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a b s t r a c t

A previous study has shown that the malolactic fermentation (MLF) was inhibited during sequential fermenta-

tions performedwith the pair Saccharomyces cerevisiae BDX/Oenococcus oeni Vitilactic F in synthetic grape juices.

A yeast peptidic fraction with an apparent MW of 5–10 kDa was involved in the inhibition. In the present study,

the MLF was also inhibited in Cabernet Sauvignon and Syrah wines. The inhibition due to the peptidic fraction

was maintained despite high phenolic contents. Kinetic studies showed that the peptidic fraction was gradually

released during the alcoholic fermentation (AF). Its highest anti-MLF effect was reached when isolated from late

stages of the AF stationary phase. The peptidic fraction was tested in vitro on cell-free bacterial cytosolic extracts

containing the malolactic enzyme in a pH range between 3.5 and 6.7. Results showed that it was able to directly

inhibit the malolactic enzyme activity with an increasing inhibitory kinetic correlated to the AF time at which it

was collected.
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1. Introduction

The production of most red wines and certain white and sparkling

wine styles requires two consecutive fermentation steps. The first one

is the alcoholic fermentation (AF) and is carried out by yeasts belonging

mainly to the Saccharomyces cerevisiae species. During this step, the

sugars of the grape must (D-Glucose and D-Fructose) are primarily con-

verted into ethanol and CO2. At the end of the AF, these wines are spon-

taneously or purposely taken through a malolactic fermentation (MLF)

step mostly by indigenous or inoculated lactic acid bacteria belonging

mainly to theOenococcus oeni species. TheMLF, an enzymatic decarbox-

ylation of L-malic acid into L-lactic acid and CO2, reduces wine acidity

and improves its sensorial characteristics and its microbial stability

(Bartowsky et al., 2002; Lonvaud-Funel, 1999, 2002). However, it is

often difficult to trigger and accomplish because of the individual or

synergistic antibacterial activity of several physical chemical wine pa-

rameters and yeast inhibitory metabolites. Some of these factors have

been intensively investigated such as low pH (Britz and Tracey, 1990;

Vaillant et al., 1995), inadequate temperature (Britz and Tracey, 1990),

nutrient depletion (Patynowski et al., 2002; Remize et al., 2006; Saguir

andManca de Nadra, 2002; Terrade andMira de Orduna, 2009), endog-

enous and exogenous SO2 (Carreté et al., 2002; Henick-Kling and Park,

1994; Larsen et al., 2003; Osborne and Edwards, 2006), phenolic com-

pounds (Reguant et al., 2000), high ethanol content (Britz and Tracey,

1990; Vaillant et al., 1995) and medium chain fatty acids (Capucho

and San Romao, 1994; Edwards and Beelman, 1987; Lonvaud Funel et

al., 1988).

While the anti-MLF role of the previous compounds is already well

established, there are gradually growing evidences suggesting the in-

volvement of yeast peptides/proteins in the inhibition of O. oeni growth

and L-malic acid consumption. So far, few authors have demonstrated

the ability of certain S. cerevisiae strains to produce anti-MLF com-

pounds of protein nature. Besides, the compounds found presented dif-

ferent MW and were strain dependent. Dick et al. (1992) were the first

to isolate two antibacterial cationic proteins produced by the yeast

strain R107. One of them had the characteristics of lysozyme and the

other one was a small protein with a high pI. Later on, Comitini et al.

(2005) found that S. cerevisiae F63 was able to produce a proteinaceous

compound with a MW N10 kDa that strongly inhibited the growth of O.

oeni CHR as well as its MLF. Besides, Osborne and Edwards (2007),
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identified a 5.9 kDa peptide produced by S. cerevisiae RUBY. Ferm and

inhibiting O. oeni Viniflora oenos. Mendoza et al. (2010) showed that

S. cerevisiae mc2 released a proteinaceous compound presenting a

MW between 3 and 10 kDa that inhibited the growth of O. oeni X2L

but not its ability to consume L-malic acid. Finally, Branco et al. (2014)

showed that S. cerevisiae CCMI 885 secreted antimicrobial peptides

(AMP) that were active against a wide variety of wine-related yeasts

in addition to O. oeni. However, only themicrobial growth was evaluat-

ed. These AMP corresponded to different fragments of the C-terminal

amino acid sequence of the S. cerevisiae glyceraldehyde 3-phosphate de-

hydrogenase (GAPDH)enzyme. Among these AMP, twomain fragments

of 1.638 and 1.622 kDa were detected.

