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Abstract Modeling of fluid injection processes into a deformable porous medium is a challenging
area of physics that has a wide range of applications like the food, construction, and petroleum industries.
In this research, we investigate pneumatic fracturing of a porous medium experimentally and
numerically in a Hele-Shaw cell. In the experiments, we inject air into the porous medium (initially
random loose packed) to create compaction, channeling, and fracturing while monitoring the cell with
accelerometers and a high-speed camera. Furthermore, we develop a numerical model in two steps: (1) a
poroelastoplasticity-based model to explain dynamic fluid pressure variations and (2) a solid stress model
based on Janssen’s theory. The contributions of the different pressure sources air in channels and solid stress
in the experiments, and the simulations are compared with respect to amplitude and frequency. Afterward,
the variations of the normal stress exerting on the plates are convolved with a Lamb Wave green function
to generate acoustic emissions numerically. The physics behind the evolution of the experimentally
recorded power spectrum of the out-of-plane plate vibrations are explained using numerical models. The
frequency bands (in the simulated power spectra) are influenced by the size of the opened channels and the
Hele-Shaw cell and are in the same range with the experimentally measured peaks of the acoustic emissions.

1. Introduction

Fluid flow inside granular media is a very common phenomenon in nature and in industrial applications. Par-
ticularly, if the fluid flow is pressurized, it can induce rapid porosity changes inside the porous medium which
is in contact with the fluid, like fracturing and channeling (Benson et al., 2008; Bouchut et al., 2016; J. A. Eriksen,
Toussaint, et al., 2015; Farquharson et al., 2016, 2015; Galland et al., 2018; Gidaspow, 1994; Goren et al., 2010,
2011; Johnsen, Chevalier, et al., 2008; Johnsen et al., 2006; Johnsen, Toussaint, et al., 2008; Kunii & Levenspiel,
1991; Trulsson et al., 2012; Vinningland et al., 2007a, 2007b, 2010, 2012). This type of brittle deformation is
visible in nature (e.g., volcanic activities and tremors), and in engineering (ground improvements, CO2 seques-
tration, and fracturing applications; Agency, 1994; Aochi et al., 2011; Charléty et al., 2007; Cuenot et al., 2008;
Dorbath et al., 2009; Gao et al., 2014; Schuring et al., 1996). Deformations based on momentum exchange
between the nonmiscible solid and fluid phases can lead to different characteristic shapes and structures of
deformation (bubbles, J. A. Eriksen, Marks, et al., 2015; J. A. Eriksen, Toussaint et al., 2015; J. A. Eriksen, et al.,
2018; Holtzman et al., 2012; McNamara et al., 2000; fractures, Flekkøy et al., 2002; Ghani et al., 2015, 2013; Šílený
et al., 2009; Vass et al., 2014; and channels, Abdelmalak et al., 2012; Hurst et al., 2011; Jamtveit et al., 2004;
Lemaire et al., 1993; Svensen et al., 2006). These shapes change depending on the characteristics of the solid
(e.g., density, particle size, and permeability) and the fluid (e.g., viscosity and compressibility) and boundary
conditions (e.g., applied pressure, shape and permeability of the boundaries, gravity orientation, and loading
rate). Microseismic monitoring is a routine protocol during well operations in the industry, but interpreta-
tion of this data is an applied research topic (Cornet, 2015; Cornet et al., 1998; Valkó & Economides, 1995) in
which there are still questions to be answered. For example, Elkhoury et al. (2006) studied the relationship
of permeability with seismicity in Southern California and has shown that permeability can increase up to 3
times depending on the peak ground velocity of the earthquake. Next, Benson et al. (2010) studied seismic
events in volcanic regions based on their frequency domain signature, and they presented a different seis-
mic source induced by fast fluid flow into preexisting microcrack networks. Another example is the study of
Turkaya et al. (2015) in which they recorded the out-of-plane vibrations of the plates of a Hele-Shaw cell, to be
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able to understand the relationship between the solid-fluid-coupled mechanics and the generated acoustic
emissions. On a larger scale, a concept of earthquake source mechanics was developed by Stanek and Eisner
(2013) to explain the modes which are observed in microseismicity. Their earthquake source concept con-
sists of two incompressible layers with one compressible layer in between, which is subject to fluid pressure.
This setup works like a piston pushing the compressible layer leading to large-scale microseismic events. This
concept is similar to the experimental setup having two glass plates and a soft porous medium in between,
and thus, the mentioned large-scale microseismic events are similar to the acoustic emissions recorded in
the experimental setup developed by Turkaya et al. (2015). The out-of-plane plate vibrations in this experi-
mental setup are generated during changes in total stress in the Hele-Shaw cell. The air overpressure in the
cell pushes the grains and changes the solid distribution inside the cell. Moreover, the air overpressure varies
along the plate. It is higher toward the inlet and decreases toward the semipermeable boundary at the outlet
side. By investigating the experimental setup and using the numerical simulations of air-/granular-coupled
flow, it can be concluded that the evolution of the total stress map, which is a source of microseismicity, is due
to three major effects as described in Turkaya et al. (2015), Niebling et al. (2012a), and Niebling et al. (2012b):
(1) air vibrations inside the empty area, (2) pore pressure diffusion into the pores, and (3) solid stress due to
compaction. We will here describe the basis of a numerical model taking these effects into account. First, we
will explain the physics and mechanics of the simplest flow regimes, which we observe inside the Hele-Shaw
cell and then combine these mentioned effects to obtain a more general poroelastoplastic formulation for all
the flow conditions we used. Next, we will study the power spectra of out-of-plane plate vibrations created
by the process using a code—provided separately in supporting information Data Set S1—that models the
pressure, solid stress field, and the resulting wave propagation. We will show how a two power law regime
evolves as the channel network evolves, and we will discuss the contributions of the different stress sources
on the peaks of the power spectrum and their characteristic properties (frequency band, corner frequency,
and power exponents).

