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Abstract

Symmetric tensor decomposition is an important problem with applications in several areas,

for example signal processing, statistics, data analysis and computational neuroscience. It is

equivalent to Waring’s problem for homogeneous polynomials, that is to write a homogeneous

polynomial in n variables of degree D as a sum of D-th powers of linear forms, using the min-

imal number of summands. This minimal number is called the rank of the polynomial/tensor.

We focus on decomposing binary forms, a problem that corresponds to the decomposition of

symmetric tensors of dimension 2 and order D, that is, symmetric tensors of order D over the

vector space K2. Under this formulation, the problem finds its roots in invariant theory where

the decompositions are related to canonical forms.

We introduce a superfast algorithm that exploits results from structured linear algebra. It

achieves a softly linear arithmetic complexity bound. To the best of our knowledge, the previ-

ously known algorithms have at least quadratic complexity bounds. Our algorithm computes a

symbolic decomposition in O(M(D) log(D)) arithmetic operations, where M(D) is the complex-

ity of multiplying two polynomials of degree D. It is deterministic when the decomposition is

unique. When the decomposition is not unique, it is randomized. We also present a Monte Carlo
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variant as well as a modification to make it a Las Vegas one.

From the symbolic decomposition, we approximate the terms of the decomposition with an

error of 2−ε , in O
(
D log2(D)

(
log2(D) + log(ε)

))
arithmetic operations. We use results from

Kaltofen and Yagati (1989) to bound the size of the representation of the coefficients involved in

the decomposition and we bound the algebraic degree of the problem by min(rank,D−rank+1).

We show that this bound can be tight. When the input polynomial has integer coefficients, our

algorithm performs, up to poly-logarithmic factors, ÕB(Dℓ+D4 +D3τ) bit operations, where

τ is the maximum bitsize of the coefficients and 2−ℓ is the relative error of the terms in the

decomposition.

Keywords: Decomposition of binary forms; Tensor decomposition; Symmetric tensor;

Symmetric tensor rank; Polynomial Waring’s problem; Waring rank; Hankel matrix; Algebraic

degree; Canonical form;

1. Introduction

The problem of decomposing a symmetric tensor consists in writing it as the sum of rank-1

symmetric tensors, using the minimal number of summands. This minimal number is known

as the rank of the symmetric tensor1. The symmetric tensors of rank-1 correspond to, roughly

speaking, the D-th outer-product of a vector. The decomposition of symmetric tensor is a com-

mon problem which appears in divers areas such as signal processing, statistics, data mining,

computational neuroscience, computer vision, psychometrics, chemometrics, among others. For

a modern introduction to the theory of tensor, their decompositions and applications we refer to

e.g., Comon (2014); Landsberg (2012).

There is an equivalence between decomposing symmetric tensors and solving Waring’s prob-

lem for homogeneous polynomials, e.g., Comon et al. (2008); Helmke (1992). Given a symmet-

ric tensor of dimension n and order D, that is a symmetric tensor of order D over the vector space
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1Some authors, e.g., Comon et al. (2008), refer to this number as the symmetric rank of the tensor.
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Kn, we can construct a homogeneous polynomial in n variables of degree D. We can identify

the symmetric tensors of rank-1 with the D-th power of linear forms. Hence, to decompose a

symmetric tensor of order D is equivalent to write the corresponding polynomial as a sum of

D-th powers of linear forms using the minimal numbers of summands. This minimal number is

the rank of the polynomial/tensor.

Under this formulation, symmetric tensor decomposition dates back to the origin of mod-

ern (linear) algebra as a part of Invariant Theory. In this setting, the decomposition of generic

symmetric tensors corresponds to canonical forms (Sylvester, 1904, 1851; Gundelfinger, 1887).

Together with the theory of apolarity, this problem was of great importance because the de-

compositions provide information about the behavior of the polynomials under linear change of

variables (Kung and Rota, 1984).

Binary Form Decomposition. We study the decomposition of symmetric tensors of order D and

dimension 2. In terms of homogeneous polynomials, we consider a binary form

f (x,y) := ∑
D

i=0

(
D
i

)
aix

iyD−i, (1)

where ai ∈K ⊂ C and K is some field of characteristic zero. We want to compute a decomposi-

tion

f (x,y) = ∑
r

j=1
(α jx+β jy)

D, (2)

where α1, . . . ,αr,β1, . . . ,βr ∈ K, with K being the algebraic closure of K, and r is minimal. We

say that a decomposition unique if, for all the decompositions, the set of points {(α j,β j) : 1 ≤

j ≤ r} ⊂ P1(K) is unique, where P1(K) is the projective space of K (Reznick, 2013a).

