
HAL Id: hal-01908112
https://hal.science/hal-01908112

Submitted on 29 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards quality analysis for document oriented bases
Paola Gómez, Claudia Roncancio, Rubby Casallas

To cite this version:
Paola Gómez, Claudia Roncancio, Rubby Casallas. Towards quality analysis for document oriented
bases. International Conference on Conceptual Modeling (ER), Oct 2018, Xi’an, China. �hal-01908112�

https://hal.science/hal-01908112
https://hal.archives-ouvertes.fr

Towards quality analysis for document oriented bases

Paola Gómez1, Claudia Roncancio1, and Rubby Casallas2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP*

paola.gomez-barreto,claudia.roncancio@univ-grenoble-alpes.fr
2 TICSw, Universidad de los Andes,Bogotá - Colombia,

rcasalla@uniandes.edu.co

Abstract. Document-oriented bases allow high flexibility in data representation
which facilitates a rapid development of applications and enables many possi-
bilities for data structuring. Nevertheless, the structural choices remain crucial
because of their impact on several aspects of the document base and application
quality, e.g, memory print, data redundancy, readability and maintainability. Our
research is motivated by quality issues of document-oriented bases. We aim at
facilitating the study of the possibilities of data structuring and providing objective
metrics to better reveal the advantages and disadvantages of each solution with
respect to user needs. In this paper, we propose a set of structural metrics for a
JSON compatible schema abstraction. These metrics reflect the complexity of
the structure and are intended to be used in decision criteria for schema analysis
and design process. This work capitalizes on experiences with MongoDB, XML
and software complexity metrics. The paper presents the definition of the metrics
together with a validation scenario where we discuss how to use the results in a
schema recommendation perspective.

Keywords: NoSQL, structural metrics, document-oriented systems, MongoDB

1 Introduction

Nowadays, applications and information systems need to manage a large amount of het-
erogeneous data while meeting various requirements such as performance or scalability.
NoSQL systems provide efficient data management solutions while offering flexibility
in structuring data. Our work focuses on document-oriented systems, specifically those
storing JSON documents, including MongoDB3. These systems are “schema-free”. They
support semi-structured data without a previous creation of a schema (unlike relational
DBMS) [1]. Data can be stored in collections of document with atomic and complex
attributes. This flexibility enables rapid initial development and permits many data struc-
ture possibilities for the same information. The choice is quite crucial for its potential
impact on several aspects of application quality [2]. Indeed, each structure may have
advantages and disadvantages regarding several aspects, such as the memory footprint of
the document base, data redundancy, navigation cost, data access or program readability
and maintainability.

*Institute of Engineering Univ. Grenoble Alpes, LIG, 38000 Grenoble, France
3MongoDB is the top NoSQL database (https://www.mongodb.com , https://db-engines.com).

It uses BSON, a binary-encoded serialization of JSON-like documents (http://bsonspec.org)

Fig. 1: Example of data in MongoDB using referencing and embedding documents

It becomes interesting to consider several data structure candidates to retain a single
choice, a temporal choice or several parallel alternatives. The analysis and comparison of
several data structures is not easy because of the absence of common criteria for analysis
purposes4 and because there are potentially too many structuring possibilities.

Our research in the SCORUS project is a contribution in this direction. Even if
document-oriented systems do not support a database schema, we propose to use a
”schema” abstraction. The goal is to assist users in a data modeling process using a
recommendation approach. We seek to abstract and to work with a ”schema” to facilitate
comprehension, assessment and comparison of document oriented data structures. The
purpose is to clarify the possibilities and characteristics of each ”schema” and to provide
objective criteria for evaluating and assessing its advantages and disadvantages. The main
contribution of this paper is the proposal of a structural metrics set for JSON compatible
scheme abstraction. These metrics reflect the complexity of the data structures and can
be used to establish quality criteria such as readability and maintainability. The definition
of these metrics is based on experiments with MongoDB, XML-related work and metrics
used in Software Engineering for code quality.

In Section 2, we provide background on MongoDB and the motivation of our
proposal. Section 3 presents a brief overview of SCORUS and introduces the schema ab-
straction AJSchema. In Section 4, we propose structural metrics to measure AJSchemes.
Section 5 is devoted to the validation. It presents a scenario for schema comparison
using our metrics. Related work is discussed in Section 6. Conclusions and research
perspectives are presented in Section 7.