2. Constraints for the Numerical Model
2.1. Constraints From the Experimental Study
Here we explain the experimental setup similar to the work previously done by Turkaya et al. (2015), F. K. Erik-
sen et al. (2017), and F. K. Eriksen et al. (2018). The results from one of the experiments are given in supporting
information Text S1 and Movie S2. We are creating a seminumerical model where the evolving boundary con-
ditions are extracted from the experiments for the numerical model. The photos taken during the experiment
(980 × 375 pixels covering the 80 × 40-cm Hele-Shaw cell surface) are used to determine the geometry of the
complex solid-fluid interface. The experiment consists of a Hele-Shaw cell with dimensions 80 × 40 cm. The
cell is made of 1-cm-thick glass plates having 1.5-mm aperture between them. Three boundaries are sealed
with a double sided tape, and one boundary on the opposite side of the air inlet is covered with a semiper-
meable mesh filter (see Figure 1b). This filter lets the fluid leave the system while keeping the grains inside.
We inject 2-bar pressure starting from t = 0 s similar to a step function. The injection pressure comes from
the pressurized tank does not fluctuate during the experiment except the small fluctuations occur around
the electrovalve (see supporting information Figure S1). We fill the cell with 80 μm (±1%) Ugelstad spheres
(Ugelstad et al., 1992), nonexpanded polystyrene grains. We filled the cell such that a grain-free zone (⋍ 5 cm)
between the air inlet and the solid-fluid interface is present at the start of the experiment.

In experiments we observed (as in Figures 1a and 1c) that after the start of the injection of air with constant
overpressure two zones develop: (1) a zone where the channels empty of grains are formed in the region
initially full of grains, while the grains are compacted around these channels, and (2) a zone where the grains
are still in loose state. In the compacted zone, we see the grain-free channels. These areas were previously
filled with grains but emptied after the start of the injection. Therefore, the stress variations that needs to be
modeled are (i) air pressure variations in the grain-free zone, (ii) air pressure variations while the pore pressure
diffuses inside the porous medium, and (iii) solid stress variations due to compaction of the granular medium.
Using the modeled stress variations, we are also going to model the mechanical vibrations on the glass plates
generated by these stress variations so that we can obtain numerically simulated accelerometric recordings
to be compared with the ones obtained during the experiments.

The solid fraction (1 − 𝜙) can be computed as (1 − 𝜙) = Mg∕(𝜌gVf ) = 0.48, where 𝜙 is the porosity inside the
cell, Mg ⋍ 170 g is the mass of grains, 𝜌g = 1.05 g/cm3 is the density of the granular material, and Vf ⋍ 350 cm3

is the filled volume of the Hele-Shaw cell in the initial loose state that we would like to model (as measured in
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Figure 1. (a) Experimental images showing different stages of the experiment with different radius of curvature (R).
(b) Sketch showing the experimental setup. (c) Compaction zone in the Hele-Shaw cell. As the air pushes grains, a
compacted zone with a length L occurs. Starting from the fluid-solid interface shown in red, the density of grains (and
the solid stress) decreases exponentially along the length x (down to the undeformed phase). The sketch is not in scale.

similar types of experiments by F. K. Eriksen et al., 2017; F. K. Eriksen et al., 2018; Johnsen et al., 2006; Turkaya
et al., 2015). Finite size effects due to a quasi 2-D system cause greater porosity values than porosity of random
loose packing𝜙l = 0.41 (Scott, 1961). In the compaction zone as the solid fraction approaches to random close
packing (Berryman, 1983; Scott, 1961), porosity approaches 𝜙c ⋍ 0.38.

Figure 1a shows different stages of the experiment. t = 0 ms corresponds to the initial state of the Hele-Shaw
cell, when the air injection starts. Then (t = 32 ms), just after the start of the injection, we observe a quasi-stable
compaction phase with a slight curvature of the solid-fluid interface having a very large radius R1. As we
continue injection, the air pushes the grains further eventually breaking the translational symmetry in the
direction tangential to the initial front, fracturing the porous medium, that is, creating incisions inside the
porous medium that present a much smaller radius of curvature R2. Later on, these incisions split in branches,
and further orders of branches develop. Finally, at t = 792 ms we have the whole branched structure devel-
oped in the system, and this structure remains quasi-stationary for the rest of the experiment. The small fingers
present a tip curvature around R3 = R = 0.9 cm, which will be used to calculate the compaction zone in
the next section. We are using only one characteristic value of tip radius of curvature (i.e., R3 = R) to sim-
plify the calculations. The permeability values are computed using the Carman-Kozeny equation for porous
medium 𝜅pore = d2

180
(𝜙)3

(1−𝜙)2
, where d is the diameter of the grains (Carman, 1937; Turkaya et al., 2015) and for
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the channels empty of grains assuming a Poiseuille flow between two plates 𝜅empty = b2

12
where b is the chan-

nel thickness (i.e., plate aperture in this study; Niebling et al., 2010a; Poiseuille, 1847). For the simulations we
used the permeability values:

𝜅pore = 6 × 10−12 m2

𝜅empty = 8 × 10−8 m2

It has been mentioned that the characteristics observed in the Fourier domain are insensitive on the sensor
location over the plate in Turkaya et al. (2015) and thus, in the numerical model we are using one accelero-
metric sensor (Brüel & Kjaer 4374) with an optimal sensitivity in the (1 Hz to 26 kHz) frequency range placed
10 cm away from the semipermeable outlet at the center line of the cell.

2.2. Equations for Air Pressure Calculations Inside the Cell
Air vibration in an empty cavity can be explained and modeled using the classical wave equation for sound
waves (Feynman et al., 2011; Royer et al., 1999):

∇2P = 1
V2

s

𝜕2P
𝜕t2

(1)

where P is the air pressure and Vs is the sound wave velocity in the air. The same equation is valid for chambers
with irregular shapes, such as in fingers empty of grains. However, this approach would neglect the air diffu-
sion inside the pores. If we assume that the solid-fluid interface is impermeable, we can get an approximate
description of the gas pressure field resonating inside the air channel using equation (1).

However, the solid-fluid interface is permeable. When the overpressure reaches the solid-fluid interface, fluid
penetrates into the porous medium and the stress state changes both in the fluid and the solid. Taking into
account that the solid part is permeable and assuming that its permeability does not vary significantly over
time and that the deformation of the solid part is slow enough compared to the air pressure diffusion, we can
use the classical diffusion equation to model this diffusion. The classical pore pressure diffusion equation is
given by Biot (1956a) and Biot (1956b) and also used for the same type of experiments by Johnsen, Toussaint,
et al. (2008) and Turkaya et al. (2015) as

∇2P = 1
D
𝜕P
𝜕t
, (2)

where D = 𝜅

c𝜙𝜇
is the pore pressure diffusion constant, c is the compressibility of the fluid,𝜅 is the permeability

of the medium, 𝜙 is the porosity, and 𝜇 is the dynamic viscosity of the fluid. A more refined model taking into
account both the vibration of air pressure in empty channels and the pore pressure diffusion regimes in a
single framework, amounting to a model of poroplastomechanics, will be developed in the section 3. We will
show that in the two limits of high and low porosities, it is equivalent to the two behaviors described here by
equations (1) and (2) (i.e., the vibration one and the diffusion one respectively).