Previous work. The decomposition of binary forms, Equation (2), has been studied extensively

for K=C. More than one century ago Sylvester (1851, 1904) described the necessary and suffi-

cient conditions for a decomposition to exist, see Section 2.1. He related the decompositions to

the kernel of Hankel matrices. For a modern approach of this topic, we refer to Kung and Rota

(1984); Kung (1990); Reznick (2013a); Iarrobino and Kanev (1999). Sylvester’s work was ex-

tended to a more general kind of polynomial decompositions that we do not consider in this

work, e.g., Gundelfinger (1887); Reznick (1996); Iarrobino and Kanev (1999).

Sylvester’s results lead to an algorithm (Algorithm 1) to decompose binary forms (see Comon and Mourrain,

1996, Sec. 3.4.3). In the case where the binary form is of odd degree, then we can compute the
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decompositions using Berlekamp-Massey algorithm (see Dür, 1989). When the decomposition

is unique, the Catalecticant algorithm, which also works for symmetric tensors of bigger dimen-

sion (Iarrobino and Kanev, 1999; Oeding and Ottaviani, 2013), improves Sylvester’s work. For

an arbitrary binary form, Helmke (1992) presented a randomized algorithm based on Padé ap-

proximants and continued fractions, in which he also characterized the different possible decom-

positions. Unfortunately, all these algorithms have complexity at least quadratic in the degree of

the binary form.

Besides the problem of computing the decomposition(s) many authors considered the sub-

problems of computing the rank and deciding whether there exists a unique decomposition, e.g.,

Sylvester (1851, 1904); Helmke (1992); Comas and Seiguer (2011); Bernardi et al. (2011). For

example, Sylvester (1851, 1904) considered generic binary forms, that is binary forms with co-

efficients belonging to a dense algebraic open subset of K
D+1

(Comon and Mourrain, 1996, Sec-

tion 3), and proved that when the degree is 2k or 2k+ 1, for k ∈ N, the rank is k+ 1 and that

the minimal decomposition is unique only when the degree is odd. In the non-generic case,

Helmke (1992); Comas and Seiguer (2011); Iarrobino and Kanev (1999), among others, proved

that the rank is related to the kernel of a Hankel matrix and that the decomposition of a binary

form of degree 2k or 2k− 1 and rank r, is unique if and only if r ≤ k. With respect to the prob-

lem of computing the rank there are different variants of algorithms, e.g., Comas and Seiguer

(2011); Comon et al. (2008); Bernardi et al. (2011). Even though there are not explicit complex-

ity estimates, by exploiting recent superfast algorithms for Hankel matrices (Pan, 2001), we can

deduce a nearly-optimal arithmetic complexity bound for computing the rank using the approach

of Comas and Seiguer (2011).

For the general problem of symmetric tensor decomposition, Sylvester’s work was suc-

cessfully extended to cases in which the decomposition is unique, e.g., Brachat et al. (2010);

Oeding and Ottaviani (2013). There are also homotopy techniques to solve the general prob-

lem, e.g., to decompose generic symmetric tensors (Bernardi et al., 2017) or, when there is a

finite number of possible decompositions and we know at least one of them, to compute all the

other decompositions (Hauenstein et al., 2016). There are no complexity estimations for these

methods. Besides tensor decomposition, there are other related decompositions for binary forms

and univariate polynomials that we do not consider in this work, e.g., Reznick (1996, 2013b);

Giesbrecht et al. (2003); Giesbrecht and Roche (2010); Garcı́a-Marco et al. (2017).
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Formulation of the problem. Instead of decomposing the binary form as in Equation (2), we

compute λ1 . . .λr, α1 . . .αr, β1 . . .βr ∈K, where r is minimal, such that,

f (x,y) = ∑
r

j=1
λ j(α jx+β jy)

D. (3)

Since every λ j belongs to the algebraic closure of the field K, the problems are equivalent.

This approach allows us to control the algebraic degree (Bajaj, 1988; Nie et al., 2010) of the

parameters λ j, α j , and β j in the decomposition (Section 4.1).

Note that if the field is not algebraically closed and we force the parameters to belong to the

base field, that is λ j,α j ,β j ∈ K, the decompositions induced by Equation (2) and Equation (3)

are not equivalent. We do not consider the latter case and we refer to Helmke (1992); Reznick

(1992); Comon et al. (2008); Boij et al. (2011); Blekherman (2015) for K = R, and to Reznick

(1996, 2013a); Reznick and Tokcan (2017) for K⊂ C.

Main results. We extend Sylvester’s algorithm to achieve a nearly-optimal complexity bound

in the degree of the binary form. By considering structural properties of the Hankel matrices,

we restrict the possible values for the rank of the decompositions and we identify when the

decomposition is unique. We build upon Helmke (1992) and we use the Extended Euclidean

Algorithm to deduce a better complexity estimate than what was previously known. Similarly to

Sylvester’s algorithm, our algorithm decomposes successfully any binary form, without making

any assumptions on the input.

