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MS-CapsNet: A Novel Multi-Scale Capsule Network
Canqun Xiang, Lu Zhang, Yi Tang, Wenbin Zou, Chen Xu

Abstract—Capsule network is a novel architecture to encode
the properties and spatial relationships of the feature in the
images, which shows encouraging results on image classifica-
tion. However, the original capsule network is not suitable for
some classification tasks that the detected object has complex
internal representations. Hence, we propose Multi-Scale Capsule
Network, a novel variation of capsule network to enhance the
computational efficiency and representation capacity of capsule
network. The proposed Multi-Scale Capsule Network consists
of two stages. In the first stage the structural and semantic
information are obtained by the multi-scale feature extraction.
The second stage, we encode the hierarchy of features to
multi-dimensional primary capsule. Moreover, we propose an
improved dropout to enhance the robustness of capsule network.
Experimental results show that our method has competitive
performance on FashionMNIST and CIFAR10 datasets.

Index Terms—Capsule networks, multi-scale, CNNs, deep
learning.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) [1] [2] are
the state-of-the-art methods in image classification. How-

ever, CNNs have a lot of issues due to their mechanism of
routing data. Routing is the process of relaying the information
from one layer to another layer. Pooling operations are applied
in the CNNs as routing process. The pooling procedures
increase the transition invariance and discard lots of important
information such as the location and the pose of the objects
which are valuable for classification purpose.

Recently, Sabour et al. [3] explored a novel architecture,
called Capsule Network (CapsNet), to overcome CNN’s short-
comings. The basic idea is encoding the part-whole rela-
tionships (e.g., locations, scales, orientations, brightnesses)
between various entities which are objects or object parts, and
achieving translation equivariance. For example, for an image
without face but containing eyes, nose, mouth, etc. The CNN
is likely to wrongly assume that this is a face image because
it learns all the facial features. By contrast, the CapsNet learns
the relationship between these features (e.g., the eyes should
be above the nose.), and can successfully recognize that it
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is not a face. In the CNN, the low-level structure features
and high-level semantic features are extracted at bottom layers
and top layers respectively. However, in order to preserve the
spatial information, the original CapsNet only uses shallow
CNN. Due to the absence of the deep semantic information,
the CapsNet performs poorly on the classification task of
complex datasets. In order to obtain large receptive field
in the shallow convolutional structure, a number of large
convolutional kernels are used in the CapsNet. It increases the
number of trainable parameters, and makes the model easily
overfitting.

To obtain robust features and spatial relationships from the
raw images, we propose a new architecture, called Multi-
Scale Capsule Network (MS-CapsNet). In this framework, we
propose the multi-scale convolution [4] [5] and the multi-
dimensional capsule. We introduce multi-scale capsule en-
coding unit at the bottom layer of the original CapsNet [3].
Firstly, the deep convolutional structure is applied for learning
robust information. Besides, we use multilevel small convolu-
tional kernel to decrease the number of trainable parameters.
Then the semantic information of entity is encoded by high-
dimensional capsule, and the shallow feature of entity is
encoded by low-dimensional capsule. Secondly, we propose
an improved dropout algorithm on the encoded capsules to
enhance robustness of the model. Finally, we employ dy-
namic routing mechanism [3] to fuse information of multi-
dimensional capsules.

In summary, this paper has the following contributions: i)
We propose a multi-scale capsule network to fully encode hi-
erarchical features of raw images. ii) We propose an improved
dropout algorithm for the capsule layer. iii) We investigate the
performance of MS-CapsNet on FashionMNIST and CIFAR10
classification tasks. The results show that MS-CapsNets sig-
nificantly outperform CapsNets.

II. RELATED WORK

The traditional deep neural networks might not be efficient
in capturing the hierarchical structure of the entities in the
images [6] [7] [8]. In order to preserve the spatial informa-
tion, Hinton et al. [9] proposed the concept of “capsules”
in machine learning terminology. The capsule is a vector
to represent internal properties that can be used to learn
part-whole relationships. CapsNet, as a more effective image
recognition algorithm, was first implemented by Sabour et
al. [3] in 2017, and has been received a lot of attention from
researchers. Since then, some innovative works have promoted
the development of CapsNet.
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Fig. 1. MS-CapsNet Architecture: A simple MS-CapsNet with 3 layers. The first layer has 256, 9×9 convolution kernels with a stride of 1 and ReLU
activation. The second one has 10 multi-scale capsule encoding units. The final layer contains 10 16D digit capsules. The length of the activity vector of each
capsule in digit capsule layer indicates presence of an instance of each class and is used to calculate the classification loss.

