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Abstract— In the field of civil engineering, ground penetrating
radar (GPR) is a highly efficient nondestructive testing tool
for sustainable management of pavement infrastructures.
GPR allows to evaluate the structure of the roadway over
large distances (with contactless configurations) and to detect
significant subsurface defects. This letter presents a new method
to detect thin debondings within pavement structures with the
step-frequency GPR. The proposed method enables us to carry
out the detection with only a small number of frequency samples
and A-scans. It is based on the linear prediction and support
vector regression theories. Two experimental results show its
effectiveness.

Index Terms— Debondings, detection, linear prediction (LP),
pavements, step-frequency ground penetrating radar (SF-GPR),
support vector regression (SVR).

I. INTRODUCTION

GROUND penetrating radar (GPR) is a widely used
tool for evaluating the structure and quality of the

road pavement [1], [2] (and the references therein). It allows
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rapid nondestructive probing of roadways (the roadways are
assumed to be horizontally stratified). The vertical pavement
structure can be deduced by backscattered echoes, and more
precisely by the estimated time delays and amplitudes of
the measured GPR signals. Amplitude estimation is used
to retrieve the wave speed within each layer. This letter
focuses on the detection of thin interlayer debondings within
pavement structures. These debondings have a substantial
influence on the residual life of the pavement, and thus, early
detection is important for pavement maintenance. Nowadays,
a GPR allows to detect significant interlayer debond-
ings [3]–[5]. However, the detection of thin debondings still
remains unresolved due to the very small thicknesses of the
debonding layers. This challenge remains important for end
users (clients or awarding authorities) to optimize the road
structures’ maintenance once such defects are detected at an
early age. This letter presents a new method to detect the
thin debondings within pavement structures with the step-
frequency ground penetrating radar (SF-GPR).

In the context of thin interlayer debondings, i.e., over-
lapped echoes, electromagnetic inversion [1], subspace meth-
ods [6], [7], compressive sensing methods [8], deconvolution
methods [9], and supervised machine learning-based regres-
sion methods [7], [10] are some of the methods that are able
to estimate the amplitudes and time delays of backscattered
echoes. However, estimation methods, such as subspace meth-
ods or supervised machine learning-based regression methods,
assume, either explicitly or implicitly, that the number of
echoes (or the number of interfaces) is known beforehand.
Some criteria (such as Akaike’s information criterion or mini-
mum description length [11]) can be used to detect the number
of echoes. Nevertheless, in practice, these criteria are not
efficient enough due to the high coherence of the echoes.
Compressive sensing methods are also a family of promis-
ing methods, but their behavior and performance depend
on the dictionaries used and the regularization parameters.
The behavior of deconvolution methods also depends on the
regularization parameters.

Furthermore, buried object detection methods using linear
prediction (LP) are proposed in [12]–[14]. LP can be used

https://orcid.org/0000-0001-5884-6912
https://orcid.org/0000-0001-7362-0778
https://orcid.org/0000-0002-1461-2003
https://orcid.org/0000-0003-3596-6705
https://orcid.org/0000-0002-9013-4605
https://orcid.org/0000-0002-0403-0085
https://orcid.org/0000-0003-3482-4959


Acc
ep

ted
 m

an
us

cri
tpt

to predict the next GPR signal using previous observations.
An object is detected when the measured signal is different
from its prediction. Yoldemir and Sezgin [14] proposed a least-
squares-based LP approach, which assumes that the number
of time samples is larger than the number of spatial samples
(number of A-scans). This assumption can be perfectly valid
in the case of pulse GPR in the time domain. Unfortunately,
this assumption may not hold true in the case of SF-GPR.
Recently, Pan et al. [15] proposed a new forward–backward
linear prediction (FBLP) method to estimate the time delays
of backscattered GPR echoes with a limited number of fre-
quency samples and A-scans. To achieve this, they proposed
to combine the FBLP and support vector regression (SVR)
theories. Based on the structural risk minimization principle,
the SVR serves as a good machine learning algorithm for
sparse modeling [16]. Due to the potential advantages, it is
of great interest to extend the detection method of [14] by
using the techniques in [15]. Thus, the proposed detection
method requires only a small number of frequency samples
and A-scans.

