
HAL Id: hal-01908286
https://hal.science/hal-01908286v2

Submitted on 28 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniqueness theorems for the Boussinesq system
Lorenzo Brandolese, Jiao He

To cite this version:
Lorenzo Brandolese, Jiao He. Uniqueness theorems for the Boussinesq system. Tohoku mathematical
journal, In press, �10.2748/tmj/1593136822�. �hal-01908286v2�

https://hal.science/hal-01908286v2
https://hal.archives-ouvertes.fr


UNIQUENESS THEOREMS FOR THE BOUSSINESQ SYSTEM

LORENZO BRANDOLESE AND JIAO HE

Abstract. We address the uniqueness problem for mild solutions of the Boussinesq

system in R3. We provide several uniqueness classes on the velocity and the temperature,

generalizing in this way the classical C([0, T ];L3(R3))-uniqueness result for mild solutions

of the Navier-Stokes equations.

1. Introduction

The incompressible Boussinesq system describes the dynamics of a viscous incompress-

ble fluid with heat exchanges. This system arises from an approximation on a system

coupling the classical Navier-Stokes equations and the equations of thermodynamics. In

this approximation, the variations of the density due to heat transfers are neglected in the

continuity equation, but are taken into account in the equation of the motion through an

additional buoyancy term proportional to the temperature variations.

This paper deals with the uniqueness problems for mild solutions of the Boussinesq

system. With a minor loss of generality, and just to simplify the presentation, we will

assume in the sequel that the physical constant are all equal to one. In this case, the

Boussinesq system can be written as the following form,

(1.1)


∂tθ + u · ∇θ = ∆θ

∂tu+ u · ∇u+∇p = ∆u+ θe3

∇ · u = 0

u|t=0 = u0, θ|t=0 = θ0.

x ∈ R3, t ∈ R+

Here u : R3×R+ → R3 is the velocity field. The scalar fields p : R3×R+ → R and θ : R3×
R+ → R denote respectively the pressure and the temperature of the fluid. Moreover,

e3 = (0, 0, 1) is the unit vertical vector.

In the case θ ≡ 0, this system reduces to the classical Navier–Stokes equations.

The integral formulation of the Boussinesq system reads:

(1.2)


θ(t) = et∆θ0 −

∫ t

0
e(t−s)∆∇ · (θu)(s) ds

u(t) = et∆u0 −
∫ t

0
e(t−s)∆P∇ · (u⊗ u)(s) ds+

∫ t

0
e(t−s)∆Pθ(s)e3 ds.

∇ · u0 = 0
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Here P denotes the projector on the space of divergence-free fields, which is also called

Leray’s projector. In this paper, we will work directly with the integral form (1.2) rather

than the original system (1.1). The solutions of (1.2) are usually called mild solutions. The

equivalence between the two systems is not only formal, but can be established rigorously

in quite general functional settings. We refer to the book of Lemarié-Rieusset (see Theorem

1.2 in [14]), for this issue in the particular case of the Navier–Stokes equations.

To write our system in a more compact form, we can replace the equation of θ inside

the last integral and we get∫ t

0
e(t−s)∆Pθ(s)e3 ds = t et∆Pθ0e3 −

∫ t

0
e(t−s)∆(t− s)P∇ · (θu)(s) ds e3.

Next, let us introduce the three bilinear maps

B1(u, ũ) = −
∫ t

0
e(t−s)∆P∇ · (u⊗ ũ)(s) ds,(1.3a)

B2(u, θ) = −
(∫ t

0
e(t−s)∆(t− s)P∇ · (uθ)(s) ds

)
e3,(1.3b)

B3(u, θ) = −
∫ t

0
e(t−s)∆∇ · (uθ)(s) ds,(1.3c)

Then our system (1.2) can be rewritten as

(1.4)


u(t) = et∆[u0 + tPθ0e3] +B1(u, u) +B2(u, θ)

θ(t) = et∆θ0 +B3(u, θ)

∇ · u0 = 0.

This system is left invariant by the natural scaling (u, θ) 7→ (uλ, θλ), with λ > 0 and

uλ(x, t) = λu(λx, λ2t) and θλ = λ3θ(λx, λ2t),

and with the initial data transformation u0,λ(x) = λu0(λx) and θλ(x) = λ3θ0(λx). Notice

that,

‖u0,λ‖3 = ‖u0‖3 and ‖θ0,λ‖1 = ‖θ0‖1,

where ‖ · ‖p denotes the Lp-norm, and these scaling relations motivate the choice of the

space

(1.5) C([0, T ], L3(R3))× C([0, T ], L1(R3))

for solving the Boussinesq equations. The unboundedness of the bilinear operator B1 in

C([0, T ], L(R3)) leads to construct solutions of (1.4) applying the usual fixed point not

directly in the space (1.5), but in a Kato’s-type smaller space, respecting the same scaling

properties as in (1.5). For this reason, let us denote by X the subspace of C([0, T ], L3(R3)),

normed by

‖u‖X ≡ sup
t∈[0,T ]

‖u(t)‖3 + sup
0<t≤T

√
t‖u(t)‖∞,(1.6)
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and consisting of all divergence-free vector fields in C([0, T ], L3(R3)) such that ‖u‖X <∞
and limt→0

√
t‖u(t)‖∞ = 0. Similarly, let us denote by Y the subspace of C([0, T ], L1(R3)),

normed by

‖θ‖Y = sup
t∈[0,T ]

‖θ(t)‖1 + sup
0<t≤T

t3/2‖θ(t)‖∞,(1.7)

and consisting of all functions ‖θ‖Y < ∞ and limt→0 t
3/2‖θ(t)‖∞ = 0. Then, when u0 ∈

L3(R3) is divergence-free and θ0 ∈ L1(R3), it is easy to establish, just by suitably adapting

classical Kato’s method [12] for the Navier–Stokes equations, the following basic existence

and uniqueness result in the space X × Y :

Proposition 1.1. Let u0 ∈ L3(R3) be a divergence-free vector field and let θ0 ∈ L1(R3).

