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The injection of a reactive fluid into an open fracture may modify the fracture surface

locally and create a ramified structure around the injection point. This structure will have

a significant impact on the dispersion of the injected fluid due to increased permeability,

which will introduce large velocity fluctuations into the fluid. Here, we have injected a

fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure.

The transparency of the model makes it possible to follow the detailed dispersion of

the tracer concentration. The experiments have been compared to two dimensional (2D)

computer simulations which include both convective motion and molecular diffusion.

A comparison was also performed between the dispersion from an initially ramified

dissolution structure and the dispersion from an initially circular region. A significant

difference was seen both at small and large length scales. At large length scales, the

persistence of the anisotropy of the concentration distribution far from the ramified

structure is discussed with reference to some theoretical considerations and comparison

with simulations.

Keywords: dispersion, fracture, convection-diffusion, fractal-like, Hele-Shaw cell, fluorescein tracer

1. INTRODUCTION

In both geological systems and industrial fields, fractures are known to be important pathways
for fluid transport. Typically, the permeability of fractures is significantly higher than the porous
matrix, so in many systems fractures play an important role in the fluid transport processes. The
flow of tracer particles in a fracture is influenced by both convection and diffusion processes,
and the combined effect of these two processes leads to Taylor dispersion. This effect was first
studied by Taylor [1] for solvent flowing slowly through a tube. Afterwards it has been applied
to various situations, for example, in single and parallel fractures [2, 3], in rough fractures [4],
particle dispersion in narrow channels [5], and in a radial flow geometry [6, 7]. Some previous
works consider geometric anisotropy, using self-organized percolationmodel to study flow through
disordered porous media [8–10].

In most previous studies a flat open fracture with a constant aperture is considered, leading to
a smooth and uniform front [11–15]. However in geological systems or industrial fields, such ideal
initial states are rare. For example, when injecting a reactive fluid into an oil field, the injected
fluid will react with the porous media which is stimulated by engineers trying to maximize the
permeability around wells. A ramified dissolution pattern [16–18] will be formed around such
an inlet. Those ramified features of the inlet will alter the fluid flow transport path in the rocks
significantly. The flow transport problems in the fractures encountered in nature and in industry
typically have irregular initial fronts, which is significantly different from the flat fronts obtained
by injection into an open flat fracture. Considering a pollution leak problem for instance, if we
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suppose that the localized pollution source presents an initially
uniform front in a homogeneous porous medium or aperture,
we expect that the contamination spreads with radial symmetry,
which deviates considerably from the actual situation because
of the irregular initial front state. In this paper, we present
experimental and numerical results demonstrating that with a
ramified dissolution initial front state, in some directions the
tracer will transport much faster than what we expect for an
initially uniform front while in other directions there is no tracer
transport at relatively long times.

In order to study these more realistic situations, a ramified
dissolution pattern has been produced in a plaster sample, which
is then used as the injection geometry. A fluid with a fluorescein
tracer is injected into the cavity between this plaster sample
and a flat plate, which together represent an open fracture.
The injected fluid with tracer first fills the dissolved part and
then starts flowing through the open fracture from the tips of
dissolution fingers. The fluorescein tracer allows tracking of the
flow radiating from this structure. We describe our experiments
in section 2. In section 3, the simulation methods are illustrated.
In section 4, the characteristics of the ramified dissolution
patterns are studied. The experimental results are compared with
results from numerical modeling in section 5. The conclusions
follow in the last section.

2. DESCRIPTION OF EXPERIMENTS

The experimental setup is illustrated in Figure 1. The
experiments were performed in a Hele Shaw cell which
consists of two circular and parallel flat glass plates. The bottom
glass plate (Diameter d1 = 36.0 cm) is larger than the upper
one (Diameter d2 = 25.0 cm) and has an external rim. An
inlet is located at the center of the lower glass plate, and the
two glass plates are separated by aluminum spacers of thickness
b = 1.00 mm and held together by clamps.

