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Abstract

Corpus-based approaches to machine trans-
lation rely on the availability of clean par-
allel corpora. Such resources are scarce,
and because of the automatic processes in-
volved in their preparation, they are often
noisy. This paper describes an unsupervised
method for detecting translation divergences
in parallel sentences. We rely on a neural
network that computes cross-lingual sentence
similarity scores, which are then used to ef-
fectively filter out divergent translations. Fur-
thermore, similarity scores predicted by the
network are used to identify and fix some
partial divergences, yielding additional par-
allel segments. We evaluate these methods
for English-French and English-German ma-
chine translation tasks, and show that using fil-
tered/corrected corpora actually improves MT
performance.

1 Introduction

Parallel sentence pairs are the only necessary re-
source to build Machine Translation (MT) sys-
tems. In the case of neural MT, a large neural
network is trained through maximising a proxy
of translation performance on a parallel corpus.
Therefore, the quality of MT engines is heavily
dependent on the amount but also the quality of
available parallel sentences.1

Parallel texts are unfortunately, scarce re-
sources: There are relatively few language pairs
for which parallel corpora of large sizes exist, and
even for those pairs, available corpora only con-
cern few restricted domains. To alleviate the lack
of parallel data, several approaches have been de-
veloped over the years. They range from methods
using non-parallel, or comparable data (Zhao and

1Recent work on neural MT (Lample et al., 2018; Artetxe
et al., 2018) completely dispenses with parallel data, using
unsupervised methods to obtain performance improvements
over word-by-word statistical MT. These systems however
lag far behind supervised systems, as considered in this work.

Vogel, 2002; Fung and Cheung, 2004; Munteanu
and Marcu, 2005; Grégoire and Langlais, 2018;
Grover and Mitra, 2017; Schwenk, 2018) to tech-
niques that produce synthetic parallel data from
monolingual corpora (Sennrich et al., 2016a;
Chinea-Rios et al., 2017), using automated align-
ment/translation engines that are prone to the in-
troduction of noise in the resulting parallel sen-
tences. Mismatches in parallel sentences extracted
from translated texts are also reported (Tiede-
mann, 2011; Xu and Yvon, 2016). This problem
is mostly ignored in MT, where parallel sentences
are considered to convey the exact same meaning;
yet it seems particularly important for neural MT
engines (Chen et al., 2016).

en What do you feel, Spock?
fr Que ressentez-vous?
gl What do you feel?
en How much do you get paid?
fr T’es payé combien de l’heure?
gl How much do you get paid per hour?
en That seems a lot.
fr 40 livres?
gl 40 pounds?
en I brought you french fries!
fr Je t’ai rapporté des saucisses!
gl I brought you sausage!

Table 1: Examples of semantically divergent parallel sen-
tences. English (en), French (fr) and gloss of French (gl).
Divergences are in bold letters.

Table 1 gives some examples of English-French
parallel sentences that are not completely semanti-
cally equivalent, extracted from the OpenSubtitles
corpus (Lison and Tiedemann, 2016).

Multiples types of translation divergences are
found in parallel corpora: Additional segments are
included on either side of the parallel sentences
(first and second rows) most likely due to errors
in sentence segmentation; Some translations may
be completely uncorrelated (third row); Inaccurate
translations also exist (fourth row). Note that di-
vergent translations can be due various reasons (Li
et al., 2014), the study of which is beyond the
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scope of this paper.
In this work, we present an unsupervised

method for building cross-lingual sentence em-
beddings based on modelling word similarity, re-
lying on a neural architecture (see § 3) that is able
to identify several types of common cross-lingual
divergences. The resulting embeddings are then
used to measure semantic equivalence between
sentences. To evaluate our method, we show in
§ 4 that translation accuracy can be improved after
filtering out divergent sentence pairs in an English-
to-French and an English-to-German translation
tasks. We also show that in some cases, divergent
sentences can be fixed by removing divergent seg-
ments, further increasing translation quality. All
the code used in this paper is freely available.2

2 Related Work

Attempts to measure the impact of translation di-
vergences in MT have focused on the introduc-
tion of noise in sentence alignments (Goutte et al.,
2012), showing that statistical MT is highly robust
to noise, and that performance only degrades seri-
ously at very high noise levels. In contrast, neu-
ral MTs seem to be more sensitive to noise (Chen
et al., 2016), as they tend to assign high probabili-
ties to rare events (Hassan et al., 2018).