Then there exists T > 0 and a unique mild solution (u, θ) ∈ X × Y of (1.2).

The above solution is global-in-time when, e.g., ‖u0‖3 +‖θ0‖1 is small enough. We refer

in this case to [4,5] for the study of their long time behavior, which strikingly differs from

the usual behavior as t→ +∞ of solutions of the Navier–Stokes equations.

One can establish several variants of Proposition 1.1. For example, we will state a much

more general local existence result in Theorem 2.4, where the L3(R3) and L1(R3) will be

replaced by considerably larger Besov spaces.

The main drawback of Proposition 1.1 is that the uniqueness of the solution is not

ensured in the natural class (1.5), but only in the considerably smaller class X × Y . In

this sense, the uniqueness result of the above theorem looks far from being optimal.

In fact, in the case of the Navier–Stokes equations, i.e. when θ ≡ 0, Kato’s existence

result of solutions in C([0, T ], L3(R3)) is completed by the well-known uniqueness theorem

of Furioli, Lemarié-Rieusset, Terraneo [11], stating that, for u0 ∈ L3(R3), there is only one

mild solution of the Navier–Stokes equations in C([0, T ], L3(R3)), such that u(0) = u0.

See also [18, 20] for simpler proofs of this important result. Unfortunately, in the case of

the Boussinesq system, it seems difficult to establish the uniqueness of mild solutions in

the natural class (1.5). Indeed, no specific regularity result is available for solutions in

such class: if we put no additional condition on the regularity of u or θ then the term θu

appearing in the equation of the temperature is not even a distribution, so that giving a

sense to the term B3(u, θ) would be problematic.

The purpose of this paper is to put in evidence alternative uniqueness classes for the

solutions of the Boussinesq equations. In this direction, our first main uniqueness result

is the following theorem:

Theorem 1.2 (Uniqueness). Let T > 0, u0 ∈ L3(R3) and θ0 ∈ L1(R3), with ∇ · u0 = 0.

Let (u, θ), (ũ, θ̃) be two mild solutions of the Boussinesq system (1.2) with the same data

(u0, θ0), such that

(1.8)

u, ũ ∈ C([0, T ], L3(R3)), and θ, θ̃ ∈ C([0, T ], L1(R3)) ∩ L∞loc((0, T ), Lq,∞(R3)).

for some q > 3/2. Then, (u, θ) = (ũ, θ̃).

Theorem 1.2 ensures that the uniqueness holds in a space considerably larger than

X × Y . In particular, the vanishing of the Lq,∞-norm of θ(t) as t→ 0 is not required for

the uniqueness.



4 LORENZO BRANDOLESE AND JIAO HE

Let us recall that, if σ > 0 and 1 ≤ q ≤ ∞, then a tempered distribution f satisfies

(1.9) sup
0<t<T

tσ/2‖et∆f‖q <∞

for all 0 < T < ∞ if and only if f ∈ B−σq,∞(R3). For different values of T , all these

expressions are equivalent to the usual inhomogeneous Besov norm ‖ ·‖B−σq,∞ . If (1.9) holds

with T = ∞, then f belongs to the smaller homogeneous Besov space Ḃ−σq,∞(R3) and the

converse is also true. See [14]. By analogy, we define B−σq,∞,∞(R3) as the space of tempered

distributions f such that, for some T > 0, sup0<t<T t
σ/2‖et∆f‖Lq,∞ < ∞. Before stating

our next theorem, let us observe that the the solution obtained in Proposition 1.1 satisfies,

for all 1 < q <∞, by interpolation,

sup
0<t<T

t
3
2

(1− 1
q

)‖θ(t)‖Lq,∞ <∞, and lim
t→0

t
3
2

(1− 1
q

)‖θ(t)‖Lq,∞ = 0.(1.10)

In the sequel, we will denote by Yq,∞ the subspace of L∞loc((0, T ), Lq,∞(R3)) made of func-

tions satisfying (1.10). This space is equipped with the natural norm

‖θ‖Yq,∞ ≡ sup
0<t<T

t
3
2

(1− 1
q

)‖θ(t)‖Lq,∞ .

When restricting to temperatures in Yq,∞ the uniqueness can be granted as soon as the

velocity is in C([0, T ], L3(R3)), in this case it is no longer needed to require that θ belongs

to C([0, T ], L1(R3)). More precisely we have the following variant of our uniqueness result:

Theorem 1.3. Let T > 0 and (u, θ) a mild solution of the Boussinesq system (1.2), such

that

(1.11) (u, θ) ∈ C
(
[0, T ], L3(R3)

)
× Yq,∞,

for some 3/2 < q < 3. Then the data (u0, θ0) belong to L3(R3)×B−3(1−1/q)
q,∞,∞ and uniquely

determine (u, θ).

In Section 2 we prove Theorem 1.3, after establishing the relevant bilinear estimates in

Lorentz spaces, extending those of Y. Meyer in [18]. The proof of Theorem 1.2 will rely

on the result of Theorem 1.3. Next step consists in establishing some fine existence results

of solutions, encompassing Proposition 1.1, in the same spirit as Cannone’s [7]. The last

step of the proof of Theorem 1.2 consists in removing the restriction θ ∈ Yq,∞: this will be

done by proving that any mild solution in the class C([0, T ], L3(R3))×C([0, T ], L1(R3))∩
L∞loc((0, T ), Lq,∞(R3)), must agree with the solution of Proposition 1.1. This last step

makes use of a compactness argument inspired an earlier uniqueness theorem by H.Brezis

on the vorticity equation [6].