2.3. Equations Describing the Out-of-Plane Stress Calculations
During fracturing, the state of stress in the solid part changes as well. To create thin fingers, there is a stress
threshold to be passed. For a mode 1 fracturation this is due to humidity and capillary bridges between the
grains and for a mode 2 fracturation this is due to the friction between the grains and the friction between
the grains sliding against the glass plates. In the considered case, the Hele-Shaw cell has a semipermeable
boundary at the outlet, which prevents the grains to leave the cell. Hence, compaction in the porous medium
is the only way to create grain-free channels, that is, areas empty of grains inside the medium which is only
possible if the surrounding grains slide on the glass plates. In the granular medium, starting from the clean
fluid-granular medium boundary (i.e., the red interface shown in Figure 1c), there is a region where the grains
are compacted into a densely packed configuration. This region is called the compaction front. Starting from
the compaction front, at distance x from the boundary between empty fingers and compacted grains, we can
obtain the out-of-plane solid stress 𝜎zz(x), as presented in earlier works of Knudsen et al. (2008), Sandnes et al.
(2011), and J. A. Eriksen et al. (2018) as

𝜎zz(x) =
𝜌sgΔz

2

[
{𝜓𝛾 + 1} e

2𝛾𝜓(L−x)
Δz − 1

]
, (3)
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Figure 2. An image of the Hele-Shaw Cell during injection t = 0.536 s is presented with the numerical simulation results. (a) Photo of the Hele-Shaw cell with
boundary conditions identified. (b) Binarized image of the porous medium allow us to numerically separate the solid matrix (white) from the grain-free zone
(black). The solid-fluid interface is drawn with a red line along the grain-free zone. (c) The simulated air pressure using equation (19) is presented for this
snapshot. (d) The simulated total stress found using equation (20) is presented for this snapshot. Color bars show the pressure in normal direction to the glass
plate in kilopascals.

where L = 𝜙nR

(1−𝜙n)
is the thickness of the compaction front (see Figure 1c) with typically L = 3 cm, where 𝜙n is

the normalized solid fraction 𝜙n = (1 − 𝜙)∕(1 − 𝜙c). Δz = 1.5 mm is the aperture of the Hele-Shaw cell, and
𝜓 is the Janssen’s coefficient as given in Janssen (1895), Knudsen et al. (2008), and Sandnes et al. (2011). We
considered𝜓 = 1 in this study, which is a typical value in order of magnitude as discussed in these references.
𝛾 is the friction coefficient between the grains and plates considered as 0.3, 𝜌s = (1 − 𝜙)𝜌g = 0.5 g/cm3 is
the initial effective density of the granular medium and x is the distance from the solid-fluid interface (see
Figure 1c). This stress profile can be solved with equation (3) to determine the map of the out-of-plane solid
stress inside the cell at a specific time t.

Inside the cell, variations of normal stress and tangential stress generate vibrations in a direction normal to the
plate surface. Note that the amplitude ratio of the out-of-plane vibrations induced by normal stress in com-
parison to the vibrations induced by tangential stress is typically of about 5–10 times larger due to the elastic
properties of a thin 2-D plate (Royer et al., 1999). This was experimentally verified by recording the vibrations
on different axes of the plate generated by an impact force normal to the plate (see supporting informa-
tion Text S2 and Figure S2 for details; Janssen, 1895; Kausel, 2013). Therefore, in what follows we neglect the
tangential stress component on the simulation of vibrations in a direction normal to the plate surface.

In Figures 2c and 2d we present the snapshots of air and total stress maps in normal direction on the top
glass plate of the Hele-Shaw cell. These pressure maps vary with time, and these variations of pressure gen-
erate vibrations on the plates of the Hele-Shaw cell. Specifically in 2-D thin plates, these vibrations are called
Lamb Waves (Lamb, 1904; Royer et al., 1999). By convolving the stress variations on each pixel to the far-field
Lamb wave approximation presented in Goyder and White (1980), as detailed further in section 2.4, we obtain
the out-of-plane vibrations on the plate, which correspond to the vibrations recorded by the accelerometers
during the experiments.

In this study, as presented in the experimental work, we expect the power spectrum of the out-of-plane
plate acceleration to evolve as the channel network develops. The experimental and numerical results will be
compared in various aspects in section 4.2.
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2.4. Accelerometric Signal Generation Across the Plate
We want to compare the experimentally recorded and simulated vibrations at one side of the plate. Therefore,
we need to generate numerical out-of-plane mechanical vibrations occurring due to stress fluctuations inside
the Hele-Shaw cell. The vibrational displacements on a plate u(xr, yr, t) observed on a position (xr , yr) and over
time t due to a force F exerted on the point (xs, ys) can be expressed as given in Aki and Richards (2002) and
Farin et al. (2016):

u(xs, ys, t) = ∫ ∫ ∫ G̃(xr , yr, 𝜔r; xs, ys, 𝜔s) ∗ F̃(xs, ys, 𝜔s)dxdyd𝜔 (4)

where ∗ is the convolution product and G̃(xs, ys, t) is the Green function of the waveguide. Here F̃ is the Fourier
transform of the force exerted on a point computed by multiplying the total stress simulated on a pixel with
the pixel area. In this study the resolution is set to≈ 60 mm2 per pixel. In other experiments where the mechan-
ical vibrations are generated in plates by a stress exerted on plates, equation (4) is expressed as a far-field
approximation of the Lamb waves (Farin et al., 2016; Goyder & White, 1980; Turkaya et al., 2016) :

𝜉(l, 𝜔(k)) = −iF̃(𝜔(k))
8Bk2

√
2

lk𝜋
e−i(lk−𝜋∕4) (5)

where 𝜉(l, 𝜔(k)) is the displacement of the plate in Fourier domain at a distance l =
√
(xs − xr)2 + (ys − yr)2)

from the source, F̃(𝜔(k)) is the applied force in Fourier domain at a point like source, B is the bending stiff-
ness B = h3E

