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Planar crack identification in 3D linear elasticity
by the Reciprocity Gap method

R. Ferrier, M. Kadri, P. Gosselet

October 16, 2018

Abstract

We study the reciprocity gap method [4] for the identification of planar cracks in the framework
of three dimensional linear elasticity. In order to achieve better accuracy on thick domains, we
propose to use polynomial test functions instead of Fourier series. We also propose to improve the
solution by various regularization techniques that are tested and compared. Numerical assessments
are provided in 2D and 3D.

Keywords: crack identification; reciprocity gap method; inverse problem; Fourier series; har-
monic polynomials.

1 Introduction
The detection of cracks in working devices is an important issue in mechanical engineering. In the
frame of this work, we focus on the identification of cracks in the linear elastostatic regime; we suppose
that in-site measurements give us access to the displacement and traction fields on the boundary of
the device. The bibliography related to crack identification mostly provides theoretical results on 2D
domains: a uniqueness result for a buried crack can be found in [14], uniqueness and local Lipschitz
stability results have been established for emerging cracks in [5] and [12]. Few uniqueness results
exist in the 3D framework; they all require the knowledge of all the possible measurements [13]. Note
that a numerical study was carried out in [1] for crack front identification from tangential surface
displacements measurements. In [16], a crack identification problem was addressed by the resolution
of two Cauchy problems.

Regarding the practical computation of the crack, the well-known reciprocity gap method, intro-
duced in [2], provides explicit semi-analytical formulas able to deduce the form of a crack from over
specified measurements. Theoretical results were given in [4] in the 3D elasticity framework. In [22],
the authors studied the case of linear anisotropic 3D elasticity with a variant of the original method. In
[20], another variant was proposed to find ellipsoidal inclusions in a 3D domain. In [21] an application
of the reciprocity principle for the determination of planar cracks in piezoelectric material was given
and 2D numerical test cases were carried out.

However, as far as the authors know, there has never been any paper in the literature that handles
this issue numerically on a 3D elastostatic domain with unknown crack plane. Numerical results for 2D
identification problems with the Laplace equation are given in [6, 9]. In [1], a 3D case with incomplete
measurements is considered, but the crack is emerging and its plane is given. In [7] an alternative
way to reconstruct the crack without the Fourier functions was proposed. In [8], results are provided
for the Helmholtz equation on a 3D geometry; thanks to the conditional well-posedness of the inverse
problem on this equation, it is possible to choose only the largest wave lengths, which prevents high
oscillations of the displacement jump over the crack.

In this contribution, we propose to study the reciprocity gap algorithm given in [4] in order
to determine and to overcome its limits. In Section 2, the reciprocity gap method for 3D elasto-
static problems is recalled and the main flaw of the proposed Fourier reconstruction is highlighted.
In Section 3, a polynomial reconstruction is proposed to overcome the sensibility to noise of the
Fourier approach. Section 4 presents various regularization strategies. Section 5 contains numerical
assessments of the variants on both 2D and 3D problems.
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2 The reciprocity gap method and its classical implementation
In this section, we recall the reciprocity gap method proposed in [3, 4] for the detection of planar
cracks. We show that one of its ingredients, namely the Fourier approximation of the displacement
jump, may lead to practical difficulties in the case of thick domains.

2.1 General principle of the reciprocity gap method

Let Ω ⊂ Rd be a regular open domain (d = 2 or 3). Our objective is to identify a non-emerging planar
crack characterized by its surface Σ ⊂ ω = Ω∩Π where Π is a plane, Σ∩ ∂Ω = ∅, from the knowledge
of all the boundary conditions on ∂Ω. See Figure 1 for a representation of the geometrical entities.

Σ

Figure 1: Buried planar crack

Following [4], we consider a static linear elasticity problem in small strain. Let u be the displace-
ment field, ε the symmetric gradient operator, σ the Cauchy stress tensor, H the tensor of Hooke, n
the outer-pointing normal vector, nΠ a unit vector orthogonal to Π.

A displacement field u which solves the mechanical system:

div(σ) = 0 in Ω\Σ
σ = H : ε(u)

σ · nΠ = 0 on Σ
(1)

can be characterized by the following traces:

û := u|∂Ω

f̂ := σ · n on ∂Ω
(2)

Note that the Neumann condition f̂ satisfies the compatibility conditions:∫
∂Ω
f̂ dS = 0 and

∫
∂Ω
x× f̂ dS = 0 (3)

The aim of the Reciprocity Gap method is to infer Σ from the knowledge of a family of boundary
values (ûr, f̂ r)r; in practice two experiments are enough so that r ∈ {1, 2}.

For a couple(ûr, f̂ r), we define the reciprocity gap functional RGr:

RGr : H1(Ω)→ R

v 7→ RGr(v) =
∫
∂Ω

(f̂
r
· v − ûr · σ(v) · n) dS

(4)
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where we use the notation σ(v) = H : ε(v).
Let V = {v ∈ H1(Ω), div(σ(v)) = 0 weakly in Ω}. V is the mechanical counterpart to the set of

“harmonic” functions in the uncracked domain. We have the following property:

∀v ∈ V, RGr(v) =
∫

Σ
σ(v) : (nΠ ⊗ JurK) dS (5)

where JurK is the jump of displacement on the crack, which is different from zero in the case of an
opening crack. The study of the functionals (RGr) (if necessary for different r) can thus provide
information on nΠ, Π and finally Σ which is the support of JurK in Π. Note that Σ does not need to
be connected.

