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The experimental realization of the Harper-Hofstadter model in ultra-cold atomic gases has placed
fractional states of matter in these systems within reach—a fractional Chern insulator state (FCI)
is expected to emerge for sufficiently strong interactions when half-filling the lowest band. The
experimental setups naturally allow to probe the dynamics of this topological state, yet little is
known about its out-of-equilibrium properties. We explore, using density matrix renormalization
group (DMRG) simulations, the response of the FCI state to spatially localized perturbations. After
confirming the static properties of the phase we show that the characteristic, gapless features are
clearly visible in the edge dynamics. We find that a local edge perturbation in this model propagates
chirally independent of the perturbation strength. This contrasts the behavior of single particle
models with counter-propagating edge states, such as the non-interacting Harper-Hofstadter model,
where the chirality is manifest only for weak perturbations. Additionally, our simulations show that
there is inevitable density leakage from the first row of sites into the bulk, preventing a naive chiral
Luttinger theory interpretation of the dynamics.

Introduction. Understanding the dynamical prop-
erties of strongly correlated quantum phases in dimen-
sions higher than one still remains a difficult challenge
in the vast majority of cases [1, 2]. The lack of a com-
plete paradigm originates from the inherent complexity
of simulating the dynamics of strongly interacting quan-
tum systems. However, modern experiments [3–7] are
now able to access time-dependent properties and thus
the need to precisely characterize dynamical signatures
of correlated phases is becoming pressing. Among the
most intriguing are scenarios in which topology joins in
as an additional ingredient of the system.

A recent prominent example is the realization of
the Chern insulator phase using ultracold atoms, both
in a bosonic Harper-Hofstadter model [8–11] and the
fermionic Haldane honeycomb model [12, 13]. In both
cases, periodically driving a lattice loaded with ultra
cold atoms has been proven to show topological fea-
tures [13, 14], as predicted by general theoretical argu-
ments based on Floquet theory [15–19]. On-site interac-
tions in the Harper-Hofstadter realization can drive the
system into a bosonic Floquet fractional Chern insula-
tor (FCI) state [20–29], the bosonic periodically driven
analog of the fractional quantum Hall (FQH) effect [30–
35]. Several protocols have been proposed to prepare this
state and the phase diagram of the Harper-Hofstadter
model for hardcore bosons has been established using var-
ious numerical methods [32, 34, 36]. Although this body
of knowledge combined with proposals to detect chiral
edge states [37–39] hinted how to identify the existence
of the FCI state in cold atomic experiments, simulations
of dynamical signatures of this phase are still lacking.
However, the observation of time-dependent quantities in
this system is possible, due to the high tunability of pa-
rameters and slow dynamics compared to the solid state,

and necessary, due to the difficulty of probing transport
quantities characterizing these states, such as the Hall
conductivity.

In this Letter we address dynamical properties of the
edge of the FCI phase of hardcore bosons at filling factor
ν = 1/2 after local quenches using matrix-product state
(MPS) based simulations. We use the density matrix
renormalization group (DMRG) method together with a
recently introduced method [40] that allows for the ef-
ficient simulation of the dynamical response function in
two-dimensional systems [41]. Our goal is to provide dis-
tinct dynamical signatures of the FCI phase which could
be probed with current state of the art experiments. By
adding a particle at the edge we find a clear chiral prop-
agation of the FCI gapless edge modes, characteristic for
such phases (see Fig. 1). Moreover, this protocol pro-
vides a simple distinction between an emergent Laugh-
lin state and a non-interacting Chern insulator (CI) that
hosts multiple edge modes of opposite chirality. The
latter shows no chiral asymmetry while the chirality in
the former case is clearly visible. The reason is that a
generic perturbation in the non-interacting case mixes
edge states with opposite chirality while the chirality in
the Laughlin case is protected by the many-body bulk
state. As an experimentally relevant example we study
the φ = π/2 Harper-Hofstadter model at total filling
1/8 [8–11] and propose a protocol that applies a local
trap at the edge to distinguish the FCI state by varying
the trap strength.