12(1−𝜈2)
where h is the thickness of the plate, E is the Young’s modulus, and 𝜈 is the Poisson’s

ratio of the plate material. k is the wavenumber where the dispersion relation with angular frequency 𝜔 is

k = 𝜔1∕2
(
𝜌h
B

)1∕4
. If the frequency is higher than the cutoff frequency of the dispersion relation (which satis-

fies kh ≃ 1), then the dispersion relation will become 𝜔

k
= d𝜔

dk
≈ VR where VR is the Rayleigh Wave velocity

on the plate surface (Royer et al., 1999). To compare simulation data with accelerometric recordings, we need
to obtain the power spectrum of the accelerations on the plate surface, which is the double derivative of the
displacement; thus, equation (5) becomes (Farin et al., 2016; Royer et al., 1999)

𝛼̃(l, 𝜔(k)) = [𝜉(l, 𝜔(k))𝜔(k)2]2 (6)

where 𝛼̃ is the power spectral amplitude. To keep the vibrations simple, in the numerical studies, we did not
include the reflections on the side boundaries. Even though this may cause some differences in the amplitude
on the power spectral distribution curves, the main structure which is the essential part of this study remains
the same, as we checked in comparisons with simulations where we included them.

3. Numerical Modeling of Air Pressure

We start with the Navier-Stokes equation (Guyon et al., 2001), describing a fluid mixed with solids at an ele-
mentary representative scale of ∼ 10 grains size (i.e., scale corresponding to the Darcy equation; Darcy, 1856),
with a momentum exchange term between the solid and fluid linear in relative velocity as in Niebling et al.
(2010a), Jackson (2000), and Van der Hoef et al. (2006):

𝜌f
𝜕

𝜕t
(vf) = −∇P −

vf − u
𝜅

𝜇𝜙, (7)

where 𝜌f is the density of the injected air,𝜙 is the porosity, vf is the average velocity of the air, u is the granular
velocity, 𝜇 is the viscosity of the air, and 𝜅 is the permeability of the medium. From equation (7) we express vf

as

vf = u − 𝜅

𝜙𝜇

(
∇P + 𝜌f

𝜕(vf)
𝜕t

)
. (8)

During this coupled flow, the mass (both of air and grains) is preserved. Thus, the stresses inside the Hele-Shaw
cell can be explained with the mass conservation equations of the air and solid phases similarly used in
Johnsen, Toussaint, et al. (2008), Niebling et al. (2010a), and Niebling et al. (2010b). For the air phase, mass
conservation can be written as

𝜕

𝜕t
(𝜌f𝜙) + ∇ ⋅ (𝜌f𝜙vf) = 0, (9)

Implementing vf from equation (8) in equation (9), we have
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𝜕

𝜕t
(𝜌f𝜙) + ∇ ⋅

(
𝜌f𝜙

[
u − 𝜅

𝜙𝜇
∇P

]
−
𝜌2

f
𝜅

𝜇

𝜕vf

𝜕t

)
= 0, (10)

Taking into account that the air is compressible, the change in the air mass density can be expressed linearly
as

𝜌f = 𝜌0 + 𝜌0c(P − P0) (11)

where 𝜌0 is the reference density of air at atmospheric pressure and room temperature and c = 1∕P0 is the
isentropic compressibility of the air—considering air as an ideal gas. For the grains the mass conservation
equation is

𝜕

𝜕t
(1 − 𝜙) + ∇ ⋅ ((1 − 𝜙)u) = 0. (12)

which can be simplified into 𝜕𝜙

𝜕t
= −u ⋅ ∇𝜙 + (1 − 𝜙)∇ ⋅ u. Inside the pores, taking into account the equation

of state of the air (equation (11), equation(10) will transform to

𝜙𝜌0
𝜕P
𝜕t

+ 𝜌f
𝜕𝜙

𝜕t
= ∇ ⋅

[
𝜌f
𝜅

𝜇
∇P

]
− ∇ ⋅ (𝜙𝜌f u) + ∇ ⋅

(
𝜌2

f
𝜅

𝜇

𝜕vf

𝜕t

)
. (13)

Two terms of equation (13) can also be expressed using equation (12); we can get

𝜌f
𝜕𝜙

𝜕t
+ ∇ ⋅ (𝜙𝜌f u) = 𝜌f∇ ⋅ [(1 − 𝜙)u] + ∇ ⋅ [𝜙𝜌f u], (14)

which simplifies to

𝜌f
𝜕𝜙

𝜕t
+ ∇ ⋅ (𝜙𝜌f u) = 𝜌f∇ ⋅ u + u𝜙∇𝜌f (15)

expanding the left term of equation (15) with equation (11) we get

𝜌f
𝜕𝜙

𝜕t
+ ∇ ⋅ (𝜙𝜌f u) = 𝜌f∇ ⋅ u + 𝜙𝜌0cu ⋅ ∇P. (16)

Putting equation (16) into equation (13), we get

𝜙𝜌0c
[
𝜕P
𝜕t

+ u ⋅ ∇P
]
= ∇ ⋅

[
𝜌f
𝜅

𝜇
∇P

]

+ ∇ ⋅

[
𝜌2

f
𝜅

𝜇

𝜕vf

𝜕t

]

− 𝜌f∇ ⋅ u

(17)

which is equal to

𝜙

[
𝜕P
𝜕t

+ u ⋅ ∇P
]
= ∇ ⋅

[
P̂
𝜅

𝜇
∇P

]
− P̂∇ ⋅ u

+ ∇ ⋅

[
𝜌2

f
𝜅

𝜌0c𝜇

𝜕vf

𝜕t

] (18)

where P̂ = 𝜌f

𝜌0c
= P−P0+1∕c, which comes from equation (11). It should be noted that inside the pores, the air

pressure fluctuations are small compared to the background pressure, which leads to P̂ ≈ P0 (Niebling et al.,

2010b). We can apply some simplifications to equation (18): (i) In a fluid without porous medium,∇ ⋅
[
𝜌f 𝜅

𝜌0c𝜇

𝜕vf

𝜕t

]
reduces to 𝜌f 𝜅

𝜌0c𝜇

𝜕∇⋅vf

𝜕t
. (ii) Considering that the local variations in density of the fluid and porosity are negligible

compared to the fluid velocity variations, we can simplify equation (9) to obtain ∇ ⋅ (𝜌f𝜙vf) ∼ 𝜌f𝜙∇ ⋅ (vf). This
assumption is numerically validated, and the resulting values can be seen in supporting information Figure
S3. (iii) Third, we can write − 𝜕