Our estimates break down in the case q = 3/2. For this reason, we do not know,

for example, if C([0, T ], L3(R3)) × C([0, T ], L3/2(R3)), or C([0, T ], L3(R3)) × Y3/2,∞ are

uniqueness classes for mild solutions of the Boussinesq system.

On the other hand, in our uniqueness results, it is possible to relax a little bit the

C([0, T ], L3(R3))-condition on the velocity, and to replace it by a weaker condition of the

form u ∈ C([0, T ], D), where D is the closure in L3,∞(R3) of {f ∈ L3,∞ : −∆f ∈ L3,∞}.
See Remark 2.3 below. In the case of the Navier–Stokes equations, an even finer uniqueness

result is contained in the recent preprint by T. Okabe and Y. Tsutsui [21].
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While there exists a rich literature on the uniqueness of solutions of the Navier–Stokes

equations, (see, e.g., [8, 10,11,16,21] for a small sample of the available results), only few

earlier papers dealt with the uniqueness problem for the Boussinesq equations in scale-

invariant spaces. Moreover, such papers study, in fact, more or less different versions of

the original system (1.1) (a system with no diffusivity for the temperature in [9], or a

nonlinear diffusivity in [1], etc.), so that the uniqueness results therein are not comparable

to ours.

2. Proof of the main theorems

2.1. Preliminary estimates. To establish Theorem 1.3, inspired by [13, 18], we will

make use of the Banach space X3,∞ = L∞((0, T ), L3,∞), normed by

‖u‖X3,∞ = sup
t∈(0,T )

‖u(t)‖L3,∞(R3).

We will make use also of the space Xp, consisting of the subspace of L1
loc((0, T ), Lp) made

of the vector fields u such that ‖u‖Xp <∞, where the Xp-norm is defined as

‖u‖Xp = sup
t∈(0,T )

t
1
2

(1−3/p)‖u(t)‖p, 1 ≤ p ≤ ∞.

Of special importance will be the space the case p = 3: in this caseX3 = L∞((0, T ), L3(R3)).

Concerning the temperature, we will often work in the space Yq of all the L1
loc((0, T ), Lq(R3))

functions such that ‖θ‖Yq <∞, where

‖θ‖Yq = sup
t∈(0,T )

t
3
2

(1−1/q)‖θ(t)‖q, 1 ≤ q ≤ ∞.

Notice that Y1 = L∞((0, T ), L1(R3)).

The kernel K(x, t) of the operator et∆P satisfies

(2.1) K(x, t) = t−3/2K( x√
t
, 1), and |K(x, 1)| ≤ C(1 + |x|)−3.

In particular, K(·, 1) ∈
⋂

1<p≤∞ L
p(R3) and

(2.2) ‖et∆Pθ0e3‖s = Ct−
3
2

( 1
r
− 1
s

)‖θ0‖r, 1 ≤ r < s ≤ ∞.

On the other hand, the kernel F (x, t) of the operator et∆Pdiv satisfies

(2.3) F (x, t) = t−2F ( x√
t
, 1), and |F (x, 1)| ≤ C(1 + |x|)−4.

See [19]. In particular, F (·, 1) ∈ L1 ∩ L∞ and

(2.4) ‖F (t)‖β = Ct−2+3/(2β), 1 ≤ β ≤ ∞.

The following estimates are well known to Navier–Stokes specialists, see [18, Lemma 23].

Only the first one is subtle, the second one being just an application of Hölder and Young

inequality in Lorentz spaces:

‖B1(u, v)‖X3,∞ ≤ C‖u‖X3,∞‖v‖X3,∞ ,(2.5a)

‖B1(u, v)‖X3,∞ ≤ C‖u‖X3,∞‖v‖X∞ .(2.5b)

The counterpart of (2.5a) for the operator B3 is stated below. With slightly abusive

notation we will denote in the same way, by F (x, t) the kernel of the operators et∆Pdiv



6 LORENZO BRANDOLESE AND JIAO HE

and et∆div. Distinguishing these two kernels is unimportant in this paper because both

kernels satisfy properties (2.3) and (2.4), that are the only properties that we will need.

Lemma 2.1. Let 3/2 < q < 3. If u ∈ X3,∞ and θ ∈ Yq,∞, then B3(u, θ) ∈ Yq. Moreover,

there exists a constant C > 0,depending only on q, such that, for all u and θ,

(2.5c) ‖B3(u, θ)‖Yq,∞ ≤ C‖u‖X3,∞‖θ‖Yq,∞ .

Proof. Let us recall that the quasi-norm

f 7→ sup
λ>0

λ
∣∣∣{x ∈ R3 : |f(x)| > λ}

∣∣∣1/q
is equivalent to a norm that makes Lq,∞ a Banach space. Here |A| denotes the Lebesgue

measure of the set A. With slightly abusive notation we denote ‖f‖Lq,∞ the right-hand

side of the above expression, and treat it as a norm. Let us set σ = 3
2(1− 1/q). Without

loss of generality, we can assume that ‖u‖X3,∞ = 1 and ‖θ‖Yq,∞ = 1. In the computations

below, C will denote absolute constants. We start splitting

tσB3(u, θ) = −tσ
(∫ t/2

0
+

∫ t

t/2

)
F (t− s) ∗ (uθ)(s) ds ≡ (I) + (II).

