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Bayesian Sequential Testing with Expectation Constraints

Stefan Ankirchner ∗ Maike Klein †

October 29, 2018

Abstract

We study a stopping problem arising from a sequential testing of two simple hypotheses
H0 and H1 on the drift rate of a Brownian motion. We impose an expectation constraint on
the stopping rules allowed and show that an optimal stopping rule satisfying the constraint
can be found among the rules of the following type: stop if the posterior probability for H1

attains a given lower or upper barrier; or stop if the posterior probability comes back to a
fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate
point means that the testing is abandoned without accepting H0 or H1. In contrast to
the unconstrained case, optimal stopping rules, in general, cannot be found among interval
exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from
optimal rules in the unconstrained case.

2010 MSC : 62L10, 60G40, 62L15.
Keywords : Bayesian sequential testing, optimal stopping, expectation constraint.

Introduction

Let X be a Brownian motion with either drift rate 0 or drift rate κ 6= 0. Suppose that an agent
observes the process X and aims at finding a time when to stop the observation and then to
accept one of the two hypotheses

H0 : drift rate is 0, H1 : drift rate is κ.

More precisely, let Y0 be the a priori probability the agent assigns to the event that H1 is true.
For t > 0 let Yt be the posterior probability of H1 to be true given the observation of X on [0, t].
Let (FYt ) be the filtration generated by (Yt) and denote by T (T ) the set of all (FYt )-stopping
times satisfying the constraint E[τ ] ≤ T ∈ [0,∞). Let α ∈

(
0, 12
)
, β ≥ 1 and suppose that the

agent faces the stopping problem

maximize E
[
1(0,α](Yτ ) + β1[1−α,1)(Yτ )

]
subject to τ ∈ T (T ). (0.1)

In this article we solve the stopping problem (0.1). The problem gathers in a stylized form a
situation where an agent continuously collects data with the aim to ultimately decide between
two hypotheses. For example, a pharmaceutical company performs tests in order to check
whether a medicament is clinically effective or not. Another example is a company collecting
data on customer preferences in order to decide whether to offer a product or not.

The payoff function in (0.1) reflects that the agent can only accept H0 or H1 if the posterior
probability is below α or above 1−α, respectively. One can interpret α and 1−α as thresholds
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predetermined by a regulator or by a company policy. If β > 1, then the agent assigns a higher
value to accepting H1 than to accepting H0.

We are mainly interested in the case where the first hitting time of the thresholds α and
1−α has an expectation larger than T , the bound on the expectation of any stopping time. In
this case, the agent has to choose a stopping time τ for which the payoff is zero with a positive
probability. In other words, the agent has to choose a stopping rule that allows to abandon
the observation without accepting H0 or H1. Such stopping rules can justify to surrender
long-running observations or test series even if no significant result has been obtained.

The results from [1] on general stopping problems with expectation constraints imply that
for solving (0.1) it is sufficient to consider only stopping times such that the law of the posterior
probability process Y at the stopping time is a weighted sum of at most 3 Dirac measures (cf.
Theorem 1.4 in [1]). We show that a reduction to 2 mass points is not possible in the specific
stopping problem (0.1).

Furthermore, we construct explicit optimal stopping times that are compositions of two
consecutive interval exit times. More precisely, we show that if T is sufficiently small and
sufficiently large, then there is an optimal stopping rule of the following type: stop if the
posterior probability for H1 attains α or 1− α; or stop if the posterior probability comes back
to an intermediate point b∗ after a sufficiently large excursion. In this case, three possible
decision outcomes occur with positive probability: H0 or H1 or none of both is accepted.
It turns out that the intermediate point b∗ does not depend on the time constraint T (only
its probability weight does). Consequently, the same 3 points suffice for describing optimal
stopping rules.

We show that, in general, there does not exist an optimal stopping time that is a single
interval exit time. However, if T is large or small enough, then one can find an optimal
stopping time that is a simple exit time. In this case, at least one of the two points at which
the process Y is stopped is independent of the time constraint and the a priori probabilities.

The idea to interpret Bayesian sequential hypotheses testing as a stopping problem goes
back to Wald (see [13]). Wald considers a problem version without expectation constraints
and obtains optimal stopping rules that are exit times from intervals. This is in line with
the well-known fact that in unconstrained one-dimensional optimal stopping problems with an
infinite time horizon one can reduce the set of stopping times to first exit times of intervals
(see e.g. Corollary 2.9 in [11]). In particular, the process at the stopping time has at most
2 mass points. Therefore, compared to the unconstrained sequential testing, the expectation
constraint in (0.1) leads to a systematical difference in the optimal stopping rule.

Stopping at an interval exit time results in a test that is usually referred to as a sequential
probability ratio test (SPRT). For testing two simple hypotheses on the drift rate of a Brownian
motion a SPRT is optimal in the sense that the SPRT minimizes the expectation of the stopping
time simultaneously under both hypotheses among all sequential tests having no larger errors
of first and second kind, see e.g. Chapter 4 in [12]. In [8] the optimality of the SPRT has
been extended for testing more general drift rates. Testing whether the filtered probability
space (Ω,F , (Ft),P0) or (Ω,F , (Ft),P1) is realized is considered in [14] and [5]. In this case,
the SPRT with stopping rule τ is optimal in the sense that it minimizes the Kuhlback-Leibler

divergence Ei
[
log

(
dPi

dP1−i

∣∣∣
Fτ

)]
, i ∈ {0, 1}.

Recent results on Bayesian sequential analysis include [10], where the authors consider
Bayesian sequential tests for two simple hypotheses on the mean reversion speed of an Ornstein-
Uhlenbeck process. Lisovskii [9] deals with sequentially testing two hypotheses on the drift rate
of a Brownian bridge.

Some classical versions of the SPRT are described in the monographs [12] and [11]. We
postpone a more detailed comparison of the model in the present paper with the classical

2



versions to the end of Section 2.2, after the rigorous description of our model and after stating
the optimal stopping rule for the problem (0.1).

There are only few articles considering stopping problems with expectation constraints.
Kennedy [6] provides a solution method in a discrete time setting, based on Lagrangian tech-
niques. Within a continuous time setting, the article [2] formulates a dynamic programming
principle for stopping problems with expectation constraints and derives a verification theorem.
Bayraktar and Yao [4] provide a proof of the dynamic programming principle and characterize
the value function of the stopping problem as the unique viscosity solution of the associated
fully non-linear Hamilton-Jacobi-Bellman equation.

1 A Sequential Testing Model

In this section we describe rigorously the sequential testing model with expectation constraints
that we analyze in the article. We build upon the classical model in which two simple hypotheses
on the drift of a Brownian motion are tested (see e.g. Chapter VI.21 in [11] or Chapter 4.2 in
[12]).

Let
(
Ω,F , (Py)y∈[0,1]

)
be a probability-statistical space. In the Bayesian formulation the

probability measures Py, y ∈ [0, 1], are given by

Py = yP1 + (1− y)P0.

Let W = (Wt)t∈[0,∞) be a Brownian motion starting in 0 under every Py. Furthermore, let θ be
a random variable independent of W under every Py with Py[θ = 1] = y and Py[θ = 0] = 1−y.
Let

Xt = θκt+ σWt, t ∈ [0,∞),

where κ ∈ R\{0} and σ2 > 0. Then Py[X ∈ · | θ = i] = Pi[X ∈ ·], i ∈ {0, 1}, is the law of a
Brownian motion with drift iκ and diffusion coefficient σ. For t ∈ [0,∞) let FXt = σ(Xs : 0 ≤
s ≤ t) be the σ-algebra generated by (Xs)s∈[0,t]. We suppose that an agent aims at deriving
the value of θ by continuously observing the process X. Note that the a priori probabilities of
the statistical hypotheses

H0 : θ = 0 and H1 : θ = 1

are given by 1− y and y under Py. Define the posterior probability process (Yt)t∈[0,∞) by

Yt := Py[θ = 1 | FXt ].

According to Theorem 7.1 in [7] the likelihood ratio process (ϕt)t∈[0,∞) defined as the Radon-

Nikodým derivative of the measure P1 with respect to P0 on FXt satisfies

ϕt :=
dP1

dP0

∣∣∣∣
FXt

= exp
( κ
σ2

(
Xt −

κ

2
t
))

.

Moreover, we conclude from [12, p. 181] that

Yt =

(
y

1− y
ϕt

)/(
1 +

y

1− y
ϕt

)
and that (Yt)t∈[0,∞) solves

dYt =
κ

σ
Yt(1− Yt)dW̃t, Y0 = y, (1.1)
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where

W̃t =
1

σ

(
Xt − κ

∫ t

0
Ysds

)
is a standard Brownian motion with respect to (FXt ) and Py (see Theorem 7.12 and Theorem 9.1
in [7]). Moreover, the filtration (FYt )t∈[0,∞) generated by (Yt)t∈[0,∞) coincides with (FXt )t∈[0,∞).
Observe that (Yt)t∈[0,∞) is a regular continuous strong Markov process under Py with state
space J = (0, 1). From (1.1) we conclude that if Yt is close to 0 or 1, then the diffusion
coefficient is small and hence the posterior probability is unlikely to change much in small time
intervals.

We assume that the agent can accept H0 only if the posterior probability Y is smaller than
or equal to a given threshold α ∈

(
0, 12
)
. Similarly, the agent can accept H1 only if Y is greater

than or equal to an upper threshold. For simplicity we set the upper threshold equal to 1− α.
Let β ≥ 1 and T ∈ [0,∞). We define the payoff function by

f(x) = 1(0,α](x) + β1[1−α,1)(x), x ∈ (0, 1).