𝜕t
(𝜌f𝜙) ∼ −𝜙 𝜕

𝜕t
(𝜌f ) ∼ −𝜙c𝜌0

𝜕

𝜕t
(P) taking into account that the porosity is hardly

varying over time in the granular medium, and approximated as constant, variations over time in the density
of the fluid are expressed using the compressibility equation (equation (11). (iv) Using (ii) and (iii), we write
c 𝜕P
𝜕t

∼ ∇ ⋅ vf then evolving this to use in equation (18) we get −c 𝜕
2P
𝜕t2 ∼ 𝜕∇⋅vf

𝜕t
.
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Figure 3. The sequence of the experimental and simulation data analysis. (a) The experimentally recorded signal is split
into 8-ms time windows, then treated using a Hanning Window (Oppenheim, 1999) to remove the effect of
discretization. Afterward, a fast Fourier transform (FFT) is applied and the resulting spectra are squared to obtain the
experimental power spectra. (b) Using equation (20) stress variations inside the cell are computed, afterward the
computed stress variations are convolved with the Green’s function for Lamb waves (Goyder & White, 1980) to calculate
the displacements on the glass plates. Next, these displacements are converted to power spectra of the plate
acceleration as given in equation (6). Eventually, the evolution of these vibrations are compared with the evolving state
of solid-fluid interactions inside the Hele-Shaw cell.

Applying all these simplifications, we eventually obtain the formulation that accounts for the air vibrations in
the empty area and the pressure diffusion in the porous medium:[

𝜕P
𝜕t

+ u ⋅ ∇P
]
= ∇ ⋅

[
P̂
𝜅

𝜇𝜙
∇P

]
− P̂∇ ⋅ u

−
𝜌2

f
𝜅

𝜌0𝜇𝜙

𝜕2P
𝜕t2

.

(19)

When 𝜅 is large (i.e., in the empty channels where P̂, 𝜅, 𝜇, and 𝜙 are constant), the first and third term of the
right-hand-side dominate and assuming that 𝜌f is close to 𝜌0, equation (19) reduces to P̂∇2P − 𝜌f

𝜕2P
𝜕t2 = 0.

Knowing that P̂
𝜌f

= c = Vs
2, where Vs is the sound wave velocity, we can obtain the air vibration equation in

the empty channels equation (1) that we defined in the introduction. Moreover, if 𝜅 is small (i.e., in the pores
when there is no active deformation), the last term vanishes and the equation (19) boils down to equation (2).
We note that the equation (19) behaves asymptotically as the equations corresponding to vibration of perfect
fluid in channels and fluid pressure in pores.

To compute the granular velocity u, we subtracted the experimental images that are taken with 8-ms time
steps. The velocity of the grains are calculated inside the porous medium in the compaction zone along the
interface and decayed linearly to zero over a length proportional to the extent L of the compaction zone as
seen in Figure 1c.

Furthermore, by adding the fluid stress equation (19) to the solid stress computed via equation (3) one can
compute the total stress exerting on the glass plates in normal direction as

𝜎Total = P + 𝜎zz (20)

Solving equation (19), equation (3), and then eventually equation (20) with a forward finite difference scheme
as explained in supporting information Text S3 (Levy & Lessman, 1961), we obtain the full field stress maps as
seen in Figure 2. As shown in Figure 2a, the pressure is applied at the right boundary from time zero as a line
source and kept constant through time. The boundaries at the top and bottom are sealed, and the boundary
on the left is fixed to atmospheric pressure (i.e., overpressure P = 0). Using the binarized experimental image
in Figure 2b, the solid-fluid interface is extracted for pressure computation. Figure 2c shows the air pressure
field inside the Hele-Shaw cell. In the total pressure map as presented in Figure 2d, we see that the compaction
zone in the solid is subject to higher pressures. The corresponding color bar shows the pressure applied on
the plate in kilopascals.
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Figure 4. Power spectral evolution of the Lamb waves on the plate compared with the different types of loading. (a) A
photo of the Hele-Shaw cell at t = 0.536 s with the locations of recording and source points indicated. A green square
where the source is sampled, and a red circle where the mechanical vibrations (Lamb waves) due to stress variations are
numerically modeled. (b) Air pressure and total stress sampled (numerically) on the green square over time. (c) Power
spectrum of the Lamb waves due to air pressure simulated on the recording point. (d) Power spectrum of the Lamb
waves due to total stress simulated on the recording point.

As described in Figure 3a, 8 ms of time windows are obtained using the raw experimental recordings. Each
time window is treated using a Hanning Window right before transformation into Fourier domain to avoid any
artifacts of discretization (Oppenheim, 1999). Then the spectra in Fourier domain are squared to obtain the
power spectrum corresponding to each time window as explained in Turkaya et al. (2015). In the simulations,
this procedure is slightly different (see Figure 3b). First, the stress map on the plate for a snapshot in time is
computed using equation (20). Then, we calculate the mechanical vibrations on the plate occurring due to
the variations of stress in subsequent snapshots. Using the full field stress variations inside the Hele-Shaw cell,
the mechanical vibrations on the glass plates are generated by convolution of a point force variation with the
Green’s function for Lamb waves (Goyder & White, 1980) using equation (5). This convolution is explained in
detail in section 2.4. Following this, these power spectra are compared to study the evolution of characteristic
features of these vibrations in relation with the solid-fluid interactions inside the Hele-Shaw Cell.

4. Results and Discussion
4.1. Numerical Simulation Results
The mechanical vibrations of the plates at the recording point are generated by the variations of the stresses
(solid and/or fluid) exerted on the glass plates of the Hele-Shaw cell. First, we look at the vibration contribution
of one grid point source. Furthermore, we can decompose the applied force to fluid pressure and total stress
as in equation (20).
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Figure 5. Comparison of a numerical and an experimental (normalized) power spectra corresponding to the t = 0.08 s. (a) Violet curve shows the raw signal.
Green curve shows the signal corrected by extending the manufacturer’s calibration curve for the high frequencies. Blue curve shows the simulated power
spectrum using full field total stress variations. (b) Snapshot of the Hele-Shaw cell to the moment corresponding to power spectra. Marker shows the sensor
location.