2.2 Determination of the normal to the crack plane

Let (ei) be the canonical basis of R3, and (xi) the components of the vector x. Let us define six
test-fields (vij)16i6j63 :

vij is such that σ(vij) = (ei ⊗ eTj )sym (6)

Depending on the space variations of H, the expressions for (vij) may be tedious to derive. Next
remark gives them in the simplest case.
Remark 1 (Expression of (vij) in the homogeneous isotropic case). Let E be the Young modulus and
ν be the Poisson coefficient, we have:

v11 = 1
E

 x1
−νx2
−νx3

 v22 = 1
E

−νx1
x2
−νx3

 v33 = 1
E

−νx1
−νx2
x3


v12 = 1 + ν

2E

x2
x1
0

 v13 = 1 + ν

2E

x3
0
x1

 v23 = 1 + ν

2E

 0
x3
x2


(7)

We then assemble the symmetric matrix R̃r with R̃r,ij = RGr(vij). We have:

R̃r =
((∫

Σ
JurKdS

)
nTΠ dS

)
sym

(8)

We note Ũ r =
∫
ΣJurKdS. The objective is to determine nΠ from the knowledge of R̃r. In order to tell

nΠ from Ũ r we need two experiments; in fact we determine (nΠ, Ũ1, Ũ2) from (R̃1, R̃2).
We propose a slightly different technique for the computation of nΠ than what was given in [4], it

relies on one singular values decomposition instead of two and the same method applies in both 2D
and 3D. We have the following properties:

tr(R̃r) = Ũ r · nΠ and ‖R̃r‖2F = tr(R̃T
r R̃r) = 1

2
(
(Ũ r · nΠ)2 + ‖Ũ r‖22

)
(9)

We can then compute ‖Ũ r‖2 and define the normalized quantities Rr = R̃r/‖Ũ r‖2 which is associated
to U r = Ũ r/‖Ũ r‖2. We compute:

γr := tr(Rr) = U r · nΠ

γ12 := 2 tr(R1R2)− γ1γ2 = U1 · U2

∆1 := (R1R2 − γ2R1)− γ12 − γ1γ2
4 I

(10)

Then nΠ spans the null space of ∆1, it can be computed using a singular value decomposition.
Note that for the rest of the identification, one single set of measurement is enough. We keep the

notation r but in practice, it only takes one value (r = 1 or r = 2).
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2.3 Determination of the crack plane

Let (t1, t2) be an orthonormal basis of n⊥Π. In the frame (t1, t2, nΠ), the coordinates are written
(X1, X2, X3), and the equation of Π is X3 = C, with C a constant to be determined. The origin of
the frame is chosen so that Ω is in the upper semi-space (X3 > 0), this implies that C > 0.

We build test fields (v1, v2) such that σ(vi) = X3(ti ⊗ nΠ)sym for i ∈ {1, 2}. They lead to:

RGr(vi) = C

(∫
Σ
JurK dS

)
· ti (11)

and we have:
RGr(v1)2 + RGr(v2)2 = C2

(
‖Ũ r‖22 − (Ũ r · nΠ)2

)
(12)

which enables to compute C, using the values from (9).
Remark 2 (Expression of (vi) in the 3D isotropic homogeneous case).

v1 =


−X

2
1

2E − ν
X2

2
2E + (2 + ν)X

2
3

2E
ν
X1X2
E

ν
X1X3
E

 v2 =


ν
X1X2
E

−X
2
2

2E − ν
X2

1
2E + (2 + ν)X

2
3

2E
ν
X1X3
E

 (13)

Remark 3 (Expression of v1 in the 2D plane stress case).

C = |RGr(v1)|√
‖Ũ r‖22 − (Ũ r · nΠ)2

with v1 =

−X
2
1

2E + (2 + ν)X
2
3

2E
ν
X1X3
E

 (14)

2.4 Determination of the crack itself

The crack Σ can be characterized as the support of JurK in ω = Π ∩ Ω. The idea is thus to identify
JurK. In [4], the authors proposed test-fields that permit to approximate both the normal and of
the tangential parts of JurK. In order to simplify the presentation, we assume that the test case r is
opening the crack, so that identifying the normal part of the displacement jump is enough.

The method relies on the possibility to build N functions (φ
j
) in V which generate pure opening

stress in the plane ω:

for φ
j
∈ V, ∃ϕj ∈ L2(ω) σ(φ

j
)(X1, X2, 0) = ϕj(X1, X2)nΠ ⊗ nΠ (15)

Then a Petrov-Galerkin approach can be employed: the displacement jump is approximated as a
linear combination: JurK · nΠ '

∑N
i=1 uiϕ̃i (in general ϕ̃i = ϕi), the unknown coefficients (ui) being

determined by the reciprocity gap equation ((4),(5)) tested against functions (φ
j
):

∀j ∈ J1, NK,
N∑
i=1

ui

∫
ω
ϕ̃i(X1, X2)ϕj(X1, X2) dS = RGr(φj

) (16)

which is a classical N ×N linear system which can be written under the form:

BNuN = bN with
uN : vector of (ui), bN : vector of (RGr(φj

))

BN : matrix of
∫
ω
ϕ̃i(X1, X2)ϕj(X1, X2) dS

1 6 i, j 6 N (17)

The preparation of this system only implies surface integrations on ω for the left-hand side and on ∂Ω
for the right-hand side.
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2.4.1 Approximation by Fourier expansion

In [4] it is proposed to develop the displacement jump in Fourier series. First a translationX3 ← X3−C
is operated so that Π corresponds to X3 = 0. In the case of homogeneous behavior, it is possible to
derive a family of functions (φ

k,l
) (see the remark 4 for the actual expression in the isotropic case)

such that we have:

σ(φ
k,l

) · nΠ = e
−2iπ

(
kX1
L1

+
lX2
L2

)
nΠ in Π

where L1 and L2 are the lengths of a rectangle enclosing ω, that should be taken as small as
possible. The displacement jump is decomposed in Fourier series:

JurK · nΠ =
∑
k,l

uk,lϕ̃k,l with ϕ̃k,l = e
2iπ
(
kX1
L1

+
lX2
L2

)

Thanks to classical orthogonality properties between the Fourier functions in a rectangular domain,
the linear system to be solved is diagonal, and the Fourier coefficients (uk,l) are straightforward to
compute:

uk,l =
RGr(φk,l

)
L1L2

(18)

Remark 4 (Expression of φ
k,l

in the 3D homogeneous isotropic case).