To treat (I) we only need to apply the standard convolution and Hölder inequality in

Lorentz spaces, see [14]. Using (2.4) with β = 3/2 we obtain

‖ (I) ‖Lq,∞ ≤ Ctσ
∫ t/2

0
(t− s)−1s−

3
2

(1−1/q) ds ≤ C.

The estimate for (II) is less immediate. Fix a threshold λ > 0 and let τ > 0 to be chosen

later. We now write

(II) = −tσ
∫ t−τ

−∞
F (t− s) ∗ (uθ1[ t

2
,t])(s) ds− tσ

∫ t

t−τ
F (t− s) ∗ (uθ1[ t

2
,t])(s) ds

≡ J1(t) + J2(t).

We estimate ‖J1(t)‖∞ by applying (2.4) with 1
β = 2

3 −
1
q . We obtain

‖J1(t)‖∞ ≤ C
∫ t−τ

−∞
(t− s)−1−3/(2q) ds

= Cτ−3/(2q) = λ/2.

The choice of τ > 0 is made in order to ensure the validity of the last equality.

The two relations above imply that |(II)(x, t)| ≤ λ
2 + |J2(x, t)|. Hence, for 1

r = 1
3 + 1

q ,∣∣∣{x ∈ R3 : |(II)(x, t)| > λ}
∣∣∣ ≤ ∣∣∣{x ∈ R3 : |J2(x)| > λ/2}

∣∣∣
≤
(

2‖J2(t)‖Lr,∞
λ

)r
,

where the second inequality follows from the definition of ‖ · ‖Lr,∞ . On the other hand,

‖J2(t)‖Lr,∞ ≤ tσ
∫ t

t−τ
‖F (t− s)‖1‖(uθ1[ t

2
,t])(s)‖Lr,∞ ds

≤ Cτ1/2 = Cλ−q/3.
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From the last two inequalities we deduce that

λ
∣∣∣{x ∈ R3 : |(II)(x, t)| > λ}

∣∣∣1/q ≤ C,
where C is independent on λ. This gives estimate (2.5c). �

Lemma 2.2. Let 1 ≤ p0, p1, p2 ≤ ∞, and 1 ≤ q0, q1 ≤ ∞. Then the following estimates

hold, for some constant C > 0 depending only on the above parameters (in particular, C

is independent on T ):

‖B1(u, v)‖Xp0 ≤ C‖u‖Xp1‖v‖Xp2 ( 1
p0
≤ 1

p1
+ 1

p2
≤ 1, 0 < 1

p1
+ 1

p2
< 1

3 + 1
p0

),(2.5d)

‖B2(u, θ)‖Xp0 ≤ C‖u‖Xp1‖θ‖Yq1 ( 1
p0
≤ 1

p1
+ 1

q1
≤ 1, 2

3 <
1
p1

+ 1
q1
< 1 + 1

p0
),(2.5e)

‖B3(u, θ)‖Yq0 ≤ C‖u‖Xp1‖θ‖Yq1 ( 1
q0
≤ 1

p1
+ 1

q1
≤ 1, 2

3 <
1
p1

+ 1
q1
< 1

3 + 1
q0

).(2.5f)

Proof. The proof just consists in applying Young and Hölder inequality. For (2.5d), one

uses (2.4) with 1 + 1
β = 1

p0
+ ( 1

p1
+ 1

p2
) (obvious modification of the choice of β for the two

other estimates). By the definition of the Xp and the Yq norms, one ends up with integrals

of the form
∫ t

0 (t− s)αsβ ds, that are all finite because our restrictions on the parameters

imply α, β > −1. One concludes observing that these integrals are equal to Ctα+β+1,

with C > 0 independent on t. Let us mention that estimate (2.5d) already appears in the

Navier–Stokes literature, see [3]. �

Let us observe that in the last estimate of Lemma 2.2 the limit case q0 = q1 and p1 = 3 is

forbidden. Lemma 2.1, however, provides a substitute of this estimate for corresponding

the weak norms. In the same way, the first estimate of Lemma 2.2 in the limit case

p0 = p1 = p2 = 3 is forbidden. But this estimate has a substitute for the corresponding

weak norms, given by (2.5a).

We will make use of weak variants of estimates (2.5e), namely

‖B2(u, θ)‖X3,∞ ≤ C‖u‖X3,∞‖θ‖Yq,∞ (1
3 <

1
q <

2
3),(2.5g)

‖B2(u, θ)‖X3,∞ ≤ C‖u‖Xp1‖θ‖Yq,∞ (2
3 ≤

1
p1

+ 1
q ≤ 1),(2.5h)

‖B3(u, θ)‖Yq,∞ ≤ C‖u‖Xp‖θ‖Yq,∞ (1
p + 1

q < 1, 2
3 <

1
p + 1

q <
1
3 + 1

q ).(2.5i)

The proof is essentially the same as in Lemma 2.2. Notice that the case 1
q = 2

3 in the

former estimate and the case 1
p + 1

q = 1 in the latter have to be excluded.

2.2. The proof of Theorem 1.3. We are now in the position of establishing Theorem 1.3.

Proof of Theorem 1.3. Consider a solution (u, θ) satisfying the conditions of Theorem 1.3.

We have of course u0 ∈ L3(R3). By the equation satisfied by θ in (1.4) and Lemma 2.1 we

have ‖et∆θ0‖Yq,∞ ≤ ‖θ‖Yq,∞+C‖u‖X3,∞‖θ‖Yq,∞ . Recalling the observation right after (1.9),

we see that θ0 ∈ B−3(1−1/q)
q,∞,∞ .

