To formulate the autonomous driving problem as a Markovian Decision Process, one must rst describe the state of the system and its encoding in a space S. We list the main state representations found in the literature in sections 1 and 2. Then, one must dene a set of actions A that gives the agent control over the state dynamics, which we explore in section 3.

1 Representing the vehicles 1.1 Encodings 1.1.1 Continuous coordinates A vehicle driving on a road can be described in the most general way by it's continuous position, heading and velocity.

s = x y ψ v T (1)
The composite state (or joint-state) of a road trac with one ego-vehicle (denoted X 0 ) and N other vehicles can then be described by the set of the states of all vehicles.

s = {s k } k∈[0,N ] (2) 
The reference frame can be absolute, but as the behaviour followed by the ego-vehicle should be the same at any given location and only depend on the relative position of entities around it, it is common to use an ego-centric reference frame. It allows to concentrate the distribution of visited states around the origin in both position, heading and velocity space, as other vehicles are often close to the ego-vehicle and with similar speed and heading. This reduces the region of state-space in which the policy must perform. The size of this state-space is R 4(N +1) . This representation is used in [START_REF] Forbes | The BATmobile: Towards a Bayesian Automated Taxi[END_REF][START_REF] Wheeler | A Probabilistic Framework for Microscopic Trac Propagation[END_REF][START_REF] Bai | Intention-Aware Online POMDP Planning for Autonomous Driving in a Crowd[END_REF][START_REF] Gindele | Learning driver behavior models from trac observations for decision making and planning[END_REF][START_REF] Song | Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection[END_REF][START_REF] Sunberg | The value of inferring the internal state of trac participants for autonomous freeway driving[END_REF][START_REF] Paxton | Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments[END_REF][START_REF] Lee | A Learning-Based Framework for Handling Dilemmas in Urban Automated Driving[END_REF][START_REF] Shalev-Shwartz | On a Formal Model of Safe and Scalable Self-driving Cars[END_REF][START_REF] Galceran | Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: Theory and experiment[END_REF][START_REF] Yu Fan Chen | Socially Aware Motion Planning with Deep Reinforcement Learning[END_REF][START_REF] Paxton | Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments[END_REF].

In some cases, this representation is used only for memory storage though the surrounding vehicles are note actually part of the optimized state, but rather used to dene constraints or penalties regarding the ego-vehicle state. See, for instance, [START_REF] Levine | Continuous Inverse Optimal Control with Locally Optimal Examples[END_REF]; [START_REF] Ziegler | Trajectory planning for Bertha -A local, continuous method[END_REF]; [START_REF] Qian | Optimal trajectory planning for autonomous driving integrating logical constraints: An MIQP perspective[END_REF]; [START_REF] Sadigh | Planning for Autonomous Cars that Leverage Eects on Human Actions[END_REF].

Discrete coordinates

To reduce the size of the state-space, any continuous variable z ∈ R of the state can be quantized to its closest value within a discrete and often nite set Z = {z i }.

This shrinks the state-space from R (N +1) to a discrete set of size |I| 4(N +1) , where I is the union quantization of the state-space of a single vehicle. Most of the time, the quantization is chosen uniform for simplicity, as in [START_REF] Gómez Plaza | Integration of cell-mapping and reinforcement-learning techniques for motion planning of car-like robots[END_REF][START_REF] Brechtel | Probabilistic MDP-behavior planning for cars[END_REF][START_REF] Du | A POMDP Approach to Robot Motion Planning under Uncertainty[END_REF][START_REF] Bandyopadhyay | Intention-Aware Motion Planning[END_REF][START_REF] Loiacono | Learning to overtake in TORCS using simple reinforcement learning[END_REF][START_REF] Osipychev | Proactive MDP-based collision avoidance algorithm for autonomous cars[END_REF]Rehder et al., 2017a).

However, it is often the case with uniform quantization that the state-space either remains too large or becomes too coarse. To address this issue, [START_REF] Tehrani | General behavior and motion model for automated lane change[END_REF] adapt the size of the grid cells with the relative speed of each other vehicles, while [START_REF] Brechtel | Probabilistic Decision-Making under Uncertainty for Autonomous Driving using Continuous POMDPs[END_REF] suggest to automatically learn a sucient and ecient discrete partition of the continuous space for a given task.