We assume that the agent aims at maximizing the expected payoff Ey[f(Yτ )] among all (FYt )-
stopping times satisfying the expectation constraint Ey[τ ] ≤ T . The value function V : [0,∞)×
(0, 1)→ R of the constrained optimal stopping problem is given by

V (T, y) = sup
{
Ey[f(Yτ )] : τ (FYt )-stopping time, Ey[τ ] ≤ T

}
. (1.2)

We now comment on the model assumptions. Notice that f(Yτ ) = 0 if Yτ ∈ (α, 1 − α).
This reflects that the agent can neither accept H0 nor H1 if at the stopping time the posterior
process is between the two thresholds α and 1− α. In other words, the agent gains nothing if
she stops collecting data without any significant result.

Detecting a drift 0 or κ can be of different value for the agent. Notice that the payoff function
f normalizes the gain for accepting H0 to 1 and the gain from accepting H1 to the possibly
higher payoff β ≥ 1.

The payoff function f is of an all-or-nothing type. For a gain it only matters whether one
of the thresholds is attained or not. We stress that the agent does not have to accept H0 or
H1 as soon as Y attains α or 1 − α. She can continue observing the process X and hope for
significant results for the other hypothesis.

In the model version presented in Chapter VI.21, [11] and Chapter 4.2.1, [12] the agent
chooses sequential decision rules (τ, d), where τ is an (FXt )-stopping time and the decision rule
d is an FXτ -measurable random variable taking values in {0, 1}. The decision rule (τ, d) tells
the agent to stop at time τ and to accept hypothesis H1 if d = 1 and hypothesis H0 if d = 0.
It is assumed that she wants to find a decision rule (τ∗, d∗) for which

Ey[τ + a11{d=0,θ=1} + a21{d=1,θ=0}],

a1, a2 > 0, is minimal. The minimization problem is then shown to be equivalent to the problem
of finding a stopping time τ that minimizes Ey[τ + a1Yτ ∧ a2(1 − Yτ )]. The constants a1 and
a2 weigh P1[d = 0], the error of first kind, and P0[d = 1], the error of second kind.

In the model version of Chapter 4.2.1 in [12] the agent is assumed to minimize the expectation
of the stopping time among all sequential decision rules for which the error of the first and
second kind are bounded by given thresholds. Our model can be modified such that the
thresholds on the posterior process can be endogenously determined from a given bound on
the error of first and second kind. We explain this for a special case in Remark 2.3 below.

We close this section by introducing some notions and notation needed in the following
chapters.
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First, we introduce an auxiliary optimal stopping problem, in which we only allow for interval
exit times τ(a, b) = inf{t ∈ [0,∞) : Yt /∈ (a, b)}, 0 < a ≤ b < 1, satisfying the expectation
constraint. In this case, the law of Yτ has at most two mass points. For (T, y) ∈ [0,∞)× (0, 1)
let

V2(T, y) = sup {Ey[f(Yτ )] : Ey[τ ] ≤ T, Law(Yτ ) weighted sum of at most 2 Dirac measures} .
(1.3)

It turns out that on a subset of the domain, but not the whole domain, V2 coincides with V.
In Section 3 and Section 4 we show that if V (T, y) > V2(T, y), then there exists an optimal

stopping time τ∗ for (1.2) such that the law of Yτ∗ under Py is a weighted sum of Dirac measures
in α, b∗, 1−α, where b∗ ∈

(
α, 12

]
. The mass point b∗ is independent of T and y. Hence, one can

characterize an optimal stopping time for (1.2) with the same three points α, b∗, 1 − α. The
weights the optimal stopping time attributes to the three points, however, do depend on T and
y.

Secondly, for every y ∈ (0, 1) we introduce the function qy defined by

qy(x) =


2σ2

κ2

(
(2x− 1) log

(
(1− y)x

(1− x)y

)
+

1− 2y

y(1− y)
(x− y)

)
, x ∈ (0, 1),

∞, x /∈ (0, 1).

One can show that qy(Yt) − t, t ∈ [0,∞), is local martingale (see Theorem 2.1 in [3]). More-
over, the function qy allows to characterize the law of Yτ for stopping times τ satisfying the
expectation constraint Ey[τ ] ≤ T . In particular, we can reduce the optimal stopping problem
(1.2) to a measure optimization problem which helps to prove our results, see Section 4.

If we impose that both hypotheses have probability 1
2 at the beginning of the observation,

i.e. y = 1
2 , then the function q 1

2
simplifies to

q(x) := q 1
2
(x) =


2σ2

κ2
(2x− 1) log

(
x

1− x

)
, x ∈ (0, 1),

∞, x /∈ (0, 1).

In particular, we have q(x) = q(1− x), x ∈ R. For every y ∈ (0, 1) Equation (4) in [3] implies
that

qy(x) = q(x)− q(y)− (x− y)q′(y), x ∈ (0, 1). (1.4)

In the following we first state the value function of the primal and the auxiliary optimal
stopping problem for y = 1

2 and examine the dependence of the value function and the optimal
stopping times on the exogenous parameters α, β, κ and σ in Section 2. In Section 3 we collect
the value functions V2 and V and the optimal stopping times for a general a priori probability
of {θ = 1} and prove these results in Section 4.

2 Optimal Stopping Rules when starting without Bias

In this section we assume that the agent has no bias at the beginning of the observation process,
i.e. y = 1

2 . First we state the value function and an optimal stopping time for the case where
hypothesis 1 has a higher payoff. Then we focus on the case where both hypotheses yield the
same payoff, i.e. β = 1.

Since the a priori probability of {θ = 1} is fixed, we write in the following V (T ) and V2(T )
instead of V

(
T, 12

)
and V2

(
T, 12

)
, respectively.
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2.1 H1 yields a higher Payoff

Recall that the payoff of hypothesis H1 is given by β ≥ 1. Moreover, before the observation
starts the agent believes that the drift 0 and κ both occur with probability 1

2 .
Let τ(a, b) = inf{t ∈ [0,∞) : Yt /∈ (a, b)}, a, b ∈ (0, 1). Then one can show that for 0 < a <

y < b < 1 it holds that Ey[τ(a, b)] = Ey[qy(Yτ(a,b))], see e.g. Lemma 2.2 in [3]. In particular,

the expected time under P
1
2 until the process (Yt)t∈[0,∞) hits either α or 1−α for the first time

is given by

E
1
2 [τ(α, 1− α)] = E

1
2 [q(Yτ )] =

1
2 − α

1− 2α
q(α) +

1
2 − α

1− 2α
q(1− α) = q(α),

If the upper bound for the expected time horizon is larger than q(α), then the agent obtains
a payoff of 1

2(β + 1) by stopping at α and 1 − α. To increase the payoff, she can increase the
probability to attain 1− α by stopping at 1− α and a point a∗ ∈ (0, α] such that τ(a∗, 1− α)

exploits the full time horizon, i.e. E
1
2 [τ(a∗, 1− α)] = T .

If the time horizon is smaller than q(α), then two cases can occur. If the constraint is not
too small, i.e. T ∈

(
T ∗, q(α)

)
for some T ∗ ∈

[
0, q(α)

)
, then stopping at three points yields a

higher payoff than stopping at two points. The optimal measure has mass points α, 1−α and
b∗ ∈ (α, 1−α), where b∗ is independent of the time constraint. If T ≤ T ∗, then stopping at two
points is optimal. The optimal stopping rule is as follows: If the time constraint is too small
to reach b∗ and 1− α in expectation, then stop at 1− α and a point a∗ = a∗(T ) ∈

[
b∗, 12

)
such

that E
1
2 [τ(a∗, 1− α)] = T . Moreover, the point a∗ decreases to b∗ for T ↗ T ∗.

For T ∈
(
T ∗, q(α)

)
it is optimal to use a consecutive exit time: First stop at α and b1 ∈(

1
2 , 1− α

)
and if the process attains b1 before α, then continue until the process either hits b∗

or 1− α.
In order to state the value function more precisely, let

• b∗ ∈
(
α, 12

]
be the unique solution on [α, 1− α] of

`(b) := (β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b) = 0,

• T ∗ =
1
2
−b∗

1−α−b∗ q(α) +
1
2
−α

1−α−b∗ q(b
∗),

• a∗(T ) be the unique solution of
1
2
−α

1−α−aq(a) +
1
2
−a

1−α−aq(α) = T on
(
0, 12
]
.

Now we can formulate the main result of this section.

Theorem 2.1. The value function V of the optimal stopping problem (1.2) is given by

V (T ) =


V2(T ), T ∈ [0, T ∗] ∪ [q(α),∞),

T − q(b∗)
q(α)− q(b∗)

+ (β − 1)

(
1

2
−

(
q(α)− T

)
(b∗ − α)

(1− 2α)
(
q(α)− q(b∗)

)) , T ∈
(
T ∗, q(α)

)
,

where

V2(T ) =


β

1
2 − a

∗(T )

1− α− a∗(T )
, T ∈

[
0, q(α)

)
,

1 + (β − 1)
1
2 − a

∗(T )

1− α− a∗(T )
, T ≥ q(α).
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For T ∈ [0, T ∗] ∪ [q(α),∞) the stopping time τ
(
a∗(T ), 1 − α

)
is optimal for V (T ). For T ∈(

T ∗, q(α)
)

an optimal stopping time for V (T ) is given by

τ∗ = τ(α, b1) + 1{Yτ(α,b1)=b1}
inf
{
t ∈ [0,∞) : Yτ(α,b1)+t /∈ (b∗, 1− α)

}
,

where b1 ∈
(
1
2 , 1− α

)
is given by

b1 = 1− α−
(1− 2α)(1− α− b∗)

(
q(α)− T )

)(
3
2 − 2α− b∗

)
q(α)−

(
1
2 − α

)
q(b∗)− (1− α− b∗)T

.

Here we do not provide a proof because the statement follows from more general results
(Lemma 3.1 and Theorem 3.2) in Section 3.