Efforts devoted to characterising the degree of
semantic equivalence between two snippets of
texts in the same or different languages are pre-
sented (Agirre et al., 2016). In (Mueller and Thya-
garajan, 2016), a monolingual sentence similar-
ity network is proposed, making use of a simple
LSTM layer to compute sentence representations.
The authors show that a simple SVM classifier
exploiting such sentence representations achieves
state-of-the-art results in a textual entailment task.
With the same objective, the system of He and
Lin (2016) uses multiple convolutional layers and
models pairwise word interactions.

Our work is inspired by Carpuat et al. (2017),
who train a SVM-based cross-lingual divergence
detector using word alignments and sentence
length features. Their work shows that an NMT
system trained only on non-divergent sentences
yields slightly better translation scores, while re-
quiring less training time. A follow-up study by
the same authors (Vyas et al., 2018) achieves even
better results, using the neural architecture of He
and Lin (2016). Our work differs from theirs as we

2https://github.com/jmcrego/similarity

make use of a network with a different, arguably
simpler, topology. We model sentence similarity
by means of optimising a loss function based on
word alignments. Furthermore, the network pre-
dicts word similarity scores that we further use to
correct divergent sentences.

3 Neural Divergence Classifier

The architecture of our network is inspired by the
work on word alignment of Legrand et al. (2016),
using however contextual, rather than fixed, word
embeddings (see Figure 1).

Figure 1: Illustration of the model.

It computes the similarity of any source-target
sentence pair (s, t), where s = (s1, ..., sI) and
t = (t1, ..., tJ). The model is composed of
2 bi-directional LSTM subnetworks, nets and
nett, which respectively encode source and tar-
get sentences. Since both nets and nett take
the same form, we only describe the former net-
work: it outputs forward and backward hidden
states,

−→
h src

i and
←−
h src

i , which are then concate-
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nated into a vector encoding the ith source word
as hsrci = [

−→
h src

i ;
←−
h src

i ]. In addition, the last for-
ward/backward hidden states (in dark grey on Fig-
ure 1) are also concatenated to represent whole
sentences hsrc = [

−→
h src

I ;
←−
h src

1 ]. The similarity be-
tween sentence pairs can then be obtained using
eg. the cosine similarity:

sim(hsrc, htgt) =
hsrc·htgt

||hsrc|| ∗ ||htgt||
(1)

Our model is trained to maximize word align-
ment scores between words in both sentences,
using aggregation functions that summarise the
alignment scores for each source/target word.
Similar to (Legrand et al., 2016), alignment scores
S(i, j) are given by the dot-product S(i, j) =
hsrci ·h

tgt
j , further aggregated as follows:

aggrs(i, S) =
1

r
log

 J∑
j=1

er∗S(i,j)


aggrt(j, S) =

1

r
log

(
I∑

i=1

er∗S(i,j)

) (2)

The training loss function is then defined as:

L(src, tgt) =
I∑

i=1

log(1 + eaggrs(i,S)∗signi) +

+
J∑

j=1

log(1 + eaggrt(j,S)∗signj )

(3)

3.1 Training with Negative Examples

Training is performed by minimizing Eq. (3), for
which annotated examples of source (signi) and
target (signj) words are needed. As positive ex-
amples, we use paired sentences of a parallel cor-
pus; all words in such sentences are labelled as
parallel (∀i, j, signi = signj = −1). We con-
sider three types of negative instances: the basic
case uses random unpaired sentences; in this case,
all words are labelled as divergent (∀i, j, signi =
signj = +1.). Since negative pairs may be very
easy to classify and we want our network to detect
less obvious divergences, we further create more
difficult negative examples as follows.

We first replace random sequences of words in
source or target by a sequence of words with the

same part-of-speeches.3 Words that are not re-
placed are deemed parallel (signi = −1) while
those replaced are annotated as signi = +1.
Words aligned to some replaced words are also
assigned the divergent label (signi = +1). For
instance, given the original sentence pair:

src: What do you feel ?

tgt: Que ressentez-vous ?
,

we may replace ’you feel’, with part-of-speech
tags ’PRP VB’, by another sequence with same
tags (i.e. ’we want’), yielding a new negative
instance (divergent words are in bold):

src: What do we want ?

Ysrc: -1 -1 +1 +1 -1

tgt: Que ressentez-vous ?

Ytgt: -1 +1 -1

Note that we need word alignments to identify
as divergent the sequence ’ressentez-vous’,
which was aligned to ’you feel’ in the original
sentence. Finally, motivated by sentence segmen-
tation errors observed in many corpora, we also
build negative examples by inserting a sentence at
the beginning (or end) of the source (or target) sen-
tence. Words in the original sentence pair are an-
notated signi = −1, while the new words inserted
are considered divergent (signi = +1). Given the
same sentence pair as above, a negative example is
created by inserting the sentence ’Not .’ at the
end of the original source:

src: What do you want ? Not .
Ysrc: -1 -1 -1 -1 -1 +1 +1
tgt: Que ressentez-vous ?