Most of the time, the impact of these compounds on the growth ofO.

oeni was the main parameter evaluated and few data concerning the

malate consumption was given. The MLF inhibition was often consid-

ered as a consequence of the bacterial growth inhibition. Besides, the di-

rect effect of these compounds on the malolactic enzyme activity was

never studied.

In a previous work (Nehme et al., 2010), we demonstrated that S.

cerevisiae BDX (referred to as strain D) was able to produce a peptidic

fraction with an apparent MW between 5 and 10 kDa responsible for

the strong inhibition ofO. oeniVitilactic F (referred to as strain X) during

sequential fermentations performed in synthetic grape juices. Sequen-

tial fermentations simulate the natural winemaking process by starting

the MLF after the accomplishment of the AF. In the present work, we

intended to further characterize this peptidic fraction; first by showing

its ability to inhibitMLF in naturalwines despite high phenolic contents,

second by determining the time of its release during AF and third by

measuring its direct inhibitory effect on the malolactic enzyme activity.

2. Materials and methods

All culture media components were supplied by Sigma-Aldrich

(Taufkirchen-Germany) except for the Yeast Extract and the peptone

that were supplied by Oxoid (Hampshire-England).

2.1. Strains and storage conditions

S. cerevisiaeBDX andCY3079 andO. oeniVitilactic F used in thiswork

were kindly provided by Lallemand Inc. (Blagnac, France). In previous

works, BDXwas referred to as strain D, CY3079 as strain A and Vitilactic

F as strain X (Nehme et al., 2008, 2010). Yeast stock cultures were kept

at 4 °C in YEPD (Yeast Extract Peptone Dextrose) agar slants composed

of 10 g/L Yeast Extract, 20 g/L peptone, 20 g/L D-glucose and 20 g/L agar.

The bacterial strain was kept frozen at−20 °C in MRS (De Man, Rogosa

and Sharpe) broth containing 20% glycerol (v/v).

2.2. Growth media

2.2.1. Synthetic grape juice medium (SGJ medium)

The medium composition that simulated the natural grape juice

consisted of: D-glucose 100 g/L, D-fructose 100 g/L, Yeast Extract 1 g/L,

(NH4)2SO4 2 g/L, citric acid 0.3 g/L, L-malic acid 3 g/L, L-tartaric acid

5 g/L, MgSO4 0.4 g/L, and KH2PO4 5 g/L, pH adjusted to 3.5 using a

10 mol/L NaOH solution. The medium was autoclaved before use

(121 °C, 20 min).

2.2.2. Cabernet Sauvignon and Syrah grape musts

Cabernet Sauvignon (CS) and Syrah grape varieties were provided

by Clos Saint Thomas (Kab Elias, Lebanon) in September 2014. The

grapes were destemmed and crushed then submitted to pre-fermenta-

tion macerations at 10, 60, 70 and 80 °C for 48 h. The grape musts were

sulfitized at a dose of 5 g/hL. A solution of NaHSO3 100 g/L was used for

this purpose. The sugar and L-malic acid concentrations were adjusted

to 200 g/L and 3 g/L respectively. The pH was also adjusted to 3.5

using an 85% orthophosphoric acid solution.

2.2.3. Modified MRS medium

The MRS medium was supplemented with L-malic acid (3 g/L) and

Tween 80 (1 mL). After autoclaving (121 °C, 15 min), 10% ethanol (v/

v) were aseptically added through sterile filter membranes of 0.22 μm

cut-off (Elvetec services, Meyzieu-France) and the pH was adjusted to

3.5 using an 85% orthophosphoric acid solution.

2.3. Sequential fermentations in natural grape musts

The Cabernet Sauvignon and Syrah grape musts were separately in-

oculated either by S. cerevisiae BDX or by S. cerevisiae CY3079 at an ini-

tial concentration of 3 × 106 cells/mL (Thoma counting chamber). The

AF was followed until total or cessation of sugar consumption (b2 g/

L). The yeast inoculum was beforehand prepared in two steps. First, a

preculture of the yeast strainwas obtained by reactivating the stock cul-

ture in YEPD broth for 24h. Second, the preculturewasused to inoculate

a low sugar concentration synthetic grape juice medium: D-Glucose

50 g/L and absence of D-Fructose. This step was carried out for 24 h

and provided the yeast inoculum.