If the payoff for hypothesis 1 is larger than for hypothesis 0, then the expected payoff depends
on three cases for the average time constraint. If the posterior probability process can attain,
in expectation, α and 1− α within the given time horizon, then it is optimal for the agent to
wait until she either can accept H1 for the first time or the posterior probability process falls
below a∗(T ) ≤ α. Although she can assume that the drift equals 0 if the posterior process is
less or equal to α, she continues observing the signals. This is due to the fact that she hopes
for enough positive signals in the remaining time such that the observations suggest a drift
κ. To maximize the payoff the agent always wants the signals to indicate a drift κ and the
posterior probability process to hit 1− α. In the case of very small time horizons, if a drift κ
seems unlikely given the first signals, then she quits observing the process with no result. Here
unlikely means that the posterior probability for the drift being κ is less or equal to a∗(T ).

Finally, if the time constraint is large enough but Y cannot reach both α and 1 − α in
expectation, then the agent stops observing the signals if the posterior probability process
equals α or 1−α for the first time or b∗ for the first time after it hits the level b1 ∈

(
1
2 , 1− α

)
.

In particular, this corresponds to stopping at a time τ∗ if the agent is convinced that the drift
is either 0 or κ and she quits the observation process with no result if the posterior probability
process first attains a level b1 and then goes back to b∗ before hitting 1−α. Roughly speaking,
she stops at b∗ if it takes too long to start the observation process afresh after it has first
attained b1, then falls below 1

2 and attains b∗.

2.2 Both Hypotheses have the same Payoff

In this section we assume that both hypotheses yield the same payoff. If β = 1, then the result
of Section 2.1 simplifies.

Corollary 2.2. For β = 1 the value function of the optimal stopping problem (1.2) is given by

V (T ) =


T

q(α)
, T < q(α),

1, T ≥ q(α).

Let T ∈
(
0, q(α)

)
. Then the following consecutive exit time τ∗ is optimal in (1.2).

τ∗ = τ(α, b1) + 1{YH(α,b1)
=b1} inf

{
t ∈ [0,∞) : Yτ(α,b1)+t /∈

(
1

2
, 1− α

)}
,

where b1 = q(α)−αT
2q(α)−T ∈

(
1
2 , 1− α

)
.

Observe that for β = 1 we only have two cases for the time constraint. If T is not too big, i.e.
if T is smaller than the expected time to reach both α and 1− α, then the maximal expected
payoff is not attained by a stopping time such that the process at the stopping time has two
mass points. Three points are necessary: Similar to the case β ≥ 1 the agent stops if the
posterior probability process equals α or 1− α for the first time or 1

2 for the first time after it
hits the level b1.
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Remark 2.3. Fix T ∈ (0,∞). Now let α ∈ (0, 12) such that q(α) > T . For the optimal
stopping time τ∗ in (1.2) the error Υ for accepting H0 although H1 is true (error of first kind)
and the error Ψ of accepting H1 in case of a true hypothesis H0 (error of second kind) are given
by

Υ = Υ(α) = P1[Yτ∗ ≤ α] =
1−

(
q(α)−(1−α)T
q(α)−αT

)σ2

(
1−α
α

)σ2

−
(
q(α)−(1−α)T
q(α)−αT

)σ2 = Ψ = Ψ(α) = P0[Yτ∗ ≥ 1− α].

One can show that the errors Υ and Ψ are strictly increasing in α and that for every δ ∈
(
0, 12
)

there exists α∗(δ) such that the type I error Υ
(
α∗(δ)

)
and the type II error Ψ

(
α∗(δ)

)
are equal

to δ. Thus, for the same prescribed type I and type II error we can determine a threshold α∗

guaranteeing the given error for the optimal stopping time τ∗.

2.3 Dependence on the Parameters

We examine how the optimal stopping rule and the expressions used to obtain the value func-
tion V in Section 2.1 change in the parameters and interpret these changes. More precisely,
we focus on the dependence of q, a∗(T ), V2, b

∗, T ∗ and V on α, β, κ and σ. We first summa-
rize and comment on the dependence on the parameters and prove them afterwards. We use
↑ and ↓ to show that the expression in the left column increases respectively decreases when
the parameter increases. The symbol ◦ represents that there is no dependence on the parameter.

α (if β > 1) α (if β = 1) β
∣∣κ
σ

∣∣
q ◦ ◦ ◦ ↓

a∗(T ) ↓ ↓ ◦ ↓

V2(T ) ↑ ↑ ↑ ↑

b∗ ↑ ◦ ↓ ◦

T ∗ ↓ ◦ ↑ ↓

V (T ) ↑ ↑ ↑ ↑

The threshold α allows the agent to assume that the drift is 0 if the posterior probability
process is less than or equal to α and to presume that the drift equals κ if the process is
greater than or equal to 1 − α. If α increases, then she can already decide earlier on the
drift’s value. Hence, the payoff function f increases and, thus, the value functions V2 and V
increase. Furthermore, if α increases, then stopping at three points yields a higher payoff than
stopping at two points for smaller time horizon T , because of the increasing payoff function.
This explains why T ∗ decreases in α.

If the gain for hypothesis 1 increases, i.e. β increases, then the value functions V2 and V
increase. The larger β, the more mass is assigned to the point 1− α. In particular, the agent
accepts to quit collecting information without a result and hence, to obtain nothing in order
to hit 1 − α with a higher probability and thus, to increase the expected payoff. Therefore,
we have to impose a higher constraint on the average waiting time to allow for three possible
outcomes, i.e. T ∗ increases. Since the expected time until the posterior probability process
attains α and 1− α does not change, the length of the time interval for which three outcomes
are optimal decreases in β.

The ratio κ
σ is a measure for the strength of the observable signals: If κ is large compared

to the diffusion coefficient σ of the process X, then the influence of a drift κ will predominate
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and the agent can conclude the value of θ after a short observation time. On the other hand, if
κ
σ is small, it becomes more difficult for the agent to decide whether she observes a drift or the
effect of the noise. Thus, if the strength of the signal increases, the value function increases.
Observe that the function q decreases in

∣∣κ
σ

∣∣. The third stopping point b∗ does not change
in
∣∣κ
σ

∣∣, because all expressions are scaled with the same factor. Then the expected time to
attain the three points α, b∗ and 1− α is smaller and thus, T ∗ is decreasing. Since q decreases
in
∣∣κ
σ

∣∣, when using two consecutive exit times, the auxiliary stopping point can increase and
the constraint is still satisfied. In particular, an increasing auxiliary stopping point b1 implies
that the mass in the optimal measure in α and 1−α increases and hence, the payoff increases.
Furthermore, since b∗ does not depend on the strength of the signal, the mass in α and 1− α
increase in

∣∣κ
σ

∣∣.
2.3.1 Dependence on the Threshold α

The function q is independent of α, but note that E
1
2 [τ(α, 1−α)] = q(α) decreases in α ∈

(
0, 12
)

with limα↓0 q(α) = ∞ and q
(
1
2

)
= 0. The payoff function f is increasing in α, thus, also the

value functions V2 and V increase in α.
In the following we write V α

2 and a∗(T, α) to emphasize the dependence of V2 and a∗(T ) on
α. First observe that

1
2 − α

1− α− a
q(a) +

1
2 − a

1− α− a
q(α) (2.1)

strictly decreases in a ∈
(
0, 12
)

for fixed α ∈
(
0, 12
)

as well as in α for fixed a. Hence, for
0 < α < γ < 1

2 and T ∈ (0,∞) we have

T =
1
2 − α

1− α− a∗(T, α)
q
(
a∗(T, α)

)
+

1
2 − a

∗(T, α)

1− α− a∗(T, α)
q(α)

>
1
2 − γ

1− γ − a∗(T, α)
q
(
a∗(T, α)

)
+

1
2 − a

∗(T, α)

1− γ − a∗(T, α)
q(γ),

which implies that a∗(T, γ) < a∗(T, α) by the definition of a∗(T, γ). Thus, a∗(T, α) is strictly
decreasing in α. Furthermore, it holds that a∗(T, α)→ 0 as α↗ 1

2 . Indeed, let ε ∈
(
0, 12
)

and
assume that a∗(T, α) ≥ ε for all α ∈

(
0, 12
)
. Since (2.1) is decreasing in a, it follows that

T =
1
2 − α

1− α− a∗(T, α)
q
(
a∗(T, α)

)
+

1
2 − a

∗(T, α)

1− α− a∗(T, α)
q(α)

≤
1
2 − α

1− α− ε
q(ε) +

1
2 − ε

1− α− ε
q(α)

−−→
α↑ 1

2

0.

Hence, limα↑ 1
2
a∗(T, α) = 0. Similarly, one shows that limα↓0 a

∗(T, α) = 1
2 .

Since
1
2
−a

1−α−a strictly decreases in a, a∗(T, α) is strictly decreasing in α and
1
2
−a

1−α−a is strictly

increasing in α, we deduce for 0 < α < γ < 1
2 that

1
2 − a

∗(T, α)

1− α− a∗(T, α)
<

1
2 − a

∗(T, γ)

1− α− a∗(T, γ)
<

1
2 − a

∗(T, γ)

1− γ − a∗(T, γ)
.

Furthermore, it holds that q(γ) < q(α). Thus, for T ∈
(
0, q(γ)

)
we have

V α
2 (T ) = β

1
2 − a

∗(T, α)

1− α− a∗(T, α)
< β

1
2 − a

∗(T, γ)

1− γ − a∗(T, γ)
= V γ

2 (T ).
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Similarly, we conclude that V α
2 (T ) < V γ

2 (T ) for T ∈
[
q(α),∞

)
. For T ∈

[
q(γ), q(α)

)
it holds

that

V α
2 (T ) = β

1
2 − a

∗(T, α)

1− α− a∗(T, α)
< β

1
2 − a

∗(T, γ)

1− γ − a∗(T, γ)
+

1
2 − γ

1− γ − a∗(T, γ)
= V γ

2 (T ).