Spatial grid

The two encodings described so far are ecient in the sense that they use the smallest quantity of information necessary to represent the scene. However, they lack two important properties:

Permutation invariance

We expect a driving policy not to be dependent on the order in which all vehicles in the trac are listed. Ideally, this property should derive naturally from an architectural design and not rely only on data augmentation to cover the N ! possible permutations of any given trac state. That is, if we denote the trac state representation as s = (X 1 , .., X N ) and the policy as π(•|s), we require that

π(•|(s 1 , . . . , s N )) = π(•|(s σ(1) , . . . , s σ(N ) )) ∀σ ∈ S N (3) 
This desired property can be implemented within the policy architecture, as done in [START_REF] Yu Fan Chen | Socially Aware Motion Planning with Deep Reinforcement Learning[END_REF] or [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classication and Segmentation[END_REF], but also directly in the state representation.

Dependency on the number of vehicles

In theses formalizations, the size of the state depends of the number N of vehicles considered. For the sake of function approximation which often expects constantsized inputs, and in order to avoid having a growing computational complexity when more vehicles are on the road, we may wish to get rid of this dependency.

These limitations are addressed by the occupancy grid representation, that uses a different approach for representing a quantity z localized in a space X. Instead of explicitly representing spatial dimensions as variables x within a state {s k = (x k , z k )} k∈[0,N ] indexed on the vehicles, they are represented implicitly through the layout of several variables z i organized in a grid-like structure indexed on a quantization of the space X.

X = ⊕ i∈I X i ( 4 
)
s i = z k if ∃k ∈ [1, N ] s.t. x k ∈ X i 0 else (5)
The z variable often corresponds to mere presence information (0-1) but can also include additional channels such as heading and velocity.

The size of this state space is then |Z| |I| . This representation is used in [START_REF] Mukadam | Tactical Decision Making For Lane Changing With Deep Reinforcement Learning[END_REF][START_REF] Isele | Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning[END_REF][START_REF] Fridman | DeepTrac: Driving Fast through Dense Trac with Deep Reinforcement Learning[END_REF].

Coordinates systems 1.2.1 Cartesian coordinates

In most cases, the vehicles locations are expressed in a Cartesian coordinates system, as seen in 1.1.

Polar coordinates

By using a coordinate system polarized at the ego-vehicle, the scene becomes explicitly described from its point of view. This scheme is consistent with the data format of many sensors in the autonomous driving industry, such as LIDARs and radars. Angular sector indexing Following the grid representation introduced in 1.1.3, instead of directly indexing on the dierent vehicles, one can bin them according to the (discretized) angular sector they belong in. By keeping a constant number of vehicle described in each angular sector (usually only one: the closest), the state representation size becomes independent on the number of vehicles, at the expense of removing some of the vehicles from the state, usually the further ones. This representation is used in [START_REF] Hadsell | Learning long-range vision for autonomous o-road driving[END_REF][START_REF] Cardamone | Evolving Competitive Car Controllers for Racing Games with Neuroevolution[END_REF][START_REF] Sharifzadeh | Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks[END_REF][START_REF] Kueer | Imitating Driver Behavior with Generative Adversarial Networks[END_REF]Pfeier et al., 2017a;[START_REF] Graf | Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing[END_REF][START_REF] Raunak | Multi-Agent Imitation Learning for Driving Simulation[END_REF] 1.2.3 Lane-centric coordinates But one can observe that the tactical-level decision making policy should also be the same on a straight or curved road, and that only low-level motion planning needs to take the shape of the road into account. Hence, instead of the Euclidean coordinate system, a lane-centric coordinate system can be used where each vehicle is described in terms of its current lane and Frenet coordinate within this lane. This representation is used in [START_REF] Coulom | Apprentissage par renforcement utilisant des réseaux de neurones, avec des applications au contrôle moteur[END_REF] for car racing, in [START_REF] Paxton | Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments[END_REF][START_REF] Wang | Formulation of Deep Reinforcement Learning Architecture Toward Autonomous Driving for On-Ramp Merge[END_REF] for highway driving scenarios, and in (Shalev-Shwartz et al., 2016a) for a roundabout insertion scenario. In [START_REF] Riedmiller | Learning to drive a real car in 20 minutes[END_REF], the track-coordinate system is used to represent not only the vehicle's position but also heading and yaw rate, which are relative the the lane curve heading and yaw rate at the projected position.