The rest of this letter is organized as follows. Section II
presents the adopted signal model. Section III briefly presents
the conventional LP and the proposed LP-SVR detection
methods. Section IV shows the performance of the proposed
method with experimental data. Section V gives the concluding
remarks.

II. SIGNAL MODEL

The signal model from [6] and [15] is adopted in this letter.
It represents the backscattered radar echoes (time-shifted and
attenuated replicas of the transmitted signal) from lossless
stratified media. In order to use the principle of LP methods,
the whitening process that divides each received frequency
sample by the corresponding radar pulse is applied. Thus,
the signal model used within frequency bandwidth B with N
discrete frequencies can be written as follows:

r( fn) = g( fn)

e( fn)
=

K∑
k=1

sk exp(− j2π fntk) + u( fn) (1)

with u( fn) = (m( fn)/e( fn)); K represents the number of
echoes; e( fn) and m( fn) are the GPR pulse and an additive
Gaussian white noise with zero mean and variance σ 2 at
frequency fn , respectively. Frequency fn is defined as fn =
f1 +(n−1)� f , with n = 1, 2 . . . , N , f1 the lowest frequency,
and � f the frequency shift. sk and tk are the amplitude and
time delay of the kth backscattered echo, respectively. For
N discrete frequencies within the bandwidth B , the whitened
received signal r can be written in the following vector
form:

r = As + u (2)

where r = [r( f1), r( f2), . . . , r( fN )]T is the data vector
representing the measurements from a step frequency radar to
which the whitening procedure is applied; the superscript T
denotes the transpose operation; A = [a1, a2, . . . , aK ] is the

mode matrix and ak , the mode vector, is defined as: ak =
[e− j2π f1tk , e− j2π f2tk , . . . , e− j2π fN tk ]T ; s = [s1, s2, . . . , sK ]T

is the vector composed of the reflected echoes’ ampli-
tudes; u = [u( f1), u( f2), . . . , u( fN )]T is the complex noise
vector.

For a B-scan composed of L A-scans, we can define
matrix R, in the frequency domain, as follows:

R = [r1, r2, . . . , rL ] (3)

with ri the i th A-scan in the frequency domain and i =
1, 2 . . . , L.

III. LINEAR PREDICTION DETECTION METHOD

A. Conventional LP

The LP-based detection method of [14] developed in the
time domain is briefly presented here in the frequency domain.
It is used to predict the next whitened GPR signal y =
[y( f1), y( f2), . . . , y( fN )]T from the previous observations R.
Debonding is detected when the whitened measured signal,
ri = z = [z( f1), z( f2), . . . , z( fN )]T , with i > L, is different
from the prediction y. LP estimates the unknown samples with
a linear combination of the known observations by minimizing
the mean square prediction error, e, as follows:

Rω = y (4)

e = z − y (5)

where y ∈ C
N×1, R ∈ C

N×L , and ω ∈ C
L×1. The weighting

coefficient vector ω can be estimated by the least-squares
approach

ω = (RH R)−1RH z (6)

where the superscript H denotes the conjugate transpose
operation. The Euclidean norm of the error, �e�2, indicates
the possible occurrence of a defect (debonding). The larger
the error is, the higher the chance of detection will be.

However, the inversion of RH R requires the inequality
constraint: N > L. As discussed in Section I, the assumption
made in [14] (i.e., N > L) is not necessarily valid when using
SF-GPR.

B. Proposed Method: LP-SVR

The objective of LP is to estimate the weighting vector ω.
When the weighting vector ω is estimated, we can predict the
whitened A-scan y using (4). In the context where the number
of A-scans (L) is larger than the number of frequency samples,
the weighting vector cannot be well-estimated and the original
LP method cannot work. Notice that (4) represents a typical
form of SVR. Thus, we propose to use the SVR theory to esti-
mate the weighting vector ω without the inequality constraint
(N > L). The SVR method aims to find a hyperplane that
fits the data within a deviation less than a given value ε. The
ε-insensitive loss function is used here [17]. The optimization
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problem can be written as follows [15]:

min
ω,ξ r ,ξ̂ r ,ξ i ,ξ̂ i

(
1

2
�ω�2 + C

N∑
n=1

(
ξ r

n + ξ̂ r
n + ξ i

n + ξ̂ i
n

))