2 Background and motivation

We are interested in quality issues of document-oriented databases. We focus on JSON
documents managed by systems like MongoDB [3]. Here, data is managed as collections
of documents (see Figure 1) where a document is a set of attribute:value pairs.
The value type can be atomic or complex. Complex data type means either an array of
values of any type or another nesting document. An attribute value can be the identifier
of a document in another collection. This allows referencing one or more documents.

This simple type system provides a lot of flexibility in creating complex structures.
Collections can be structured and connected in various forms considering or not data

4For document oriented data there are no design criteria analogous to normalization theory in
the relational model

2

Fig. 2: SCORUS overview

replication. e.g. completely nested collections or combination of nesting and referencing.
Figure 1 depicts two ways of structuring information about tweets and twerson.

Figure 1a shows a Tweets collection and a Twerson collection. Documents in
Tweets reference documents in Twerson. The choice in Figure 1b is different, there is
a single collection Tweets with nested documents for their “twerson”. In this example,
there is no duplication of data.

There is not a definitive best structure because it depends on the current needs and
priorities. However, the characteristics of the data structure have a strong impact on
several aspects such as the size of the database, query performance and code readability of
queries. The experiments presented in [2] confirm that influence. Our work is motivated
by the analysis of how such aspects influence the maintainability and usability of the
database as well as applications. In particular, it appears that collections with nested
documents are favorable to queries following the nesting order. However, access to data
in another order and queries requiring data embedded at different levels in the same
collection will be penalized. The reason is that the complexity of manipulations required
in such cases is similar to joining several collections. In addition, collections with nested
documents have a larger footprint than the equivalent representation with references.
When structuring data, priorities may lead to diverging choices, as replicating documents
in multiple collections while reducing memory requirement and storage cost.

3 SCORUS Overview and Schema Abstraction

Our research focuses on helping users to understand, evaluate and make evolve semi-
structured data in a more conscious way. The main contribution of this paper are the
structural metrics presented in Section 4. Hereafter, we provide a brief overview of our
larger project, SCORUS; we introduce the schema abstraction (Sections 3.2 and 3.3) and
tree representation (Section 3.4) we have defined to ease the evaluation of the metrics.

3.1 SCORUS Overview

The SCORUS project aims at facilitating the study of data structuring possibilities and
providing objective metrics to better reveal the advantages and disadvantages of each
solution with respect to the user needs. Figure 2 shows the general strategy of SCORUS
which involves three steps: (1) from a UML data model, generating a set of schemes
alternatives; (2) evaluating such schemes by using the metrics proposed in this paper;
and (3) providing a top k of the most suitable schemes according to user preferences and
application priorities. The sequence of the three steps can take place in a design process,
but each step can be carried out independently for analysis and tuning purposes 5.

5Schemes generation and recommendation are beyond the scope of this article.

3

Fig. 3: AJSchemes for examples presented in Figure 1

3.2 Schema abstraction for structural analysis

To facilitate reasoning about the data structuring choices in document oriented systems,
we define a schema abstraction, called here AJSchema. It is based on JSON schema
approach [4] and on the data types supported by MongoDB.

AJSchema allows us to provide a concise representation of the collections and types
of the documents to be stored in the base. Figure 3 shows the abstracted AJSchema
for the examples in Figure 1. For each collection the schema describes the type of its
documents. A document type is a set of attribute:type pairs enclosed by { }. Types
are those of MongoDB. Arrays are symbolized by [] and inside them, the type of its
elements (atomic or document). In this paper, we use indistinctly the terms AJSchema
or schema to refer to this abstraction. For schema-free systems like MongoDB, such
abstractions can be considered as a data structure specification for construction and/or
maintainability process.

3.3 An AJSchema from UML Model

Based on a UML model, SCORUS provides several AJSchemes that are then compared to
each other to improve the selection. Hereafter we illustrate the correspondence between
the classes and relationships of the UML model and an AJSchema (Figures 4 and 5) 5.