To summarize, V α
2 (T ) is strictly increasing in α for T ∈ (0,∞). In addition, we have that

limα↓0 V
α
2 (T ) = 0 and limα↑ 1

2
V α
2 (T ) = β.

To examine the dependence of b∗ on α, we write b∗(α) and `α instead of b∗ and `, respectively.
Moreover, if β > 1 we consider the modified equation

`α(b)

1− 2α
=

β − 1

1− 2α
[q(α)− q(b) + (b− α)q′(b)] + q′(b) = 0. (2.2)

Then b∗ is a solution to `α(b) = 0 if and only if b∗ is a solution to (2.2). Notice that

∂

∂α

`α(b)

1− 2α
=

β − 1

(1− 2α)2
{

2[q(α)− q(b) + (b− α)q′(α)]− (1− 2b)[q′(b)− q′(α)]
}
< 0 (2.3)

for b ∈
(
α, 12

]
by the strict convexity of q. Now let 0 < α < γ < 1

2 . Then (2.3) yields for all
b ∈

(
γ, 12

)
that

`α(b)

1− 2α
>

`γ(b)

1− 2γ
. (2.4)

In particular, by (2.4) and since
`γ(b)
1−2γ is strictly increasing in b, we have for all b ≥ b∗(γ) that

`α(b)

1− 2α
>
`γ
(
b∗(γ)

)
1− 2γ

= 0.

Therefore, b∗(α) < b∗(γ), i.e. b∗ is strictly increasing in α.

Since
1
2
−a

1−α−aq(α) +
1
2
−α

1−α−aq(a) strictly decreases in a for fixed α and in α for fixed a, it follow
that T ∗ decreases in α. Indeed,

T ∗(α) =
1
2 − b

∗(α)

1− α− b∗(α)
q(α) +

1
2 − α

1− α− b∗(α)
q
(
b∗(α)

)
>

1
2 − b

∗(γ)

1− α− b∗(γ)
q(α) +

1
2 − α

1− α− b∗(γ)
q
(
b∗(γ)

)
>

1
2 − b

∗(γ)

1− γ − b∗(γ)
q(α) +

1
2 − γ

1− γ − b∗(γ)
q
(
b∗(γ)

)
= T ∗(γ).

If β = 1, then b∗ = 1
2 and T ∗ = 0 are independent of α.

2.3.2 Dependence on β

Observe that q and a∗(T ) are independent of β. Since the payoff function f is increasing in
β, the functions V2 and V increase in β. Furthermore, V2(T ) is linear in β, thus, it strictly
increases in β with limβ→∞ V2(T ) =∞ for T ∈ (0,∞) and for β = 1 it holds that

V2(T ) =


1
2 − a

∗(T )

1− α− a∗(T )
, T ∈

[
0, q(α)

)
,

1, T ≥ q(α).
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For the dependence of b∗ on β we use that

`(b) = (β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b)

strictly increases in b for fixed β as well as in β for fixed b ∈
(
α, 12

]
. Therefore, b∗ strictly

decreases in β. Furthermore, we have b∗ = 1
2 if β = 1 and b∗ ↓ α for β →∞. To see the second

claim, first note that q′ strictly increases on
[
α, 12

]
with q′

(
1
2

)
= 0. Thus, for β > 1

2α it holds
that

`(b) = (β − 1)
[
q(α)− q(b) + (b− α)q′(b)

]
+ (1− 2α)q′(b)

> (β − 1)

[
q(α)− q(b) + (b− α)q′(b) +

q′(α)

β

]
.

(2.5)

Using that r(b) := q(α) − q(b) + (b − α)q′(b) is strictly increasing on
[
α, 12

]
and continuous

with r(α) = 0 and r
(
1
2

)
= q(α), we conclude that for β > max

{
−q′(α)
q(α) ,

1
2α

}
there exists

d(β) := r−1
(
−q′(α)
β

)
∈
(
α, 12

)
such that

r
(
d(β)

)
+
q′(α)

β
= 0.

In particular, for all b > d(β) we have r(b) > − q′(α)
β > 0, which together with (2.5) and the

fact that ` is strictly increasing implies that b∗ = b∗(β) ∈ (α, d(β)). Since q′(α)
β → 0 for β →∞,

we conclude that d(β) ↓ α and therefore, b∗(β) ↓ α as β →∞.

For the dependence of T ∗ on β observe that b 7→
1
2
−b

1−α−bq(α) +
1
2
−α

1−α−bq(b) is decreasing and b∗

decreases in β. Hence, it holds that T ∗ increases in β with T ∗ = 0 if β = 1 and limβ→∞ T
∗ =

q(α).

2.3.3 Dependence on the Strength of the Signal κ
σ

First note that the expressions only depend on
∣∣κ
σ

∣∣. The function q strictly decreases in
∣∣κ
σ

∣∣ on

(0, 1)\
{
1
2

}
and q

(
1
2

)
= 0 for all

∣∣κ
σ

∣∣ > 0. To emphasize the dependence on
∣∣κ
σ

∣∣, we write qκ/σ

instead of q in the following. Using that a∗(T ), T ∈ [0,∞), is the unique solution of

T =
1
2 − α

1− α− a
qκ/σ(a) +

1
2 − a

1− α− a
qκ/σ(α) =

∣∣∣σ
κ

∣∣∣2( 1
2 − α

1− α− a
q1(a) +

1
2 − a

1− α− a
q1(α)

)
we conclude that a∗(T ) solves

1
2 − α

1− α− a
q1(a) +

1
2 − a

1− α− a
q1(α) =

∣∣∣κ
σ

∣∣∣2 T.
Since

1
2
−α

1−α−aq
1(a) +

1
2
−a

1−α−aq
1(α) strictly decreases in a ∈

(
0, 12
)
, it holds that a∗(T ) strictly

decreases in
∣∣κ
σ

∣∣ for T ∈ (0,∞). In addition, it holds that a∗(T ) → 1
2 for

∣∣κ
σ

∣∣ → 0 and
a∗(T )→ 0 for

∣∣κ
σ

∣∣→∞.

Using that a 7→
1
2
−a

1−α−a is strictly decreasing on
(
0, 12
)

we conclude that V2(T ) is strictly

increasing in
∣∣κ
σ

∣∣. The point b∗ is independent of the ratio κ
σ , because

(β − 1)
[
qκ/σ(α)− qκ/σ(b)

]
+ (1− α− b+ βb− αβ)

(
qκ/σ

)′
(b) = 0

holds if and only if

(β − 1)
[
q1(α)− q1(b)

]
+ (1− α− b+ βb− αβ)

(
q1
)′

(b) = 0.
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For T ∗ we again use qκ/σ =
∣∣σ
κ

∣∣2q1 to obtain

T ∗ =
∣∣∣σ
κ

∣∣∣2( 1
2 − α

1− α− b∗
q1(b∗) +

1
2 − b

∗

1− α− b∗
q1(α)

)
.

Therefore, T ∗ is strictly decreasing in
∣∣κ
σ

∣∣ with lim|κ/σ|→0 T
∗ = ∞ and lim|κ/σ|→∞ T

∗ = 0.

Similarly, we deduce that qκ/σ(α)− T ∗ decreases in
∣∣κ
σ

∣∣.
The auxiliary stopping point b1 is given by

b1 = 1− α−
(1− 2α)(1− α− b∗)

(
q(α)− T

)(
3
2 − 2α− b∗

)
q(α)−

(
1
2 − α

)
q(b∗)− (1− α− b∗)T

= 1− α−
(1− 2α)(1− α− b∗)

[
q1(α)− q1

(
a∗(T )

)](
2− 2α− b∗ − a∗(T )

)
q1(α)−

(
1− α− a∗(T )

)
q1(b∗)− (1− α− b∗)q1

(
a∗(T )

) ,
where we use that a∗(T ) solves

1
2
−α

1−α−aq(a) +
1
2
−a

1−α−aq(α) = T . Since b∗ is independent of
∣∣κ
σ

∣∣,
we consider

∂

∂a

(
−

(1− 2α)(1− α− b∗)
[
q1(α)− q1(a)

]
(2− 2α− b∗ − a)q1(α)− (1− α− a)q1(b∗)− (1− α− b∗)q1(a)

)

= −
(1− 2α)(1− α− b∗)

(
q1(α)− q1(b∗)

)[
q1(α)− q1(a)− (1− α− a)

(
q1
)′

(a)
][

(2− 2α− b∗ − a)q1(α)− (1− α− a)q1(b∗)− (1− α− b∗)q1(a)
]2 < 0.

Using that a∗(T ) decreases in
∣∣κ
σ

∣∣, the stopping point b1 is increasing.

3 Optimal Stopping Rules for general a priori Distributions

In this section we state the main results for all a priori probabilities y ∈ (0, 1) of {θ = 1}.
Hence, the posterior probability process (Yt)t∈[0,∞) starts in y ∈ (0, 1). The statements are
proven in Section 4.

Lemma 3.1. The value function of the optimal stopping problem (1.3) is given by

V2 (T, y) =



c∗(T, y)− y
c∗(T, y)− α

, y ∈ (α, b∗], T ≤ T ∗(y),

β
y − a∗(T, y)

1− α− a∗(T, y)
, y ∈ (b∗, 1− α), T ≤ T ∗(y),

max

{
c∗(T, y)− y
c∗(T, y)− α

, β
y − a∗(T, y)

1− α− a∗(T, y)

}
, y ∈ (α, 1− α), T ∈

(
T ∗(y), q(α)− q(y)

)
,

1 + (β − 1)
y − a∗(T, y)

1− α− a∗(T, y)
, y ∈ (0, α] or

y ∈ (α, 1− α), T ≥ q(α)− q(y),

β, y ≥ 1− α,

where

• b∗ ∈
(
α, 12

]
is the unique solution on [α, 1− α] of

`(b) := (β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b) = 0, (3.1)
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• a∗(T, y) is the unique solution of 1−α−y
1−α−aq(a) + y−a

1−α−aq(α)− q(y) = T on (0, y],

• c∗(T, y) is the unique solution of c−y
c−αq(α) + y−α

c−α q(c)− q(y) = T on [y, 1),

• T ∗(y) =


(b∗ − y)q(α) + (y − α)q(b∗)

b∗ − α
− q(y), y ∈ (α, b∗],

(1− α− y)q(b∗) + (y − b∗)q(α)

1− α− b∗
− q(y), y ∈ (b∗, 1− α].