Ytgt: -1 -1 -1

To finally avoid the generation of easy negative
sentence pairs having a large difference in sen-
tence length, we restrict negative examples to have
a length ratio < 2.0 (3.0 for shortest sentences).

3.2 Divergence Correction
Our training corpora contains many divergent sen-
tences that follow a common pattern, consisting of
adding some extra leading/trailing words. Accord-
ingly, we implemented a simple algorithm that dis-
cards sequences of leading/trailing words on both

3The rationale is to try to keep the generated sentences as
grammatical as possible; Otherwise, the network could learn
to flag non-grammatical sentences as non-parallel.
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sides. To find optimal source (u, v) and target
(x, y) indices that enclose parallel segments within
the original sentence, we compute:

argmax
u,v,x,y

{ ∑
u≤I≤v

max
x≤j≤y

{S(i, j)}
}

The N -best sequences (svu, tyx) are considered as
likely corrections, in which we use the one having
the highest similarity score to replace the original
(sI1, t

J
1 ). Note that short sentences are not consid-

ered and we enforce v − u > τ and y − x > τ .
Figure 2 (left) displays an example of an align-
ment matrix S(i, j). An acceptable correction is:
Que ressentez-vous ? ⇔ What do you feel ?. cor-
responding to u = 1, v = 5, x = 1 and y = 3.

4 Experiments

4.1 Corpora
We filter out divergences from the English-French
OpenSubtitles corpus (Lison and Tiedemann,
2016), which consists of a collection of movie and
TV subtitles. We also use the very noisy English-
German Paracrawl4 corpus. Both corpora present
many potential divergences. To evaluate English-
French translation performance, we use the En-
Fr Microsoft Spoken Language Translation cor-
pus, created from actual Skype conversations (Fe-
dermann and Lewis, 2016). English-German per-
formance is evaluated on the publicly available
Newstest-2017 (Bojar et al., 2017), corresponding
to news stories selected from online sources.

In order to better assess the quality of our clas-
sifier when facing different word divergences, we
also collected from the original OpenSubtitles cor-
pus 500 sentences containing different types of ex-
amples: 200 paired sentences; 100 unpaired sen-
tences; 100 sentences with replace examples; and
100 sentences with insert examples (see § 3.1).
All data is preprocessed with OpenNMT5, per-
forming minimal tokenisation. After tokenisation,
each out-of-vocabulary word is mapped to a spe-
cial UNK token, assuming a vocabulary contain-
ing the 50, 000 more frequent words.

4.2 Neural Divergence
Word embeddings of Es = Et = 256 cells
are initialised using fastText,6 further aligned
by means of MUSE7 following the unsupervised

4http://paracrawl.eu/
5http://opennmt.net
6https://github.com/facebookresearch/fastText
7https://github.com/facebookresearch/MUSE

method of Lample et al. (2018). Both bi-LSTMs
use 256-dimensional hidden representations (E =
512). Network optimization is done using SGD
with gradient clipping (Pascanu et al., 2013). For
each epoch, we randomly select 1 million sentence
pairs that we place in batches of 32 examples. We
run 10 epochs and start decaying at each epoch by
0.8 when the loss on validation set increases. Di-
vergence is computed as in equation (1) and set-
ting r = 1.0 ; For divergence correction, we use
N = 20 and τ = 3. The same number of exam-
ples are always generated for each type of exam-
ple (Paired, Unpaired, Replace and Insert). Align-
ments needed for Replace and Insert methods are
performed using fast align8.

4.3 Neural Translation

In addition to the basic tokenisation detailed
above, we perform Byte-Pair Encoding (Sennrich
et al., 2016b) with 30000 merge operations learned
by joining both language sides. Neural systems
are based on the open-source project OpenNMT;
using a Transformer model similar to the model
of Vaswani et al. (2017): both encoder and de-
coder have 6 layers; Multi-head attention is per-
formed over 8 head; the hidden layer size is 512;
and the inner layer of feed forward network is of
size 2048. Word embeddings have 512 cells. We
set the dropout probability to 0.1 and the batch size
to 3072. The optimiser is Lazy Adam with β1 =
0.9, β2 = 0.98, ε = 10−9, warmup steps =
4000. Training stops after 30 epochs.