Hinton describes a version of capsules in [10], where matrix
capsule is proposed to learn the relationship between the entity
and the observer (the pose). This architecture better represents
different properties of the same entity. Chen, et al. [11] embed
the routing procedure into the optimization procedure with
all other parameters in neural networks, which overcomes the
disadvantages that the optimal number of routing procedure
has to be found manually. Mohammad. [12] proposes a spec-
tral capsule network, which measures the coincidence as the
degree of alignment of the votes from capsules in lower layers
in a one-dimensional linear subspace. The proposed method
improves stability and convergence speed of capsule network.
However, all these methods only consider the spatial structure
information, which limits the performance of capsule network.

Recently, the CapsNet has also been introduced into many
fields. Jaiswal A, et al. propose the CapsuleGAN [13], a
framework that uses capsule networks to replace the standard
convolutional neural networks as discriminators. Parnian A,
et al. [14] adopt CapsNets for brain tumor classification.
James O. [15] introduces siamese capsule networks, a new
variant that can be used for pairwise learning tasks. Turab I,
et al. [16] successfully utilize capsule routing mechanis-
m for sound event detection. Rodney L, et al. [17] pro-
pose convolutional-deconvolutional capsule network, which
expands capsule networks to object segmentation and propose
the concept of deconvolutional capsules. Aryan M, et al. [18]
propose a fast CapsNet for lung cancer screening by applying
a consistent dynamic routing mechanism to speed up CapsNet.

III. MULTI-SCALE CAPSULE NETWORK

In this paper, we take into consideration the hierarchical
features, and exploit the multi-dimensional capsules to encode
the hierarchical features. As shown in Fig.1, the MS-CapsNet
is shallow with two convolutional layers and one fully connect-
ed layer. The first layer is a standard convolution layer. The
second one is multi-scale capsule encoding units. The final
layer is a digit capsule layer. There is a routing between the
multi-scale capsule encoding unit and the digit capsule layer.
The objective function for the multi-category capsule network
can be shown in Eq.(1).

LM =

J∑
j=1

Tjmax(0,m
+ − ‖Vj‖)2+

λ(1− Tj)max(0, ‖Vj‖ −m−)2
(1)

Conv(Kernel_si
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Fig. 2. Multi-Scale Capsule Encoding Architecture: there are three branches
in each channel. Each branch has a different level of feature extraction, which
is coded into the primary capsule of different dimensions, and then converted
to the same dimension by the weight matrix.

where Tj and ‖Vj‖ represents j-th target labels and the
length of j-th digit capsule, respectively. m+ and m− denote
maximum margin and minimum margin respectively. The λ
is down-weighting factor for preventing initial learning from
shrinking the lengths of the capsule outputs in the final layer.
The total loss is simply the sum of the losses of all digit
capsules.

A. Multi-scale Capsule Encoding Unit

A capsule is defined as a group of neurons in the CapsNet.
It is a vector that has both direction and length. The direction
of capsule captures the entity’s attributes, such as orientation
and location. The length of capsule represents the probability
of entity existence.

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(2)

The length of capsule is compressed to [0,1] without changing
its direction by Eq.(2), so that its length can be interpreted
as the probability that a given feature being detected by the
capsule. Here vj is the output of j-th capsule and sj is its
total input.

In the CNN, the hierarchy of features are drawn from
different convolution layers. The bottom layers can extract
rich structure information, and top layers can extract semantic
information. Both of them can support to fully represent
the input data. We design a multi-scale structure to extract
hierarchy information, and then encode the information into
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primary capsule layer. After that the predictive capsules are
obtained by the transformation matrix.

As shown in Fig.2, the unit consists of two stages. In the
first stage, the structural and semantic information are obtained
by the multi-scale feature extraction. The first 2 layers of
the top branch are the high-level feature extraction process,
which extracts semantic information. The first layer of the
middle branch is used for extracting medium-level features.
The bottom branch directly employs the original features
without trainable parameter layer.