Static properties. We consider the Harper-
Hofstadter Hamiltonian [8, 9]

H = −J
∑
〈ij〉

(
eiφija†iaj + h.c.

)
(1)
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FIG. 1. Time evolution of the particle density in the Harper-
Hofstadter model after a particle has been created at the edge
of an empty vacuum state with total filling ν = 0 (a) and in
the interacting FCI state at ν = 1/2 of the lowest band (b).
The spectral function A(kx, ω) of the non-interacting case (c)
reveals a prominent overlap with gapless edges states of both
chiralities. The inset shows for comparison the density of
states of the single-particle model. In contrast, the spectral
function for the FCI (d) shows a single chiral mode.

on a square lattice with a magnetic flux of φ = π/2 per

plaquette. Here a†i (ai) creates (annihilates) a hardcore
boson on site i. The single-particle spectrum of H has
four bands (see Fig. 1c, inset) with the central bands
touching at four Dirac points. The model is charac-
terized, from top to bottom, by three Chern numbers
Ci = ±(1,−2, 1) where the sign is determined by the sign
of φ. We start by verifying that H indeed hosts a ν = 1/2
Laughlin state in agreement with previous results [30–
34, 43]. For this we simulate Hamiltonian (1) on an in-
finite cylinder of circumference Ly and total filling 1/8
with DMRG, which enforces the half-filling of the lowest
Chern band. The results are summarized in Fig. 2 and
[42] which confirm the topological nature of the state. We
find a quantized Hall conductivity of ν = 1/2, the char-
acteristic structure in the entanglement spectrum, the
static correlation function on the edge that approaches
the prediction of Luttinger liquid theory with increasing
bond dimension (χ), and a central charge of c = 1 for the
edge theory through a finite entanglement scaling [44, 45]
when considering an infinite strip geometry. The latter
quantity shows that the DMRG simulations on the infi-
nite strip reproduce the expected critical behavior at the
edge and that edge overlap is negligible for our choices of
Ly ≥ 8 [46, 47].

Evolution of an added particle at the edge. Hav-
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FIG. 2. Static properties of the bosonic ν = 1/2 fractional
Chern insulator. Panel (a) shows the pumping of a charge per
two flux periods as expected for a ν = 1/2 FCI state. The
inset shows the entanglement spectrum of the zero charge-
sector. The low lying states satisfy the expected conformal
field theory (CFT) counting {1, 1, 2, 3, 5, . . . } (see also [42]).
All data in (a) are calculated in an infinitely long cylinder
with Ly = 8. Panel (b) shows the scaling of the entanglement
entropy S as a function of the correlation length ξχ for an in-
finite strip. The slope of c/6 determines the central charge of
the edge theory c = 1. The lower right inset displays the real
space charge density of a strip configuration, which is infinite
in the x-direction and finite in the y-direction with Ly = 8.
The upper left inset shows the ground state correlation func-

tion Cx = 〈axa
†
x0〉 on the edge versus x − x0 of an infinite

strip with Ly = 10. The dashed line ∝ (x− x0)−2 follows the
Luttinger liquid theory prediction.

ing established the presence of the many-body FCI state
at 1/8 filling, we will now focus on the dynamical re-
sponse. The results are shown in Fig. 1 and reveal char-
acteristic differences between the single-particle and FCI
case. We first investigate the single-particle case and con-
sider the system on a strip geometry with open (periodic)
boundary conditions along y (x). A particle is created at
the edge of an empty lattice by acting on it with an a†

operator and the resulting state is then evolved in time.
Figure 1a shows the time evolution of the particle density
on the edge which exhibits no chirality; this can be un-
derstood by the following reasoning. The single-particle
spectrum of the model (shown in the inset of Fig. 1c)
possesses two dispersing mid-gap modes at different en-
ergies of opposite chiralities. These connect the central
band (C = −2) to the top and bottom bands (C = 1)
and both modes are exponentially localized at the edge
of the finite strip. When creating a single particle at
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FIG. 3. Fourier transformation of the particle density evolu-
tion for a shallow (µ = −2J) and a deep trap (µ = −100J)
localized at an edge site of the single-particle (a,c) and FCI
case (b,d).