5 Results

We first evaluate the ability of our divergence clas-
sifier to predict different types of divergences at
the level of words. We use the test set manually an-
notated for that purpose and train our model on the
OpenSubtitles corpus. A word is considered di-
vergent when associated to a negative aggregation
score (see Equation (2)). Accuracies obtained for
various combinations of negative examples, where
we see that non-divergent words in parallel and un-
paired sentences (columns P and U) are easy to
spot, as long as the model has seen these types
of examples in training. However, the accuracy
drops dramatically when the model is not trained
with unpaired sentences (rows PR, PI and PRI).
Regarding columns R and I, accuracies are lower

8https://github.com/clab/fast align
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since these sentences contain a mix of divergent
and non-divergent words.

Accuracy Test examples
P U R I PURI

Tr
ai

n
ex

am
pl

es

PU 0.996 0.994 0.671 0.673 0.874
PR 0.995 0.033 0.951 0.689 0.746
PI 0.998 0.071 0.697 0.725 0.705

PUR 0.994 0.989 0.919 0.710 0.932
PUI 0.995 0.996 0.662 0.769 0.887
PRI 0.991 0.161 0.924 0.719 0.768

PURI 0.995 0.980 0.916 0.788 0.942

Table 2: Word divergence accuracies according to different
type of examples used in train/test.

Models that were trained with the matching ex-
amples (R and I) obtain the highest accuracies (in
bold letters). Column PURI gives results for the
complete test set, mixing all type of examples. As
expected, the best accuracy is also obtained when
training on all types of examples.

Figure 2 illustrates the output of our network
when trained using PU examples (right) and PURI
examples (left). The former (right) fails to predict
some divergences, most likely because its train-
ing set does not contain sentences mixing diver-
gent and non-divergent words. Furthermore, the
network trained with PURI examples correctly as-
signs a lower similarity score to this pair, as both
sentences do not convey the exact same meaning.

Figure 2: Sentence pair with similarity scores produced
by our model when trained with PU examples (right) and
over PURI examples (left). Aggregation scores (Eq. (2))
are shown next to words. Matrices contain alignment scores.
Sentence similarities (Eq. (1)) are below matrices.

Finally, BLEU scores obtained with varying
training data configurations are in Table 3: The en-
tire9 data sets (all); The most similar pairs after

9Paracrawl contains more than 100M sentences. We re-
duced its size to 22.2M using standard filtering techniques.

optimizing Eq. (3) (sim); After applying the cor-
rection algorithm of § 3.2 (sim+fix). Columns
Ref and Fix indicate the number of original and
corrected sentences (in millions) used in training.

Data Ref (M) Fix (M) Test (BLEU)
OpenSubtitles English-French

all 27.2 - 42.18
sim 15.5 - 43.12 (+0.94)
sim 18.0 - 43.19 (+1.01)
sim+fix 15.5 2.5 44.19 (+2.01)

Paracrawl English-German
all 22.2 - 19.27
sim 15.0 - 21.52 (+2.25)
sim 17.5 - 21.97 (+2.70)
sim+fix 15.0 2.5 22.42 (+3.15)

Table 3: BLEU scores obtained by neural MT using differ-
ent subsets of the OpenSubtitles and Paracrawl corpora.

Results obtained after filtering sentence pairs
(sim) clearly outperform the baseline (all) by
+0.94 and +2.25 BLEU respectively. Regarding
OpenSubtitles, when fixing 2.5M sentences (4th

row) the accuracy is further boosted to +2.01,
whereas the same sentence pairs do not show any
improvement when added in their original form
(3rd row). Similar results are obtained for the
Paracrawl corpus. Results after fixing 2.5M sen-
tences (4throw) outperform those obtained with
their original form (3rdrow).

6 Conclusions and outlook

We presented an unsupervised method based on
deep neural networks for detecting translation di-
vergences in parallel corpora. Our model op-
timizes word alignments, and computes a fine
grained divergence prediction at the level of
words. Misaligned/divergent words can then be
filtered out, yielding larger and better training sets.
Our experiments on two machine translation tasks
show significant improvements in comparison to
training with the entire data set.

We plan to use our model to predict sentence
embeddings over monolingual corpora, allowing
to collect parallel pairs through vector similarity
measures. In addition, we would like to mea-
sure the performance of our model after applying
subword tokenisation, as well as using multiple
LSTM layers, a technique well known to capture
hierarchical structure in the context of MT.
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Word translation without parallel data. In Inter-
national Conference on Learning Representations,
Long Beach, CA.
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