2.1. Sample Preparation
In the experiments we study the dispersion phenomena in
an open fracture with an initial state representing a ramified
dissolution pattern. We therefore first created a dissolution
pattern in the sample, and later performed the tracer dispersion
experiment. The plaster sample with a dissolution pattern on the
top surface was prepared by the following steps:

A plaster saturated water solution was first injected into the
Hele Shaw cell. Water and plaster powder (Alabaster plaster,
Panduro) was thenmixed with the ratio 2:3 by weight respectively
to form the plaster paste. Next, this paste was injected from the
center of the Hele Shaw cell displacing the plaster saturated water
forming a circular plate of radius R ≈ 8.0 cm. The circular plaster
paste was then kept in the cell surrounded by saturated water for
hydration which was completed in approximately 1 h. During the
plaster hydration process, a form of segregation called bleeding
takes place, where some of the water in the plaster tends to rise
to the top surface of the plaster plate [19]. This process gives an
aperture of h ≈ 50 µm above the surface of the plaster. The next
step was to inject pure water into the center of the Hele Shaw
cell using a syringe pump. The plaster dissolved slightly into this

pure water and a dissolution pattern on the surface of the plaster
sample was formed after several days. This process is known as
wormhole formation [16, 20–22]. After the plaster sample with
dissolution pattern was prepared, we changed the injected fluid
from pure water to the tracer fluid (water with fluorescein) ready
to start the dispersion experiment.

2.2. Dispersion Experiment
The tracer fluid was prepared by mixing water and fluorescein
sodium salt powder. The solubility of fluorescein powder is
1.0 mg/mL and the solution was diluted at a ratio of 1:10.
The concentration of the injected tracer fluid was C0 =
0.27 mmol/L. The viscosity of the tracer fluid µ = 0.965 ±
0.004 mPa·s, is slightly larger than the water viscosity at
room temperature of 23.5◦C. The molecular diffusion coefficient
of fluorescein in water is Dm = 4.25 · 10−6 cm2/s
[23].

The water with fluorescein was injected into the open fracture
by a syringe pump from the central inlet with an injection
rate of Q = 6.00 mL/h. Dissolution of the plaster can be
neglected due to the short time scale of the dispersion experiment
(50 min). The aperture (thickness h = 50.0 µm) is defined
as the distance between the upper glass plate and the upper
surface of the plaster sample. The permeability of this aperture
is calculated as κ = h2/12 = 2.1 · 10−10 m2 and the permeability
of the plaster sample itself is 6.0 · 10−14 m2. Because of the
large permeability contrast between the aperture and the plaster,
almost all injected fluid will flow through the aperture instead
of the porous matrix. An ultraviolet light bulb was used to
illuminate the system from underneath, and a digital camera was
placed 1 m above the Hele Shaw cell to capture images of the
dispersion experiment.

2.3. Image Processing
In our experiments, the plaster plate not only provides the
complex injection boundary of a fractal-like dissolution pattern,
but also plays a role as a light diffuser so that the UV light will
stimulate the fluorescent fluid uniformly. We want to establish
a relation between the image intensity I(r, t) and the tracer
concentration C(r, t). The intensity of the light measured by
the CCD camera is proportional to the intensity of the emitted
light from the fluorescein molecules stimulated by the UV light.
The brightness of image captured by CCD camera is directly
linked to the light intensity. The image brightness field is linearly
related to the fluid concentration field in the fracture if the
fluorescein concentration is low enough [24]. The relation
between the image intensity and the flow tracer concentration
has been measured experimentally as shown in Figure S1 in the
Supplemental Data. The calibration shows as expected a linear
relation between the gray scale levels and the concentration
C when C ≤ 100 mg/L. Applying this linear relationship, we
obtain the normalized fluorescein concentration field from
the experimental images by Cn(r) = I(r)/Imax where I(r) is
the intensity of the gray-scale image at position r and Imax

is the maximum intensity observed in the area with highest
fluorescein tracer concentration, located at the injection inlet
where the concentration was kept fixed at C0 = 0.27 mmol/L.
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FIGURE 1 | Schematic diagram of experimental setup. A circular Hele Shaw cell (spacing 1 mm) contains a saturated plaster plate with a small gap (h = 50.0 µm)

above the plaster. A tracer fluid is injected by a syringe pump into the center of the Hele Shaw cell, where it flows radially outwards. The model is illuminated from

below by an ultraviolet light source. The plaster plate has a fixed dissolution pattern around the injection point, formed by distilled water injection before the tracer

injection experiment.

The concentration C is linked to the normalized concentration
Cn as C(r, t) = C0Cn(r, t).