Now let (ũ, θ̃) be another solution in C([0, T ], L3(R3)) × Yq,∞ arising from the same

data. Let w = u− ũ and φ = θ − θ̃. Then,

w = B1(w, u) +B1(ũ, w) +B2(w, θ) +B2(ũ, φ),

φ = B3(u, φ) +B3(w, θ̃).
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Adding/substracting to u and ũ the linear quantity v0 = et∆[u0 + tPθ0e3], we find by

estimates (2.5a)-(2.5b),

‖B1(w, u) +B1(ũ, w)‖X3,∞ ≤ C‖w‖X3,∞

(
‖u− v0‖X3,∞ + 2‖v0‖X∞ + ‖ũ− v0‖X3,∞

)
.

(2.6a)

Recall that, by our assumption, 1
3 <

1
q <

2
3 . Hence, we can apply (2.5g)-(2.5h) choosing

p1 in a such way that p1 > 3. Then we get:

‖B2(w, θ) +B2(ũ, φ)‖X3,∞ ≤ C‖w‖X3,∞‖θ‖Yq,∞ + C‖φ‖Yq,∞
(
‖ũ− v0‖X3,∞ + ‖v0‖Xp1

)
.

(2.6b)

Combining the two last estimates we get

‖w‖X3,∞ ≤ C‖w‖X3,∞

(
‖u− v0‖X3,∞ + 2‖v0‖X∞ + ‖ũ− v0‖X3,∞ + ‖θ‖Yq,∞

)
+ C‖φ‖Yq,∞

(
‖ũ− v0‖X3,∞ + ‖v0‖Xp1

)
.

(2.7a)

We estimate ‖φ‖Yq,∞ by applying Lemma 2.1 and estimate (2.5i) with 3/2 < q < 3 and

p = q∗,

‖φ‖Yq,∞ = ‖B3(u− v0 + v0, φ)‖Yq,∞ + ‖B3(w, θ̃)‖Yq,∞

≤ C‖φ‖Yq,∞
(
‖u− v0‖X3,∞ + ‖v0‖Xq∗

)
+ C‖w‖X3,∞‖θ̃‖Yq,∞

(2.7b)

where 1
q∗ = 1

2(1− 1
q ). This choice of q∗ ensures that (2.5i) holds and 3 < q∗ <∞. In (2.7),

the constants C > 0 depends only on q.

On the other hand all the norms in (2.7a) depend on T . We claim that

‖v0‖X∞ → 0, as T → 0.

This can be seen as follows: first of all by our assumption (u, θ) ∈ X3×Yq,∞ ⊂ X3,∞×Yq,∞,

and so B3(u, θ) ∈ Yq,∞ by Lemma 2.1. In particular, because of the definition of Yq,∞
(see (1.10)), ‖et∆θ0‖Yq,∞ ≤ ‖θ(t)‖Yq,∞ + ‖B3(u, θ)‖Yq,∞ → 0 as T → 0. Leray’s projector P
being bounded on Lq,∞ we deduce ‖et∆Pθ0e3‖Yq,∞ → 0 as T → 0. Applying the semigroup

property et∆ = et∆/2e∆/2 and using the boundedness properties of et∆/2 in Lorentz spaces,

we deduce ‖t et∆Pθ0e3‖X∞ → 0 as T → 0. Moreover, u0 ∈ L3(R3), hence for any ε > 0,

we can find u0,ε in the Schwartz class, such that ‖u0 − u0,ε‖3 < ε, and ‖u0,ε‖3 ≤ ‖u0‖3.

Writing

v0 = et∆[(u0 − u0,ε)] + et∆u0,ε + tet∆Pθ0e3

we deduce from Young inequality that ‖v0‖X∞ ≤ 2ε for T > 0 small enough and our claim

follows.

With a very similar proof (using q < 3 < q∗ and p1 > 3) we see that

‖v0‖Xq∗ → 0 and ‖v0‖Xp1 → 0, as T → 0.

Next we claim that

(2.8) ‖u− v0‖X3,∞ + ‖ũ− v0‖X3,∞ → 0, as T → 0.

Indeed, we use the inequality

‖u− v0‖X3,∞ + ‖ũ− v0‖X3,∞ ≤ ‖u− et∆u0‖X3 + ‖ũ− et∆u0‖X3 + 2‖tet∆Pθ0e3‖X3,∞ .
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Next, we use the fact that, as t → 0, u(t) → u0 and ũ(t) → u0 in L3 (because of the

continuity of the two solutions u and ũ from [0, T ] to L3(R3)), and also that et∆u0 → u0

in L3(R3). Next we observe that ‖tet∆Pθ0e3‖X3,∞ → 0 as T → 0. (The last fact is proved

applying the semigroup properties of the heat kernel and the fact that ‖et∆Pθ0e3‖Yq,∞ → 0

as T → 0). This implies our claim (2.8).

On the other hand, our assumptions on θ and θ̃ ensure that,

‖θ‖Yq,∞ → 0 and ‖θ̃‖Yq,∞ → 0, as T → 0.

Summarizing, we can now deduce from estimates (2.6) that there exists δ > 0 (depend-

ing only on the data (u0, θ0) and on q), such that, if 0 < T < δ, then ‖w‖X3,∞ < ‖φ‖Yq,∞
and ‖φ‖Yq,∞ < ‖w‖X3,∞ . This implies w = φ = 0, and so u(t) = ũ(t), θ(t) = θ̃(t) for all

t ∈ [0, T ].