one edge, the state has overlap with both edge modes
since both have support on the edge where the parti-
cle is created leading to the symmetric dispersion of the
particle density. To verify the above interpretation, we
compute the spectral function A(kx, ω) as the Fourier
transform in space and time of the dynamical correlation

function Cx(t) = 〈ax(t)a
†

x0
(t0)〉 for momentum kx along

the edge at frequency ω shown in Fig. 1c. When com-
pared to the energy spectrum of H (Fig. 1c, inset), the
spectral function highlights the fact that both mid-gap
chiral states have overlap with the created particle, ex-
plaining the achiral behavior observed when simulating
the time evolution.

For the interacting case, we consider an infinite strip
geometry at ν = 1/2 filling of the lowest band to prepare
the system in an FCI ground state |ΨFCI

strip〉 (see lower right
inset of Fig. 2b). We again create a particle at the edge

to obtain the state |Ψi〉 = a†i |ΨFCI
strip〉. We then simulate

the time evolution of |Ψi〉 under the Hamiltonian H using
a matrix-product operator based time evolution method
[40–42, 48]. Unlike in the free particle case, the propa-
gation of the density is chiral (Fig. 1b) consistent with
the single chiral branch in the spectral function (Fig. 1d).
In the FCI state, the emergent chirality is protected by
the topology of the many-body wave function in the bulk
and thus it is more robust than the single-particle case.

Trapping potential and dynamics. With the in-
sight gained previously it is possible to devise a proto-
col closer to what is experimentally realizable. In cold
atomic systems, lasers are used to control the local den-
sity of particles, making it possible to create a local trap-

ping potential of varying strength of the form [49, 50]

Hµ = µa†iai. (2)

We again restrict i ∈ edge and compare the response of
the single-particle case and the hardcore boson ν = 1/2
FCI state as a function of µ. Our results are shown in
Fig. 3 where we plot the Fourier transform of the parti-

cle density evolution on the edge, i.e.
∫
dx
∫
dta

†

x(t)ax(t)
with x on the edge. (see also [42]). For the single-particle
scenario in Figs. 3a and c, we fill the lowest energy state
of Hamiltonian (1) with one particle in the presence of
a finite µ and then time evolve the resulting state with
a quenched Hamiltonian by abruptly switching off the
local potential. As a function of the trapping potential,
the Fourier transform shows a non-symmetric (symmet-
ric) structure corresponding to a chiral (achiral) density
evolution for a shallow (deep) trap (see Fig. 3a and c).
This difference originates from the fact that for a given µ,
the evolving state can only explore a sub-set of the band
structure. If µ is smaller than the gap between lowest and
central band, then time evolution allows to explore states
only within one chiral edge state and thus exhibits chiral
behavior. If µ is large compared to the total band width,
the initial state has overlap with the entire spectrum af-
ter switching off the potential. As discussed previously
for Fig. 1c, these states include two chiral modes of oppo-
site chirality, and thus the chiral propagation disappears
(Fig. 3c).

For the interacting case, we find the ground state for
finite µ on an infinite strip at total filling 1/8 with an ex-
tra particle using DMRG and subsequently let the state
evolve under the quenched (µ = 0) Hamiltonian. The
ν = 1/2 FCI state is a topologically ordered many-body
state, and thus the single-particle band structure argu-
ments do not apply. The evolution stays chiral for arbi-
trary trapping potential strength, as we observe in Fig. 3b
and d. In this case, the many-body state dictates the
excitations at the edge which prove to be chiral in one
direction. Taken together, the chiral evolution and the
insensitivity to the trapping potential can be probed as
an experimental signature of the ν = 1/2 FCI state in
this model, and is therefore one of the main results of
this Letter.