In the second stage, we encode the hierarchy of features
into multi-dimensional primary capsule. We exploit the last
layer of the three branches to encode high-level, medium-
level and low-level features, which obtains 12D, 8D and
4D capsules respectively. Through the employment of three
branches, we obtain the multi-dimensional primary capsule.
Then, the predicted vectors are computed through different
weight matrixes as follows:

û1j|i =Wiju
1
i (3)

û2j|i = Viju
2
i (4)

û3j|i = Uiju
3
i (5)

û = concat(û1, û2, û3) (6)

where W,V and U are three weight matrixes between
u1, u2, u3 and û1, û2, û3 respectively. uki represents i-th pri-
mary capsule from k-th branch. ûkj|i represents predict vector
between j-th parent capsule and i-th child capsule of k-
th branch. The û is the output of this multi-scale capsule
encoding structure, which concatenates the results of three
branches by function concat(). The information is encoded
by using a weight matrix between i-th child capsule and j-th
parent capsule. During the training, the part-whole relationship
for each capsule pair is learned by adjusting the transformation
matrix W , V and U .

B. Capsule Dropout
Dropout prevents common overfitting by making other

hidden units unreliable. In CapsNet, each of capsule is a
vector, the dropout has to discard a vector rather than some
elements in the vector. As shown in Fig.3, for a capsule, a
standard dropout algorithm [19] can only throw away some
of its elements. That changes the direction of the capsule,
which results in changing the properties of the entity that
the capsule represents, and leads to a false recognition. For
example, there are two capsules represent nose (1,1,1) and
eye (1,1,0) respectively. The standard dropout algorithm can
discard any elements in the nose and eye via the Bernoulli
distribution. If the third element of nose is dropped, the nose
and eye have the same direction (1,1,0). The phenomenon
leads to the difficulty in learning. Therefore, we improve
the dropout algorithm for capsule by changing the encoding
method of mask. We regard each capsule as a whole, which
ensures the direction of capsule has not changing. Then, some
capsules are randomly dropped by Bernoulli distribution. Due
to the invariance of direction, the improved dropout algorithm
is more suitable for the neurons of vector.

Standard dropout

Capsules Mask

Ours dropout

Capsules

Mask

Fig. 3. Capsule Dropout: Our dropout has different encoding of the mask.
The gray values represent the true values, the black is 0 and the white is 1.
‘×’ means element-wise multiplication,‘⊗’ means broadcast multiplication.

Fig. 4. Dynamic Routing: the routing process of the 3 iterations is shown,
and different colors represent a complete iteration.

C. Dynamic Routing

Dynamic routing is a kind of information selection mech-
anism, which ensures that the outputs of child capsules are
sent to the proper parent capsules. In the previous section, the
prediction vectors û are computed through weight matrix. The
relationship is determined between each parent capsule sj and
the prediction vector û by dynamic routing. As shown in Fig.4,
this is the three iteration routing process between a parent
capsule sj and all the prediction vectors ûj|i(i = 1, ..., n).
In the first iteration, c1i = 1

n and s1j =
∑n

i=1 c
1
i ûj|i, where∑

j cj = 1 and cj ≥ 0. It means that each prediction vector
contributes the same to the parent capsule, which is an initial
state. Then we adjust the routing coefficients c1 to c2 by the
function update(), it is shown as follows:

bi+1 = bi + ûj · vj (7)

ci+1 = softmax(bi+1) (8)

where b is the coupling coefficient before normalization and
b1 = 0, vj is calculated by Eq.(2). The dynamic routing
mechanism will increase the routing coefficient to j-parent
capsule by a factor of ûj · vj . Similarly, we can get the parent
capsule u2j by the coupling coefficient c2, and then update the
coupling coefficient by the parent capsule u2j and prediction
capsule ûj . After three iterations, we obtain the final output
of the parent capsule.

IV. EXPERIMENTS

A. Datasets

To evaluate the performance of the proposed method, we
conduct the experiments on the FashionMNIST [20] and CI-
FAR10 [21] datasets. The FashionMNIST consists of a training
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(a) FashionMNIST (b) CIFAR10

Fig. 5. The test prediction accuracy of two models on FashionMNIST
and CIFAR10 datasets with iteration increasing. The MS-CapsNet has better
performance than the CapsNet.

set of 60,000 examples and a test set of 10,000 examples. Each
example is a 28×28 grayscale image, associated with a label
from 10 classes. The CIFAR10 consists of 32×32 colored and
labeled images coming from 10 different classes, in which
each class contains 6,000 images. In our experiments, 50,000
images are used as training data, and 10,000 images are used
as testing data.