After completion of the AF, the wines were subjected to different

steps before inoculation of the lactic acid bacteria. First, yeast cells

were removed by centrifugation (3000 rpm for 20 min at 4 °C) and

the supernatants were recovered. Then, the L-malic acid concentration

was measured and readjusted to 3 g/L. Next, the pH was adjusted to

3.5 using a 10 mol/L NaOH solution. Finally, the wines were filtered

aseptically through 0.22 μmmembranes (Elvetec services) andwere in-

oculated with the malolactic bacteria at an initial concentration of

2 × 106 cells/mL (Petroff-Hausser counting chamber) corresponding

to an initial bacterial biomass of 0.0016 g/L. The MLF was followed

until cessation of L-malic acid consumption. The bacterial inoculum

was prepared in two steps. First, a preculture of O. oeni Vitilactic F was

obtained by reactivating the stock culture inMRS broth with 3% ethanol

(v/v) added. After 24 h, the preculture was used to inoculate the low

sugar concentration synthetic grape juice medium with 6% ethanol (v/

v) added. This step provided the bacterial inoculum after an incubation

period of 24 h.

All fermentation steps for both AF andMLFwere carried out at 22 °C

with stirring at 150 rpm in Erlenmeyer flasks.

Yeast and bacterial growth were followed during AF and MLF re-

spectively by measuring their cell concentration (cells/mL) and their

dry weight (g/L).

Each sequential fermentation was performed in three independent

replicates.

2.4. Timing of the release of the 5–10 kDa peptidic fraction produced by S.

cerevisiae BDX during AF

TheAFwas carried out by S. cerevisiae BDX for 5 days (120 h) in 2 L of

the SGJ medium. Each 24 h, a supernatant of 210 mL was collected and

fractionated by ultrafiltration in order to isolate the corresponding 5–

10 kDa peptidic fraction. First, the sample was distributed into centrifu-

gal filter units' presenting a cut-off of 10 kDa (Amicon® Ultra-15 with

ultracel-10 membrane) and the ultrafiltration was performed at

3500 g for 45 min at 4 °C. Each unit can initially contain a volume of

15mL. 14 units were filled and at the end of the ultrafiltration, a volume

of 0.2 mL was retained by the membrane of each unit. A total retentate

of 2.8mLwith aMW ≥ 10kDa, 75 times concentrated,was obtained. The

filtrate ≤10 kDa was then recovered and ultrafiltered using the centrif-

ugal filter units presenting a cut-off of 5 kDa (Corning® Spin-X UF 20

Sigma-Aldrich). The principle was the same and 2.8 mL of a fraction

with aMWbetween5 and 10 kDa, 75 times concentrated,was obtained.

Five fractions were finally collected at the end of the AF (after 120 h).

They were referred to as D1 (24 h), D2 (48 h), D3 (72 h), D4 (96 h)

and D5 (120 h). The fraction from each day (2.8 mL) was added to a

modified MRS medium so as to obtain a final volume of 20 mL and

was finally 10.5 times concentrated.



O. oeni Vitilactic F was then inoculated into these media at an initial

concentration of 2 × 106 cells/mL and the MLF was carried out at 22 °C

with stirring at 150 rpm in Erlenmeyer flasks. The same modified MRS

medium without the 5–10 kDa fractions was used as a control for this

experiment. The MLF was followed by regular sampling until the cessa-

tion of the L-malic acid consumption.

The timing experiment was performed in three independent

replicates.

2.5. In vitro evaluation of the inhibitory effect of the 5–10 kDa fractions on

the malolactic enzyme activity

2.5.1. Preparation of the cell-free bacterial enzymatic extract comprising

the malolactic enzyme

ThemodifiedMRSmediumwas inoculatedwithO. oeniVitilactic F at

an initial concentration of 2 × 106 cells/mL and the bacterial culturewas

followed for 5 days at 22 °C with stirring at 150 rpm. After a centrifuga-

tion at 3500 rpm for 20 min at 4 °C, the supernatant was removed and

0.4 g of the bacterial pellet were weighed and suspended in 800 μL of

an appropriate buffer (citrate buffer pH 3.5, phosphate buffer pH 6 or

phosphate buffer pH 6.7, buffer concentration 0.1 M). The bacterial

cells were then lysed by vortexing them with glass beads of 300 μm di-

ameter (Sigma-Aldrich) in a FastPrep® FP120 bead-beater device (BIO

1010/Savant) at 6 m/s for 3 × 45 s at 4 °C. Between 2 consecutive

runs, the cells were kept on ice for 1 min. The cell debris was removed

by centrifugation at 14,000 g for 10 min at 4 °C (Larsen et al., 2006).

The supernatant containing the cell-free enzymatic extract was recov-

ered and the volume completed to 2mL using the corresponding buffer.