When T ≥ δ, the above argument implies only that u(t) = ũ(t) and θ(t) = θ̃(t) for all

t ∈ [0, δ). But, if τ > 0 is the supremum of t ∈ [0, T ] such that (u, θ) and (ũ, θ̃) agree

on [0, t], then u(τ) = ũ(τ) and θ(τ) = θ̃(τ) by the time-continuity assumption on the

solutions. Then τ = T , as otherwise considering the new data at the time τ , we could

apply the above uniqueness result in the interval [τ, τ +δ). This is indeed possible, since it

is obvious by Lemma 2.1 that the solutions remain in the space X3,∞×Yq,∞ after the time

translation. We thus would contradict, the definition of τ . The assertion of Theorem 1.3

follows. �

Remark 2.3. The above proof shows that the uniqueness for mild solutions of the Boussi-

nesq system holds, in fact, in a class that is larger than C([0, T ], L3(R3))× Yq,∞. Indeed,

let D be the closure in L3,∞ of {f ∈ L3,∞(R3) : ∆f ∈ L3,∞(R3)}. The space D was char-

acterized by Lunardi [17] to be the maximal subspace in L3,∞ where the Stokes semigroup

is C0-continuous, i.e., D is the space of all the L3,∞ functions f such that

(2.9) lim
ε→0+

‖eε∆f − f‖L3,∞ = 0.

See also [21] for a direct proof of this fact. If u0 ∈ L3,∞(R3) is divergence free and

satisfy (2.9) with u0 instead of f , then our proof goes through. We thus obtain the

uniqueness in the larger class C([0, T ], D) × Yq,∞, with 3/2 < q < 3. Notice that D is

strictly larger than L3(R3), and it is larger also than the closure of smooth compactly

supported functions in L3,∞ as, for example, smooth functions decaying like ∼ |x|−1 at

infinity do belong to D.

2.3. Existence theorems. We start by establishing a quite general local existence result.

Theorem 2.4. Let 3/2 < q < 3 and θ0 be in the closure of the Schwartz class in

B
−3(1−1/q)
q,∞ (R3). Let p > 3 such that 2

3 < 1
p + 1

q and u0 a divergence-free vector field

in the closure of the the Schwartz class in the inhomogeneous Besov space B
−(1−3/p)
p,∞ (R3).

(i) Then there exists T > 0 and a solution (u, θ) of (1.2), such that (u, θ) ∈ Xp × Yq
and ‖u‖Xp → 0, ‖θ‖Yq → 0 as T → 0. Moreover there exists R > 0, depending

only on p and q, such that (u, θ) is the only solution satisfying ‖u‖Xp < R and

‖θ‖Yq < R.
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(ii) (Regularity) The above solution belongs in fact to (Xp∩X∞)×(Yq∩Y∞). Moreover,

‖u‖X∞ → 0 and ‖θ‖Y∞ → 0 as T → 0.

(iii) - Under the more stringent condition u0 ∈ L3(R3), we have u ∈ X ⊂ X3 ∩X∞.

- Under the more stringent condition θ0 ∈ L1(R3), we have θ ∈ Y ⊂ Y1 ∩ Y∞.

Proof of Theorem 2.4. To prove the assertion (i), let us write the unknown of the integral

Boussinesq equation (1.4) as v =
(
u
θ

)
. Let also

(2.10) v0 =

(
et∆[u0 + tPθ0e3]

et∆θ0

)
,

and

B(v, ṽ) =

(
B1(u, ũ) +B2(u, θ̃)

B3(u, θ̃)

)
.

Then we see that an equivalent way of writing (1.4) is

(2.11) v = v0 + B(v,v),

complemented with div u0 = 0. We will apply the standard fixed point Lemma [18,

Lemma 20] to this equation in the Banach space E = Xp × Yq. To achieve this, we only

need to prove the existence of a constant C0 > 0 such that the following estimate holds

for all v and ṽ in E:

(2.12) ‖B(v, ṽ)‖E ≤ C0‖v‖E‖ṽ‖E ,

and such that

(2.13) ‖v0‖E < 1/(4C0).

If that is the case, then the fixed point lemma provides the existence of a solution v to

the abstract equation (2.11), such that

(2.14) ‖v‖E ≤ 2‖v0‖E <
1

2C0
.

The uniqueness of this solution is a priori ensured only under the condition ‖v‖E < 1
2C0

.

In fact, we already established estimate (2.12): it is an immediate consequence of

Lemma 2.2, applied with p0 = p1 = p2 = p and q0 = q1 = q. The constant C0 can be taken

independent on T . On the other hand, by the characterization of the non-homogeneous

Besov space (1.9), the condition (u0, θ0) ∈ B
−(1−3/p)
p,∞ × B

−3(1−1/q)
q,∞ (R3) precisely means

a ∈ E. But in fact the data belong to closure of the Schwartz class in their respective

spaces, thus by the usual approximation argument we have ‖v0‖E → 0 as T → 0. In

conclusion, (2.13) holds true if T > 0 is small enough. Recalling (2.14), we get the first

item of Theorem 2.4, with R = 1/(2C0).

To prove the assertion (ii), let us apply the first two estimates of Lemma 2.2 with

p1 = p2 = p, q1 = q and 2
p −

1
3 < 1

p0
< 1

p . We obtain in this way B1(u, u) ∈ Xp0 and

B2(u, θ) ∈ Xp0 . On the other hand, we know that et∆v0 ∈ Xp, but as p0 > p we have

also et∆v0 ∈ Xp0 , by the usual Lp-Lp0 heat estimates. Summing these three terms we find

u ∈ Xp0 . Observe that if p > 6, then we can directly take p0 = ∞, otherwise we proceed

by bootstrapping. After finitely many iterations we find u ∈ X∞.
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Let us now apply the third estimate of Lemma 2.2 with q1 = q, and p1 = p, and
1
p + 1

q −
1
3 <

1
q0
< 1

q . Then B3(u, θ) ∈ Yq0 . Moreover, since q0 > q, et∆θ0 ∈ Yq0 by the usual

Lq − Lq0 heat kernel estimates. This implies θ ∈ Yq0 . If 1
p + 1

q −
1
3 < 0 then we can take

directly q0 =∞. Otherwise we proceed by bootstrapping and after finitely many steps we

find θ ∈ Y∞.