First, we focus on symbolic decompositions, that is a representation of the decomposition as

a sum of a rational function evaluated at the roots of a univariate polynomial (Definition 36).

We introduce an algorithm to compute a symbolic decomposition of a binary form of degree

D in O(M(D) log(D)), where M(D) is the arithmetic complexity of polynomial multiplication

(Theorem 43). When the decomposition is unique, the algorithm is deterministic and this is a

worst case bound. When the decomposition is not unique, our algorithm makes some random

choices to fulfill certain genericity assumptions; thus the algorithm is a Monte Carlo one. How-

ever, we can verify if the genericity assumptions hold within the same complexity bound, that is

O(M(D) log(D)), and hence we can also deduce a Las Vegas variant of the algorithm.

Following the standard terminology used in structured matrices (Pan, 2001), our algorithm

is superfast as its arithmetic complexity matches the size of the input up to poly-logarithmic

factors. The symbolic decomposition allow us to approximate the terms in a decomposition,
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with a relative error of 2−ε , in O
(
D log2(D)

(
log2(D) + log(ε)

))
arithmetic operations (Pan,

2002; McNamee and Pan, 2013). Moreover, we can deduce for free the rank and the border rank

of the tensor, see (Comas and Seiguer, 2011, Section 1).

Using results from Kaltofen and Yagati (1989), we bound the algebraic degree of the decom-

positions by min(rank,D− rank+ 1) (Theorem 28). Moreover, we prove lower bounds for the

algebraic degree of the decomposition and we show that in certain cases the bound is tight (Sec-

tion 4.1.3). For polynomials with integer coefficients, we bound the bit complexity, up to poly-

logarithmic factors, by ÕB(Dℓ+D4 +D3τ), where τ is the maximum bitsize of the coefficients

of the input binary form and 2−ℓ is the error of the terms in the decomposition (Theorem 45).

This Boolean worst case bound holds independently of whether the decomposition is unique or

not.

This work is an extension of the conference paper (Bender et al., 2016). With respect to the

conference version, our main algorithm (Algorithm 3) omits an initial linear change of coordi-

nates as we now rely on fewer genericity assumptions. In contrast with our previous algorithm,

we present an algorithm which is deterministic when the decomposition is unique (Theorem 43).

When the decomposition is not unique, our algorithm is still randomized but we present bounds

for the number of bad choices that it could make (Proposition 29). With respect to the algebraic

degree of the problem, we study the tightness of the bounds that we proposed in the conference

paper (Theorem 27). We introduce explicit lower bounds showing that our bounds can be tight

(Section 4.1.3).

Organization of the paper. First, we introduce the notation. In Section 2, we present the prelimi-

naries that we need for introducing our algorithm. We present Sylvester’s algorithm (Section 2.1),

we recall some properties of the structure of the kernel of the Hankel matrices (Section 2.2), we

analyze its relation to rational reconstructions of series/polynomials (Section 2.3), and we present

the Extended Euclidean Algorithm (Section 2.4). Later, in Section 3, we present our main al-

gorithm to decompose binary forms (Algorithm 3) and its proof of correctness (Section 3.3).

This algorithm uses Algorithm 4 to compute the kernel of a family of Hankel matrices, which

we consider in Section 3.1. Finally, in Section 4, we study the algebraic degree of the prob-

lem (Section 4.1), we present tight bounds for it (Section 4.1.3), and we analyze the arithmetic

(Section 4.2) and bit complexity of Algorithm 3 (Section 4.3).
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Notation. We denote by O, respectively OB, the arithmetic, respectively bit, complexity and we

use Õ, respectively ÕB, to ignore (poly-)logarithmic factors. M(n) is the arithmetic complexity of

multiplying two polynomial of degree n. Let K be a zero characteristic subfield of C, and K its

algebraic closure. If v = (v0, . . . ,vn)
T then Pv = P(v0,...,vn) := ∑n

i=0 vix
iyn−i. Given a binary form

f (x,y), we denote by f (x) the univariate polynomial f (x) := f (x,1). By f ′(x) we denote the

derivative of f (x) with respect to x. For a matrix M, rk(M) is its rank and Ker(M) its kernel.

2. Preliminaries

2.1. An algorithm based on Sylvester’s theorem

Sylvester’s theorem (Theorem 2) relates the minimal decomposition of a binary form to the

kernel of a Hankel matrix. Moreover, it implies an (incremental) algorithm for computing the

minimal decomposition. The version that we present in Algorithm 1 comes from Comon and Mourrain

(1996, Section 3.2).

Definition 1. Given a vector a = (a0, . . . ,aD)
T, we denote by {Hk

a}1≤k≤D the family of Hankel

matrices indexed by k, where Hk
a ∈K

(D−k+1)×(k+1) and

Hk
a :=




a0 a1 · · · ak−1 ak

a1 a2 · · · ak ak+1

...
...