φ
k,l

= 1 + ν

2Eλ2
3

−iλ1e
−iλ1X1−iλ2X2(eλ3X3 + e−λ3X3)

−iλ2e
−iλ1X1−iλ2X2(eλ3X3 + e−λ3X3)

λ3e
−iλ1X1−iλ2X2(eλ3X3 − e−λ3X3)

 with
λ1 = 2kπ

L1

λ2 = 2lπ
L2

and λ3 =
√
λ2

1 + λ2
2 (19)

2.4.2 Discussion

Fourier series are extremely interesting because they result in a diagonal system. Anyhow they trigger
certain difficulties:

• As RG(φ
k,l

) involves surface integrals of cosine functions, a high number of Gauss point must
be employed in order to approximate them properly, in particular if high orders (large (k, l)) are
employed.

• The function φ
k,l

have a (real) exponential dependence in the normal direction (X3). This gives
more importance to measurements far from the crack Σ and this may strongly amplify the noise
in the data. This problem is thus particularly important for thick domains.

So, the mildness of the linear system is counterbalanced by the fact that the evaluation of the
right-hand side increases rapidly in difficulty with the order of the Fourier development. A straight-
forward regularization technique for this method is then to limit the number of modes in the Fourier
decomposition of the reconstructed JurK. As for any regularizing technique, the number of Fourier
modes should be chosen to realize a compromise between the precision and the amplification of the
noise.

3 Proposition of a new polynomial approximation method
As seen in previous section, it would be profitable to use a new approximation basis which would limit
the amplification of the noise. In this section we investigate the use of polynomials. Such functions
have the advantage to be easy to integrate exactly (with a sufficient amount of Gauss points), and to
grow slower than exponentials.
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As before, we assume that the reconstruction of JurK · nΠ is enough to recover Σ. Studying the
tangential part of the displacement jump seems not to pose any extra difficulty with the polynomial
approach that we develop.

As usual, the first task is to normalize the coordinates in the crack plane: we build a bounding
box of Ω whose sides are aligned with (t1, t2, nΠ). Let (L1, L2, L3) be the half-length of the sides. We
write (x̃1, x̃2, x̃3) the scaled coordinates so that a point of Ω belongs to the unit cube.

We use multiindex notations for polynomials:

α = (α1, α2, α3) ∈ N3, x̃α = x̃α1
1 x̃α2

2 x̃α3
3 , |α| =

∑
i

αi

3.1 Construction of “harmonic” polynomials

Let Pn be the space of polynomials of degree inferior or equal to n with values in Rd. The polynomial
A ∈ Pn takes the form A(x̃) =

∑
α6n aαx̃α where aα are the coefficients which characterize A. Pn

is a space of dimension d

(
n+ d
n

)
. In our experiments n will typically be 20, leading to a space of

dimension 5313. In order to manipulate the polynomial, we write the coefficients aα in column-vector
form aα.

In order to work inside V ∩Pn, we need to satisfy the condition div(σ(A)) = 0 which leads to (dn)
homogeneous linear equations on the coefficients (aα). We use a symbolic calculus software in order
to compute the matrix ∆n associated with the stress-divergence operator in Pn, the divergence-free
conditions translate into a condition on the coefficients:

∆naα = 0 (20)

Thus we characterize the polynomials in V ∩Pn as the ones whose coefficients span the kernel of ∆n.
All these polynomials can be used as test functions in the reciprocity gap equation (16), anyhow, we
prefer to restrict to polynomials also suited for the approximation of the displacement jump.

Among the polynomials, we are more interested in the ones which are non-zero on Π. For each
pair of non-negative integers (α1, α2) with α1 + α2 6 n, we propose to build one function (φ

α1,α2
),

such that:
φ
α1,α2

∈ V ∩ Pn, σ(φ
α1,α2

) = x̃α1
1 x̃α2

2 nΠ ⊗ nΠ on Π (21)

Let aα1,α2 be the vector of coefficients of φ
α1,α2

, and let χα1,α2 be the operator which computes the
coefficient associated with the monomial x̃α1

1 x̃α2
2 of the stress in Π. The coefficients aα1,α2 must be

solution to the following equation: (
∆n

χα1,α2

)
aα1,α2 =

(
0
1

)
(22)

Note that these conditions are not enough to fully characterize φ
α1,α2

since the function is defined up
to polynomials with zero normal stress on Π (whose coefficients span the kernel of the matrix of (22)):

N =
{
ψ ∈ V ∩ Pn, σ(ψ) · nΠ = 0 on Π

}
6= ∅ (23)

Various strategy can be imagined to choose the components in N , one possibility is presented in the
next subsection.