Recalling that ‖u‖Xp → 0 and ‖θ‖Yq → 0, as T → 0 the above applications of Lemma 2.2

show that ‖u‖Xp0 and ‖θ‖Yq0 also go to zero with T . So at the end of the above boot-

strapping procedures we find ‖u‖X∞ → 0 and ‖θ‖Y∞ → 0, as T → 0.

Let us now prove the assertion (iii). If u0 ∈ L3(R3), then for all 3 < p ≤ ∞ we do

have u0 ∈ B−(1−3/p)
p,∞ (R3). We can apply the first two estimates of Lemma 2.2 with p0 = 3,

p1 = p2 = p, q1 = q, provided 1
3 ≤

2
p <

2
3 and 2

3 < 1
p + 1

q <
4
3 . This is indeed possible

choosing p > 3 close enough to 3. This shows that both B1(u, u) and B2(u, θ) belong

to X3. Moreover, et∆u0 ∈ X3 by the usual heat kernel estimates. We conclude that if

u0 ∈ L3(R3) then the solutions constructed before belongs to X3.

If we now assume θ0 ∈ L1(R3), then θ0 ∈ B−3(1−1/q)
q,∞ (R3) for all 1 < q ≤ ∞. Hence,

by what we already proved, we have (u, θ) ∈ (X3 ∩X∞) × (Yq ∩ Y∞), for all q > 3/2. In

particular, (u, θ) ∈ X6 × Y12/7. Let us apply the last estimate of Lemma 2.2 with p1 = 6,

q1 = 12/7 and q0 = 4/3: then we get B3(u, θ) ∈ Y4/3. But θ0 ∈ L1(R3) implies also

et∆θ0 ∈ Y1 ∩ Y∞ ⊂ Y4/3. Therefore, (u, θ) ∈ X4 × Y4/3. We now apply the last estimate

of Lemma 2.2 with p1 = 4, q1 = 4/3 and q0 = 1: we get in this way B3(u, θ) ∈ Y1. As we

already know that et∆θ0 ∈ Y1, we conclude that θ ∈ Y1.

Assume now that we have both conditions u0 ∈ L3(R3) and θ0 ∈ L1(R3). According to

the definition of X and Y , it only remain to prove that the maps t 7→ u(t) and t 7→ θ(t)

are continuous form [0, T ] respectively to L3(R3) and L1(R3). This is quite standard. Let

us sketch the proof for the time continuity of temperature. We have of course et∆θ0 ∈
C([0, T ], L1(R3)). Moreover, recalling that ‖u‖X∞ → 0 as T → 0, and applying the third

inequality of Lemma 2.2 with q0 = q1 = 1 and p1 =∞ we see that limt→0 ‖B3(u, θ)(t)‖1 →
0. Hence t 7→ θ(t) is continuous at t = 0 in L1(R3). If 0 < t ≤ T , we consider the expression

‖B3(u, θ)(t+h)−B3(u, θ)(t)‖1. This can be bounded by the sum of ‖u‖X∞‖θ‖Y1
∫ t

0 ‖F (t+

h− s)−F (t− s)‖1s−1/2 ds and ‖u‖X∞‖θ‖Y1
∫ t+h
t ‖F (t+h− s)‖1s−1/2 ds. Both terms are

easily proved to converge to 0 as h→ 0, using properties (2.3)-(2.4) of the kernel F . This

establishes the continuity of θ from [0, T ] to L1(R3). The continuity of u from [0, T ] to

L3(R3) is treated in the same way. �

Proof to Proposition 1.1. This is now immediate. If u0 is divergence-free and (u0, θ0) ∈
L3(R3)× L1(R3), then the existence of a local-in time solution (u, θ) ∈ X × Y is already

established in Theorem 2.4. If (ũ, θ̃) is another solution in X × Y starting from the same

data, then there is δ > 0 such that (ũ, θ̃) and (u, θ) agree on [0, δ]. Indeed, using the

definition of X and Y we find by interpolation limt→0 t
1
2

(1−3/p)‖u(t)‖p = 0 for all p > 3

and limt→0 t
3
2

(1−3/q)‖θ(t)‖q = 0 for all q > 1. Moreover, the same property holds for (ũ, θ̃).

Then, multiplying the two solutions by the indicator function of the interval [0, δ], we see

that ‖(u, θ)1[0,δ]‖E < R and ‖(ũ, θ̃)1[0,δ]‖E < R. The first statement of Theorem 2.4 then

implies that (u, θ)1[0,δ] and (ũ, θ̃)1[0,δ] agree. It is now obvious that the supremum on
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[0, T ] of the times t, such that the two solutions agree on [0, t], must be equal to T . In

conclusion, there is only one solution in X × Y arising from (u0, θ0). �

Proposition 1.1 allow us to define a semigroup R(t) : L3(R3)→ L3(R3) and a semigroup

S(t) : L1(R3)→ L1(R3) such that (R(t)u0, S(t)θ0) is the unique solution in X × Y of the

Boussinesq system (1.2).