. . .
...

...

aD−k−1 aD−k · · · aD−2 aD−1

aD−k aD−k+1 · · · aD−1 aD




. (4)

We may omit the index a in Hk
a when it is clear from the context.

Theorem 2 (Sylvester, 1851). Let f (x,y) = ∑D
i=0

(
D
i

)
aix

iyD−i with ai ∈K⊆ C. Also, consider a

non-zero vector c = (c0, . . . ,cr)
T ∈Kr+1, such that the polynomial

Pc = ∑
r

i=0
ci xi yr−i = ∏

r

j=1
(β jx−α jy)

is square-free and α j,β j ∈ K, for all 1 ≤ j ≤ r. Then, there are λ1, . . .λr ∈ K such that we can

write f (x,y) as

f (x,y) =
r

∑
j=1

λ j(α jx+β jy)
D,

if and only if (c0, . . . ,cr)
T ∈ Ker(Hr

a).
7



Algorithm 1 INCRDECOMP (Comon and Mourrain, 1996, Figure 1)

1. r := 1

2. Get a random c ∈ Ker(Hr)

3. If Pc is not square-free, r := r+ 1 and GO TO 2

4. Write Pc as ∏r
j=1(β jx−α jy)

5. Solve the transposed Vandermonde system:




β D
1 · · · β D

r

β D−1
1 α1 · · · β D−1

r αr

...
. . .

...

αD
1 · · · αD

r







λ1

...

λr


=




a0

...

aD


. (5)

6. Return ∑r
j=1 λ j(α jx+β jy)

D

For a proof of Theorem 2 we refer to Reznick (2013a, Theorem 2.1 & Corollary 2.2). Theo-

rem 2 implies Algorithm 1. This algorithm will execute steps 2 and 3 as many times as the rank.

At the i-th iteration it computes the kernel of H i. The dimension of this kernel is ≤ i and each

vector in the kernel has i+ 1 coordinates. As the rank of the binary form can be as big as the

degree of the binary form, a straightforward bound for the arithmetic complexity of Algorithm 1

is at least cubic in the degree.

We can improve the complexity of Algorithm 1 by a factor of D by noticing that the rank of

the binary form is either rk(H⌈D
2 ⌉) or D−rk(H⌈D

2 ⌉)+2 (Comas and Seiguer, 2011, Section 3)

(Helmke, 1992, Theorem B). Another way to compute the rank is by using minors (Bernardi et al.,

2011, Algorithm 2).

The bottleneck of the previous approaches is that they have to compute the kernel of a Hankel

matrix. However, even if we know that the rank of the binary form is r, the dimension of the

kernel of Hr can still be as big as O(D); the same bound holds for the length of the vectors in the

kernel. Hence, the complexity is lower bounded by O(D2).

Our approach avoids the incremental construction. We exploit the structure of the kernel
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of the Hankel matrices and we prove that the rank has only two possible values (Lemma 17),

see also (Comas and Seiguer, 2011, Section 3), (Helmke, 1992, Theorem B), or (Bernardi et al.,

2011). Moreover, we use a compact representation of the vectors in the kernel. We describe them

as a combination of two polynomials of degree O(D).

2.2. Kernel of the Hankel matrices

The Hankel matrices are among the most studied structured matrices (Pan, 2001). They are

related to polynomial multiplication. We present results about the structure of their kernel. For

details, we refer to Heinig and Rost (1984, Chapter 5).

Proposition 3. Matrix-vector multiplication of Hankel matrices is equivalent to polynomial

multiplication. Given two binary forms A := ∑D
i=0 aix

iyD−i and U := ∑k
i=0 uix

iyk−i, consider

R := ∑D+k
i=0 rix

iyD+k−i = A ·U. If we choose the monomial basis {yD+k, . . . ,xD+k}, then the equal-

ity A ·U = R is equivalent to Equation (6), where the central submatrix of the left matrix is

Hk
(a0,...,aD)

(Definition 1).




a0

a0 a1

. .
.

. .
. ...

a0 · · · ak−2 ak−1

a0 a1 · · · ak−1 ak

a1 a2 · · · ak ak+1

...
... . .

. ...
...

aD−k aD−k+1 · · · aD−1 aD

aD−k+1 aD−k+2 · · · aD

... . .
.

. .
.

aD−1 aD

aD







uk

...

u1

u0




=




r0

r1

...

rk−1

rk

rk+1

...

rD

rD+1

...

rD+k−1

rD+k




. (6)

Consider a family of Hankel matrices {Hk
a}1≤k≤D as in Definition 1. There is a formula for

the dimension of the kernel of each matrix in the family {Hk
a}1≤k≤D that involves two numbers,

Na
1 and Na

2 . To be more specific, the following holds:
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