The displacement jump is approximated under the form JurK · nΠ(x̃1, x̃2) '
∑
uα1,α2 x̃

α1
1 x̃α2

2 , the
(uα1,α2) are solutions to a system of the form (17):

∀(β1, β2) > 0, (β1 + β2) 6 n,
∑

α1+α26n

uα1,α2

∫
ω
x̃α1

1 x̃α2
2 x̃β1

1 x̃
β2
2 dS = RGr(φβ1,β2

) (24)
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3.2 Simplified construction in the 3D case

As pointed out, Pn is a huge space. It appeared that a good subspace could be intuited. Instead of
dealing with general polynomials in the canonical basis, we propose to start from polynomials of the
form:

φ
k,l

=


∑b(k+1)/2c
i=0

∑bl/2c
j=0 a1

i,j x̃
k+1−2i
1 x̃l−2j

2 x̃2i+2j
3∑bk/2c

i=0
∑b(l+1)/2c
j=0 a2

i,j x̃
k−2i
1 x̃l+1−2j

2 x̃2i+2j
3∑bk/2c

i=0
∑bl/2c
j=0 a3

i,j x̃
k−2i
1 x̃l−2j

2 x̃2i+2j+1
3

 (25)

where b•c represents the floor function.

For a given pair (k, l), we choose to build only one function φ
k,l
. This means that we need to fully

characterize the coefficients (ami,j) in (25).
Let ak,l be the vector of the coefficients (ami,j) characterizing the function φ

k,l
, the coefficients must

satisfy the constraint (22), in a form adapted to the considered basis (25):(
∆k,l

χk,l

)
ak,l =

(
0
1

)
(26)

Since this constraint is not enough in order to fully characterize φ
k,l
, we add a simple optimality

condition:
Minimize aTk,lMak,l under constraint (26) (27)

We tried several ideas for matrix M. In the end we adopted the identity matrix. This means that we
assume that the best polynomials have coefficients with similar magnitude. None of the other matrices
we tried (penalizing the mechanical energy of the field, or the higher order terms in x̃3) gave better
results.

In practice, since the constraint matrix is not so large, it appeared to be more stable to search for
ak,l under the form ak,l = a0

k,l + Ck,lãk,l where a0
k,l satisfies the constraint and Ck,l is a basis of the

right null space of the constraint matrix (26); ãk,l is then obtained by an unconstrained minimization.
Note that Ck,l can be computed at a limited cost by recombining the null space of ∆n which can be
computed once for all.

Once the functions (φ
k,l

) are determined, a small system of the same form as (17) can be obtained
and solved.

3.3 Simplified construction for 2D plane stress

We propose the following test fields (x1 is the tangent direction, x3 is the normal, in order to limit
the complexity of the equations, it is assumed that L1 = L3):

φ
k

=
(∑bk+1/2c

i=0 a1
i x̃
k+1−2i
1 x̃2i

3∑bk/2c
i=0 a3

i x̃
k−2i
1 x̃2i+1

3

)
(28)

The conditions lead to:

• σ(φ
k
) = x̃k1x̃

l
3 on x̃3 = 0 ⇒ a1

0 = − 1− ν2

νE(k + 1)

• div(σ(φ
k
)) · e1 = 0 ⇒ ∀0 6 i 6

⌊
k − 1

2

⌋
,

a1
i (k + 1− 2i)(k − 2i) + a3

i (2i+ 1)(k − 2i)
1− ν2 +

a1
i+1(2i+ 2)(2i+ 1) + a3

i (k − 2i)(2i+ 1)
2(1 + ν) = 0

• div(σ(φ
k
)) · e3 = 0 ⇒ ∀1 6 i 6

⌊
k

2

⌋
,

a3
i (2i)(k + 1− 2i) + a1

i (2i)(k − 2i+ 1)
1− ν2 +

a3
i−1(k − 2i+ 2)(k − 2i+ 1) + a1

i (k + 1− 2i)(2i)
2(1 + ν) = 0

(29)

7



There is just one less equation than unknowns. For that reason, and given the very satisfactory
results obtained in section 5 for the 2D test-cases, it was simply decided to add the condition a3

0 = 0
to close the system.

Once the functions (φ
k
) determined, a small system of the same form as (17) can be obtained and

solved.

4 Regularization strategies for the identification of the crack
Previous section presented how to build polynomial subspaces of the search space V (starting either
from the full Pn basis or from a simplified subspace basis). In any case, this resulted in linear
system (17) to be solved which is not diagonal, contrary to the classical Fourier approximation (18).
Even if the condition number is expected to grow with the dimension of the search space, we expect
the quality of the right-hand side to be much improved by the use of polynomials.

Let us reuse the generic notations of 2.4 with single index. We assume that we have built N
displacement functions (φ

j
) in V. We assume the functions are sorted with increasing degree. Each

function φ
j
generates pure normal stress on ω with intensity ϕj . The displacement jump is approx-

imated as
∑N
i=1 uiϕ̃i (for the polynomial method ϕ̃i = ϕi, for the Fourier method ϕ̃i = ϕ̄i) and the

(ui) are determined by the reciprocity gap equation (17) which we recall:

BNuN = bN with
uN : vector of (ui), bN : vector of (RGr(φj

))

BN : matrix of
∫
ω
ϕ̃i(X1, X2)ϕj(X1, X2) dS

1 6 i, j 6 N

We thus define the approximated displacement jump:

δN =
N∑
i=1

uiϕ̃i ' JurK · nΠ (30)

It appears that the terms associated with the higher degrees are tainted by the noise and lead to
poor information. Regularization should still be considered, and we detail different strategies.

4.1 Truncation of the basis

A first regularization technique consists in truncating the basis of approximation and only use the
first K functions (φ

j
) and (ϕ̃i) (with K<N), this results in a restricted system BKuK = bK (with

obvious notations) and another approximation of the displacement jump δK =
∑K
i=1 uiϕ̃i.