In order to quantify the dependence of the chirality on
the value of µ, we define the imbalance I = NR − NL
of the total particle number on the edge to the left and
right of site i during the time evolution in Figs. 4a and
b. The single-particle case is shown in Fig. 4a and the
imbalance decreases with increasing the absolute value of
µ consistent with the explanation above. For a very deep
trap, the difference is almost zero, which denotes achiral
behavior as expected. In contrast, the chiral behavior of
the interacting topologically ordered state persists even
for a very deep trap as shown in Fig. 4b.

Towards a chiral Luttinger liquid description.
It is tempting to connect our previous analysis with the
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FIG. 4. The time evolution of the imbalance I = NR − NL
between the total particle density on the right and left part of
site i for the single-particle (a) and FCI (b) case for different
values of the perturbation µ in units of the hopping J . For
single particle (FCI) case the imbalance decreases (saturates)
with increasing perturbation strength. Panels (c) and (d)
show the total density per row as a function of time for the
single-particle and the interacting scenario, respectively for
µ = −100J , showing a sizable leakage of particle density into
the bulk. The legend indicates the row number in the y-
direction in the geometry of the inset of Fig.2b.

chiral Luttinger liquid of quantum Hall edge states [51].
For a Laughlin state at a filling ν = 1/m, this description
predicts that the spectral function and the density of
states behave as [42, 51]

A(k, ω) ∝ (ω + vk)m−1δ(ω − vk), N(ω) ∝ ωm−1, (3)

where v is the velocity of the edge state. A direct mea-
surement of A(k, ω) or N(ω) =

∫
k
dkA(k, ω) could be

used to extract m, which would be solid evidence for the
presence of the FCI state in experiment. Such analytical
spectral function could be in principle compared directly
to our numerical spectral function in Fig. 1d. However,
this exercise reveals two potential problems that experi-
ments may face to extract m. First, the main differences
between a trivial edge state and a chiral Luttinger liquid
will be most drastic at longer times, or smaller ω. This
region is however the most elusive numerically, due to en-
tanglement growth, and experimentally, due to heating
and particle loss. Second, particles created at the edge
have a finite overlap with bulk states as the correlation
length is finite. Consequently, the particle will diffuse
into the bulk at longer times, making it difficult to re-
solve the low-energy (long time) behavior of the edge.
We have numerically observed that a sizable part of the
edge density is lost into the bulk. Our results are shown
in Fig. 4c and d where we plot the average density per
row for the free and interacting cases respectively when a

particle is added at the edge (row y = 0). In both cases,
we find that there is a leakage of density to the bulk,
and the physical edge (i.e., the first row of sites) does
not behave as an isolated liquid. In the single-particle
case of Fig. 4c, the particle density stabilizes after an
initial drop, features that may be explained by the high
overlap of the initial state with the exponentially local-
ized edge eigenstates of the spectrum. The interacting
case in Fig. 4d suffers from a more severe particle loss
to the bulk of the system. We have attempted several
protocols to decrease such a leakage. First, by increasing
the width of the strip Ly = 4, 8, 12 we find no apprecia-
ble change in the density loss. This is consistent with
the fact that for any finite width, the interactions be-
tween the two edge states are marginal for ν = 1/2 [51].
Second, we have tried to confine the chiral edge modes
with an additional negative chemical potential localized
at the edge. We observed that although it reduces the
leakage at long times, sufficient density is lost at short
times to prevent a comparison with Eq. (3). Third, we
find that the leakage is reduced by choosing Jy/Jx < 1.
By studying the static properties as a function of Jy, we
have checked that the FCI phase with ν = 1/2 is stable
up to strong anisotropies [32, 35]. The smaller leakage as
Jy decreases indicates that the correlation between the
edge state and the bulk states in the y-direction is the
main source for particle loss.

