.8 2.8 13.5 13.5

4

Sy
s.

A

(eaj , fj) + (δj) 52.5 52.7 97.1 97.7
5 + source n-grams 4.0 3.8 20.9 20.2
6 + target-2-grams 2.6 2.5 12.6 12.3
7 + target-3-grams 2.6 2.5 12.3 11.6
8 + determinization 2.6 2.5 12.3 11.7

9

Sy
s.

B

3.2 14.5
10 + determinization 3.1 14.1
11 + 4-gram LM 3.1 14.0

2-to-2, 17% of 2-to-1, 10% of 3-to-2, 5% of 3-to-3 and 1% of
2-to-3 (the others can be neglected).

To assess, whether this restriction of the search space may
explain the decrease in performance, the oracle hypothesis is
estimated for the test set as explained in section 5.2. The oracle
hypothesis exhibits a PER of 0.3% and a WER of 1.3%. These
results show that the restriction of search space is efficient since
the search space contains in average very competitive hypothe-
sis. Unfortunately, the feature set defined at the segment level
seems to be insufficient since the model is not able to select
among the search space such relevant hypothesis.

6. Conclusion
In this paper we compare three ways to define Hidden Condi-
tional Random Fields that can express a wide range of mapping
between grapheme and phoneme sequences. At the expense of
a degradation in performances, we introduce a model inspired
by the phrase-based machine translation framework that drasti-
cally reduces the computational cost by using an efficient way
to prune the search space. Experimental evidence tends to show
that the poor performances of this system is due to the feature
design and not to the strategy used to prune the search space. In
future work, we plan to overcome this issue by a tailored feature
engineering.
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