Lane indexing Again, a grid encoding can be chosen so as to index directly the lanes on the road and describe where the vehicles are located in each lane. The state size can be made independent of the number of vehicles in the scene by keeping a constant nite number of vehicles in each lane (e.g. front, middle, rear).

This representation is used in [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF][START_REF] Wei | A Point-based Markov Decision Process for Robust Single-Lane Autonomous Driving Behavior under Uncertainties[END_REF][START_REF] Levine | Nonlinear Inverse Reinforcement Learning with Gaussian Processes[END_REF][START_REF] Ulbrich | Probabilistic online POMDP decision making for lane changes in fully automated driving[END_REF][START_REF] Wang | Formulation of Deep Reinforcement Learning Architecture Toward Autonomous Driving for On-Ramp Merge[END_REF][START_REF] Altché | An LSTM Network for Highway Trajectory Prediction[END_REF][START_REF] Raunak | Multi-Agent Imitation Learning for Driving Simulation[END_REF], and is studied in [START_REF] Chen | DeepDriving: Learning Aordance for Direct Perception in Autonomous Driving[END_REF] where the authors refer to it as a direct perception approach that leverages aordance indicators of the road situation. [START_REF] Li | Game-Theoretic Modeling of Driver and Vehicle Interactions for Verication and Validation of Autonomous Vehicle Control Systems[END_REF] uses a quantization of positions in the lanes as close/nominal/far and of velocities as approaching/stable/moving away. Likewise, Wray et al. ( 2017) use a semantic quantization tailored for handling intersections: approaching/at/edged/inside/ empty.

Camera images

The information of presence and location of other vehicles can also be encoded directly through a raw camera image.

An image can be taken from dierent viewpoints, such as a top-view camera like in [START_REF] Liu | Elements of Eective Deep Reinforcement Learning towards Tactical Driving Decision Making[END_REF], or a front-view camera like in [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] (see Enduro), and also represented in dierent spaces (RGB, HSV, etc.).

In this setting, almost no preprocessing of the raw data is needed to obtain the state representation. However, the price to pay for this lack of abstraction is high-dimensionality.

A transition model is also rarely available for planning as it requires solving the dicult task of video prediction. [START_REF] Finn | Deep visual foresight for planning robot motion[END_REF] is one of the few attempts to learn a predictive model of future video frames and use it for motion planning.

Other features 1.4.1 Intentions

The future trajectory of a vehicle often depends on the internal intentions of its driver. In order to model this dynamics in the Markov Decision Process framework, the intentions must be made part of the vehicle state, even though they are rarely directly observable. [START_REF] Bai | Intention-Aware Online POMDP Planning for Autonomous Driving in a Crowd[END_REF] and [START_REF] Bandyopadhyay | Intention-Aware Motion Planning[END_REF] both add to the state of each agent in the scene an unobserved discrete intention, representing their desired goal location coordinates. In [START_REF] Song | Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection[END_REF], semantic goal locations are used instead of coordinates to represent agents intentions at intersections, among {straight, left, right, stop}.

Instead of the mere destination, other properties of the agents decision process can also be represented, such as their politeness and aggressivity in [START_REF] Sunberg | The value of inferring the internal state of trac participants for autonomous freeway driving[END_REF].

Even entire behaviours executed by the agents can be listed and represented in the state.

This is what [START_REF] Driggs | Identifying Modes of Intent from Driver Behaviors in Dynamic Environments[END_REF] call intent modes and implement with the examples of lane keeping, preparing to lane change, and lane changing. [START_REF] Forbes | The BATmobile: Towards a Bayesian Automated Taxi[END_REF] suggest to use Bayesian inference to predict these modes of behaviours based on the observations (e.g. predict a lane change when observing a blinking turn signal), just like [START_REF] Galceran | Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: Theory and experiment[END_REF] who focus on detecting changepoints between several policies. Finally, the other agents intentions can be modelled with a high degree of expressive power as an objective function, under the hypothesis that the agents are rational and execute near-optimal policies. [START_REF] Sadigh | Planning for Autonomous Cars that Leverage Eects on Human Actions[END_REF] and [START_REF] Huang | Enabling Robots to Communicate their Objectives[END_REF] show that this approach can be used in pair with a dynamics model to predict future human actions, which yields a closed loop predictive model.