3. NUMERICAL METHODS

3.1. Molecular Diffusion Model
In the Molecular Diffusion Model, we assume that the flow
velocity and fluorescein concentration is uniform in the vertical
direction, and the problem can be modeled in two spatial
dimensions. For this 2D model we only consider convection
and molecular diffusion, i.e., the dispersion effect combining the
coupling of diffusion and convection is not included. Because
of the contrast between the permeability of the dissolved part
and the undissolved part, as an approximation, we assume that
the pressure in the dissolution pattern is uniform, equal to a
pressure P0. The pressure outside the plaster sample, defined
by the external boundary, is equal to the atmospheric pressure
Pout = 1atm, and we choose P0 > Pout . We assume that the flow
in the open fracture between the plaster sample and the glass plate
follows Darcy’s law, as

u = −
κ

µ
∇P , (1)

where u is average flow velocity across the fracture, κ is the
permeability for the flow in the fracture (estimated assuming
Poiseuille flow as κ = h2/12) and µ is the viscosity of the fluid.
We assume that the fluid is incompressible which implies that
∇ · u = 0. We thus obtain the Laplace equation for the pressure
field in the fracture as

1P = 0 . (2)

By numerically solving for the pressure field, assuming the
boundary pressures as defined above, we can apply Darcy’s law
to obtain the velocity field in the fracture. Combining the flow
field with the Convection-Diffusion Equation gives

∂C

∂t
= ∇ · (Dm∇C)− ∇ · (Cu) , (3)

where C is the concentration of fluorescein in water, and
this concentration field can be solved for and compared with
experimental results. We also consider the Taylor dispersion
effect by simply replacing the diffusion coefficient Dm by the
dispersion coefficient D‖ [25, 26]

D‖ =
h2u20
210Dm

+ Dm = Dm(1+
h2u20
210D2

m

) . (4)

In this way, we assume that the transversal dispersion coefficient
D⊥ is the same as D‖ which will give a larger dispersion in the
transversal direction. In section 5, We compare the simulation
results with experimental images, and don’t find significant
differences between themolecular diffusionmodel and the Taylor
dispersion model. For this reason, we will first present our 2D
model with molecular diffusion.

3.2. Simulation Implementation
The dissolution pattern is measured via thresholding of an
experimentally obtained image, and the boundary of this pattern
is used as an internal boundary for the simulation. The external
boundary is defined to coincide with the outer edge of the plaster.
At the external boundary, the pressure is set to atmospheric
pressure. At the internal boundary, an inverse analysis is
performed, where the internal pressure within the dissolved area
is iteratively varied until the volumetric flow rate matches the
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experimentally observed value. For the internal boundary we
set the concentration constant equal to C0 corresponding to the
injected tracer concentration everywhere inside the dissolved
part. We set concentration outside of the plaster disk to 0. For
the initial condition, we set the concentration to 0 everywhere
except in the dissolved structure. Flow rates are calculated
assuming incompressibility and Darcy flow, as explained above,
and an explicit finite difference algorithm is implemented to
solve the Laplace equation. Once the velocity field is known,
the convection-diffusion equation is solved using a finite volume
method that accurately preserves discontinuities [27]. This is
implemented on a regular grid of 800 × 800 cells, which covers
the experimental domain.

4. CHARACTERISTICS OF THE RAMIFIED
DISSOLUTION PATTERN

At early stages, the fluid fills the ramified dissolution pattern
and the pattern is “fractal-like.” We call it “fractal-like” because
it looks similar to fractal structures and these dissolution
patterns were considered as fractal in earlier studies [16]. We
will show in this section that our dissolution pattern presents
significant differences relative to typical fractal patterns such as
viscous fingering [28] or DLA [29] structures. Fractal structures
are commonly described by a fractal dimension. The fractal
dimension can be estimated by many methods [30–32]. Here we
will use the mass within radius method and the box-counting
method to analyze the structures. In fact, we will see that our
dissolution pattern is an example where the box countingmethod
and mass within radius method yield quite different results. The
total mass m(r) within a radius r is calculated by counting the
number of points (pixels) within this circle as seen in Figure 2B.
For a fractal structure the mass within the radius will follow a
power law m(r) ∝ rDm where Dm is the mass fractal dimension.
In the box-counting method, we draw a grid on the structure that
consists of squares of size δ×δ each. If the structure is fractal, the
number of squaresN needed to cover the structure will follow the
scaling relation N ∝ δ−Db where Db is the box-counting fractal
dimension.