Of course the question is how to choose K. This parameter has to be as high as possible in order to
achieve the highest precision in the reconstruction of the field, but it has also to be sufficiently small in
order not to lead to dramatic amplification of the unavoidable measurement noise and round-off errors
in the computation. Many strategies are available to make this choice, and one could for example cite
the L-curve method developed in [15] or the Morozov principle, proposed in [19]. In the scope of this
study, it was chosen not to try to experiment those strategies and to determine rather the optimal
parameter manually by seeking for the better looking solution.

4.2 A posteriori gradient optimization

The truncation is applied because the higher terms (ui)K+16i6N can not be properly estimated by
the reciprocity gap equation. Anyhow other criteria can be applied in order to enrich the approxima-
tion δK :

δ+
K = δK +

N∑
i=K+1

ûiϕ̂i (31)
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where the functions (ϕ̂i)K+16i6N are modified versions of the (ϕ̃i)K+16i6N orthogonalized with respect
to the (ϕi)16i6K :

∀k ∈ JK + 1, NK,

∣∣∣∣∣∣∣∣∣∣∣
ϕ̂k = ϕ̃k −

K∑
i=1

dk,iϕ̃i

with ∀j ∈ J1,KK,
∫
ω
ϕjϕ̃k dS =

K∑
i=1

dk,i

∫
ω
ϕjϕ̃i dS

(32)

so that the reciprocity gap can not be perturbed by the enrichment of the approximation.
The enrichment coefficients (ûi)K+16i6N are then free to be chosen in order to optimize the solution.

The displacement jump should be non-zero only in Σ, but the identification procedure is likely to
produce oscillations in ω\Σ, it then makes sense to add a criterion aiming at limiting these oscillations,
which can be measured by the gradient of the jump. We tried both L2 and L1 measurements for the
gradient:

(ûi)K+16i6N = arg min
(v̂i)
‖∇δK +

N∑
i=K+1

v̂i∇ϕ̂i‖L2(ω) (33)

(ûi)K+16i6N = arg min
(v̂i)
‖∇δK +

N∑
i=K+1

v̂i∇ϕ̂i‖L1(ω) (34)

The L2 norm has the advantage to lead to a classical linear system to be solved. The L1 norm
criterion can be tackled by a linear programming technique as available is software libraries. More
details regarding the implementation of this minimization are available in appendix A.

4.3 Tikhonov regularization

This method does not rely on prior truncation. It rephrases the problem (17) as a minimization
problem and it adds a regularizing term still aiming at limiting the oscillations. Again L2 and L1

measures are considered:

uN,2 = arg min
v

1
2vTBNv− vTbN + µ‖DNv‖2L2(ω) (35)

uN,1 = arg min
v

1
2vTBNv− vTbN + µ‖DNv‖L1(ω) (36)

where DN is the gradient operator: DNuN =
∑N
i=1 ui∇ϕ̃i and µ is a weight between the satisfaction

of the reciprocity gap and the minimization of the gradient.
Again, the quadratic case leads to a simple linear system for the computation of uN,2.
The L1 norm is more complex to tackle, in particular because it can not be differentiated. A first

possibility, described in [11] in the context of image restoration, is to use a regularized norm L1,ε which
we describe for a scalar function f :

‖f‖L1,ε(ω) =
∫
ω

√
f2 + εdS (37)

where ε > 0 should remain sufficiently small. Using this perturbed norm, a Newton-Raphson algorithm
can be applied to approximate the minimum (if needed with line-search).

A second minimization method for the L1 case, also coming from the image restoration community,
is based on the dualization of the problem and is presented on the annex B.

Note that convergence is ensured for neither algorithm. A possible, apparently reliable, criterion
can be obtained by computing the distance between the solutions given by both algorithms.
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5 Numerical assessments
The aim of this section is to evaluate the reciprocity gap method for the identification of buried cracks
for 2D and 3D problems. In particular, the new polynomial basis is compared to the classical Fourier
approximation, and the various regularization methods are tested.

In the following numerical experiments, the data are obtained from a direct finite element resolution
(with second order triangle/tetrahedral Lagrange elements). The fields on the boundary are then
extracted and potentially receive a Gaussian noise to simulate the measurement process. The integrals
are computed on a boundary mesh with a high-order Gauss integration method so that all polynomials
up to degree 20 are exactly integrated.

5.1 Identification of a line crack in a rectangular 2D domain

In this part, the method is numerically investigated for a 2D plane stress crack identification problem.
We consider a cracked rectangular domain whose dimensions are 10 mm ×h with h ∈ [1, 15] mm. Two
load cases are applied: they consist in (pure Neumann) tractions (f

r
) aligned with the axis. Dirichlet

values (ur) are then extracted on ∂Ω. The isotropic material has the following properties: Young
modulus E = 210, 000 MPa and Poisson ratio ν = 0.3. Figure 2 shows the finite element mesh; it is
refined on the boundary in order to have more precise interpolation of ur. While the side of an element
in the center of the domain is around 0.5 mm, this size is 0.1 mm on the boundary. This results in 500
elements on the boundary and 10, 537 nodes for the direct resolution. The same boundary mesh is
used to compute the integrals. To compensate the fact that the direct and inverse resolution share the
same boundary mesh, some cases were studied with the addition of synthetic noise on the boundary
measurements. The reference 2D solutions of the direct problem for the two load cases are presented
on figure 2.

(a) mesh (b) u1 (c) u2

Figure 2: Example of FE mesh for the direct resolution, and solution (amplification ×100)

As will be presented, the identification procedure in the 2D domain gives rather satisfying results.
This is why the benefit of the regularization strategies is mainly discussed in the 3D case.