1.4.2 Lateral features [START_REF] Ulbrich | Probabilistic online POMDP decision making for lane changes in fully automated driving[END_REF] append to the state additional rule-based features, such as whether performing a lane change now is possible, and whether it is benecial. However, it is more common to see this information stored in the set of actions available in the state and their action-values, like in [START_REF] Mukadam | Tactical Decision Making For Lane Changing With Deep Reinforcement Learning[END_REF] or [START_REF] Liu | Elements of Eective Deep Reinforcement Learning towards Tactical Driving Decision Making[END_REF] where a heuristic rule-based action masker lters out apparently unsafe actions.

Longitudinal features

Driving at high speed into a distant obstacle is quite similar to driving at low speed into a close obstacle. In both situation, what matters for decision making is the time-to-collision (TTC): the decision of braking or steering out of the way has to be taken before the TTC is lower than the duration of these actions.

The longitudinal time-to-collision is dened for all i ∈ [1, N ] as

τ i = - x i -x 0 v i -v 0 (6)
Another related indicator is the time gap, dened as the time needed for the ego-vehicle to reach a vehicle's current position.

τ i = - x i -x 0 v 0 (7) 
These features are used in [START_REF] Driggs | Identifying Modes of Intent from Driver Behaviors in Dynamic Environments[END_REF][START_REF] Ulbrich | Probabilistic online POMDP decision making for lane changes in fully automated driving[END_REF][START_REF] Isele | Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning[END_REF][START_REF] Altché | An LSTM Network for Highway Trajectory Prediction[END_REF][START_REF] Liu | Elements of Eective Deep Reinforcement Learning towards Tactical Driving Decision Making[END_REF][START_REF] Raunak | Multi-Agent Imitation Learning for Driving Simulation[END_REF].

Full trajectory

Instead of only considering the current timestep in the state representation, one can decide to work directly at the scale of entire trajectories. Thus, [START_REF] Kretzschmar | Learning to predict trajectories of cooperatively navigating agents[END_REF][START_REF] Kretzschmar | Socially Compliant Mobile Robot Navigation via Inverse Reinforcement Learning[END_REF]; [START_REF] Pfeier | Predicting actions to act predictably: Cooperative partial motion planning with maximum entropy models[END_REF] use cubic splines to represent the future trajectory of each moving entity. However, this representation is not suited for sequential decision making but rather for direct optimization of the objective over the trajectory representation. The main advantage of this approach is the ability to work in continuous time instead of discrete time, wich can be very useful to access innitesimal variations of the kinematics, such as the instantaneous acceleration or jerk, which are relevant in the assessment of comfort. This is the case of [START_REF] Kuderer | Learning Driving Styles for Autonomous Vehicles from Demonstration[END_REF] who use this framework to infer comfortable driving styles from human demonstrations.

Representing the environment

The policy needs to take into account its static environment: the location of the obstacles, of the drivable space, and information regarding trac laws.

Cartesian coordinates

To represent the location of obstacles on the road around the ego-vehicle, a rst approach is simply to list each obstacle and store their location and geometry (spherical, parallelepiped, etc.) in a tuple.

This representation is compact in the sense that free space is not stored in memory. However, it has varying size and lacks spatial structure in the data structure.

It is used by [START_REF] Awais | Obstacle Avoidance in Real Time with Nonlinear Model Predictive Control of Autonomous Vehicles[END_REF].