From Figure 2, we observe that theMassMethod and the Box-
counting Method give very different results. The r2 scaling seen
in the mass method close to the injection point (r = 0) is caused
by the compact structure in this region which goes up to about 0.5
cm from the injection point. Above this length scale the curved
green line is due to the decrease in thickness of the fingers but
also to the crossover associated to the finite size of the system.
The data in Figure 2C, was fitted to a straight line using linear
regression with a slope of 1.5 which gives an estimate of a box
counting dimension as Db = 1.5. Notice that there is a small
systematic deviation from a linear curve. For the mass within a
radius method Figure 2B shows a linear behavior with slope of
2.0 for the region within the red circle in Figure 2A. However
in the local zone between the red circle and the green circle in
Figure 2A (the green region in Figure 2B), the slope gradually
decreases from 2 to 0 and it is not possible to find a unique mass
fractal dimension. The black solid line in this region with slope

1 is a reference to the eye. Notice that in the dissolution pattern,
the fingers get thinner from the center to the tips. This specific
feature of finger width variation found in the dissolution pattern
is not found for instance for fractal viscous fingering [28] or DLA
structures [29].

5. EXPERIMENTAL RESULTS COMPARED
WITH SIMULATIONS

5.1. Qualitative Comparison
Pictures of the dynamic process of dispersion were taken every
30 s from the beginning of injection until the tracer fluid reached
the edge of the sample. The whole process takes 50 min in total,
which corresponds to 100 digital images. The experiments are
reproducible and the repeated experiments give similar results.
Here we present one set of experimental results and data analysis.
Results from another experiment is shown in the supplemental
data. In Figure 3, four pairs of images corresponding to different
time periods are compared between the simulations and the
experiment.

A visual overview of the concentration pattern evolution
over time is illustrated in Figure 4. It is constructed by firstly
thresholding each grayscale image at I/Imax > 0.2, next
computing the incremental difference by subtracting successive
thresholded images, and subsequently compositing each of
the incremental changes together, leading to Figure 4. This
spatiotemporal diagram allows for a more detailed comparison
of the dynamic process between simulation and experiment. In
the Supplemental Data, Figure S2 shows a similar diagram for
another experiment. The simulation and the experimental images
look qualitatively very similar to each other.

5.2. Overlap Ratio
To compare quantitatively the experiments and the simulations
we have calculated the overlap between two corresponding
images with the same size and spatial resolution. We have
only considered the overlap within the area of interest,
which is the area AD defined as the union of area between
the experimental and simulations images with a detectable
fluorescein concentration. To calculate the overlap we will
introduce the overlap ratio (γOL) defined as:

γOL = 1−
∑

(i,j)∈AD
‖E(i, j)− S(i, j)‖

∑

(i,j)∈AD
max(E(i, j), S(i, j))

(5)

where E and S are respectively the experimental and the
simulation image (i.e., grayscale fields) which have been
normalized (i.e., from 0 to 1), and max(E(i, j), S(i, j)) gives the
maximum value of E(i, j) and S(i, j). In the case where E and S are
binarized (black and white images), this calculation of the overlap
ratio leads to the measure of the ratio of the area of intersection
between E and S divided by the area of union between E and S
(i.e., A(E∩ S)/A(E∪ S)), which we call the structure overlap ratio
γSOL. This computation can also be performed on the gray-scaled
images of E and S to obtain the intensity overlap ratio γIOL.

In Figure 5, we show a pair of images, E and S, from
one experiment and simulation, and the subtracted image
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FIGURE 2 | Measurement of fractal dimension from experimentally derived images. (A,B) Show the mass fractal dimension estimation method. In (A), we divide the

pattern into 3 zones. The part within the red circle is completely dissolved. Between the red and green circles, “fractal-like” fingers expand in different directions.

Outside of the green circle lies an entirely undissolved zone. (B) Shows a log-log plot of mass m(r) vs. radius r, with the colors corresponding to the relevant zones in

(A). The black linear solid lines act as a guide for the eye. The slopes of the black lines are illustrated with the triangles. For the red and blue parts, the fractal

dimension by mass method Dm is indicated. For the green part, there is no clear linear part, i.e., no well defined mass fractal dimension Dm. In (C) we use the

Box-counting Method to obtain the box-counting fractal dimension Db = 1.5.

FIGURE 3 | Experimental results compared with simulation images. (Top) Experimental images subtracted by the initial state image. (Bottom) Simulation output of

the dissolution pattern. The boundary conditions are extracted from the experimental image before fluid flow begins. The green intensity represents the normalized

tracer concentration Cn in the simulation. The vertical pairs of images show comparison after an injection lasting respectively 10/20/30/40 min, which gives a

qualitative description of the similarity between the experiments and simulations.