Remark 2.5. The present useful remark is inspired from Ben Artzi’s paper [2]. In Propo-

sition 1.1, the existence time T > 0 a priori does not only depend on ‖u0‖3 and ‖θ0‖1, but

also on u0 and θ0 themselves. However, if we restrict to a class of data (u0, θ0) ∈ H ×K,

where H is precompact in L3(R3) and K is precompact in L1(R3), then the existence time

T depends only on H and K. Indeed, an elementary property of the heat equation is that,

as t→ 0,

(2.15) sup
θ0∈K

(
t
3
2

(1−1/q)‖et∆θ0‖q
)
→ 0,

for 1 < q ≤ ∞. To see this, fix ε > 0: the family of open balls in L1(R3) of radius ε and

centered in functions φ ∈ C∞0 (R3) cover the whole L1(R3). Finitely many of such balls

cover K. Therefore, we find finitely many smooth and compactly supported functions

such that, for any θ0 ∈ K, there is at least one of such functions φ such that ‖u0−φ‖1 < ε.

But t
3
2

(1−1/q)‖et∆θ0‖q ≤ ε + t
3
2

(1−1/q)‖et∆φ‖q. Hence, there exists t0 > 0 depending on

ε > 0 and K, but not on θ0, such that for all 0 ≤ t < t0 the above expression is less than

2ε. This yields (2.15).

In the same way, we obtain, as t→ 0,

sup
u0∈H, θ0∈K

(
t
1
2

(1−3/p)‖et∆[u0 + tPθ0e3] ‖p
)
→ 0,

for all 1 < p ≤ ∞. Now fix 3/2 < q < 3 and p > 3, such that 2
3 <

1
p + 1

q . Hence, there

exists η = η(H,K) > 0 such that, multiplying v0 by the indicator function of the time

interval [0, η], we get, for all (u0, θ0) ∈ H ×K,

‖v0 1[0,η]‖E < 1/(4C0).

The notations here are the same as in (2.10) and (2.13), and E = Xp × Yq. We deduce

from Theorem 2.4 that the solutions (R(t)u0, S(t)θ0), when (u0, θ0) vary in H×K, are all

defined at least on the time interval [0, η]. Moreover, owing to (2.14),

sup
u0∈H

t
1
2

(1−3/p)‖R(t)u0‖p → 0,

sup
θ0∈K

t
3
2

(1−1/q)‖S(t)θ0‖q → 0.
(2.16)

2.4. The end of the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof relies on Proposition 1.1, on the uniqueness Theorem 1.3

and on the adaptation of ideas introduced by Ben Artzi [2], already rivisited in (2.16),

and H. Brezis [6] in the context of the two-dimensional vorticity equation.

Without loss of generality, we can assume 3/2 < q < 3. As in Theorem 1.3, it is

sufficient to prove that, given two solutions (u, θ) and (ũ, θ̃), these agree on some small

time interval [0, δ], for some δ > 0.
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Let R(t)u0 : L3(R3)→ L3(R3) and S(t)θ0 : L1(R3)→ L1(R3) the two semigroups of the

solution to (1.2) constructed in Proposition 1.1. The proof will consist in showing that,

if (u, θ) is a solution satisfying the conditions in Theorem 1.2, then u(t) = R(t)u0 and

θ(t) = S(t)θ0.

Let 0 < s < δ, where 0 < δ < T/2. Recalling that θ is assumed to be locally bounded

on (0, T ) with values in Lq,∞, we see that, denoting as usual σ = 3
2(1− 1/q),

(2.17a) sup
t∈[0,δ]

tσ‖θ(t+ s)‖Lq,∞ <∞, and lim
t→0

tσ‖θ(t+ s)‖Lq,∞ = 0.

On the other hand, (u(s), θ(s)) ∈ L3(R3)× L1(R3) and, by Proposition 1.1, we have

(2.17b) sup
t∈[0,δ]

tσ‖S(t)θ(s)‖Lq <∞, and lim
t→0

tσ‖S(t)θ(s)‖Lq = 0.

Of course, (2.17b), remains true if we use the weak norm Lq,∞ instead of the usual Lq-

norm. This allows us to apply the uniqueness result of Theorem 1.3 with the initial data

(u(s), θ(s)) and in the time interval [s, s+ δ]: hence,

u(t+ s) = R(t)u(s), and θ(t+ s) = S(t)θ(s),

for all 0 < s < δ and all t ∈ [0, δ].

Let K = θ((0, T ]). Notice that K is precompact in L1(R3), because θ is continuous

from [0, T ] with values in L1(R3). But then

sup
s∈(0,δ)

tσ‖θ(t+ s)‖Lq = sup
s∈(0,δ)

tσ‖S(t)θ(s)‖Lq

≤ sup
θ0∈K

tσ‖S(t)θ0‖q → 0 as t→ 0.
(2.18)

Indeed, we applied here Remark 2.5, and more specifically (2.16).

From (2.18) we get limt→0 t
σ‖θ(t)‖Lq = 0. So, in particular, limt→0 t

σ‖θ(t)‖Lq,∞ = 0.

More precisely, we have

lim
t→0

tσ‖θ(t)‖Lq,∞ = 0 and θ ∈ Yq,∞,

owing to the assumption θ ∈ L∞loc((0, T ), Lq,∞(R3)).

On the other hand, we also know by Theorem 2.4 that

lim
t→0

tσ‖S(t)θ0‖Lq = 0 and S(t)θ0 ∈ Yq.

Moreover, both u and R(t)u0 are in C([0, T ], L3(R3)). This is more than needed to apply

the uniqueness Theorem 1.3. Hence, u(t) = R(t)u0 and θ(t) = S(t)θ0. �

References
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