In Figure 4a we present a simple case that is having one spatial source over the plate (green square) and the
vibrations are simulated on a single recording point (red circle) placed 10 cm away from the semipermeable
boundary along the line of the inlet. Figure 4b shows the air pressure and total stress evolution over time on
the sampling point (green square of Figure 4a). A zoomed window is attached to illustrate that around t = 0.1 s
there is a jump on the total stress which is not present in the air pressure. Considering equation (20), we can say
that this sudden increase is due to the solid stress increase on the grid point corresponding to the source loca-
tion. Furthermore, we compare the generated power spectra. In Figure 4c, a spectrogram (equation (6) due to
the vibrations generated by the air pressure P is shown. This spectrogram is prepared by taking 8-ms discrete
time windows of stress variation on the plate and convolving with equation (5) to obtain the power spectrum
of each window. Figure 4d shows at the same time the spectrogram of the vibrations generated by the total
stress in the cell (see supporting information Movie S1 for the corresponding movie of the stress evolution).
It can be seen that, with the initial increase of the injection pressure, the power spectrum becomes more
energetic E ∝ ∫ ∞

−∞ |𝛼̃(l, 𝜔(k))|d𝜔 where E is the signal energy as defined by Parseval’s Theorem (Bracewell,
2000).

The difference in these two curves observed in Figure 4b appears when the compaction zone passes through
the point taken as the source. Thus, we say that the source corresponding to fluid pressure variations dom-
inates over solid stress variations, except when the compaction front is close to the sensor. The spike in the
loading corresponds to the time when the compaction front passes through the source point. At this moment
we observe in Figure 4d that the power spectrum has an abrupt increase at all frequencies. Following this,
the source point remains in the empty area, where the air is bursting into the empty channel giving power
to the low-frequency range of the spectrum. As the air penetrates into the pores toward the boundary open
to atmosphere, the pore pressure fluctuations and the vibrations diminish, leading to a decay in the power
spectrum. To study the effect of possible inlet pressure fluctuations, we simply add Gaussian white noise non-
correlated in time on the air injection data and repeat the procedure seen in Figure 4. The signal to noise ratio
is set to 30 dB. The application of noise covers the structures present in the power spectrum in all frequencies
and makes it difficult to see the structures that we would like to identify. Supporting information Figure S4
comparing the power spectral evolution with and without noise is provided in supplementary material. We
can say that the noise in the injection pressure covers the signature evolution in the power spectrum. For a
better linking between the mechanics of the solid-fluid mechanics with corresponding microseismic events,
it is preferred to not to include fluctuations of the inlet pressure in the numerical simulations.
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Figure 6. Comparison of power spectra obtained from experimentally recorded data and obtained using different
stresses as vibration source in numerical simulations. (a) Experimental power spectra with red arrow markers showing
stick-slip events, (b, c) simulated power spectra using total stress and a zoomed version on the peak around 57 kHz.
(d) Numerical simulations using solid stress as a source; red arrows mark the abrupt changes as vertical lines. (e)
Simulated power spectra using air pressure in empty space. Color bars are given in log scale.

4.2. Comparison of the Experiments and the Numerical Simulations
To compare the numerical simulations with the experimental results, we need to numerically simulate the
experimentally recorded vibrations on a sensor location generated by the full field stress variations over the
cell. In other words, if we repeat the procedure that we did in Figure 4 for all the grid points on the plate, we
obtain the simulated accelerometric recordings. Considering the acceleration generated by the total stress,
and focusing on the signal over a window 8-ms duration centered on time t = 0.08 s after the start of the
experiment, we can compare the power spectrum of the experimental signal and the simulated one directly.
In Figure 5, we see that even though the two power spectra does not have a perfect match there are several
things in common. First, both spectra have a plateau across the lower frequencies until a peak and then a slope
in the high-frequency region starting right after the peak. Furthermore, both of them have a peak around
57 kHz, which shows that the stresses simulated inside the Hele-Shaw cell are able to represent a part of
the signature that we see in the experiments. However, there are some differences between these curves as
well. Up to 10 kHz the structures are very different. This difference happens because the stress variations are
discretized with 8-ms steps, which is not long enough to capture the characteristics of the low-frequency

TURQUET ET AL. 6932



Journal of Geophysical Research: Solid Earth 10.1029/2017JB014613

Figure 7. Power law evolution and comparison of numerical (a, b) and experimental (c, d) power spectra. Numerical simulations of total stress normal to the
plate and experimentally recorded signals are used to generate the power spectra at times t = 0.8 s and t = 1.6 s. Each subfigure has two power law fits (axb = y).
The point of coincidence of the fitting curves is marked to define the corner frequency.

signals correctly. This duration is limited with 8 ms because a longer-signal duration will cause reflections from
the sides to cover the signature that we would like to see in the simulated power spectrum.

Next, we investigate further the power spectrum evolution by observing the spectra belonging to all time
windows (8 ms each). In Figure 6 we compare the experimentally recorded spectra (Figure 6a) with spectra
simulated using total stress (Figures 6b and 6c), solid stress (Figure 6d), and air pressure in empty channels
(Figure 6e) separately. In Figure 6a, we compare the experimental and numerical (total stress) power spectra.
One can observe that the largest peak that is dominating the experimental power spectra (at 57 kHz) is present
in the numerical simulation results as well (Figure 6c). These peaks are wider at the start of the injection and
thinner toward the end of fracturing. In Figure 6e, we search this peak further by calculating only the vibrations
due to air pressure in channels empty of grains inside the Hele-Shaw cell. Therefore, we say that the air pressure
is the main generating factor of the peak at 57 kHz. Then we compare the power spectra coming from the
experimental recordings and from the numerically generated vibrations using only solid stresses as seen in
Figure 6d. As expected, we do not see the main peaks noticed in Figures 6a and 6b but the vertical thin lines
corresponding to the events generated due to the sudden stress rearrangements inside the porous medium
with the effect of pore pressure diffusion defined by Turkaya et al. (2015; called Type 2 events in the article).
These events have a stick-slip nature, and they are intermittent. As defined in the same article, the rate of
occurrence of these events is diminishing as injection goes on. This is also visible in the numerically obtained
results. The time of the markers can be fit with an Modified Omori law as done in Turkaya et al. (2015) giving
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Figure 8. Power law evolution and comparison of power spectra due to different pressure contributions. (a, b) Only the air pressure in empty channels, (c, d) the
air pressure inside the porous medium, and (e, f ) solid stress normal to the plate are used to generate the power spectra at times t = 0.8 s and t = 1.6 s. Each
subfigure has two power law fits (axb = y). The point of coincidence of the fitting curves is marked to define the corner frequency.
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p = 0.55, which is in the same range calculated for the same type of experiments. The details of this fit is
explained in supporting information Text S5.