‖E(i, j)− S(i, j)‖. The overlap ratio, indicated in the figure,
demonstrates a good similarity between experiment and
simulation. From Figure 5, we further observe that the fan-
shaped dispersion fingers in the simulation grow somewhat

more uniformly than in the experiments. On the other hand
the experiment presents longer fingers, but with a more gradual
change in the concentration toward the tips. One reason for
this difference is that in the simulations the dissolution patterns

Frontiers in Physics | www.frontiersin.org 5 April 2018 | Volume 6 | Article 29

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Xu et al. Dispersion in Fractures With Ramified Dissolution Patterns

FIGURE 4 | Dynamic process of dispersion with time evolution, time duration 50 min. (Left) Data derived from experimental images; (Right) Equivalent data obtained

from numerical simulation.

FIGURE 5 | Experimental image (E) and simulation image (S) are resized

gray-scaled images from original RGB images. |E − S| displays the intensity

difference between experiment and simulation. γSOL is the structure overlap

ratio which compares the black-white images of E and S. γIOL is the intensity

overlap ratio comparing E and S which are gray-scaled images.

are taken to be completely dissolved while in the experiments
the plaster sample is gradually dissolved. Therefore in the
experiments there is a change in the thickness in the dissolved
part which we don’t consider in the simulations. For a similar
reason the assumed undissolved part in the simulations might
have some dissolved fingers that we are not able to see in the
experiments due to limited resolution. These slightly dissolved
fingers will give finer scale structures in the dissolution patterns.
Another difference between the experiments and the simulations

is that experimentally, a very small fraction of fluid infiltrates into
the porous matrix instead of flowing in the open fracture. Flow in
the porous medium is however not included in the simulations.
Eventually, because the Hele Shaw cell is three dimensional, we
expect a concentration distribution in the vertical direction and
a gradient in the measured average concentration (averaged in
vertical direction). However our simulation is 2D and a gradient
in the average concentration due to the 3D velocity field is not
considered.

Figure 6 shows the time dependence of the overlap ratio both
for the structure (black-white images) γSOL and for the intensity
(gray-scaled images) γIOL. The overlap ratio increases with time
and gets almost stable with an overlap of about 0.7 after injection
of 20 min but decreases slightly toward the end, certainly because
of the boundary effect in the experiments different from those
in the simulations, the experimental plaster sample is not a
perfectly circular disk. We implement 3 different simulations to
compare with the experimental results, one simulation without
diffusion, one with molecular diffusion and one with Taylor
dispersion. The figures presented here demonstrate that the
simulation with only a convection term is able to roughly
simulate what we have observed in the experiments. However, the
simulation with diffusion terms (molecular or Taylor dispersion)
is more consistent with the experiments than without diffusion
terms. The simulations with pure molecular diffusion and
Taylor dispersion show almost no significant difference, then the
simulation results in the remainder of this paper use 2D model
with molecular diffusion.

5.3. Concentration Distribution
From the dispersion pictures of both the experiments and the
simulations, we clearly observe that the tracer flow acts very
differently from what we expect from a point injection or
injection from a circular region. These differences are expected
on small length scales but are less obvious on large length and
time scales. Such differences might be important to bear in mind
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FIGURE 6 | Dynamic process of dispersion: the value of the overlap ratio evolves with time. Total time duration is 50 mins. (A) Shows the structure overlap ratio

(derived from black and white images) evolution with time and (B) shows the intensity overlap ratio (derived from grayscale images) evolution with time. Blue lines

show the comparison between experimental results and simulation with no diffusion, green lines with molecular diffusion and red lines with Taylor dispersion.

FIGURE 7 | Effect of front geometry. (Top) Ramified Front Simulation (S) shows the result of simulation with the ramified front (dissolution pattern). (Bottom) Flat Front

Simulation (F). The normalized intensity distribution at r = 3.4 cm, marked with a red circle on the left, is shown as a function of angle on the right. The distribution

begins at the marked triangle, and continues counter-clockwise.

and evaluate when simple model geometries are used to model
transport around wells in large-scale applications. In this section
we will compare experimentally and by computer simulations
the dispersion in an open fracture with an initial state of a

ramified dissolution pattern with simulations with an initial stage
of circular injection. We will choose a radius of the circular disk
injection Rd =

√
A/π where A is the area of the initial ramified

dissolution pattern.