Cartesian occupancy grid

To introduce spacial structure and xed size in the representation of obstacles, the same trick as in 1.1.3 can be used: convert the tuple of coordinates into a spatial grid. This representation is used by [START_REF] Ziebart | Planningbased Prediction for Pedestrians[END_REF][START_REF] Richter | High-Speed Autonomous Navigation of Unknown Environments using Learned Probabilities of Collision[END_REF]Chen et al., 2016;[START_REF] Tamar | Value Iteration Networks[END_REF][START_REF] Shankar | Reinforcement Learning via Recurrent Convolutional Neural Networks[END_REF][START_REF] Wulfmeier | Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments[END_REF][START_REF] Sallab | Deep Reinforcement Learning framework for Autonomous Driving[END_REF]Rehder et al., 2017a;[START_REF] Hoermann | Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling[END_REF][START_REF] Williams | Information Theoretic MPC for Model-Based Reinforcement Learning[END_REF][START_REF] Mukadam | Tactical Decision Making For Lane Changing With Deep Reinforcement Learning[END_REF][START_REF] Rhinehart | Deep Imitative Models for Flexible Inference, Planning, and Control[END_REF].

The representation choice can be dierent for dynamic and static obstacles, as shown by Pfeier et al. (2017a) who use a Cartesian grid to encode the static environment and a polar grid for the location of pedestrians.

Polar occupancy grid

Just like in 1.2.2, the polar coordinate system can also be used to describe the environment. Thus, Pfeier et al. (2017b); [START_REF] Koutník | Evolving Large-Scale Neural Networks for Vision-Based TORCS[END_REF]; [START_REF] Manuelli | Reinforcement Learning for Autonomous Driving Obstacle Avoidance using LIDAR[END_REF]; Plessen (2017) and [START_REF] Trehard | On line mapping and global positioning for autonomous driving in urban environment based on evidential SLAM[END_REF] describe the shape of the road as ranges to obstacles in a set of angular sectors.

This representation is very close to the natural data structure produced by LIDAR sensors or depth cameras, that measure the distance along rays in every direction.

Camera images

As mentioned in 1.3, when using raw camera images we benet from a very rich information feed. It contains information about neighbour vehicles, but also concerning the shape of the road, the location of the lanes and static obstacles. Hence, it can be used as a simple and rich representation of the environment.

The most commonly-occuring setting is the front-view camera, used in [START_REF] Dean | ALVINN, an autonomous land vehicle in a neural network[END_REF][START_REF] Cardamone | Evolving Competitive Car Controllers for Racing Games with Neuroevolution[END_REF][START_REF] Ross | A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning[END_REF][START_REF] Koutník | Evolving Large-Scale Neural Networks for Vision-Based TORCS[END_REF][START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF][START_REF] Yu Fan Chen | Motion Planning with Diusion Maps[END_REF][START_REF] Xu | End-to-end Learning of Driving Models from Large-scale Video Datasets[END_REF][START_REF] Sallab | End-to-End Deep Reinforcement Learning for Lane Keeping Assist[END_REF][START_REF] Hesham | End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies[END_REF][START_REF] Koppula | Learning a CNN-based End-to-End Controller for a Formula Racecar[END_REF][START_REF] Sallab | Deep Reinforcement Learning framework for Autonomous Driving[END_REF][START_REF] Codevilla | End-to-end Driving via Conditional Imitation Learning[END_REF]Rehder et al., 2017c;[START_REF] Rezagholizadeh | Semi-supervised Regression with Generative Adversarial Networks for End to End Learning in Autonomous Driving[END_REF].

But the images can also come frome a top-view camera, as seen in [START_REF] Bagnell | Learning for autonomous navigation[END_REF]Rehder et al., 2017b,c).

Instead of using the raw images, a preprocessing step can be considered, usually for the sake of semantic segmentation to identify the drivable area of the image, like in [START_REF] Hadsell | Learning long-range vision for autonomous o-road driving[END_REF][START_REF] Barnes | Find your own way: Weakly-supervised segmentation of path proposals for urban autonomy[END_REF]. Another objective of preprocessing can also be the transfer of skills learnt in simulation to real use cases, as [START_REF] Pan | Virtual to Real Reinforcement Learning for Autonomous Driving[END_REF] who use style transfer to convert the simulator images distribution to a realistic images distribution that is fed to the driving policy during its training, so as to improve robustness in real usage. Sometimes, this preprocessing is not used as a transformation of the observation but rather as an auxiliary task. Thus, Eraqi et al. ( 2017) performs semantic segmentation of camera images and shows that it improves performance on the main task of steering angle regression.