Furthermore, by using curve fitting and comparing the fitting parameters, we can perform a quantitative com-
parison between experiments and simulations. In Figure 7, we compare the power spectra of specific time
windows at t = 0.8 s and t = 1.6 s obtained using the numerically simulated plate vibrations due to total stress
applied normal to the plate (Figures 7a and 7b) and using the experimental recordings (Figures 7c and 7d).
The exponents (slope) b1 and b2 are obtained after filtering the signal with a low-pass and high-pass filter hav-
ing a 60-kHz cutoff frequency (chosen with respect to the peak frequency), respectively. Next, we calculated
the corner frequency as where the two linear fitting lines having slopes b1 and b2 coincide. We observed, in
both cases, that after the first t ≈ 0.1 s the corner frequency fluctuates ≈ 10% but stays in the same order of
magnitude. In supporting information Figures S5 and S6 the figure panels are identical to Figure 7 but they
show more time steps for different pressure contributions. In addition, supporting information Figures S7–S12
are provided to show the evolution of the mentioned fitting parameters a, b and the corner frequency fcr.
We also provide supporting information Figure S13 comparing the experimental and numerically simulated
accelerations in the time domain.

4.3. Discussion
By looking at the power spectra in different snapshots of time belonging to different contributions on the
recorded vibrations in Figure 8, we can say that the air pressure vibrations are dominating the signal of total
stress. These vibrations in Figures 8a–8d (the contribution of air) are particularly in midrange frequency of
the power spectrum from 1–2 up to 60 kHz. Low-frequency signals with frequencies up to 20 kHz are men-
tioned in the experimental study (Turkaya et al., 2015) for a smaller pressure level. Here the maximum peak
is recorded to around 57 kHz as seen in Figure 6. The developing channels in this system are fractal in shape,
as can be seen in the optical data, and as analyzed in detail in F. K. Eriksen et al. (2017) and F. K. Eriksen et al.
(2018). Their box-counting fractal dimension is around 1.5 to 1.7. Note that the channels are natural fractal-like
patterns; that is, they are only self-similar over a limited range of scales as opposed to perfect fractals, which
are self-similar on all scales. Here we have observed that the channels are self-similar on scales from the small-
est channels ∼ 10−2 m up to the cell size ∼ 100 m. These structures grow from an initially simple geometry
and once they are established, the power spectrum of the acoustic emissions can be fitted with two different
power law curves. The vibration of the air in such cavities, or the solid stress evolving along such boundaries,
or the air pressure diffusing from such boundaries, could be responsible for the similarities with power law.
Although some features of the channels are fractal, there are also many characteristic scales in the problem
(pore size, grain size, cell thickness, length of fingers, etc.). The power spectra observed (experimentally and
numerically) are not fractal but display small ranges that can be fitted as power law to describe them and
compare them.

Moreover, in Figure 8, we can see different power law regimes, fitted by straight curves in this bilogarithmic
representation. The exponents (slope) b1 and b2 and their 95% confidence intervals are obtained after filtering
the signal with a low-pass and high-pass filter having 60-kHz cutoff frequency (chosen with respect to the
peak frequency), respectively. Next, we calculated the corner frequency where two linear fitting lines having
slopes b1 and b2 coincide. This frequency, in the simulations using air pressure in channels (Figure 8) increases
first (until the channel structure stabilizes) and stays at around 100 kHz starting from t = 0.08 s. Depending on
the confidence level chosen for the b1 and b2, the corner frequency may vary from 50 up to 300 kHz. Lamb
waves on glass plates have group velocity varying between 2000 and 3000 m/s. We divide the wave velocity
by the corner frequency to obtain the range of the characteristic wavelength for this corner frequency (6 cm
down to 7 mm), which are in the same range of the width of the channels (15 cm down to 1 cm). In supporting
information Figures S14–S16 the figure panels are identical to Figures 8 and 7 but they show more time steps
for different pressure contributions. Furthermore, supporting information Figures S17–S25 are provided to
show evolution of the mentioned fitting parameters a, b and the corner frequency fcr.

The plate vibrations due to air pressure in the porous medium (Figures 8c and 8d) are weaker but still can be
matched with a bi-power law structure that we presented in Figures 8a and 8b. The corner frequency of air
vibrations inside the pores is larger than the vibrations inside the empty channels. This is certainly due to the
influence of the size of the pores which is much smaller than the size of the empty channels.

Furthermore, the contribution of the solid stress in the cell generated some vibrations. As the perimeter of the
compaction zone gets longer we have more fluctuations on the solid stress and, thus, we see more vibrations.
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In supporting information Figure S16a, around t = 0.008 s we see a very calm structure, which gets very per-
turbed later (see Figures 8e and 8f) with the effect of fracturation. We can still observe a structure similar to a
bi-power law since the structure of the channels is strongly related with the structure of the compaction zone.

If we combine these different contributions, we obtain synthetic vibrations due to total stress variations inside
the Hele-Shaw cell. In Figures 7a and 7b, we can fit the power spectra with a bi-power law having a stable
corner frequency (around 120 kHz) except at the earliest times like t = 0.008 s (shown on the plot at t = 0.008 s,
supporting information Figure S5), which might be related to the fact that in the very beginning there are not
yet any branched patterns of developed channels.

We observe these mentioned evolutions (corner frequency and bi-power law fit) during fracturing in exper-
imental data as seen in Figures 7c and 7d. As we have seen in Figure 5, the structure that we have in both
power spectra have similar features. In a logarithmic plot, they both have a quasi linear structure between 4
and 40 kHz followed by a peak at 57 kHz, which is followed by a linear decay toward the higher frequencies.
Apart from the similarities, at very low frequencies (lower than 1 kHz) due to the discretization we start to
have separation of the two spectra.

By analyzing part by part the different source characteristics in the simulations, we see that the power spec-
tra of air pressure vibrations in the cavity approach to the power law fits. The main source of noise during
fracturing is the solid stress, and once the medium stabilizes it is the air vibration.