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Re
(

yn − xH
n ω
)

� ε + ξ r
n , n = 1, . . . , N

Re
(− yn + xH

n ω
)

� ε + ξ̂ r
n , n = 1, . . . , N

Im
(

yn − xH
n ω
)

� ε + ξ i
n, n = 1, . . . , N

Im
(− yn + xH

n ω
)

� ε + ξ̂ i
n, n = 1, . . . , N

ξ r
n , ξ̂ x

n , ξ i
n, ξ̂ i

n � 0, n = 1, . . . , N

(7)

where xn is the nth column of RH and yn = y( fn); ξ r
n and

ξ̂ r
n stand, respectively, for positive and negative errors in the

real part of the output yn , while ξ i
n and ξ̂ i

n stand for the
corresponding imaginary part; Re(·) and Im(·) denote the real
and imaginary parts, respectively; the value C controls the
tradeoff between the structural and empirical errors. To solve
(7), we employ the Lagrangian multipliers and the Karush–
Kuhn–Tucker theorem with Wirtinger’s calculus on the com-
plex variable ω [15]. Thus, the weighting vector ω can be
written as follows:

ω =
N∑

n=1

((an − ân) + i(bn − b̂n))xn (8)

with an , ân , bn , and b̂n , the Lagrangian multipliers.
Define a = [a1, . . . , aN ]T , â = [â1, . . . , âN ]T , b =

[b1, . . . , bN ]T , and b̂ = [b̂1, . . . , b̂N ]T . The Lagrange mul-
tiplier vectors a, â, b, and b̂ can be computed from the
maximization problem as follows:

max
a,â,b,b̂

−1

2

[
a − â
b − b̂

]T [
Re(RRH ) −Im(RRH )

Im(RRH ) Re(RRH )

] [
a − â
b − b̂

]

− ε1T (a + â + b + b̂)

+ Re(yT )(a − â) + Im(yT )(b − b̂)

s.t. 0 ≤ an, ân, bn, b̂n ≤ C, n = 1, . . . , N (9)

where 1 is an all-one column vector with N elements. In the
calculation, a small identity term γ I is added in the cost
function in the case of ill-conditional inaccuracies [17]. Thus,
the weighting vector ω can be obtained.

Compared with the conventional LP, the proposed LP-SVR
needs additional computation. However, the number of fre-
quencies and A-scans is limited. Thus, the increase of
computational burden is very low. A comparison of the aver-
age execution time between LP and LP-SVR will be given
in Section IV.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is tested with two
experimental data sets from IFSTTAR carousel [18], [19].
Two media are probed with SF-GPR. The first probed area
is composed of two and three layers, as shown in Fig. 1.
Layers 1 and 3 are asphalt surface pavements and layer 2 is
made of sand. Layer 2 represents artificial debondings with
a thickness about 0.5–1 cm. The measurements have been
carried out at 10-, 50-, and 200-Kcycles loading stages [18].

Fig. 1. Horizontal stratified medium.

Fig. 2. (a) B-scan from SF-GPR in the time domain, 10 Kcycles;
B = [0.8 − 10.8] GHz. (b) Detection results from LP and LP-SVR; L = 20
and N = 11.

Fig. 3. Experimental results for the same parameters as in Fig. 2, excepted
for the number of Kcycles; here, 50 Kcycles.

A quasi-monostatic step frequency radar with transmitter (Tx)
and receiver (Rx) antennas close to each other is used. The
distance between Tx and Rx is 20 cm and it is constant during
the measurements. For each experiment, the height of the
antennas is set to 70 cm above the ground level. A frequency
bandwidth of 10 GHz, B = [0.8–10.8] GHz, with N = 11
samples, is used. Before using the proposed method, we apply
two preprocessing techniques. First, a time filtering is used to
delete the air wave. Second, data whitening by the pulse is
applied [18]. The radar pulse is measured from a metal plane.
The first time delay (first interface) is considered as constant
in the B-scan. The number of A-scans (L) used to estimate the
weighting vector ω is set to 20. The SVR-related parameters
are set like in [15], i.e., ε = 0, C = 1, and γ = 10−6.