Finally, camera images being high-dimensional observations, compressed representations can be learnt explicitly through the use of unsupervised learning and auto-encoders, such as in (Ha and Schmidhuber, 2018;[START_REF] Kendall | Learning to Drive in a Day[END_REF].

Road structure

The knowledge of the road network provides meaningful information. For instance, [START_REF] Van Den | Temporal exploration for reinforcement learning in continuous action spaces[END_REF] describes the track curve through its orientation, width and lateral oset with respect to a nite set of positions along a planned route. [START_REF] Se | Learning from Maps: Visual Common Sense for Autonomous Driving[END_REF] extract from camera images features describing the road structure, such as the drivable directions and distance to intersections.

However, it is rarely included directly in the state-space. [START_REF] Liniger | Optimization-based autonomous racing of 1:43 scale RC cars[END_REF]; [START_REF] Song | Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection[END_REF][START_REF] Hollins Wray | Online decision-making for scalable autonomous systems[END_REF] use it as static reference information that denes constraints on the state-space, such as forbidden error states. In [START_REF] Shalev-Shwartz | On a Formal Model of Safe and Scalable Self-driving Cars[END_REF], the road geometry is used to assess responsibility in a potential collision, and to forbid only collision states where the blame is on the ego-vehicle.

More commonly, it is used to dene the reward function. For instance, more reward can be assigned to driving in some parts of the road, typically along a known navigation route and in the center of the lane, as in [START_REF] Levine | Continuous Inverse Optimal Control with Locally Optimal Examples[END_REF][START_REF] Liu | Elements of Eective Deep Reinforcement Learning towards Tactical Driving Decision Making[END_REF]. Likewise [START_REF] Abbeel | Apprenticeship Learning for Motion Planning, with Application to Parking Lot Navigation[END_REF]; [START_REF] Ziebart | Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior[END_REF]; [START_REF] Stiller | 3D perception and planning for self-driving and cooperative automobiles[END_REF]; [START_REF] Gindele | Learning driver behavior models from trac observations for decision making and planning[END_REF] represent the road network as a graph and and use it to evaluate the cost of the ego-vehicle's planned trajectory. Road boundaries can also be described by curve equations, such as in [START_REF] Williams | Robust Sampling Based Model Predictive Control with Sparse Objective Information[END_REF].

The downside of excluding road information from the state is that at test time the policy cannot rely on this information, so the optimal policy is tailored for a specic road conguration and has to be computed again whenever it changes. As a consequence, the trajectory optimization often has to be performed online in this setting.

Trac laws

In addition to the road structure, trac laws can also be encoded in the state representation. For instance, [START_REF] Paxton | Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments[END_REF] adds in the state-space some features describing the current lane's speed limit, whether vehicle has entered a stop region or has the right of way. These properties can be extracted from camera images in a perception module, like in [START_REF] Se | Learning from Maps: Visual Common Sense for Autonomous Driving[END_REF] that learns to dierentiate between one-way vs two-way roads and whether the vehicle is driving in the wrong way.

Again, these trac laws can be used as reward rather than directly in the state. [START_REF] Liu | Elements of Eective Deep Reinforcement Learning towards Tactical Driving Decision Making[END_REF] uses them to penalize entering intersections when the trac lights are red, or driving in opposite or biking lanes. As the policy has no access to this information at inference time, it has to be optimized in an online manner to stay consistent with the evolution of these data.

The action space

We now study the dierent action spaces used in the driving policy literature.

Continuous actions

When driving a car, there are only a few actuators to consider: the steering wheel angle, the acceleration and brake pedals, and the gearbox. The dierent pedals and gears are often merged into a single acceleration command for simplicity.

Hence the canonic continuous action-space is composed of the longitudinal acceleration and steering angle, and often used for low-level control tasks, such as [START_REF] Sadigh | Planning for Autonomous Cars that Leverage Eects on Human Actions[END_REF][START_REF] Cardamone | Evolving Competitive Car Controllers for Racing Games with Neuroevolution[END_REF][START_REF] Ross | A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning[END_REF][START_REF] Levine | Continuous Inverse Optimal Control with Locally Optimal Examples[END_REF][START_REF] Garcia | Safe exploration of state and action spaces in reinforcement learning[END_REF][START_REF] Koutník | Evolving Large-Scale Neural Networks for Vision-Based TORCS[END_REF][START_REF] Van Den | Temporal exploration for reinforcement learning in continuous action spaces[END_REF].