(3.2)

Theorem 3.2. The value function V of the optimal stopping problem (1.2) is given by

V (T, y) =



T + q(y)− q(b∗)
q(α)− q(b∗)

+ (β − 1)

(
y − α
1− 2α

−
(b∗ − α)

(
q(α)− T − q(y)

)
(1− 2α)

(
q(α)− q(b∗)

) )
,

y ∈ (α, 1− α), T ∈
(
T ∗(y), q(α)− q(y)

)
,

V2(T, y), else.

An optimal stopping time τ∗ for V (T, y) is given by

τ∗ =



τ
(
α, c∗(T, y)

)
, y ∈ (α, b∗], T ≤ T ∗(y),

τ
(
a∗(T, y), 1− α

)
, y ∈ (0, α] or

y ∈ (α, b∗], T ≥ q(α)− q(y) or

y ∈ (b∗, 1− α), T ∈ [0, T ∗(y)] ∪ [q(α)− q(y),∞),

0, y ≥ 1− α.

For y ∈ (α, 1− α) and T ∈
(
T ∗(y), q(α)− q(y)

)
the stopping time

τ∗ = τ(α, b1) + 1{Yτ(α,b1)=b1}
inf
{
t ∈ [0,∞) : Yτ(α,b1)+t /∈ (b∗, 1− α)

}
is optimal in (1.2), where

b1 = 1− α−
(1− 2α)(1− α− b∗)

(
q(α)− T − q(y)

)
(1− 2α− b∗ + y)q(α)− (y − α)q(b∗)− (1− α− b∗)

(
T + q(y)

) ∈ (b∗ ∨ y, 1− α).

In particular, for y ∈ (α, 1 − α) and T ∈
(
T ∗(y), q(α) − q(y)

)
the law of Yτ∗ is purely atomic

with mass points α, b∗ and 1− α that do not depend on T nor y.

Remark 3.3. The value function V2(T, y) is not continuous in
(
q(α)−q(y), y

)
for y ∈ (α, 1−α).

Indeed, observe that a∗(T, y) and c∗(T, y) are continuous in T for fixed y, because they are
the inverse functions of a strictly decreasing respectively increasing and continuous function.
Furthermore, we have a∗

(
T , y

)
= α and c∗

(
T , y) = 1− α, where T = q(α)− q(y). Hence,

lim
T↑T

V2(T, y) = max

{
1− α− y

1− 2α
, β

y − α
1− 2α

}
<

1− α− y
1− 2α

+ β
y − α
1− 2α

= V2
(
T , y

)
.

Remark 3.4. We can calculate a∗(T, y), c∗(T, y) and b∗ numerically using Newton’s method
for given α ∈

(
0, 12
)
, β ≥ 1, y ∈ (0, 1− α) and T ∈ [0,∞).

In the following we state that for some average time constraints the expected payoff increases
if we allow not only for two possible outcomes but for a third possibility, i.e. the law of the
process at the stopping time has three mass points.

Corollary 3.5. Let y ∈ (α, 1 − α) and T ∈
(
T ∗(y), q(α) − q(y)

)
, where T ∗(y) is defined in

(3.2). Then

V2(T, y) < sup {Ey[f(Yτ )] : Ey[τ ] ≤ T, Yτ has at most 3 mass points} = V (T, y).
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4 Proof of Lemma 3.1, Theorem 3.2, and Corollary 3.5

We show Lemma 3.1 and then use its statement to prove Theorem 3.2. Corollary 3.5 follows
from the proof of Theorem 3.2.

First we reduce the optimal stopping problems (1.2) and (1.3) to measure optimization
problems using the results obtained in [1]. Here A (T, y) denotes the set of all probability
measures with support in (0, 1) such that

∫
R
xµ(dx) = y and

∫
R
qy(x)µ(dx) ≤ T . Furthermore,

let An(T, y) be the set of all discrete measures in A (T, y) with at most n mass points, n ∈ N.
From Theorem 2.5 in [1] we conclude that

V (T, y) = sup
µ∈A3(T,y)

∫
R

f(x)µ(dx), (4.1)

V2 (T, y) = sup
µ∈A2(T,y)

∫
R

f(x)µ(dx). (4.2)

In the proof of Lemma 3.1 we only focus on V2 as the value function of an optimal stopping
problem. On the other hand, for the proof of Theorem 3.2 we use both the characterization
of the value function as a measure optimization problem and as an optimal stopping problem.
Changing the perspective allows to simplify and shorten the arguments.

Proof of Lemma 3.1. In the following we obtain the value of the optimal stopping problem
(1.3). We consider the cases y ∈ (0, α], y ∈ (α, 1−α) and y ∈ [1−α, 1) separately. Furthermore,
we assume that T ∈ (0,∞), because V2(0, y) = f(y) for all y ∈ (0, 1).

y ∈ [1− α, 1): Since f is bounded above by β, stopping immediately is optimal for V2(T, y),

T ∈ (0,∞), and hence V2(T, y) = β.

y ∈ (0, α]: Stopping directly yields a payoff of 1. This is optimal for β = 1. If β > 1, then

stopping at 1 − α and a ∈ (0, y) has a higher payoff. Here a has to be chosen in such a
way that the stopping time satisfies the expectation constraint. Using the first exit time of
(b, c), b ∈ (0, y), c ∈ (1 − α, 1), is not optimal, because f is constant on (0, α] and [1 − α, 1),
respectively. Indeed, once the process attains 1− α the agent can obtain a payoff of β, but if
she does not stop at 1− α, then with a positive probability the process goes below 1− α and
does not return to 1− α within the given expected time.

Observe that in an optimal strategy the whole time horizon is exploited, because decreasing
the point a, which entails a higher expected time for exiting (a, 1−α), increases the probability
that the process hits 1− α before a. Thus, it is sufficient to focus on τ(a, 1− α) and choose a
such that Ey[τ(a, 1− α)] = T. Lemma 2.2 in [3] implies that

Ey[τ(a, 1− α)] = Ey
[
qy
(
Yτ(a,1−α)

)]
.

The law µa of Yτ(a,1−α) is given by

µa =
1− α− y
1− α− a

δa +
y − a

1− α− a
δ1−α.

Now we determine a such that

Ey[τ(a, 1− α)] =

∫
R

qy(x)µa(dx) =
1− α− y
1− α− a

qy(a) +
y − a

1− α− a
qy(1− α) = T. (4.3)

Using (1.4) and q(x) = q(1− x) we rewrite (4.3) as∫
R

qy(x)µa(dx) =
1− α− y
1− α− a

q(a) +
y − a

1− α− a
q(α)− q(y) = T. (4.4)
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The map

ky : (0, y]→ [0,∞), a 7→ 1− α− y
1− α− a

q(a) +
y − a

1− α− a
q(α)− q(y), (4.5)

is continuous and strictly decreasing, because

k′y(a) =
1− α− y

(1− α− a)2
(
q(a) + (1− α− a)q′(a)− q(α)

)
< 0

by the strict convexity of q and since q(α) = q(1−α). Moreover, it holds that lima↓0 ky(a) =∞
and ky (y) = 0. Hence, for every T ∈ (0,∞) there exists a unique a∗(T, y) = k−1y (T ) ∈ (0, y)
such that (4.4) and, thus, (4.3) hold. Therefore,

V2 (T, y) = β
y − a∗(T, y)

1− α− a∗(T, y)
.

y ∈ (α, 1− α): Note that the expected time until the process (Yt)t∈[0,∞) hits either α or 1−α
for the first time is given by

Ey[τ(α, 1− α)] = Ey[qy(Yτ )] =
1− α− y

1− 2α
qy(α) +

y − α
1− 2α

qy(1− α) = q(α)− q(y).

The last equality follows from (1.4). Now we distinguish between the cases T < q(α) − q(y)
and T ≥ q(α)− q(y).

T < q(α)− q(y): In this case the process cannot reach both α and 1 − α within the given

expected time horizon. Thus, at least one of the stopping points lies inside (α, 1− α). Similar
to the case where y ∈ (0, α], we conclude that either stopping at α and c ∈ (y, 1−α) such that
Ey[τ(α, c)] = T or stopping at the first exit time of (a, 1−α), a ∈ (α, y), with Ey[τ(a, 1−α)] = T
is optimal. Here we cannot directly argue that the stopping rule τ(a, 1−α) has a higher payoff
than τ(α, c), because if T is small and y is close to α, then it may be better to stop at α than
to wait until the process hits 1− α with a small probability.

We now derive the stopping points a and c. As in the case y ∈ (0, α] we conclude that there
exists a unique a∗(T, y) = k−1y (T ) ∈ (0, y) such that Ey

[
τ
(
a∗(T, y), 1− α

)]
= T . Furthermore,

since ky is strictly decreasing and T < q(α) − q(y) = ky(α), it follows that a∗(T, y) ∈ (α, y).
For the stopping point c observe that the map

gy : [y, 1)→ [0,∞), c 7→ c− y
c− α

q(α) +
y − α
c− α

q(c)− q(y), (4.6)

is continuous and strictly increasing with gy(y) = 0, limc↑1 gy(c) = ∞ and gy(1 − α) =
q(α) − q(y). Therefore, there exists a unique c∗(T, y) = g−1y (T ) ∈ (y, 1 − α) such that
Ey
[
τ
(
α, c∗(T, y)

)]
= T . To sum up, we have

V2(T, y) = max

{
c∗(T, y)− y
c∗(T, y)− α

, β
y − a∗(T, y)

1− α− a∗(T, y)

}
.