5.1.1 Identification of the normal and of the line

Figure 3 and 4 present the identification of the normal vector nΠ and of the line Π in the noiseless
case for a slim and a thick domain. For the identification of the line, the results obtained with the
two load cases are both printed. The identification goes without major problem.

Figures 5 and 6 present the same experiments in the presence of 1% noise. In these cases, the normal
is still well identified whereas the determination of the line is slightly more sensitive, in particular in
the thin case and vertical load case. This can be explained by the formula (14), since in that case, the
denominator tends to be small and amplifies errors.
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(a) Indentification of the normal. Pink: (un-
known) crack, blue: real normal, red: identified
normal

(b) Indentification of the line. Pink: (unknown)
crack, Red: identified line with the vertical load,
Green: identified line with the horizontal load

Figure 3: Thin 2D domain (h = 2 mm) in the absence of noise, identification of the line.

(a) Indentification of the normal. Pink: (un-
known) crack, blue: real normal, red: identified
normal

(b) Indentification of the line. Pink: (unknown)
crack, Red: identified line with the vertical load,
Green: identified line with the horizontal load

Figure 4: Thick 2D domain (h = 10 mm) in the absence of noise, identification of the line.

5.1.2 Identification of the crack

Figure 7 depicts the normal displacement jump JurK · nΠ on the crack line (ω = Π ∩ Ω) using Fourier
and polynomial approximations. As expected, for noiseless data, the reconstruction using polynomial
functions is more accurate than the Fourier one. Only the polynomial technique is able to give results
for very thick domains (h > 10 mm).

On Figure 8, we notice however that the numerical solutions obtained using polynomial functions
are less stable with respect to the percentage of noise injected into the input displacement data ur,
but this advantage of the Fourier functions disappears when the thickness of the domain increases.

On Table 1, the summary about the optimal polynomial degree or Fourier order and the obtained
L2 error for different thicknesses and noise levels can be found. The error is the relative error on the
normal displacement jump, measured with L2(ω) norm and is written e2(u). In practice, in this study,
the optimal polynomial degree is tuned by hand by searching the value that gives the better looking
solution.

Next we evaluate the effect of the richness of the available information on the quality of the
reconstruction. On our synthetic experiment, the available information is a function of the density of
the mesh used at the boundary for the generation of the direct solution, so the identification procedure
is run on different meshes, presented on Figure 9. Each mesh size leads to the need of a different degree
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(a) Indentification of the normal. Pink: (un-
known) crack, blue: real normal, red: identified
normal

(b) Indentification of the line. Pink: (unknown)
crack, Red: identified line with the vertical load,
Green: identified line with the horizontal load

Figure 5: Thin 2D domain (h = 2 mm) with 1% noise, identification of the line.

(a) Indentification of the normal. Pink: (un-
known) crack, blue: real normal, red: identified
normal

(b) Indentification of the line. Pink: (unknown)
crack, Red: identified line with the vertical load,
Green: identified line with the horizontal load

Figure 6: Thick 2D domain (h = 10 mm) with 1% noise, identification of the line.

of the polynomial leading to the optimal solution. Those informations can be found in Table 2.
The main conclusion we draw to is that when more information is available, the degree of the

reconstruction polynomials can be increased and the precision of the identification improves.
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thickness noise level optimal degree L2 error optimal order L2 error
(mm) (polynomial) e2(u) (Fourier) e2(u)
2 0 15 0.0072429 4 0.022424
2 0.01 10 0.023584 4 0.014851
2 0.1 3 0.60718 2 0.3828
3 0 14 0.016906 2 0.13844
4 0 10 0.017701 1 0.36841
5 0 10 0.026753 1 0.78623
10 0 8 0.049781 - -
10 0.01 5 0.19486 - -
15 0 5 0.15391 - -

Table 1: Errors and optimal degree of polynomials or Fourier order for different test-cases

length of boundary elements optimal polynomial degree L2 error
lb(mm) e2(u)
0.5 10 0.020010
0.4 10 0.016615
0.3 10 0.014982
0.2 15 0.011293
0.1 15 0.0072429

Table 2: Effect of the characteristic size of the mesh on the boundary for h = 2.
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(f) h = 15 mm

Figure 7: Identification of JurK · nΠ in ω for various thicknesses in the absence of noise
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(b) NL = 10%

Figure 8: Identification of JurK · nΠ in ω for thicknesses h = 2 mm with noise

(a) lb = 0.5 mm (b) lb = 0.4 mm

(c) lb = 0.3 mm (d) lb = 0.2 mm

(e) lb = 0.1 mm

Figure 9: Different meshes used for the refinement study
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5.2 3D cracks

This numerical experiment focuses on the detection of cracks on an unknown internal surface inside a
three-dimensional elastic body.

The cracked body consists of a cuboid with dimensions 10×7×h filled with homogeneous isotropic
elastic material (E = 210, 000 MPa, ν = .3) . It contains two elliptic cracks: S1 with main axes a1 = 2
and b1 = 1 parallel to the x and y directions, and S2 with main axes a2 = 1.5 and b2 = 2.5 and making
an angle of π

15 around the y axis. The crack S1 has its center at (4, 2, h
2 ) and S2 is centered at

(4, 7, h
2 ). This geometry is illustrated on figure 10.

Each of the two experiments consists in an uniform traction load, parallel to an axis and applied
on two faces. The first one is a traction along ez and the second one is a traction along ex.

X Y

Z

Figure 10: Geometry of the studied cracked domain

5.2.1 Comparison between polynomial and Fourier reconstruction

We consider first the identification of the crack’s plane parameters for noise free data. The first
criterion to evaluate the quality of this identification is the scalar product pn between the real normal
of the crack plane and the identified one. This scalar product must be close to 1. The second criterion
is the distance dπ between the identified plane and the center of the big ellipse

(
at
(
4, 7, h

2

))
, that

must be as small as possible. The results are given in Table 3. They show that in the absence of any
noise, the estimation of the crack’s plane is very accurate.