B. System Setup

We implement the MS-CapsNet using the MxNet [22] and
employs the Adam optimizing method [23] as the gradient
descent algorithm to perform the training. The mini-batch size
is set to 128, and the weight decay factor is set to 0.00001.We
set different hyper parameters for training FashionMNIST
and CIFAR10: the initial learning rate is 0.001 and 0.0001
and the number of iteration is 25 and 50 for converging to
optimal solution quickly. The dropout rate is set to 0.4 and
0.1 respectively. The convolution kernel of the first layer of
the model is set to 13×13 for the CIFAR10 dataset.

The baseline contains three layers: two convolution and one
fully-connected. Conv1 has 256, 9×9 convolutional kernels
with stride of 1 and ReLU activation. The second layer is a
convolutional capsule layer with 30 channels of convolutional
capsules. Each primary capsule is a 8-dimensional vector
which is obtained by a convolution with 8 9×9 kernels and a
stride of 2 on the output of the previous layer. The final layer
is the digit capsule layer which has one 16D capsule per class.

C. Results

Fig.5 shows the test predict accuracy curves of the Cap-
sNet and the MS-CapsNet on FashionMNIST and CIFAR10
datasets. The FashionMNIST is a relatively simple dataset,
as it has been size-normalized and centered in a fixed-size
image, and each sample is a grayscale image. This regulariza-
tion alleviates the complexity of datasets, making it easy to
represent by neural networks. In contrast to FashionMNIST,
CIFAR10 is a more complex dataset, and there are a lot of
features and noises. The experiment results show that the MS-
CapsNet performs better than the CapsNet on two datasets and
has a greater improvement on CIFAR10 dataset. Meanwhile,
the MS-CapsNet achieves a faster convergence rate than the
CapsNet. The results reveal that the MS-CapsNet is more
expressive than the CapsNet because of its multi-scale struc-
ture, which has rich feature extraction and coding methods.

(a) Without dropout (b) With dropout (c) Original images

Fig. 6. The results of reconstruction on FashionMNIST.

TABLE I
COMPARISON OF THE BEST TEST ACCURACY, NUMBER OF TRAINABLE

PARAMETERS (M IS FOR MILLIONS).

FashionMNIST CIFAR10
accuracy #params accuracy #params

CapsNet 0.911 25.5M 0.727 26.0M
MS-CapsNet 0.922 10.8M 0.751 11.2M

MS-CapsNet+Drop 0.927 10.8M 0.757 11.2M

The MS-CapsNet has a better robustness on complex datasets,
which the detected object has complex internal representations.

As shown in Fig.6, the original images are reconstructed
by a training multi-layer perceptron following [3]. The result
shows that the proposed dropout method can extract robust
features, which reconstruct better performance than with-
out dropout fashion. Furthermore, we find that the standard
dropout [19] is non-convergence in our proposed MS-CapsNet,
which shows that our proposed capsule dropout is more robust
than the standard dropout.

Table 1 shows the comparison of the best test accuracy,
and the number of trainable parameters. The performance
of the MS-CapsNet is better than that of the CapsNet on
two datasets. The best accuracy of MS-CapsNet is higher
than that of CapsNet by 1.1% and 2.4% on FashionMNIST
and CIFAR10 datasets respectively. The difference between
training accuracy and test accuracy is decreased by using
improved dropout algorithm, and the test accuracy of the
model is further improved on two datasets. In the MS-CapsNet,
lots of small convolution kernels are utilized by means of
series instead of large convolution kernel. This way can
depress the number of parameters and promote the capacity
of the model to extract the depth features. In this paper, the
number of parameters of CapsNet is two times more than MS-
CapsNet, and the test performance of CapsNet is inferior to
MS-CapsNet. Objectively, the MS-CapsNet has a better overall
improvement.

V. CONCLUSION

In this work, we introduced the MS-CapsNet to enhance the
expression of the capsule network. The multi-scale convolution
feature extraction and multi-dimensional capsule coding is
employed to learn rich represents. Meanwhile, we improve the
dropout algorithm to enhance the robustness of the CapsNet.
The results indicate that MS-CapsNets perform better on
the tested complex dataset and fewer number of trainable
parameters are used when better test accuracy is achieved.
As our future work, we plan to explore the performance of
MS-CapsNet on more complex datasets.
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