Conclusions. In this paper, we have studied the dy-
namical properties of a bosonic fractional Chern insulator
edge under local perturbations using the infinite density
matrix renormalization group. We have dynamically es-
tablished the chirality of the ν = 1/2 bosonic FCI state
emergent in the Harper-Hofstadter model at 1/8 total
filling, a relevant example for current cold atom experi-
ments. We found that in the fractional Chern insulating
phase a generic edge perturbation in this model prop-
agates chirally, while the chirality in the single-particle
case is only visible for weak perturbations, up to the or-
der of the gap between the lowest and central band. This
distinction can be carried over to Chern insulating mod-
els which host chiral edge modes with opposite chirality
coexisting at a given edge, a common instance for multi-
band models, such as the Harper-Hofstader model. In
contrast, two band Chern insulator models, such as the
Haldane model [12] realized experimentally [13] fall out-
side this category, and our approach is in principle not
sufficient to distinguish the CI from the FCI state. How-
ever, in these models, if µ is larger than the single particle
band gap, bulk excitations will be created, which will in-
troduce larger noise to the chiral signal [52] than in their
FCI counterparts, where the gap is set by the strong in-
teraction energy scale. Our simulations also showed that
there is inevitable density leakage into the bulk, prevent-
ing a naive chiral Luttinger theory interpretation of the
dynamics.

Recently, a related example of the interplay between
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interactions and topology causing chiral dynamics was
experimentally observed on a ladder system underlining
the relevance of our results to ongoing experiments [7].
This experiment employed a box-like confining poten-
tial that brings in line with our numerical simulations
and which circumvents the effects of harmonic confine-
ment [53, 54]. A different realistic alternative is the en-
gineering of sharp interfaces [55].

Our work highlights that in realistic experimental set-
ups a richer dynamical behavior beyond a naive 1D Lut-
tinger liquid behaviour should be expected in fractional
Chern insulators. It is triggered by an unforeseen density
leakage from the first row of sites and the insensibility to
the energy scales set by a perturbation localized to the
edge, emphasizing the need for further studies of dynam-
ics of fractional Chern insulators.
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[39] Nathan Goldman, Jérôme Beugnon, and Fabrice Ger-
bier, “Detecting Chiral Edge States in the Hofstadter
Optical Lattice,” Phys. Rev. Lett. 108, 255303 (2012).

[40] Michael P. Zaletel, Roger S. K. Mong, Christoph Kar-

rasch, Joel E. Moore, and Frank Pollmann, “Time-
evolving a matrix product state with long-ranged inter-
actions,” Phys. Rev. B 91, 165112 (2015).

[41] Matthias Gohlke, Ruben Verresen, Roderich Moess-
ner, and Frank Pollmann, “Dynamics of the Kitaev-
Heisenberg Model,” arXiv:1701.04678 (2017).

[42] See Supplementary material at URL for details on the
model, the computation of the static properties, a sum-
mary of chiral Luttinger liquid theory and the real space
time evolution of the edge state density distribution.

[43] L. Cincio and G. Vidal, “Characterizing topological order
by studying the ground states on an infinite cylinder,”
Phys. Rev. Lett. 110, 067208 (2013).

[44] L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, and
J. I. Latorre, “Scaling of entanglement support for matrix
product states,” Phys. Rev. B 78, 024410 (2008).

[45] Frank Pollmann, Subroto Mukerjee, Ari M. Turner, and
Joel E. Moore, “Theory of Finite-Entanglement Scal-
ing at One-Dimensional Quantum Critical Points,” Phys.
Rev. Lett. 102, 255701 (2009).

[46] Pasquale Calabrese and John Cardy, “Entanglement en-
tropy and quantum field theory,” Journal of Statisti-
cal Mechanics: Theory and Experiment 2004, P06002
(2004).

[47] Hui Li and F. D. M. Haldane, “Entanglement Spectrum
as a Generalization of Entanglement Entropy: Identifi-
cation of Topological Order in Non-Abelian Fractional
Quantum Hall Effect States,” Phys. Rev. Lett. 101,
010504 (2008).

[48] Jonas A. Kjäll, Frank Pollmann, and Joel E. Moore,
“Bound states and E8 symmetry effects in perturbed
quantum ising chains,” Phys. Rev. B 83, 020407 (2011).

[49] Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, Simon
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The Hamiltonian of the Hofstadter model

The Hamiltonian of the bosonic Harper-Hofstadter
model on a 2D square lattice is

HHH = −
[∑

x

(Jx

Ly∑
y=1

a
†

x+1,yax,ye
−iyπ/2 (4)

+Jy

Ly−1∑
y=1

a
†

x,y+1ax,y + PbcJya
†

x,1ax,Ly ) + H.c.