Considering a UML model, E = {e1, ..., en} are the classes. The attributes of
a class ei are designated in the following by the type tei and its relationships with
the set R(ei) = {r1, ..., rn}. Roles of relationships are known and noted by rirol.
Figure 4 shows a UML model with classes Agency, BusinessLines, Owner,
Creative and Publicity. The properties of the class Agency are designated by
the type tAgency 6.

An AJSchema describes the types of the collections that will be used. A collection
type includes the attributes of a UML class (tei) and extra attributes representing the
relationships of this class (R(ei)). The latter are named by the target role of ri from the
class ei. Figure 5 presents a possible schema for the UML data model of Figure 4. It has
three collections Agencies, Owners and Creatives. The type of Agencies is
formed by the attributes agencyName and id, corresponding to type tAgency, and
attributes bLines and ows, corresponding to relationships r1 and r3 respectively.

Relationships can be materialized by referencing or by embedding of documents. This
choice, so as the cardinality, determine the type of the attribute. By referencing, the type
is Integer, for the id of the referenced document. By embedding, the type is a document
of type tej . A cardinality “many” (in 1-many or many-many relationships) implies an

6type tei has by default the attribute id corresponding to the MongoDB document identifier.

4

Fig. 4: From UML to several options of schemes

Fig. 5: Example of AJSchema option for the UML model of Figure 4

array of types. Materialization by embedding induces a nested level. Referencing can
occur at any level and forces the existence of a collection with type tej .

In our example, the attribute bLines represents the 1-to-many relationship r1
by embedding of documents. Its type is therefore an array of documents of type
tBusinessLines. Attribute ows corresponds to the role of relationship r3. The
1-to-many cardinality and a representation by referencing lead to an attribute of type
array of Integers. Referencing forces the existence of a collection of Owners.

3.4 Tree representation

To facilitate metrics evaluation, we use a tree representation of the AJSchema. The tree
contains information about data types, nested levels, and embedded/referenced elements.
The tree semantics is illustrated in Figure 6 representing the AJSchema of Figure 5.

The root node has a child per collection in the AJSchema. Agencies, Owners and
Creatives in our example. The collection type is represented by the child sub-tree.
Nodes of the form typename@li indicate that attributes of the typename appear in the
documents at level li (starting with level 0) . Attributes representing the relationships
R(ei) appear as follows. A node with the name (and role used) of each relationship
is created (e.g. r1bline) with a child node, either REF, either EMB according to the
choice of referencing or embedding documents. Arrays, denoted [], can be used for
1-to-many relationships. For example, the subtree on the left of Figure 6, shows rela-
tionship r1bline materialized as an attribute (added to agency) of type array of business,
tAgencyEMB[]tBusiness. Relation r2 of tBusiness causes the embedding of an
array of tCreative. The nodes indicating a level (e.g. tBusiness@l1) allow to easily
identify the depth of a type and its extra attributes associated with the relationships.

5

Fig. 6: Tree structure representing AJSchema of Figure 4

4 Structural Metrics

In this section, we propose a set of metrics that reflects key aspects of the semi-structured
schema complexity. The purpose is to facilitate schema analysis and comparison. We
have defined a set of metrics grouped into 5 categories presented in the Sections 4.1 to
4.5. A summary is presented in Section 4.6. In the following, ϕ denotes a collection, t a
document type and x a schema.

4.1 Existence of types and collections

Having a collection can be mainly motivated by the access improvement to its document
type at first level or its nested types. On the other hand, nesting a document into another
one can be motivated by the fact that information is often accessed together. It may also
be interesting to realize if a document type is nested in many places to help reducing the
collection complexity.

In this section, we have defined metrics that allows us to identify the existence of a
document type t in a schema. We consider two cases: (1) the existence of a collection
whose type t is at the first level (lo), and (2) the presence of such documents nested
within other documents. These cases are covered, respectively, by metrics colExistence
and docExistence.
Existence of a collection of documents of type t:

colExistence(t) =

{
1 : node t@l0 exists in schema x
0

(1)

Existence of embedded documents of type t: this is materialized in the graph by a
node ∗EMB t.

docExistence(ϕ, t) =

{
1 t ∈ ϕ node∗EMB t exists in the paths child of node ϕ in x

0 t /∈ ϕ
(2)

Figure 6 shows collections for the types tAgency, towners and tCreative (nodes
@l0) but not for tPublicity. Documents of type tPublicity exist exclusively embedded
in tCreative documents. Note that documents of type tBusiness are embedded in two
collections, Agencies and Creatives.