Frontiers in Physics | www.frontiersin.org 7 April 2018 | Volume 6 | Article 29

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Xu et al. Dispersion in Fractures With Ramified Dissolution Patterns

5.3.1. Concentration Distribution Width

A quantitative comparison between the dispersion with a
ramified and a circular initial structure was performed by
comparing the mean value and standard deviation of the tracer
concentration on circles of different radii r. Figure 7 illustrates
the difference in the tracer concentration distribution on a circle
of a certain radius (here r = 3.4 cm) between the initial circular
front and the ramified front. The mean value of the normalized
tracer concentration on a circle is defined as

< Cn(r) >=
N

∑

i=1

Cn(ri)/N(r) , (6)

where N(r) is the number of pixels along the circle with radius r
and Cn(ri) is the normalized tracer concentration at position ri.
Let σ (r) be the standard deviation ofCn(r) on the circle for a fixed
value of r. Figure 8 shows the mean value < Cn(r) > and the
standard deviation σ (r) at different radii r among experimental
images and simulations with circular and ramified initial fronts.
The Figure 8 clearly demonstrates that the simulation with a
ramified initial front fits the experiment much better than the
simulation with a flat circular initial front. In the standard
deviation Figure 8B, a small peak is observed in the circular front
simulation (green line) which is not expected from the analytical
results. This peak is caused by pixel-size deviations due to a finite
pixel resolution describing the circle.

We will define the width 1r(t) of the normalized mean
concentration distribution as the difference in radius between
< Cn(r) >= 0.8 and < Cn(r) >= 0.2 as illustrated
in Figure 9A. For the circular initial front simulation (yellow
line in Figure 9C) , 1r(t) stays stable at a low level, and
the fluctuation in the curve is due to few data points. While
the circular initial front simulation is completely different
from the experimental curve, the simulation with the ramified
initial front is much closer to the experimental results. The
width of the mean concentration distribution 1r(t) in both
the experiments and the simulation with ramified initial
front increases to a peak and then decreases to a stable
value.

From Figures 9A,B, we observe a noticeable change of the
concentration distribution from awider distribution at a time t =
10–15 min to a more localized front at later times t > 20 min. In
the Supplemental Data Figure S3, another experiment reproduces
a similar mean concentration distribution. At short times the
angle average concentration curves < Cn(r) > are dominated
by the ramified fractal-like initial structure, but they change to
a very different behavior at large scales, to get dominated by the
complex velocity field generated by the same ramified dissolution
structure and diffusion. On average < Cn(r) > has a well
defined width at large times, but it is much wider than what
one would expect from a circular initial front, 5 times wider
for simulation and 7 times wider for experiment. For a constant
radius r there are large fluctuations in the local values of Cn(r)
at different directions. These fluctuations in the concentration
are due to velocity fluctuations in the initial ramified structure
(see Figure 7). An interesting and open question is if these
fluctuations will be reduced or disappear for a sufficient large

systems and times. Will the model with a circular initial state
describe the system at large length scales and times? In the next
section, we will propose a theoretical calculation to address this
question.

5.3.2. Concentration Distribution Shape

A key question is whether the anisotropy of the concentration
profiles will survive over arbitrarily large distances from the
dissolution structure. In order to address this question we first
pose the same question for the flow field u: Will u remain
anisotropic indefinitely? One way to answer this is to consider
a group of two point sources of equal pressure and extent rather
than the complex dissolution structure. In this way the distance
over which an anisotropic flow field becomes isotropic or notmay
be explored. Taking the two sources to be located at±r1 where r1
is the characteristic radius of the dissolution structure, we may
work out the pressure field and by Darcy’s law, the flow field.

Wewill take the pressure, or rather the overpressure relative to
the atmospheric pressure, to satisfy the 2D Laplace equation, take
on the value P0 inside a radius a around ±r1 and vanish at some
large distance R. This pressure may to a good approximation be
written as

P(r) = P0
ln(|r− r1|/R)+ ln(|r+ r1|/R)

ln(a/R)
. (7)

The approximation consists in the fact that the point where the
pressure vanishes is shifted a small distance of the order r1.
Darcy’s law now gives the Darcy velocity

u = −κ
∇P

µ
=

2κP0

µ ln(R/a)r
er

(

1+ O
( r1

r

)2
)

, (8)

where the unit vector er = r/r and the higher order term depends
on products like er · r1. This result shows that the flow velocity
field becomes isotropic over a distance of the order r1. We define
this distance of the order r1 for our experimental geometry as
r0, which in our experiments, r0 is the length of the longest
dissolution finger. The argument is that the the two point sources
must create a flow field that is at least as anisotropic as the real
field, or worse. Since the model field decays to the isotropic field
as (r1/r)

2, we conclude that the real field decays as quickly, or
quicker.