]

where (x, y) are the coordinates of the lattice sites and

a
†

x,y (ax,y) is the creation (annihilation) operator of a
hardcore boson at site (x, y). Physically, the hardcore
constraint is achieved by an implicit onsite interaction
term U/2

∑
x,y nx,y(nx,y − 1). Taking the interaction

U →∞ the particle number operator at site (x, y), given

by nx,y = a
†

x,yax,y, is constrained to nx,y = 0, 1. The
parameters Jx and Jy quantify the hopping in the x-
and y-direction and the parameter Pbc = 0, 1 respec-
tively sets open or periodic boundary conditions along
the y-direction. The system number of lattice sites in
y-direction is given by the integer Ly, while in the x-
direction, we allow the lattice to be finite or infinitely
long. The model is written in the Landau gauge with
(Ax = −yπ/2, Ay = 0). Each plaquette is pierced by a
flux of π/2, and the magnetic unit cell is 1× 4 with four
square plaquettes along the y-direction. Note that for
the computation of the entanglement spectrum shown in
the inset of Fig. 2a (main text), we change the gauge
to (Ax = 0, Ay = −xπ/2). This modifies the unit cell
to 4× 1 sites and therefore leads to 8 momentum values
around the cylinder.

Details of the calculations of static properties

In this section we present the details leading to the
static properties of Hamiltonian Eq. (4) of hardcore
bosons at 1/8 total filling of an infinitely long cylinder
with circumference Ly = 8. To this end we use a DMRG

algorithm [56, 57] in a matrix product state (MPS) rep-
resentation characterized by a bond dimension χ to find
the ground-state of the system. The ground state energy
converges with increasing χ to the energy ∼ −0.34117/J
with J = Jx = Jy = 1. Both the correlation length
along the cylinder and the entanglement energy converge
to a constant with increasing χ which indicates that the
bulk state of the system has a finite energy gap and may
therefore be faithfully represented by an MPS with finite
χ. The correlation length in units of the lattice constant
is ∼ 1 along the cylinder indicating that there is no long
range Landau order parameter.

We look at different quantities in order to verify the
topological properties of the state. A hallmark of the
ν = 1/2 Laughlin state is the quantized Hall conductiv-
ity σxy = e2/2h which we calculate in iDRMG by flux
insertion [58–60]. To this end, we cut the cylinder into
two semi-infinite halves and write the ground state wave
function |ψ0〉 in a Schmidt decomposition as

|ψ0〉 =
∑
α

Λα|α〉L ⊗ |α〉R, (5)

where |α〉L and |α〉R are states on the left and right
half, respectively. These Schmidt states can be assigned
charge values QαL/R so that the average charge 〈QL/R〉 of

the left/right half of the system is given by

〈QL/R〉 =
∑
α

Λ2
αQ

α
L/R. (6)

When adiabatically inserting a flux φext through the sys-
tem along the cylinder axis (see inset of Fig. 2a of the
main text), a charge of σxy · (φext/φ0) flows across the
cut which we can calculate by monitoring the charge in-
crease in the left half of the system. Here, φ0 is the el-
ementary flux quantum. Fig. 2a in the main text shows
that one unit of charge is pumped when inserting a flux
of 4π, corresponding to a Hall conductivity of σxy = 1/2.
In practice, the flux insertion is done by twisting the
boundary conditions, i.e. setting Pbc = eiφext .

The second characteristic of the topologically ordered
state consists of the structure of the entanglement spec-
trum. Since the cylinder exhibits translation symmetry
along the y-direction, the Schmidt states are eigenstates
of the momentum ky in the y-direction and the corre-
sponding entanglement energy levels εα = −2 ln Λα may
be labelled with ky. In the inset of Fig. 2a of the main
text, we plot the momentum resolved entanglement spec-
trum of the charge zero sector. For the low lying spec-
trum, we observe a structure governed by the conformal
field theory (CFT) of the edge with a level counting of
{1, 1, 2, 3, 5, . . . } which indicates the presence of the vir-
tual edge when cutting the system [47, 60].