6

4.2 Nesting depth

In general, the deeper the information is embedded, the higher is the cost to access it.
This is true unless the intermediary information is also required. Knowing the nesting
level of a document type facilitates the estimation of the cost of going down and back
through the structure to access the data or to restructure the extracted data with the
most suitable format. We propose a set of metrics to evaluate the complexity induced by
embedded data. The following two metrics allow us to know the maximum depth levels
of collections and schema.
Collection depth: the colDepth (3) metric indicates the level of the more deeply embed-
ded document in a collection. Embedded documents are represented by the EMB nodes
in the graph.

colDepth(ϕ) = max(depth(pi)) : pi is a valid child path of node ϕ (3)

depth(p) = n number of nodes EMB in path p (4)

Schema Depth: the globalDepth (5) metric indicates the deepest nesting level of a
schema by considering all collections.

globalDepth(x) = max(colDepth(ϕi)) : ∀ collection ϕi ∈ x (5)

Having recurring nested relations increases the schema complexity without neces-
sarily improving query performance. A very nested collection can be advantageous if
frequent queries require the joined information. Besides, having such a schema can be
ideal if the access pattern matches with the schema. Otherwise, projections and other
structuring operations will probably be required, introducing complexity in the data
manipulation (see following metrics). This affects code readability and maintainability.

In Figure 6, the depth of collection Owners is 0 and the depth of collections Agencies
and Creatives is 2. The maximum depth of the schema is 2. Note that in the Creatives
collection, the type tAgency adds no nesting level as it uses an array with references to
Owners.

Depth of a type of document: the metric docDepthInCol (6) indicates the embedding
level of a document of type t in a collection ϕ. If the items of the collection are of type
t (node t@l0), then the depth is zero. Otherwise, the metric is the level of the deepest
embedded document of this type (EMB t node) according to the root-leaf paths.

docDepthInCol(ϕ, t) =

{
0 : t corresponds to node t@l0 son of node ϕ

max(docDepth(pi, t) : pi is a valid root-leaf child path of node ϕ
(6)

docDepth(p, t) = n number of nodes EMB between root and ∗ EMB t (7)

In the Creatives collection of the example, the nesting level of tPublicity is 2, that of
tCreative is 0. tCreative is also nested at level 2 in the Agencies collection.

We also introduce the maxDocDepth (8) and minDocDepth (9) metrics to measure the
most and shallowest levels where a document type appears in a schema.

maxDocDepth(t) = max(DocDepthInCol(ϕi, t)) : ϕi ∈ x ∧ t ∈ ϕi (8)

7

minDocDepth(t) = min(DocDepthInCol(ϕi), t) : ϕi ∈ x ∧ t ∈ ϕi (9)

Knowing the minimum and maximum levels eases to estimate how many intermediate
levels should be treated for the more direct or the less direct access to a document of a
certain type. In the example, minDocDepth(tBusiness) = 1 as there is no collection of
documents of that type.

4.3 Width of the documents
Now we can look at the complexity of a document type in terms of its number of
attributes and the complexity of their types. These metrics are motivated by the fact that
documents with more complex attributes are more likely to require more complex access
operations and projections. The reason is that to extract the attributes required by a query,
it is necessary to ”remove” the other attributes and data stored together. This operation is
more expensive for documents with a larger number of attributes, i.e., with a high width.
It may be interesting to choose a scheme by analyzing its “wide” and its nesting level.

The docWidth7 (10) metric of a document type is based on the number of atomic
attributes (coefficient a = 1), the number of attributes embedding a document (coefficient
b = 2), the number of attributes of type array of atomic values (coefficient c = 1) and
array of documents (coefficient d = 3). Arrays of documents have the highest weight as
the experiments revealed them as the more complex to manage.

docWidth(t, ϕ) = a ∗ nbrAtomicAttributes(t, ϕ)+
b ∗ nbrDocAttributes(t, ϕ)+
c ∗ nbrArrayAtomicAttributes(t, ϕ)+
d ∗ nbrArrayDocAttributes(t, ϕ)

(10)

The metrics for each type of attributes can also be used separately. The size of the
arrays is not considered here because it is not necessarily available in a design phase.
If the size is available, it seems interesting to differentiate the orders of magnitude of
the arrays, i.e. small ones vs very large ones (less than ten elements, around thousands
elements, etc).