Height H = 2 H = 4 H = 6 H = 10
pn 1.0000 1.0000 1.0000 1.0000
dπ (mm) 8.1556 · 10−6 1.0724 · 10−5 4.8479 · 10−6 3.6787 · 10−6

Table 3: Identification of the parameters of the crack plane in absence of noise

We consider then the reconstruction of the displacement jump for the Fourier and polynomial
method (see Figures 11, 12, 13, 14 and Table 4). The error that is studied is defined as the L2 norm
on ω of the difference between the reconstructed gap and the reference gap extracted from the direct
finite element computation. It is noticeable that the polynomial approach gives fairly better results
than the Fourier approach for thick domains.

Height (mm) H = 2 H = 4 H = 6 H = 10
Order of Fourier test-functions 3 1 1 -
L2 Error for Fourier approach 0.37 1.6 5.5 -
Order of polynomial test-functions 15 15 11 10
L2 Error for polynomial approach 0.085 0.12 0.13 0.19

Table 4: Error and number of modes for the noise free case
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(a) Reference (b) Fourier method (c) Polynomial method

Figure 11: Reference and reconstruction of the gap for h = 2 mm
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Figure 12: Reference and reconstruction of the gap on the line x = 4 mm with h = 2 mm

5.2.2 Study of different crack geometries

A few different geometries were identified on a 2 mm thick domain without noise. The results are
presented on Figures 15 and 16, they show that while the position and size of the crack is always fairly
identifiable, its exact shape may be harder to recover.

The difference between a rectangular, elliptical or rhombus crack is hard to make from the re-
constructed displacement gap in the plane. What is more, Figure 16 shows that for a complex and
non-convex shape, only the most bulky part of the crack is reconstructed.

5.2.3 Robustness in presence of noise and comparison between regularization processes

In this part, a Gaussian noise is added to the measurements. The noise level is denoted by NL. The
goal is to compare the results given by the different regularization schemes presented in Part 4. Table 5
contains the quantitative results for the identification of the crack’s plane (scalar product pn between
identified and reference normal and distance dπ between the center of the crack and the identified
plane).

NL = 0 % NL = 2 % NL = 10 %
pn 1.0000 0.9997 .9998
dπ (mm) 8.1556 · 10−6 0.1701 0.3836

Table 5: Identification of the crack plane

On Figure 17, the displacement gap cartographies, L2 errors and optimal regularization parameters
for different noise levels and different regularization schemes. The parameters are the maximal order of
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(a) h = 4 mm (b) h = 6 mm

Figure 13: Reference compared to the polynomial identification

Figure 14: Reference compared to the polynomial identification for h = 10 mm

polynomials for the truncation K, the total number of polynomials N and the Tikhonov regularization
parameter µ. Those parameters have been tuned by hand in order to obtain the better looking solution.
Unfortunately, the parameter N has to be tuned as keeping it at the maximal value results in over-
oscillating solutions. All the solutions on the line x = −4 mm in Π are compared on Figure 18.

We observe that the gradient-penalizing regularization methods give better identification results.
The Tikhonov method is superior to the a posteriori method as it results in less oscillations in the
cartographies and in lower errors. Finally, the methods based on the total variation do not seem
to lead to significant improvement of the reconstruction compared to quadratic regularization, while
being much more expensive in terms of computational resources and implementation effort.

5.2.4 Experiment in case of non-planar crack

All the methods presented above rely on the assumption that the crack is planar. In this subsection,
we evaluate numerically how the method behaves in the case of a slightly non-planar crack. The crack
is constituted of two semi-ellipses with main axes a = 2.5 and b = 1.5 mm, that are not perfectly
coplanar. The angle between the semi-ellipses is π

10 .
The identification procedure results in a planar crack whose normal is not far from the bisector

between the normal vector of the semi-ellipses (pn = 0.9869), and which is only distant of 0.1885 mm
from the center of the common segment of the semi-ellipses. This distance is quite small compared to
the size of the ellipses.

The result of the reconstruction of the displacement jump, presented on figure 19, shows that while
the non-respect of the planarity hypothesis induces a perturbation of the identification, the shape and
localization of the crack are still fairly well reconstructed. A similar result was obtained in [8] for the
Helmholtz equation with the Fourier approximation.

5.2.5 Summary of the numerical tests

• The Fourier method gives fairly stable solutions for thin domains, but is not suited to thick ones.

• The polynomial method gives accurate identification results for small noise level and relatively
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(a) elliptical crack (b) rectangular crack

Figure 15: Identification of different shapes. h = 2 mm

(a) rhombus crack (b) smile crack

Figure 16: Identification of different shapes. h = 2 mm

thick domains, however for noise level around 10%, or in case of really thick domains, the
identification quality deteriorates (see figure 14 and Figure 17).

• In general, exceeding an order 15 for the polynomial approximation does not ameliorate the
solution.

• The use of a regularization strategy that penalizes the gradient gives slightly better results than
the truncation of the approximation basis.

• The total variation and quadratic regularization terms give results of similar quality. As the
latter is way easier to implement and less CPU expensive, it should probably be preferred.

Conclusion and perspectives
This paper provides an implementation, in the 3D and 2D plane stress cases, of the crack identification
formulas proposed in [4]. Numerical and analytical results show that, the initially proposed Fourier
reconstruction is mostly adapted to thin domains. We propose a new polynomial reconstruction which
appears to be more stable for thick domain. Moreover, we propose regularization schemes based on
the truncation of the reconstruction basis and on the minimization of the gradients of the displacement
jump. The Tikhonov regularization method gives slightly better results than the raw truncation of
the approximation basis, this method is more complex to implement and to tune properly.