Let y ∈ (α, b∗] and T ≤ T ∗(y) = gy(b
∗), where b∗ is the unique solution of (3.1) on [α, 1− α]

(for existence and uniqueness see Lemma 5.2 in the appendix). In the following we write a∗

and c∗ instead of a∗(T, y) and c∗(T, y), respectively. We show that for T ≤ T ∗(y) it holds that

V2(T, y) =
c∗ − y
c∗ − α

≥ β y − a∗

1− α− a∗
(4.7)

with strict inequality if β > 1. Assume that

β
y − a

1− α− a
>
c∗ − y
c∗ − α

(4.8)
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holds for some a ∈ (α, y). Then a < y− (1−α−y)(c∗−y)
β(c∗−α)−(c∗−y) =: a = a(T, y), because y−a

1−α−a is strictly

decreasing in a and a is chosen in such a way that equality holds in (4.8) when replacing a by

a. Observe that a ∈ (α, y) if and only if β > (1−2α)(c∗−y)
(y−α)(c∗−α) . If a ≤ α, then (4.8) does not hold

for any a ∈ (α, y) and hence (4.7) follows. If a ∈ (α, y), then we show that ky(a) > gy(c
∗) = T

for all a ∈ (α, a). In particular, we conclude that a∗ ≥ a and as a consequence (4.7) holds.
Since T ≤ T ∗(y) = gy(b

∗) and gy is strictly increasing, it follows that c∗ = g−1y (T ) ≤ b∗.
First assume that β > 1. Since ` is strictly increasing and we have c∗ ≤ b∗, it follows that
`(c∗) < `(b∗) = 0 and thus,

q(α) < q(c∗)− 1− α+ c∗ − c∗β − αβ
β − 1

q′(c∗). (4.9)

The definition of a, (4.9) and the strict convexity of q imply that

ky(a)− gy(c∗) = −(β − 1)
y − a

1− α− a
q(α) +

1− α− y
1− α− a

q(a)−
(

1− β y − a
1− α− a

)
q(c∗)

>
1− α− y
1− α− a

[
q(a)− q(c∗)

]
+

y − a
1− α− a

(
1− α− c∗ + c∗β − αβ

)
q′(c∗)

>

(
1− α− y
1− α− a

(a− c∗) +
y − a

1− α− a
(1− α− c∗ + c∗β − αβ)

)
q′(c∗)

= 0.

If β = 1, then

ky(a)− gy(c∗) =
y − α
c∗ − α

[q(a)− q(c∗)] ≥ y − α
c∗ − α

(a− c∗)q′(c∗) ≥ 0,

where we use that a < y < c∗ ≤ b∗ = 1
2 and hence q′(c∗) ≤ 0. Since ky is strictly decreasing, it

follows that ky(a) > ky(a) ≥ gy(c∗) = T for all a ∈ (α, a). Since a∗ = k−1y (T ), we conclude that

a∗ ≥ a and hence (4.7) holds. In particular, we have V2(T, y) = c∗−y
c∗−α for T ≤ T ∗(y). Similarly

one can show that

V2(T, y) = β
y − a∗(T, y)

1− α− a∗(T, y)

for y ∈ (b∗, 1− α) and T ≤ T ∗(y).

T ≥ q(α)− q(y) In this case the expected time to reach α and 1−α is less or equal to T . For

T = q(α) − q(y) the agent maximizes her payoff by stopping at α and 1 − α. If β > 1 and if
T increases, then she can increase the probability that the process attains 1−α before hitting
a lower bound a ∈ [a∗(T, y), α] by decreasing a. If she does so, the payoff increases. Since she
gains more from increasing the probability at 1− α than at α, stopping at a∗(T, y) and 1− α
is optimal. Therefore,

V2(T, y) =
1− α− y

1− α− a∗(T, y)
+ β

y − a∗(T, y)

1− α− a∗(T, y)
.

Proof of Theorem 3.2. First observe that V (T, y) ≥ V2(T, y) for all T ∈ [0,∞) and y ∈ (0, 1).
In this proof we also distinguish between the cases y ∈ (0, α], y ∈ (α, 1− α) and y ∈ [1− α, 1).
Without loss of generality, we assume that T ∈ (0,∞).

y ∈ [1− α, 1): Since f is bounded above by β, the stopping time τ∗ = 0 is optimal. Hence
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V (T, y) = V2(T, y) for T ∈ (0,∞).

y ∈ (0, α]: If β = 1, then we conclude as in the case y ∈ [1 − α, 1) that stopping directly

is optimal with V (T, y) = V2(T, y) = 1. If β > 1, then we use the reformulations (4.1) and
(4.2) as well as the fact that V is the value function of the optimal stopping problem (1.2).
To embed a measure µ with exactly three mass points a < b < c the agent uses the following
stopping rule τ (cf. the proof of Theorem 1.4 in [1]): She stops at the first exit time of (a, d),
where d =

(
µ({b})b+µ({c})c

)
/
(
µ({b}) +µ({c})

)
is an auxiliary stopping point. If Y attains a

before d, then she is done; otherwise, she uses a second exit time, namely, she waits until the
process equals b or c.

From (4.1) we know that stopping at 3 points is enough. Let µ ∈ A3(T, y) with mass
points a < b < c ∈ (0, 1), all having positive probability. Observe that it is not optimal if
a, b, c ∈ (0, 1 − α), because then the payoff is less or equal to 1, which is strictly smaller than
V2(T, y). Moreover, two mass points in the interval [1−α, 1) cannot be optimal neither, because
thinking in terms of the optimal stopping problem, the agent also gains β by stopping at 1−α
but with a higher probability. Stopping at a and 1 − α has a smaller expected value than
stopping at a, b and c where b, c ≥ 1− α and hence the stopping time τ(a, 1− α) is admissible
and yields a higher payoff than τ . Similar to the proof of Lemma 3.1 we conclude that in an
optimal measure it holds that c = 1 − α. If b ∈ (y, 1 − α), then, compared to the optimal
strategy for V2(T, y), the probability to attain a payoff of β is smaller. Indeed, for the payoff
β the process first has to hit the auxiliary stopping point d and then attain 1− α. But if the
agent additionally stops at b after hitting d, the probability of hitting 1− α decreases. Hence,
b ∈ (y, 1− α) cannot be optimal. Finally, if b ∈ (a, y], let

λ =
(d− y)(1− α− b)

(d− y)(1− α− b) + (y − a)(1− α− d)

and observe that λ ∈ (0, 1). Then stopping at the two points r = λa+(1−λ)b ∈ (a, y) and 1−α
has the same payoff than using the stopping time associated to µ. Indeed, λ is chosen such
that µ({1−α}) = Py

[
Yτ(r,1−α) = 1−α

]
. Hence, the payoff of the two stopping rules coincides.

Moreover, it holds that
(
1−µ({1−α})

)
λ = µ({a}) and

(
1−µ({1−α})

)
(1−λ) = µ({b}). The

strict convexity of qy implies that

Ey[τ(r, 1− α)] = Ey[qy(Yτ(r,1−α))]

= Py[Yτ(r,1−α) = 1− α]qy(α) +
(
1− Py[Yτ(r,1−α) = 1− α]

)
qy(r)

< µ({1− α})qy(α) +
(
1− µ({1− α})

)(
λqy(a) + (1− λ)qy(b)

)
=

∫
R

qy(x)µ(dx) ≤ T.

Therefore, the stopping time τ(r, 1− α) is an admissible stopping time.
To sum up, this shows that using 3 points instead of 2 does not increase the value of the

measure optimization problem (4.1) and thus, V (T, y) = V2(T, y).

y ∈ (α, 1− α): Again we examine the cases T < q(α)− q(y) and T ≥ q(α)− q(y) separately.

T ≥ q(α)− q(y): Recall that Ey[τ(α, 1 − α)] = q(α) − q(y). Therefore, both points α and

1 − α can be reached within the given time. Similar arguments as in the case y ∈ (0, α] show
that V (T, y) = V2(T, y).

T < q(α)− q(y): Here the expected time constraint is to small to reach α and 1 − α within

the given time horizon. Now we use the reformulation (4.1) and consider measures µ ∈
A3(T, y)\A2(T, y). One can argue similarly to the case y ∈ (0, α] and conclude that it is
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sufficient to focus on measures µ with mass points α < b < 1 − α and to use the full time
horizon, i.e.

∫
R
qy(x)µ(dx) = T . Note that the line of arguments interprets V as the value of

an optimal stopping problem. For every signed measure µ which is atomic and has three mass
points, the constraints

∫
R

1µ(dx) = 1,
∫
R
xµ(dx) = y and

∫
R
qy(x)µ(dx) = T uniquely define

the weights. To obtain a probability measure, one has to restrict the mass points to certain
intervals. Let

µb =
(1− α− b)

(
T + q(y)

)
+ (b− y)q(α)− (1− α− y)q(b)

(1− 2α)
(
q(α)− q(b)

) δα +
q(α)−

(
T + q(y)

)
q(α)− q(b)

δb

+
(b− α)

(
T + q(y)

)
− (b− y)q(α)− (y − α)q(b)

(1− 2α)
(
q(α)− q(b)

) δ1−α,

where b ∈
(
k−1y (T ), g−1y (T )

)
and the functions ky and gy are given by (4.5) and (4.6), respec-

tively. By Lemma 5.1 in the appendix the measures µb, b ∈
(
k−1y (T ), g−1y (T )

)
, are exactly

all measures in A3(T, y)\A2(T, y) such that the mass is concentrated in α, b and 1 − α and∫
R
qy(x)µb(dx) = T . We now maximize

∫
R
f(x)µb(dx) over b ∈

(
k−1y (T ), g−1y (T )

)
⊆ (α, 1− α).

Let

ny(b) =

∫
R

f(x)µb(dx) =
T + q(y)− q(b)
q(α)− q(b)

+ (β − 1)

(
y − α
1− 2α

−
(b− α)

(
q(α)− T − q(y)

)
(1− 2α)

(
q(α)− q(b)

) )
.