Figs. 2(a), 3(a), and 4(a) show the B-scans in the time
domain obtained from SF-GPR at various Kcycle loading
stages. Figs. 2(b), 3(b), and 4(b) show the normalized error
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for the number of Kcycles; here, 200 Kcycles.

Fig. 5. LP-SVR results from different number of previous A-scans (L);
10 Kcycles, B = [0.8 − 10.8] GHz, and N = 11.

Euclidean norm (NEEN), defined as �e�2/max(�e�2), with
LP and LP-SVR. The method detects the debonding when the
NEEN is greater than a certain threshold. Following various
measurements, we have observed that the detection threshold
should be set between 0.4 and 0.5. Thus, we have chosen
to set the detection threshold to 0.5, which is represented
in Figs. 2(b), 3(b), 4(b), 5, 6, and 7(b) by the dotted horizontal
gray line. In Figs. 2–4, L is superior to N and as a consequence
LP cannot work. Only LP-SVR is able to detect the debonding
presence. We can see that LP-SVR allows to detect the
presence of the debonding from the 35th A-scan, the 34th
A-scan, and the 31th A-scan for 10-, 50-, and 200-Kcycle
loading stages, respectively. These results have been obtained
by a computer with a processor unit (CPU) at 2.3 GHz and
8GB RAM. The average execution time for one A-scan is
about 0.022 s for Figs. 2(b), 3(b), and 4(b).

Fig. 5 shows the NEEN with LP-SVR for 10-Kcycle
loading stage with respect to the number of previous
A-scans, L. We can see that the results are almost the same
with different values of L. Debonding is detected from the
35th or 36th A-scan.

Fig. 6 shows the NEEN from LP and LP-SVR for 10-Kcycle
loading stage. Here, we consider the case where N > L.
The behavior of both the methods is almost the same in
this context. Debonding is detected from the 35th A-scan.
Furthermore, the average execution time for one A-scan is
2.4 × 10−4 and 0.08 s, for LP and LP-SVR, respectively.

To analyze the behavior of LP-SVR for thin debondings,
the second experiment is carried out on a medium composed
of two and three layers, as shown in Fig. 1. In this case,
layer 2 is a thin air gap (occurring due to the uncoat interface

Fig. 6. Detection results from LP-SVR and LP; 10 Kcycles,
B = [0.8 − 10.8] GHz, N = 30, and L = 20.

Fig. 7. (a) B-scan from SF-GPR, B = [0.8 − 10.8] GHz, tack-free
interface. (b) Detection results from LP and the proposed method; L = 20,
B = [1 − 6] GHz, and N = 11.

between layers 1 and 3). Fig. 7(a) shows the B-scan obtained
from SF-GPR in the time domain with a frequency bandwidth
B = [0.8 − 10.8] GHz. Fig. 7(b) shows the NEEN from LP
and LP-SVR. The frequency bandwidth used here for LP and
LP-SVR is B = [1 − 6] GHz, with N = 11 samples. The
number of A-scans used for the estimation is L = 20. Fig. 7(b)
shows that only LP-SVR is able to detect the debonding
presence from the 30th A-scan.

The proposed LP-SVR method has also been tested on
simulated data for a medium composed of three interfaces
of which the first one is horizontal and the last two ones
are modeled by a wedge model. The results indicate the
effectiveness of the proposed method in detecting debondings
with different layer thicknesses.

V. CONCLUSION

In this letter, we propose a new method based on LP
and SVR theories to detect thin debondings within pavement
structures using SF-GPR. Unlike the conventional LP method,
the proposed method is not constrained by the number of fre-
quency samples and A-scans. In the particular context where
the number of frequency samples is smaller than the number
of A-scans (N < L), the proposed method outperforms the
conventional LP method. The experimental results have shown
the efficiency of the proposed method. In perspective, future
work will be focused on the theoretical evaluation of the
detection threshold.
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