In Figure 4, Agencies and Creatives collections use documents of type tBusi-
ness but do not have the same attributes. In Creatives, the type includes arrays of
agencies and publicity, docWidth (tBusiness,Creatives) = 8, unlike Agencies where
docWidth(tBusiness,Agencies) = 4.

4.4 Referencing rate
Referential integrity becomes difficult to maintain for collections which documents are
referenced by many other collections. For a collection with documents of a certain type
t, the metric refLoad (11) indicates the number of attributes (of other types) that are
potential references to documents of type t.

refLoad(ϕ) = n n - number of nodes ∗REF t where t=t@l0ofnodeϕ (11)

For the Owners collection in Figure 4, refLoad(tOwner) = 2: collection Agencies
references towner at level 0 while collection Creatives references it in a document
embedded at level 2.

7this metric is close to the fan-in metric for graphs

8

Category Metric Description Schema Collection Type

Existence colExistence Existence of a collection x

docExistence Existence of a document type in a collection x x

Depth

colDepth Maximal depth of a collection x

globalDepth Maximal depth of a schema x

docDepthInCol Level where a document type is in a collection x x

maxDocDepth The deepest level where a document type appears x

minDocDepth The least deep level where a document type appears x

Width docWidth “Width” of a document type x x

Referencing refLoad Number of times that a collection is referenced x

Redundancy docCopiesInCol Copies of a document type t in a collection x x

docTypeCopies Number of times a type is present in the scheme x

Table 1: Structural metrics

4.5 Redundancy
We are interested in estimating potential data redundancy during the schema design be-
cause it impacts several aspects. Data redundancy can speed-up access and avoid certain
expensive operations (i.e. joins). However, it impacts negatively the memory footprint of
the base and makes coherency enforcement more difficult. There is a cost and writing
program complexity is increased and impacts the maintainability. As we are working on
a structural basis, we do not use data replication information for the metric definition.
The metric docCopiesInCol (12) is calculated by using the cardinality information of
the relationships together with the representation choices in the semi-structured schema.
Redundancy occurs for some cases of representation of the relationship by embedding
documents.

docCopiesInCol(t, ϕ) =


0 : t /∈ ϕ docExistence(ϕ, t) = 0
1 : t corresponds to node t@l0 of ϕ∏

card(rrol, t) :
rrol a valid node rrol father of a node
EMB of the path ϕ and ∗ EMBt

(12)
card(r, ε) = n n− cardinality of r on the ε side in the UML model (13)

In the Creatives collection of Figure 2, the attribute for business, named bline ,
introduces redundancy for agencies. The relationship r1 may associate an agency A to
n1 business instances. This leads to n1 copies of the document A. In the case where a
business is referenced by n2 creatives (relationship r2), there will be n1 x n2 copies of
the document A.

Moreover, we propose the metric docTypeCopies(t) indicating the number of times
a document type is used in the schema. It reflects the number of structures that can
potentially store documents of type t. This metric uses the metric of existence already
introduced.

4.6 Summary
The proposed metrics are summarized in Table 1. These metrics are evaluated in the scope
of the collections, types, or the whole schema, to reveal the data structure complexity.

9

Fig. 7: Case study: UML data and AJSchema alternatives

5 Validation Scenario

As mentioned, our work aims at assisting users in the choice of document-oriented
schema. The proposed metrics, together with application priorities, will be used to
establish criteria for choosing and comparing schemes. This is primarily to bring out the
most suitable schema according to certain criteria but also to exclude unsuitable choices
or to consider alternative schemes that were not necessarily considered initially.

In the following we present a usage scenario for the proposed metrics. In Figure 7,
we introduce an example with nine structuring alternatives. This case study was already
used in the work with MongoDB databases presented in [2], where we discussed the
impact of the data-structures on the query evaluation. Here we are considering a similar
application to analyze schema alternatives using the metrics. We evaluate the metrics for
the nine schemes. Table 2 reports a subset of them.