Note that

n′y(b) = − q(α)− T − q(y)

(1− 2α)
(
q(α)− q(b)

)2 [(β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b)

]
.

Since T < q(α)− q(y) we conclude that for all b ∈
(
k−1y (T ), g−1y (T )

)
− q(α)− T − q(y)

(1− 2α)
(
q(α)− q(b)

)2 < 0.

Define the function ` : [α, 1− α]→ R by

`(b) = (β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b).

Lemma 5.2 in the appendix implies that ` is strictly increasing and that there exists a unique
b∗ ∈

(
α, 12

]
such that `(b∗) = 0. If b∗ ∈

(
k−1y (T ), g−1y (T )

)
, then b∗ maximizes ny over(

k−1y (T ), g−1y (T )
)
. If b∗ < k−1y (T ) or b∗ > g−1y (T ), then ny is strictly decreasing respec-

tively increasing on
(
k−1y (T ), g−1y (T )

)
. To examine which conditions guarantee that b∗ ∈(

k−1y (T ), g−1y (T )
)

define

T ∗(y) =


gy(b

∗) =
(b∗ − y)q(α) + (y − α)q(b∗)

b∗ − α
− q(y), y ∈ (α, b∗],

ky(b
∗) =

(1− α− y)q(b∗) + (y − b∗)q(α)

1− α− b∗
− q(y), y ∈ (b∗, 1− α].

Observe that T ∗(b∗) = 0. Since q(b∗) < q(α) and q is strictly convex, it follows that T ∗(y) ∈(
0, q(α) − q(y)

)
for y 6= b∗. Let y ∈ (α, b∗]. Using k−1y (T ) < y, it holds that b∗ > k−1y (T ).

Moreover, since gy is strictly increasing it follows that b∗ < g−1y (T ) if and only if T ∗(y) =
gy(b

∗) < T .
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T ≤ T ∗(y): Then it holds that b∗ > g−1y (T ). Thus, ny is strictly increasing and

sup
{
ny(b) : b ∈

(
k−1y (T ), g−1y (T )

)}
= ny

(
g−1y (T )

)
=
T + q(y)− q

(
g−1y (T )

)
q(α)− q

(
g−1y (T )

) + (β − 1)

(
y − α
1− 2α

−
(
g−1y (T )− α

)(
q(α)− T − q(y)

)
(1− 2α)(q(α)− q

(
g−1y (T )

) )
. (4.10)

Recall that g−1y (T ) = c∗(T, y) is the unique solution to gy(c) = T on [y, 1). Hence, we conclude
that

q(α)− T − q(y) =
y − α

c∗(T, y)− α
(
q(α)− q

(
c∗(T, y)

))
, (4.11)

T + q(y)− q
(
c∗(T, y)

)
q(α)− q

(
c∗(T, y)

) =
c∗(T, y

)
− y

c∗(T, y)− α
. (4.12)

By (4.11) the second summand in (4.10) equals 0. In addition, using (4.12) we conclude that
ny
(
g−1y (T )

)
simplifies to

ny
(
g−1y (T )

)
=
T + q(y)− q

(
g−1y (T )

)
q(α)− q

(
g−1y (T )

) =
T + q(y)− q

(
c∗(T, y)

)
q(α)− q

(
c∗(T, y)

) =
c∗(T, y)− y
c∗(T, y)− α

.

Therefore, if y ∈ (α, b∗] and T ≤ T ∗(y), then

sup

{∫
R

f(x)µb(dx) : b ∈
(
k−1y (T ), g−1y (T )

)}
=
c∗(T, y)− y
c∗(T, y)− α

= V2(T, y).

Thus, V (T, y) = V2(T, y) and we do not gain more from stopping at 3 points than at 2 points.

T ∈
(
T ∗(y), q(α)− q(y)

)
: In this case it holds that b∗ ∈

(
k−1y (T ), g−1y (T )

)
and hence,

sup

{∫
R

f(x)µb(dx) : b ∈
(
k−1y (T ), g−1y (T )

)}
= ny(b

∗)

=
T + q(y)− q(b∗)
q(α)− q(b∗)

+ (β − 1)

(
y − α
1− 2α

−
(b∗ − α)

(
q(α)− T − q(y)

)
(1− 2α)

(
q(α)− q(b∗)

) )
.

It remains to show that V (T, y) = ny(b
∗) > V2(T, y) for T ∈

(
T ∗(y), q(α) − q(y)

)
. In the

following we write a∗ = k−1y (T ) and c∗ = g−1y (T ) instead of a∗(T, y) and c∗(T, y), respectively.
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(4.11) and (4.12) imply that

ny(b
∗)− c∗ − y

c∗ − α

=
T + q(y)− q(b∗)
q(α)− q(b∗)

+ (β − 1)

(
y − α
1− 2α

−
(b∗ − α)

(
q(α)− T − q(y)

)
(1− 2α)

(
q(α)− q(b∗)

) )
− c∗ − y
c∗ − α

=
y − α
c∗ − α

(
q(c∗)− q(b∗)
q(α)− q(b∗)

+ (β − 1)
(c∗ − b∗)[q(α)− q(b∗)] + (b∗ − α)[q(c∗)− q(b∗)]

(1− 2α)
(
q(α)− q(b∗)

) )

=
(y − α)

{
(c∗ − b∗)(β − 1)

(
q(α)− q(b∗)

)
+
(
1− 2α+ (β − 1)(b∗ − α)

)[
q(c∗)− q(b∗)

]}
(1− 2α)(c∗ − α)

(
q(α)− q(b∗)

)
=

(y − α)(1− α− b∗ + b∗β − αβ) [q(c∗)− q(b∗)− (c∗ − b∗)q′(b∗)]
(1− 2α)(c∗ − α)

(
q(α)− q(b∗)

)
> 0,

where the last equality follows from `(b∗) = 0, i.e.

(β − 1)
(
q(α)− q(b∗)

)
= −(1− α− b∗ + b∗β − αβ)q′(b∗),

and the strict convexity of q implies the inequality.
Similar arguments lead to

ny(b
∗)− β y − a∗

1− α− a∗

=
(1− α− a∗)(1− α− b∗ + b∗β − αβ)

[
q(a∗)− q(b∗) + (b∗ − a∗)q′(b∗)

]
(1− 2α)(1− α− a∗)

(
q(α)− q(b∗)

) > 0.

Hence,

V (T, y) = ny(b
∗) > max

{
c∗ − y
c∗ − α

, β
y − a∗

1− α− a∗

}
= V2(T, y)

for y ∈ (α, b∗] and T ∈
(
T ∗(y), q(α)− q(y)

)
. For y ∈ (b∗, 1− α) we argue similarly to obtain

V (T, y) =


V2(T, y), T ≤ T ∗(y),

T+q(y)−q(b∗)
q(α)−q(b∗) + (β − 1)

(
y−α
1−2α −

(b∗−α)
(
q(α)−T−q(y)

)
(1−2α)

(
q(α)−q(b∗)

) ) , T ∈
(
T ∗(y), q(α)− q(y)

)
.

In particular, it holds that V2(T, y) < V (T, y) for y ∈ (b∗, 1− α) and T ∈
(
T ∗(y), q(α)− q(y)

)
.

The optimal measure for the reformulated problem (4.1) for y ∈ (α, 1 − α) and T ∈(
T ∗(y), q(α)− q(y)

)
is given by

µb
∗

=
(1− α− b∗)

(
T + q(y)

)
+ (b∗ − y)q(α)− (1− α− y)q(b∗)

(1− 2α)
(
q(α)− q(b∗)

) δα +
q(α)− T − q(y)

q(α)− q(b∗)
δb∗

+
(b∗ − α)

(
T + q(y)

)
− (b∗ − y)q(α)− (y − α)q(b∗)

(1− 2α)
(
q(α)− q(b∗)

) δ1−α.
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According to Theorem 1.4 in [1] and its proof, a stopping time τ∗, which embeds µb
∗

in
(Yt)t∈[0,∞) for y ∈ (α, 1− α) and T ∈

(
T ∗(y), q(α)− q(y)

)
is given by

τ∗ = τ(α, b1) + 1{Yτ(α,b1)=b1}
inf
{
t ∈ [0,∞) : Yτ(α,b1)+t /∈ (b∗, 1− α)

}
for b1 ∈ (b∗ ∨ y, 1− α) such that µb

∗
({α}) = b1−y

b1−α . Hence, we conclude that

b1 = 1− α−
(1− 2α)(1− α− b∗)

(
q(α)− T − q(y)

)
(1− 2α− b∗ + y)q(α)− (y − α)q(b∗)− (1− α− b∗)

(
T + q(y)

) .
Similar arguments apply for y ∈ (b∗, 1− α) and T ∈

(
T ∗(y), q(α)− q(y)

)
.

Remark 4.1. The optimal measure µb
∗

for V (T, y) with y ∈ (α, 1−α) and T ∈
(
T ∗(y), q(α)− q(y)

)
concentrates its mass in the points α, 1− α and b∗. In particular, only the probability weights
depend on T and y but not the mass points. Hence, the same three points suffice in (4.1).

Proof of Corollary 3.5. Follows directly from the proof of Theorem 3.2.