Higher-level representations can also be used if we ignore some parts of the dynamics, as showed by [START_REF] Yu Fan Chen | Socially Aware Motion Planning with Deep Reinforcement Learning[END_REF] who act directly with longitudinal and lateral velocities.

Finally, only one of these two actions can be considered if we assume that the other one is chosen according to a separate policy. For instance, [START_REF] Hester | TEXPLORE: Real-Time Sample-Ecient Reinforcement Learning for Robots[END_REF]; Shalev-Shwartz et al. (2016a) only consider the choice of continuous acceleration while assuming that a lane keeping lateral controller is available and independently sets the steering angle.

Discrete actions

To reduce complexity and accelerate the policy optimization, it is common to prefer a discrete action-space to a continuous one. From there, it is straight-forward to discretize the original continuous action-space by binning ranges of actions together.

The binning is often chosen uniform for simplicity, like in [START_REF] Isele | Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning[END_REF][START_REF] Larry | Learning to Race: Experiments with a Simulated Race Car[END_REF][START_REF] Gómez Plaza | Integration of cell-mapping and reinforcement-learning techniques for motion planning of car-like robots[END_REF].

It is often the case that only a small number of possible actions are chosen. For instance, [START_REF] Bandyopadhyay | Intention-Aware Motion Planning[END_REF]; [START_REF] Bai | Intention-Aware Online POMDP Planning for Autonomous Driving in a Crowd[END_REF]; [START_REF] Song | Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection[END_REF] use only three possible acceleration values: {decelerate a = -α, maintain velocity a = 0, accelerate a = +α}.

However, a uniform binning often suers from being either too coarse or too highdimensional. As the distribution of steering angle is heavily concentrated around the center, [START_REF] Xu | End-to-end Learning of Driving Models from Large-scale Video Datasets[END_REF] suggest to perform the binning in a log-space or even according to the data distribution, in order to have a ne sampling only around frequent actions.

Again, only one dimension can be considered. [START_REF] Brechtel | Probabilistic Decision-Making under Uncertainty for Autonomous Driving using Continuous POMDPs[END_REF]; [START_REF] Bandyopadhyay | Intention-Aware Motion Planning[END_REF]; [START_REF] Bai | Intention-Aware Online POMDP Planning for Autonomous Driving in a Crowd[END_REF]; [START_REF] Song | Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection[END_REF] focus on choosing the longitudinal acceleration while assuming that a lateral control tracks a pre-planned trajectory, like simple lane keeping or following the route at intersections.

As noted by [START_REF] Sallab | End-to-End Deep Reinforcement Learning for Lane Keeping Assist[END_REF] who compares the continuous and discrete settings, the discretization implies the introduction of discontinuities in the commands, which can lead to instability and jerky trajectories. One way to adress this is to asume that discrete actions are all abstract and imply an underlying smooth continuous control policy. Alternatively we can use commands corresponding to higher order derivatives of the dynamics, so as to benet from the smoothing properties of the integration in the controlled system. This is the case of [START_REF] Riedmiller | Learning to drive a real car in 20 minutes[END_REF][START_REF] Gindele | Learning driver behavior models from trac observations for decision making and planning[END_REF][START_REF] Manuelli | Reinforcement Learning for Autonomous Driving Obstacle Avoidance using LIDAR[END_REF] and [START_REF] Huang | Enabling Robots to Communicate their Objectives[END_REF] who use the steering rate or heading rate instead of the steering angle to generate smoother trajectories.

Temporal abstraction

The actions presented so far are commands aecting the car dynamics, which means they must be updated at a high frequency, in the order of 10Hz. In (Shalev-Shwartz and Shashua, 2016;Shalev-Shwartz et al., 2016b) and [START_REF] Shalev-Shwartz | On a Formal Model of Safe and Scalable Self-driving Cars[END_REF], the authors argue that due to this dense time resolution of decision making, the estimation of the value function faces a very small signal-to-noise ratio as its variance grows linearly with the time horizon in terms of actions count, which makes training dicult.