Schema analysis will be based on user priorities such as efficient access, data consis-
tency requirements and other user preferences. A criterion corresponds to a preference
(maximization or minimization) over one or several metrics to privilege a set of schemes 8.

In our case study, the priorities of the application concern efficient access to compa-
nies information, including the names of their departments (high priority), and getting
the employee with the highest salary in the company from its identifier or its name. Con-
sidering these priorities, the collection Companies plays an important role (criterion 1)9

as well as the manipulation of its instances (criterion 5). The departments are accessed
via the companies (criterion 6). Furthermore, it is known that the consistency of business
data is important. It is therefore preferable to limit the copies to these data (criterion 2).
Moreover, access to all employees (criterion 4) is not a priority.

8A criterion is represented by a function in terms of maximization or minimization of metrics
9The criterion number facilitates the presentation. It doesn’t correspond to a priority.

10

Metrics \ Schema S1 S2 S3 S4 S5 S6 S7 S8 S9

colExistence(tCompany) 1 1 1 1 0 1 0 1 1

docCopies(tCompany) 1 1 1 1 1 3 1 1 1

refLoad(Employees) 0 1 0 0 0 0

colExistence(tEmployee) 1 0 0 1 1 1 0 0 1

docWidth(Companies,l1) 1 1 3 1 1 3

docExistence(tDepartment,Companies) 0 0 1 0 0 1

Table 2: Case study: sub-set of metrics of schema S1 to S9

In Table 3, each line represents one of the six criteria already mentioned. Each
criteria has been evaluated for the nine alternative schemes. The values of the criteria
evaluation were normalized (between 0 and 1). These values introduce a relative order
between the schemes. For example, considering criteria 4, the schema S1, S4, S5, S6
and S9 are preferred over the others.

The analysis of schemes is multi-criteria (6 criteria in our case). Each criterion can
have the same weight, or it can be some more important than others. The evaluation
function of a schema, noted schemaEvaluation is the weighted sum of criteria.

schemaEvaluation(s) =

|Criteria|∑
i=1

weightcriterioni ∗ fcriterioni(s) (14)

We evaluated three different weights: same weight for all criteria (case 1), priority
criteria focused on companies (case 2), and priority addition on employees motivated
by a new access pattern to its information (case 3). Figure 8 shows the result of the
evaluation of 9 schemes for the three cases.

The estimates place schemes S5, S7 and S8 as the worst in the three cases. S5 and S7
are based on a single collection that is not a priority in the current criteria. On the other
hand, S3 stands out in case 2 due to the high priority of its unique collection Companies.
In addition, this collection embeds data in an appropriate order regarding the criterion 6.

Some scheme, as S9 and S6, are stable in their scores for all three cases. S9 is the
best because it matches all criteria; its good results in the three cases denotes a form
of “versatility” of the schema that can withstand changes in priorities. S6 introduces
redundancy which is penalized by criterion 2. Meanwhile, criterion 6 penalizes it by not
having embedded documents in collection Companies.

The criteria to be considered and their associated weight depends on the applications
and the user. They may reflect good practices advocated for development or general
priorities. For example, a very “compact” schema limiting memory footprint can be

Criteria \ Schema S1 S2 S3 S4 S5 S6 S7 S8 S9

Criteria 1 fc1 (s) = colExistenceCompanies(s) 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00

Criteria 2 fc2 (s) = docCopiestCompanymin(s) 1.00 1.00 1.00 1.00 1.00 0.33 1.00 1.00 1.00

Criteria 3 fc3 (s) = refLoadEmployeesmax(s) 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

Criteria 4 fc4 (s) = colExistenceEmployees(s) 1.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

Criteria 5 fc5 (s) = levelWidthCompaniesL1
min(s) 1.00 1.00 0.33 1.00 0.00 1.00 0.00 0.00 0.33

Criteria 6 fc6 (s) = docDptInCompaniesmin(s) 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 3: Criteria evaluation on schema S1 until S9

11

Fig. 8: Schema evaluation

preferred for rarely used data. Knowing that the criteria may evolve and lead to divergent
choices, the use of metrics and criteria for a scheme analysis can help in a continuous
process of “tuning” of the base. This can lead to schema evolution and data replication
with heterogeneous structures. For a while, a document base may have, a copy (or partial
copy) of the data with schema Sx and another copy with scheme Sy.