As a final signature of the topological state, we com-
pute the central charge of the edge CFT. To this end, we
consider a strip geometry (shown in the inset of Fig. 2b of

http://dx.doi.org/ 10.1103/PhysRevB.87.235106
http://dx.doi.org/ 10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.91.035136
http://dx.doi.org/10.1103/PhysRevB.91.035136
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the main text) using open boundary conditions in the y-
direction with Pbc = 0. This method exploits the relation
between the entanglement entropy S

S = −
∑
α

Λ2
α log Λ2

α (7)

and the correlation length ξχ. While the physical corre-
lation length at a critical point is infinite, a variationally
optimized MPS with finite bond dimension will always
have a finite correlation length ξχ. For conformally in-
variant critical points it can be shown that ξχ ∝ χκ with
κ depending on the central charge [44, 45]. Moreover,
the entanglement entropy between two halves of a large
one-dimensional system close to a critical point is given
by

S =
c

6
log(ξχ/a). (8)

Here, c is the central charge of the conformal field the-
ory describing the critical point and a is a short-distance
length scale, in our case the lattice spacing which we set
to be unity. Thus, a convenient method to extract the
central charge is to perform iDMRG simulations with dif-
ferent bond dimensions χ and then fitting the logarith-
mic growth of the entanglement entropy S as function
of ξχ. From the topological properties of the bulk, we
expect that the edge state is described by a chiral boson
CFT with central charge c = 1 which we compute by
finite entanglement scaling shown in Fig. 2b of the main
text [44, 45].

The black solid line in Fig. 2b in the main text has the
slope 1/6 confirming that c = 1. The deviations at large
ξχ can be explained by noting that, in a system with
a finite width, the two edges states may couple weakly
to induce a small energy gap, and the true correlation
length will not be infinite. When the bond dimension
χ of the MPS is very large, the correlation length will
stop growing, while the entanglement entropy still grows
with increasing χ. Therefore, at large ξχ, we expect the
relation in Eq. (8) in the main text not to hold; the
coefficient between S and log ξχ will be larger than c/6,
consistent with our numerical result (see Fig. 2b, main
text).

Details of the calculation of the dynamical
properties

For the dynamical simulations we use a method intro-
duced in [48] combined with the MPO based time evolu-
tion described in detail in [40, 41]. For the first protocol,
we take a segment of several MPS unit cells (rings of
sites around the cylinder) together with the boundary
conditions from the unperturbed environment, act with

a
†

i on site i in the center of the segment, and time-evolve
this state |Ψi〉. As long as the light cone of the per-
turbation is smaller than the size of the segment, this

provides an efficient and reliable method to obtain dy-
namical response functions. In the case of the second
protocol with additional chemical potential, we compute
the ground state of the Hamiltonian including the term
µini with the MPS unit cell having the size of the entire
segment and then perform the time evolution under the
Hamiltonian without local chemical potential term. The
maximum bond dimension we use is χ = 200, and the
time step is dt = 0.02. We have checked that the quan-
tities we present have converged with respect to bond
dimension and time step size.

Chiral Luttinger liquid theory and comparison to
DMRG

In this section we review the main properties of a chi-
ral Luttinger liquid (χLL) [51] that describes a 1D crit-
ical system that propagates only in one direction. It is
considered to be a good description of the edge of a frac-
tional quantum Hall state. For a Laughlin state of filling
fraction ν = 1/m, where m > 0 is an odd integer for
fermionic system, and an even integer for bosonic sys-
tems, the edge state is described by the Lagrangian

L =
m

4π
∂xφL(∂tφL − v∂xφL) (9)

where φL is a free phonon field with a propagator
〈φL(x, t)φL(0, 0)〉 = −ν ln(x − vt), and v is velocity of
the edge state. This Lagrangian can be obtained from
a Chern-Simons theory in a finite system by imposing
gauge invariance. The field operator of the elemen-
tary particle is Ψ ∝ eiφ