To address this issue, some approaches such as [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] or [START_REF] Brechtel | Probabilistic MDP-behavior planning for cars[END_REF] suggest repeating primitive actions for several steps to reduce increase their duration and reduce the time resolution, hence decreasing the variance during training.

A more principled approach is proposed by [START_REF] Richard S Sutton | Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning[END_REF]: the options framework. In this setting, a set of sub-policies over primitive actions called options are used as high-level decisions by a policy over options. The options are often provided by the system designer as a way to introduce prior domain knowledge. Though they reduce the expressive power of the policy compared to primitive actions, they still allow to dene complex behaviours while being sample-ecient through temporally extended actions.

In the context of autonomous driving, there are some options choices that are widely shared among the community.

Indeed, the lateral behaviour of the ego-vehicle is often handled by three lane change options: {change to left lane, change to right lane, stay on current lane}. This is the case in [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF][START_REF] Ulbrich | Probabilistic online POMDP decision making for lane changes in fully automated driving[END_REF][START_REF] Osipychev | Proactive MDP-based collision avoidance algorithm for autonomous cars[END_REF][START_REF] Sharifzadeh | Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks[END_REF][START_REF] Li | Game-Theoretic Modeling of Driver and Vehicle Interactions for Verication and Validation of Autonomous Vehicle Control Systems[END_REF][START_REF] Mukadam | Tactical Decision Making For Lane Changing With Deep Reinforcement Learning[END_REF]. Aditionally, [START_REF] Ulbrich | Situation Assessment in Tactical Lane Change Behavior Planning for Automated Vehicles[END_REF] also consider the behaviours of preparing a lane change by edging on the side of the lane, and indicating a lane change with the blinker. [START_REF] Galceran | Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: Theory and experiment[END_REF] also introduces separate options for handling turns at intersections: {turn right, turn left}. Specic manoeuvers can also be used in the presence of obstacles, such as a pass behavior learnt in [START_REF] Larry | Learning to Race: Experiments with a Simulated Race Car[END_REF] and an overtake behavior in [START_REF] Loiacono | Learning to overtake in TORCS using simple reinforcement learning[END_REF].

The longitudinal behavior can also be dealt with by using options. They can be used to ensure safety, like the brake option of [START_REF] Sunberg | The value of inferring the internal state of trac participants for autonomous freeway driving[END_REF] which applies a maximum safe acceleration with respect to the front vehicle. [START_REF] Isele | Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning[END_REF] and [START_REF] Hollins Wray | Online decision-making for scalable autonomous systems[END_REF] dene three options for coming to a stop at an intersection, waiting or edging slightly, and proceeding through the intersection. They recognize that these options are less expressive than a set of discrete acceleration, but the resulting policy is easier to learn. It is also possible to use open-loop policies, like [START_REF] Wei | A Point-based Markov Decision Process for Robust Single-Lane Autonomous Driving Behavior under Uncertainties[END_REF] who dene a set of acceleration proles, such as: "keep constant acceleration for t 1 seconds, then keep constant velocity for another t 2 seconds".

Finally, options combining both lateral and longitudinal goals can be used, like in [START_REF] Shalev-Shwartz | On a Formal Model of Safe and Scalable Self-driving Cars[END_REF] where 10 4 semantic actions are generated by an option graph specifying both the lateral goal on lanes and longitudinal goal of relative positioning with respect to other vehicles and speed prole. In [START_REF] Paxton | Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments[END_REF] options generated by reinforcement learning as optimal policies with respect to specic manually-dened rewards to favour multiple behaviour such as following the front vehicle, changing lane only when it is safe, passing a vehicle, or stopping at an intersection. In [START_REF] Codevilla | End-to-end Driving via Conditional Imitation Learning[END_REF], a low-level control policy acting over acceleration and steering angle is modulated by a highlevel conditioning specifying the desired route at an intersection, among {left, right, straight}.

Conclusion

In this survey, we listed the most common representations for state and actions used in the autonomous driving literature. There is a wide variety of formulations with dierent properties in terms of size (large or small, xed or variable), continuousness or discreteness, invariance to permutations, characteristic time-scale, ease to model the dynamics, smoothness of the state-action mapping, etc. There is no best representation, and one must be chosen by considering many aspects of the intended use-case.
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 6 Figure 6: The lane-centric representation