6 Related work
We studied works concerning NoSQL systems [5–8] [9–12] [3, 13, 14] , complex data
[15, 16] [4, 17], XML documents [18, 19] and software metrics [20–25].

Concerning XML, Klettke et al. [18] propose 5 structural metrics based on the
software quality model ISO 9126. They work on a graph representation of the DTD and
metrics consider the number of references, nodes and make a link with the cyclomatic
complexity [22]. In [19], Pušnik et al. propose six metrics each one associated with a
quality issue such as the structure, clarity, optimality, minimalism, reuse and flexibility.
These metrics use 25 variables that measure the number of elements, annotations, refer-
ences and types, among others. We extended and adapted these proposals to take into
account particularities of JSON as embedded documents and complex attribute types.

Our metrics are also influenced by software metrics [20–25]. Metrics proposed
in [20–23] reflect, for example, the coupling levels between components, the size of the
class hierarchies, the size of objects and the number of methods. [25] is an excellent
survey of software metrics considering those based on the complexity of code and object
oriented concepts.

Concerning NoSQL approaches, some works investigate about data modelling al-
ternatives [5, 6, 26]. In [26], Abdelhedi et al. propose to translate an UML model into
several alternatives of “schema” for Cassandra, Neo4J and MongoDB. For Cassandra
in [5, 6] the main concerns are the storage requirements and query performance. Queries
are implemented with SET and GET primitives. Lombardo et al. [6] propose the creation
of several versions of the data with different structures. Each version is best suited
for a different query in the style of pre-calculated queries. Zhao et al. [7] propose a
systematic schema conversion model of a relational database to NoSQL database. It
creates a collection per entity type and the documents embed recursively the entities
they reference. The structure is in the style of schema S6 in our validation scenario.
Using the vocabulary of the relational model, this choice corresponds to a de-normalized
structure with pre-calculation of natural joins (represented with embedded documents).

12

The authors propose a metric for the data redundancy generated which uses the data
volume. Among the existing tools working on operational bases, MongoDBCompass [8]
allows to monitor the query execution time and data volume of a collection of documents.
JSON schema [4] is the result of efforts to facilitate the validation of JSON documents.
Tools as json-schema [17] analyze JSON documents in order to abstract a “scheme” with
explicit collection and type definitions. Other researchers, as [9–12], work on schemes
deduction for existing schema-free document-oriented bases. Their motivation is helping
to understand data structuring and explaining its variants.

Guidelines to consider in modelling semi-structured data are discussed in [3, 13–
16]. Sadalage et al. [13] analyze various data models and NoSQL systems including
MongoDB, Cassandra and Neo4j. Their main concerns are the issues in the migration of a
relational database towards BigTables, documents and graphs. [3, 14] propose guidelines
for creating Mongo databases based on several use cases. These “best practices” can be
formalized in our work as criteria to be taken into account in the schema analysis. To the
best of our knowledge, no structural metrics are currently defined in the literature.

7 Conclusion and perspectives
This work is motivated by quality issues in document-oriented bases. We focus on data
structuring in JSON documents, supported by MongoDB. The flexibility offered by
such systems is appreciated by developers as it is easy to represent semi-structured
data. However, this flexibility comes at a cost in the performance, storage, readability
and maintainability of the base and it’s applications. Data structuring is a very impor-
tant design decision and should not be overlooked. In this work, we briefly described
SCORUS, our larger project, which aims at helping user to clarify the possibilities of data
structuring and to provide metrics allowing to take decisions in a more conscious way.
We defined a schema abstraction called AJSchema to reason about semi-structured data.
We proposed a set of 11 structural metrics covering aspects as existential, nesting depth,
nesting width, referencing, and redundancy. These metrics are evaluated automatically
on a tree representation of the schema. The proposed metrics reflect the complexity of
schema elements that play a role on quality aspects.

We presented a usage scenario of the metrics to analyze several schema variations
and certain application criteria and priorities. The criteria analysis can rule out certain
schema and highlight others. These findings on structural aspects were compared, and are
well in line, with the results of performance evaluation experiments we conducted with
databases containing data. It is interesting to note that when working on the structures, it
is possible to consider more schema variants than when experimenting with the databases.
This brought an unexpected result, that is the identification of a different schema with
very good characteristics.