Now, the fact that the velocity becomes isotropic does not
imply that the concentration field does, as this field is governed
by an anisotropic source. We calculate the skin-depth to go as the
diffusion length lD =

√
2D⊥t whereD⊥ is a transverse dispersion

constant. This constant characterizes the porous media. In this
case, since this medium is just a gap of width h, we may take
D⊥ ≈ Dm. Close to the injection point anyhow, once it is
at a point within a few skin-depths of the injection points,
it should have reached a concentration which is equal to the
imposed central concentration, at least due to diffusion if this
did not happen in the first place by convection because the
point considered was along a fast transporting finger. So we
expect a zone growing like

√
D⊥t where the concentration is

homogeneous and naturally isotropic but outside of this zone,
possible anisotropy is discussed by calculating the convection
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FIGURE 8 | Spatial dependence of structure as function of the circle radius. (A) The normalized average concentration, the error bar comes from experimental

measurement for fluid tracer concentration according to the calibration performed in Supplemental Data. (B) Its standard deviation and (C) mean values with error

bars at one standard deviation. In all cases, the blue line is the experimental result, the red line corresponds to the simulation with an injection ramified front

corresponding to the dissolution pattern present in this experiment, and the green line represents the simulation result with an internal flat (circular) front of similar area.

FIGURE 9 | Evolution of the average concentration distribution at different times. (A) Experimental data. (B) Simulation data. The red dotted line in (A) shows how we

get the width of concentration distribution at 15 min (1r(t = 25min)) which is the distance between the red circle (20% of reference concentration) and red asterisk

(80% of reference concentration). (C) Displays the width of concentration distribution evolution with time, the blue line is the experimental result, the red line is the

simulation with an injection ramified front identical to the dissolution pattern present in this experiment, and the yellow one is the simulation result with a flat circular

front of similar area.

length lC. The convection length is defined as the concentration
profile convection length outside the circle of r0, lC =

∫

udt so
that

dlc

dt
= u(lC) =

Q

2π lCh
, (9)

or dl2c =
Q
πh

dt , which immediately gives

lc =
√

Qt

πh
. (10)

Here the time t starts from tD where tD is the time it takes
for molecular diffusion alone to homogenize the immediate
neighborhood of the dissolved cluster. Now we take the
maximum convection length lmax and the minimum convection
length lmin into account, the maximum convection length lmax

starts growing outside of the circle of r0 while the minimum
convection length lmin starts growing after tD. So the ratio of these
two convection lengths is:

lmin

lmax
=

√

t − tD

t
=

√

1−
tD

t
≈ 1−

tD

2t
(11)
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The length difference of lmax and lmin is:

lmax − lmin =
√

Q

πh
(
√
t −

√
t − tD)

=
√

Q

πh
·
√
t(1− (1−

tD

t
)1/2)

≈
√

Q

πh
·

tD

2
√
t

(12)

From the calculations above, we conclude that the ratio between
the maximum and the minimum convection length tends to 1
and the length difference between two decreases as t−1/2 and
tends to 0. It implies that the anisotropy of the concentration
profiles will vanish after an enough long time. To see an
isotropic behavior, a theoretical criterion for a length scale can be
calculated fromEquations (10, 11) requiring tD/t less than a small
number. For instance, tD/t < 0.1 and

√
2DmtD = dD where

dD is a distance between dispersion fans that could be estimated
from Figure 3 as dD = 0.5 cm. Consequently, the length scale

l =
√
10

√

QtD
πh

=
√

5Q
πDmh

· dD to see an isotropic behavior will be

of the order of 1m. These theoretical conclusions are also verified
by the simulation results. The simulation is implemented with the
same system of initial dissolution pattern but expanding by scale
of 8 times so that we can observe the concentration profile after a
long time, see Figure 10.

The convection lengths are obtained by calculation of the
distance between the points at the boundary of the dispersion
pattern and the center of the circular system from the simulation
data. We analyze the maximum andminimum convection length
evolution with time, the ratio and the difference between the two
lengths. The results are shown in Figure 11.

From the simulation results shown in Figure 12, we make a
log-log plot of the data curve and compare it with theoretical
calculations. The convection length follows the relation lc ∝ t1/2.
The ratio of lengths tends to 1 and the difference between lengths
has a decreasing trend. The fluctuations of the simulation data
is because the boundary line of concentration profile is not a
prefect line numerically and also the center is not a prefect point.