√
m, and satisfies Ψ(x)Ψ(x′) =

(−1)mΨ(x′)Ψ(x). Therefore, for ν = 1/2 we considered,
Ψ(x) is a bosonic operator. The Green’s function is then
given by

G(x, t) = −i〈Φ0|T (Ψ̂(x, t)Ψ̂
†
(0, 0))|Φ0〉,

∝ 1

(x− vt)m (10)

and the Fourier transform of the Green’s function reads

G(k, ω) ∝ (ω + vk)m−1

ω − vk + i0†sgn(ω)
. (11)

Thus, the spectral function has the form

A(k, ω) = − 1

π
ImG(k, ω)

∝ sgn(ω)(ω + vk)m−1δ(ω − vk), (12)

and the density of states is given by

N(ω) =

∫
dkA(k, ω) ∝ |ω|m−1. (13)
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FIG. 5. Edge state particle density evolution for a shallow
(µ = −2J) and a deep trap (µ = −100J) localized at an edge
site of the single-particle (a,c) and FCI case (b,d).

Real space time evolution of the edge state density
distribution

In Fig. 5 we give the time evolution of the particle den-
sity distribution on the edge in real space corresponding
to the Fourier transformation in Fig. 3 of the main text.
In the single particle case, a shallow or deep trap leads to
a chiral or achiral propagation of the non-interacting edge
state, respectively. The interacting edge state propagates
chirally insensitive to the trap scale, consistent with the
discussion presented in the main text. We also plot the
time evolution of the center-of-mass in x-direction on the
edge line and in y-direction with µ = −100J (solid lines)
and −2J (dashed lines) in Fig. 6, which are measurable
in current experiments [14].

Comparison of particle density leakage with
different values of Jy

As discussed in the main text, the particle density leak-
age could be reduced by choosing Jy/Jx < 1. To be ex-
plicit, Fig. 7 shows the total number of particles on the
edge at time t for Jy = 0.8J and 1.0J in the interacting
FCI phase with Jx being fixed at 1.0J . We use the proto-
col in which one particle is added at the edge at t = 0 and
then time-evolve the state. The leakage for Jy = 0.8J is
reduced compared to the case with Jy = 1.0J .
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FIG. 6. Time evolution of the center-of-mass in x-direction
on the edge line and y-direction for the single-particle (a,c)
and FCI (b,d) phase. Solid (dashed) lines correspond to the
cases with µ = −100J (µ = −2J).
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FIG. 7. Comparison of the total number of particles on the
edge line Qedge as a function of time t in the interacting FCI
phase for Jy = 0.8J and 1.0J .

Further discussions on the density leakage

In the non interacting case the bulk states have a fi-
nite overlap with the physical edge (i.e., the first row of
sites) which are behind the density leakage. To proof
this, we performed an additional numerical calculation
for the non-interacting system in which we obtain the
integrated overlap

Wbulk =
∑

n∈bulk

|〈ψn|a
†

i |0〉|2 (14)
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FIG. 8. (a) The energy spectrum of the single-particle Hamil-
tonian on a cylinder with circumference Lx = 21 and finite
length Ly = 40. The red (blue) points correspond to the
bulk (edge) modes. (b) Overlap between the initial state

|ψ0〉 = a
†
i |0〉, where i is a site on the edge, and the eigen-

states of the Hamiltonian |ψn〉. (c) The sum of all weights
between |ψ0〉 and the bulk modes for different cylinder length
Ly.

for a cylinder of length Ly, where a
†

i creates a particle at
the edge. As shown in Fig. 8, the weight Wbulk increases
to a finite value as the length of the cylinder gets longer.
This explains the leakage into the bulk and also demon-
strates that a finite but reduced density will remain at
the edges at long times. To create a state that is perfectly
localized, we would have to create a quasi particle at the
edge which is a superposition of physical states near the
edge. While we did not perform an additional simulation
for the FCI, we do expect a similar finite support of bulk
states on the edge.
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