The proposed metrics form a set that is likely to evolve. Further work includes
validation on a larger scale and the development of the SCORUS system to complete
the automatic schema generation.We will also work in formalizing a recommendation
system to facilitate the definition of criteria by using the metrics, important queries and
other functional or non-functional preferences of potential users.

Acknowledgements: many thanks to G. Vega, J. Chavarriaga, M. Cortés, C. Labbé,
E. Perrier, P. Lago and the anonymous referees for their comments on this work.

13

References
1. Nayak, A., Poriya, A., Poojary, D.: Article: Type of nosql databases and its comparison with

relational databases. International Journal of Applied Information Systems (2013) 16–19
2. Gómez, P., Casallas, R., Roncancio, C.: Data schema does matter, even in nosql systems! In:

Research Challenges in Information Science (RCIS), 2016 Tenth International Conference
3. Copeland, R.: MongoDB Applied Design Patterns. Oreilly (2013)
4. jsonSchema: Json schema. http://json-schema.org/ Accessed: 2018-03-26.
5. Mior, M.J., Salem, K., Aboulnaga, A., Liu, R.: Nose: Schema design for nosql applications.

IEEE Transactions on Knowledge and Data Engineering 29(10) (2017) 2275–2289
6. Lombardo, S., Nitto, E.D., Ardagna, D.: Issues in handling complex data structures with

nosql databases. In: 14th Int. Symposium SYNASC, Romania, September, 2012
7. Zhao, G., Lin, Q., Li, L., Li, Z.: Schema conversion model of sql database to nosql. In: P2P,

Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2014 Ninth International Conference
on. (Nov 2014) 355–362

8. MongoDBCompass. https://docs.mongodb.com/compass/master/ Accessed: 2018-02-12.
9. Klettke, M., Störl, U., Scherzinger, S.: Schema extraction and structural outlier detection for

json-based nosql data stores. Datenbanksysteme für Business, Technologie und Web (BTW
2015)

10. Wang, L., Zhang, S., Shi, J., Jiao, L., Hassanzadeh, O., Zou, J., Wangz, C.: Schema manage-
ment for document stores. Proceedings of the VLDB Endowment 8(9) (2015) 922–933

11. Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring versioned schemas from nosql databases
and its applications. In: International Conference on Conceptual Modeling, Springer (2015)

12. Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented databases.
Information Systems 75 (2018) 13–25

13. Sadalage, P.J., Fowler, M.: NoSQL distilled: a brief guide to the emerging world of polyglot
persistence. Pearson Education (2012)

14. MongoDB: Rdbms to mongodb migration guide. White Paper (Nov 2017)
15. Abiteboul, S.: Querying semi-structured data. In: Proceedings of the 6th International

Conference on Database Theory. ICDT ’97, London, UK, UK, Springer-Verlag (1997) 1–18
16. Herden, O.: Measuring quality of database schemas by reviewing–concept, criteria and tool.

Oldenburg Research and Development Institute for Computer Science Tools and Systems,
Escherweg 2 (2001) 26121

17. jsonschema.net. https://jackwootton.github.io/json-schema/ Accessed: 2018-03-26.
18. Klettke, M., Schneider, L., Heuer, A.: Metrics for xml document collections. In: International

Conference on Extending Database Technology, Springer (2002) 15–28
19. Pušnik, M., Heričko, M., Budimac, Z., Šumak, B.: Xml schema metrics for quality evaluation.

Computer science and information systems 11(4) (2014) 1271–1289
20. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal of systems

and software 23(2) (1993) 111–122
21. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design. Volume 26.

ACM (1991)
22. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering (4) (1976)
23. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the Conference on the

Future of Software Engineering, ACM (2000) 357–370
24. Fenton, N., Bieman, J.: Software metrics: a rigorous and practical approach. CRC Press

(2014)
25. Timóteo, A.L., Álvaro, A., De Almeida, E.S., de Lemos Meira, S.R.: Software metrics: A

survey. Citeseer (2008)
26. Abdelhedi, F., Brahim, A.A., Atigui, F., Zurfluh, G.: Mda-based approach for nosql databases

modelling. In: International Conference on Big Data Analytics and Knowledge Discovery,
Springer (2017) 88–102

14