For the initial state which is close to the inlet with ramified
dissolution pattern, the velocity field is not radial flow. For the
late stage which is close to the finite edge of system, the boundary
effect will influence the concentration profile close to the rim.
The deviations between the simulation results and theoretical
calculation under these two limiting conditions are expected as
we observe in Figure 12.

Using a similar development, in the case of injection in a three
dimensional porous medium from a ramified structure, without
large scale correlations in the permeability, one expects at large
scale, the flow velocity in a radial field u(lc) = Q/(4π l2c ) and
the convection length lc = (3Qt/(4π))1/3. A concentration field
converging at large times to the point source solution, with a ratio
of minimum convection length over the maximum one,

lmin

lmax
= (

t − tD

t
)1/3 ≈ 1−

tD

3t
, (13)

and a difference

lmax − lmin = (
3Q

4π
)1/3 · (t1/3 − (t − tD)

1/3)

= (
3Q

4π
)1/3 · t1/3 · (1− (1−

tD

t
)1/3)

≈ (
3Q

4π
)1/3 ·

tD

3t2/3
. (14)

In this 3D case, we predict that the anisotropic concentration
patterns would eventually always go away, the maximum and
minimum convection length ratio and difference would follow
the power law as a function of t as shown in the calculation above.

6. CONCLUSION

We have performed experiments and computer simulations of
dispersion in an open fracture with an initial state emerging
from a ramified dissolution pattern. A fluorescent technique was
used to measure the tracer concentration in a transparent Hele
Shaw cell. We implemented a 2D simulation which in addition
to convective motion can include both molecular diffusion and

FIGURE 10 | Example of persistence of anisotropy at larger length scales. The simulation images are obtained from the molecular diffusion model, with the same

dissolution pattern as before but the whole system is expanded by scale of 8 times. The green intensity represents the normalized tracer concentration Cn in the

simulation. The images show the concentration profile after an injection lasting respectively 0/50/1, 000/3, 000 min. We observe that the anisotropy of the

concentration profile vanishes gradually with time.
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FIGURE 11 | Evolution of characteristic length scales in the system with time. (A) The maximum and minimum convection length evolution with time. (B) The ratio of

the two lengths shown in (A), which approaches unity at long times. (C) The difference of the two lengths shown in (A), which approaches zero at long times.

FIGURE 12 | Evolution of characteristic length scales in the system with time. The corresponding log-log plot for Figure 11 is shown. (A) Logarithmic plot of the

maximum and minimum convection length evolution with time, where the black line gives a reference slope of k = 0.5 which implies that the curves tend to follow the

power law of
√
t. (B) One minus the ratio of the two lengths evolution with time follows the power law of 1/t with a reference slope k = −1. (C) The difference of the

two lengths evolution with time follows the power law of 1/
√
t with a reference slope k = −0.5.

Taylor diffusion. For the investigated patterns, simulations with
molecular diffusion and Taylor diffusion have no significant
difference. The ramified dissolution structures have a significant
effect on the local concentration Cn(r) and the concentration
averaged over angles < Cn(r) > both for small and large length
and time scales. The shape of the concentration distributions far
from the dissolution structure is discussed with some theoretical
calculations. The convergence in open systems of structures
injected from ramified patterns to the point-like (or circular)
injection solution is not obvious: When molecular diffusion
presents a skin depth

√
2Dt exceeding largely the central zone size

Rd, the concentration gradients in the central zone are expected
to reduce, and the concentration field should be smoother
there. Nonetheless, the strong anisotropy of the permeability in
the central region leads to clear fingering outside this region.
Whether the influence of these fingers is felt only up to a

finite range is questionable, in particular in this radial geometry,
since the center of the different emerging fingers diverges with
time. We make some theoretical calculations and simulations to
conclude that the anisotropy of the concentration distribution
in the system will vanish at sufficiently large length and time
scales. The experimental verification of isotropy of the tracer
concentration at large scales is an interesting question for further
experimental work. From the theoretical calculation and our
simulation result we estimate that we need an experimental
model of the order of 1m to reach this isotropy. At the
expected 3D structure, we predict that the shape of concentration
distribution far from the dissolution structure will eventually
experience a slowly vanishing anisotropy, in future work it
would certainly be nice to explore these 3D structures both
experimentally and numerically to see how they correspond to
these predictions.
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