Remark 4.2. In the proof of Lemma 3.1 we show that

max

{
c∗(T, y)− y
c∗(T, y)− α

, β
y − a∗(T, y)

1− α− a∗(T, y)

}
=


c∗(T, y)− y
c∗(T, y)− α

, y ∈ (α, b∗], T ≤ T ∗(y),

β
y − a∗(T, y)

1− α− a∗(T, y)
, y ∈ [b∗, 1− α), T ≤ T ∗(y),

where b∗ is the unique solution of (3.1) and T ∗(y) is given by (3.2).
For T ∈

(
T ∗(y), q(α)− q(y)

)
it is in general not so easy to decide which value the maximum

attains.
We now show how to differentiate a∗(T, y) and c∗(T, y) with respect to y. Let ϕ ∈ C1,1

(
A×

Y, (0,∞)
)

for A, Y ⊆ R open and assume that for fixed y ∈ Y the mapping ϕy : A→ [0,∞), a 7→
ϕ(a, y), is bijective. Then for T ∈ (0,∞) it holds that

∂

∂T
ϕ−1y (T ) =

1

ϕ′y
(
ϕ−1y (T )

) .
For the partial derivative with respect to y observe that

0 =
d

dy
ϕy
(
ϕ−1y (T )

)
=

d

dy
ϕ
(
ϕ−1y (T ), y

)
=

(
∂

∂a
ϕ

)(
ϕ−1y (T ), y

)( ∂

∂y
ϕ−1y (T )

)
+

(
∂

∂y
ϕ

)(
ϕ−1y (T ), y

)
.

Hence, it follows that

∂

∂y
ϕ−1y (T ) = −

(
∂
∂yϕ

) (
ϕ−1y (T ), y

)
ϕ′y
(
ϕ−1y (T )

) .

As a consequence,

∂

∂y
a∗(T, y) =

(
1− α− a∗(T, y)

) [
q(α)− q

(
a∗(T, y)

)
−
(
1− α− a∗(T, y)

)
q′(y)

]
(1− α− y)

[
q(α)− q

(
a∗(T, y)

)
−
(
1− α− a∗(T, y)

)
q′
(
a∗(T, y)

)] ,
∂

∂y
c∗(T, y) =

(
c∗(T, y)− α

) [
q(α)− q

(
c∗(T, y)

)
+
(
c∗(T, y)− α

)
q′(y)

]
(y − α)

[
q(α)− q

(
c∗(T, y)

)
+
(
c∗(T, y)− α

)
q′
(
c∗(T, y)

)] .
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Using the derivatives of a∗(T, y) and c∗(T, y) with respect to y results in

∂

∂y

(
β

y − a∗(T, y)

1− α− a∗(T, y)
− c∗(T, y)− y
c∗(T, y)− α

)

=
β[q′(y)− q′(a∗)]

q(α)− q(a∗)− (1− α− a∗)q′(a∗)
+

q′(c∗)− q′(y)

q(α)− q(c∗) + (c∗ − α)q′(c∗)
> 0,

where a∗ = a∗(T, y) and c∗ = c∗(T, y). Here we use that q is strictly convex and a∗(T, y) < y <
c∗(T, y). Moreover, for y = 1

2 it holds that c∗
(
T, 12

)
= 1− a∗

(
T, 12

)
and thus

β
1
2 − a

∗ (T, 12)
1− α− a∗

(
T, 12

) − c∗
(
T, 12

)
− 1

2

c∗
(
T, 12

)
− α

= (β − 1)
1
2 − a

∗ (T, 12)
1− α− a∗

(
T, 12

) ≥ 0.

Therefore, for y ≥ 1
2 we have for all T ∈ [0,∞)

max

{
c∗(T, y)− y
c∗(T, y)− α

, β
y − a∗(T, y)

1− α− a∗(T, y)

}
= β

y − a∗(T, y)

1− α− a∗(T, y)
.

5 Appendix

We prove two auxiliary results for the proof of Lemma 3.1 and Theorem 3.2. We first character-
ize all probability measures µ ∈ A3(T, y)\A2(T, y) with mass points α, 1−α and b ∈ (α, 1−α)
such that

∫
R
qy(x)µ(dx) = T .

Lemma 5.1. Let y ∈ (α, 1− α), T ∈
(
0, q(α)− q(y)

)
and

µb =
(1− α− b)

(
T + q(y)

)
+ (b− y)q(α)− (1− α− y)q(b)

(1− 2α)
(
q(α)− q(b)

) δα +
q(α)− T − q(y)

q(α)− q(b)
δb

+
(b− α)

(
T + q(y)

)
− (b− y)q(α)− (y − α)q(b)

(1− 2α)
(
q(α)− q(b)

) δ1−α,

where b ∈
(
k−1y (T ), g−1y (T )

)
and the functions ky and gy are given by (4.5) and (4.6), respec-

tively. Then the measures µb, b ∈
(
k−1y (T ), g−1y (T )

)
, are exactly all measures in A3(T, y)\A2(T, y)

such that the mass is concentrated in α, b and 1− α and
∫
R
qy(x)µb(dx) = T .

Proof. Recall that if we fix the three mass points α, b, 1−α for a measure µ ∈ A3(T, y)\A2(T, y),
then the constraints

∫
R

1µ(dx) = 1,
∫
R
xµ(dx) = y and

∫
R
qy(x)µ(dx) = T uniquely define

the weights of a signed measure. Conditions on b then guarantee that we obtain a probability
measure.

Let µb = p1δα+p2δb+(1−p1−p2)δ1−α be a probability measure with p1, p2, 1−p1−p2 ∈ (0, 1)
and ∫

R

qy(x)µb(dx) = (1− p2)q(α) + p2q(b)− q(y) = T < q(α)− q(y).

Hence q(b) < q(α), which implies that b ∈ (α, 1− α) is necessary. Moreover, if we impose that
µb satisfies

∫
R

1µb(dx) = 1,
∫
R
xµb(dx) = y and

∫
R
qy(x)µb(dx) = T , then the weights p1, p2

and p3 = 1− p1 − p2 are given by

p1 =
(1− α− b)

(
T + q(y)

)
+ (b− y)q(α)− (1− α− y)q(b)

(1− 2α)
(
q(α)− q(b)

) ,

p2 =
q(α)−

(
T + q(y)

)
q(α)− q(b)

,

p3 =
(b− α)

(
T + q(y)

)
− (b− y)q(α)− (y − α)q(b)

(1− 2α)
(
q(α)− q(b)

) .
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Using T < q(α)− q(y) and q(α) > q(b) results in p2 > 0. From

(1− α− b)
(
T + q(y)− q(α)

)
+ (y − α)

(
q(b)− q(α)

)
< 0

it follows that p1 < 1. Note that we have p2 < 1 if and only if q(b) < T + q(y). Since b 7→ q(b)
is continuous, symmetric around 1

2 and strictly decreasing on
(
α, 12

]
with q(α) > T + q(y) and

q
(
1
2

)
= 0, there exists a unique b = b(T ) ∈

(
α, 12

)
with q

(
b
)

= T + q(y) and q(b) < T + q(y) for

all b ∈
(
b, 1− b

)
. Thus, we restrict b to the interval

(
b, 1− b

)
. Since q(y) < T + q(y) it follows

that y ∈
(
b, 1− b

)
. Moreover, it holds that p3 > 0 if and only if

b− y
b− α

q(α) +
y − α
b− α

q(b) < T + q(y). (5.1)

For b > y Inequality (5.1) can be rewritten as gy(b) < T . From the proof of Lemma 3.1 we
already know that gy(b) is strictly increasing in b. Hence, for b > y Inequality (5.1) holds if
and only if b < g−1y (T ). In particular, since for all b ∈

(
y, g−1y (T )

)
we have

T > gy(b) =
b− y
b− α

q(α) +
y − α
b− α

q(b)− q(y) > q(b)− q(y),

it follows that g−1y (T ) < 1− b. For b ∈
(
b, y
]

we use that

T + q(y) > q(b) =
b− y
b− α

q(α) +
y − α
b− α

q(b) +
y − b
b− α

(
q(α)− q(b)

)
>
b− y
b− α

q(α) +
y − α
b− α

q(b).

So far we have restricted b to the interval
(
b, g−1y (T )

)
. In order to obtain conditions on b which

guarantee that p1 > 0, similar arguments as for p3 > 0 apply. We have p1 > 0 if and only if

1− α− y
1− α− b

q(b) +
y − b

1− α− b
q(α) < T + q(y). (5.2)

Using q(b) < T + q(y) yields that (5.2) holds for all b ∈
[
y, g−1y (T )

)
. For b < y we conclude

that (5.2) is satisfied if and only if b > k−1y (T ). In addition, (5.2) implies that q(b) < T + q(y)

for b ∈
(
k−1y (T ), y

)
and hence k−1y (T ) > b. Finally, p3 < 1 if and only if

j(b) := (b− α)
(
T + q(y)

)
− (1− 2α+ b− y)q(α) + (1− α− y)q(b) < 0.

The function j is convex on (0, 1), because j′′(b) = (1− α− y)q′′(b) > 0 with

j
(
k−1y (T )

)
=

1− α− y
1− α− k−1y (T )

(1− 2α)
(
q(k−1y (T ))− q(α)

)
< 0,

j
(
g−1y (T )

)
= (1− 2α)

(
q(g−1y (T ))− q(α)

)
< 0.

Thus, for all b ∈
(
k−1y (T ), g−1y (T )

)
the convexity of j implies that j(b) < 0. To summarize, µb

is a probability measure if and only if b ∈
(
k−1y (T ), g−1y (T )

)
.

We now show that Equation (3.1) posses a unique root.

Lemma 5.2. The equation

(β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b) = 0

has a unique solution b∗ ∈
(
α, 12

]
on [α, 1− α].

Proof. For b ∈ (0, 1) let

`(b) = (β − 1)
(
q(α)− q(b)

)
+ (1− α− b+ bβ − αβ)q′(b).

Observe that ` is continuous with `(α) = (1 − 2α)q′(α) < 0, `
(
1
2

)
= (β − 1)q(α) > 0 if β > 1

and `
(
1
2

)
= 0 if β = 1. Moreover,

`′(b) =
(
1− α− b+ β(b− α)

)
q′′(b) > 0 (5.3)

for all b ∈ [α, 1 − α]. Hence, ` is strictly increasing on [α, 1 − α]. Furthermore, there exists a
unique b∗ ∈

(
α, 12

]
such that `(b∗) = 0.
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