4.4. Nondimensionalization and Analogy With Liquid-Induced Rock Fracture
For underground rocks, some situations correspond to more deformable layers embedded between layers of
less deformable (more competent) rocks (Stanek & Eisner, 2013), with an overpressure on a side by man-made
pumps, or by naturally induced overpressure (e.g., due to underground flow leading to rising pore pressure,
suddenly exerted on the softer formation after the rupture of a lowly permeable barrier).

The equations of motion for the pore pressure, neglecting the inertia leading to the high-frequency pressure
variations, can be written using the previously defined equations (8), (9), (11), and (12), which leads—for the
dominant terms—to

𝜌0𝜙0c
𝜕P
𝜕t

+ 𝜌0∇ ⋅ (𝜙vf + (1 − 𝜙)u) = 0 (21)

and eventually to

𝜕P
𝜕t

= D∇2P − 1
𝜙0c

∇ ⋅ u (22)

with D = 𝜅∕(𝜇𝜙0c). Using a pressure unit P0 = 1∕(𝜙0c), a length unit L, and a time unit 𝜏 = L2∕D with
dimensionless quantities P′ = P∕P0, r′ = r∕L, and t′ = t∕𝜏 this can be formulated as

𝜕P′

𝜕t′
= ∇′2P′ − 1

𝜙0cP0
∇′ ⋅ u′ (23)

that is,

𝜕t′P′ = ∇′2P′ − ∇′ ⋅ u′. (24)

Or to leading order,

𝜕P′

𝜕t′
= ∇′2P′ −

(
𝜕𝜙

𝜕t′

)
∕(1 − 𝜙). (25)

For the solid, the force balance (neglecting inertial terms) can be written as ∇ ⋅ 𝜎s + ∇P = 0, which becomes
after nondimensionalization by P0 and L

∇′ ⋅ 𝜎′s + ∇′P′ = 0. (26)

The rheology of the solid is determined by a yield criterion corresponding to first order to a Mohr Coulomb
criterion. Assuming that the sliding occurs essentially at the boundaries between the layer considered and
the surrounding formation, this can be written as
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𝜎s
t = 𝜇C𝜎

s
n + c0 (27)

where 𝜎s
t is the tangential effective stress along the layer sides, 𝜎s

n the normal effective stress, 𝜇C a friction
coefficient, and c0 the cohesion. The rheology of the deforming rock is analogously represented in the labo-
ratory by the rheology of a dense granular material, which can endure shear but cannot significantly reduce
its volume—the hard minerals resisting compression, and sliding on each other according to a Coulomb
criterion—as in the model of Niebling et al. (2012a) and Niebling et al. (2012b), or in the description of this
article where the solid fraction and the normal stress increase when grains are accumulated along empty
channels. Channels with a lower grain content have a very large permeability compared to the surrounding
material.

In such configuration, the normal load 𝜎s
n dominates over cohesion c0 and can be written for grains confined

in a layer as

𝜎s
n = 𝜎0 + K𝜎s

xy (28)

where 𝜎0 is the stress prior to deformation, due to the load of the top formation, or the prestress coming from
the preparation, and 𝜎s

xy is the stress tensor in the plane of the deformable layer.

The characteristic stress unit is P0 of order Plab
0 = 105 Pa for gas at atmospheric pressure, and Prock

0 = 2.1010 Pa
for water—assuming 𝜙rock = 0.1 for the rock and c = 5.10−10 Pa−1 for the liquid.

The prestress in the laboratory, responsible for the yield stress, is of order a few times 𝜌sgh—for example, P1 =
10𝜌sgh = 50 Pa with a layer of h = 1-mm thickness, that is, a dimensionless P′

1 = 𝜌sgh∕Plab
0 = 50∕105 = 5.10−4.

This is comparable to a situation in large scale with a vertical stress around P1 = Prock
0 P′

1 = 2.1010 ⋅ 5.10−4 =
1.107 Pa—corresponding to roughly 0.5 km of rock overburden.

The characteristic length L is set by the layer thickness—Llab = h = 1 mm for the current experiments, Lrock =
10 cm to 10 m in large-scale situations.

The pressure diffusion constant is around Drock = 0.2 m2/s and Dlab = 5.6 ⋅ 10−2 m2/s, evaluated as D =
𝜅∕(𝜇𝜙0c) from the permeability 𝜅 lab = 5 ⋅ 10−12 m2, air viscosity 𝜂lab = 1.8 ⋅ 10−5 Pa⋅s, compressibility clab =
1∕Patm = 10−5 Pa−1, and porosity 𝜙0 = 0.6, and assuming for the rock, 𝜅rock = 10−14 m2, viscosity 𝜇 = 10−3

Pa⋅s, compressibility 5 ⋅ 10−10 Pa−1, and porosity Φ0 = 0.1. This corresponds to unit times 𝜏 rock = (Lrock)2∕D =
5 s, and 𝜏 lab = 20 μs, with Lrock = 1 m and Llab = 1 mm; that is, the experiments presented in the current
manuscript are 50,000 times faster than their large-scale counterpart, and spatial scales observed in these
experiments have to be multiplied by 1,000 in analog rock hydrofracture or eruption/injectite dynamics.

Eventually, the pressures imposed here in the lab, from Plab
inj = 0 to 3.105 Pa, correspond to a range of P′ lab

inj =
Plab

inj ∕Plab
0 = 0 to 3, and the overpressures corresponding to this are in the range of Prock

inj = Prock
0 P′

inj = 0 to
3⋅1010 Pa. Deformation triggered by the injection in such system is observed from an injection pressure around
P′

inj = 0.001, that is, Prock
inj = 2 ⋅ 107 Pa (Johnsen, Chevalier, et al., 2008). The experiments described in detail in

this manuscript would correspond to a very large imposed pressure, around P′
inj = 1, and Prock

inj = 2 ⋅ 1010 Pa.

5. Conclusion

The evolution of different source contributions in the acoustic emissions are investigated using numerical
simulations. The vibrations due to air pressure variations are found to be governing the power spectra. In the
beginning (t < 0.008 s), the air injection causes large pressure variations in the area empty of grains in the cell
and eventually reaches the solid-air interface and pushes the granular medium. This process creates the major
contribution in the low-frequency region (f < 60 kHz). Afterward, as the grains are getting compacted, the
solid stress starts to generate signals having higher amplitude than in the previous time windows. Since the
solid stress has a step-like loading due to sudden compaction and sudden stress release (if channeling occurs
after compaction), this loading is stimulating all types of frequencies on the glass plate of the Hele-Shaw cell.
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