As the construction of test-functions respecting the local equilibrium div(σ(v)) = 0 and permitting
the reconstruction of the jump field in the plane is laborious, the next step of this work is to replace
the Galerkin projection by a Petrov-Galerkin approximation, permitting to separate the role of test-
functions and approximation functions.
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Reference

Noise Level NL = 2 % NL = 10 %

Displacement
jump L2 error

Regulari-
zation

parameters

Displacement
jump L2 error

Regulari-
zation

parameters

Truncation 0.303 K = 9 0.612 K = 5

a posteriori
quadratic

0.300 K = 9
N = 12 0.563 K = 5

N = 10

a posteriori
TV 0.301 K = 9

N = 12 0.559 K = 5
N = 10

Tikhonov
quadratic 0.254 N = 12

µ = .1 0.471 N = 7
µ = .1

Tikhonov
TV 0.249 N = 12

µ = .001 0.479 N = 7
µ = .001

Figure 17: Displacement gap identification for noisy data and regularization

A A posteriori total variation minimization algorithm
We want to solve the non-quadratic minimization problem (34). As no polynomial expression can be
found for |DNv|, it was chosen to compute its integral by approximating it by a stepwise constant
function on a rectangular mesh, withM rectangles. The gradient operator DN can then be discretized
into an operator denoted by G that gives the value of the gradient at the barycenter of each of the M
rectangles from the polynomial coefficients and has size M × N . The system (38) results form this.
| • | is the componentwise absolute value and Sj is the area of the j th rectangle.

(ûi)16i6N = arg min
(vi=ui)16i6K

M∑
j=1

Sj |Gv|j (38)

We introduce the projector I⊥ on the K first components, such that I⊥v = I⊥u is equivalent to
(vi = ui)16i6K . We also introduce the vector IΣ which corresponds to the weighted sum over all
components 1 6 j 6M . The minimization problem hence becomess:

min
I⊥v=I⊥u

ITΣ|Gv| (39)
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Figure 18: Reference and solution with different regularization techniques (h = 2 mm) on the line
x = −4 mm

In order to cast this equation into a classical linear programming problem, we introduce the vector
x meant to be equal to |Gv|. We have −x 6 Gv 6 x and we can search for (v,x) solutions to:

min
I⊥v = I⊥u(

G −Id
−G −Id

)(
v
x

)
6

(
0
0

)
(
0 ITΣ

)(v
x

)
(40)

Under this form, we can use functions of the glpk [18] library, which is interfaced with Octave.

B Dual method for the minimization of a total variation regularized
functional

We want to solve the problem (36). Using the notations of previous appendix, the system reads:

uN,1 = arg min
v

1
2vTBNv− vTbN + µIΣ|Gv| (41)

The method is adapted from an other approach coming from the image processing community [10].
It consists in solving a dual problem. As IΣ ≥ 0, we can introduce a dual vector w to get:

ITΣ|Gv| = max
|w|≤IΣ

wTGv (42)

Consequently, the minimization problem (41) becomes :

min
v

max
|w|≤IΣ

1
2vTBNv− vTbN + µwTGv (43)

As the objective function is convex in v and concave in w, and as |w| ≤ IΣ is a bounded domain,
the previous optimization problem is equivalent to problem (44).

max
|w|≤IΣ

min
v

1
2vTBNv− vTbN + µwTGv (44)
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(a) General situation of the
cracked domain and identified
plane in red
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(b) Projection of the
crack in the identified
plane

(c) Displacement jump recon-
structed by the truncated poly-
nomial method

(d) Displacement jump re-
constructed by the polyno-
mial method with quadratic
Tikhonov regularization

Figure 19: Identification of a non-planar crack in a 6 mm thick domain

The minimum can be found for v :

v = B−1
N (bN − µGTw) (45)

Thus, the problem can be simplified by replacing v by its expression and changing max into min :

min
|w|≤IΣ

1
2wT

(
GB−1

N GT
)

w−wT
(

GB−1
N

bN
µ

)
(46)

Note that as G is a rectangular derivation operator, it is rank-deficient, but GB−1
N

bN
µ

is orthogonal

to the kernel of GB−1
N GT . Because of this kernel, the problem (46) cannot be solved via an Uzawa

method. The status method is likely to fail because of the high number of constraints and the ill-
conditioning of the operators. For that reason, an alternating directions algorithm was chosen, inspired
from [17]. We search for a couple (u, f) that belongs to both of the spaces L and N defined below:

(u, f) ∈ L ⇔ {GB−1
N GTu = GB−1

N

bN
µ

+ f}

(u, f) ∈ N ⇔ {∀dof i, |ui| ≤ IΣ,i, sign(ui)fi ≤ 0, fi(ui − IΣ,i) = 0 or fi(ui + IΣ,i) = 0}
(47)

If (u, f) ∈ L ∩N then u is the minimizer of (46).
The algorithm consists in finding alternatively solutions in N and in L respecting respectively:

(un, fn) ∈ L with fn = fn−1/2 + k
(
un − un−1/2

)
(un+1/2, fn+1/2) ∈ L with fn+1/2 = fn + k(un+1/2 − un)

(48)

where k is a parameter of the method that should be chosen close to the spectral radius of GB−1
N GT

Finding a couple in N is a global linear problem, while finding a couple in L results in a nonlinear
problem, that can be solved independently on each degree of freedom i. Finally, we choose to relax
this method at each step with a relaxation parameter of value 1/2.
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