2.5.2. Monitoring of the L-malic acid consumption in vitro

The 2 mL of the enzymatic extract were divided into 2 aliquots of

1 mL each. One was used as a control and the other as a test medium

to which the 5–10 kDa fractions were added. The reaction mixture is

given in Table 1. The reagents were added to each aliquot in the order

listed in the table. The enzymatic reaction was performed at 30 °C for

30 min at pH 6, 40 min at pH 6.7 and 70 min at pH 3.5.

The inhibitory kinetic of the malolactic enzyme activity by the 5–

10 kDa fractionswas evaluated. The 5 peptidic fractions of 5–10 kDa col-

lected from D1 to D5 (Section 2.4) were tested separately. At the end of

each assay, the concentrations of the L-malic acid consumed and the L-

lactic acid produced were measured in both aliquots (control and test)

and compared.

The inhibitory effect of each 5–10 kDa fraction on themalolactic en-

zyme activity was performed in three independent replicates.

2.6. Analytical methods

2.6.1. L-malic acid consumption

The L-malic acid concentration was determined using an enzymatic

assay (Boehringer Mannheim/R-Biopharm, kit. No 10139068035,

Darmstadt-Germany) and the results were expressed in g/L.

2.6.2. L-lactic acid production

The L-lactic acid concentration was determined using an enzymatic

assay (Boehringer Mannheim/R-Biopharm, kit. No 10139084035,

Darmstadt-Germany) and the results were expressed in g/L.

2.6.3. Total polyphenols

Total polyphenols in Cabernet Sauvignon and Syrah wines were

evaluated at the end of the AF carried out by both yeast strains. The

method used was based on the reduction of the Folin-Ciocalteu reagent

by polyphenols as described by Ribéreau-Gayon et al. (2006). The re-

sults were expressed in mg/L equivalent gallic acid.

2.6.4. Dry weight of bacteria

The dry weight was determined using a thermobalance or moisture

analyzer (Ohaus-UK). A correlation between the bacterial cell concen-

tration (cells/mL) and the bacterial biomass (g/L) was established

using high bacterial concentrations. The correlation obtained was the

following:

y g=Lð Þ ¼ 8:10−10$ cells=mLð Þ:

It was then used to determine the biomass of low concentrated

samples.

2.7. Statistical analyses

Means and standard deviations of the assays were calculated using

conventional statistical methods. Each experiment was performed in

three replicates. Statistical analysis (ANOVA) was applied to the data

to determine differences (p b 0.05). Means differences were made by

using Tukey's HSD test. The statistical analysis was carried out using

Statgraphics XV·I for windows.

3. Results and discussion

3.1. Impact of the 5–10 kDa peptidic fraction produced by S. cerevisiae BDX

on MLF in natural winemaking conditions

It was previously shown that the growth of O. oeni Vitilactic F and its

ability to consume L-malic acid were strongly inhibited by S. cerevisiae

BDX during sequential fermentations performed in synthetic grape

juice (SGJ) media. TheMLF inhibitionwasmainly due to a peptidic frac-

tion presenting an apparentMWof 5–10 kDaworking synergically with

ethanol (Nehme et al., 2010). The SO2 and medium chain fatty acids

concentrations produced by S. cerevisiae BDX were lower than the

ones found in the literature to cease MLF and the nutrient depletion

was excluded from inhibitory factors (Nehme et al., 2008, 2010). S.

cerevisiae CY3079 produced similar amounts of ethanol, SO2 and medi-

um chain fatty acids as S. cerevisiae BDX and presented the same nutri-

tional behavior. MLF carried out by O. oeni Vitilactic F in SGJ media

fermented by CY3079 was totally accomplished (Nehme et al., 2008).

Besides, 5–10 kDa peptidic fractions isolated from SGJ media fermented

by CY3079 did not inhibitO. oeniVitilactic F (data not published). There-

fore CY3079 was chosen as a reference yeast strain for this study.

Table 2 shows the total phenolic content at the end of the AF carried

out by S. cerevisiae BDX and S. cerevisiae CY3079 in Cabernet Sauvignon

and Syrahwines. The corresponding grape musts were previously mac-

erated at 10, 60, 70 and 80 °C for 48 h before AF. High phenolic contents

were reached atmaceration temperatures of 60, 70 and 80 °C because of

a better phenolic extraction from the grape skin and seeds. Sequential

fermentations were carried out in these wines by inoculating O. oeni

Vitilactic F at the end of the AF. MLF was monitored for 3 months and

was totally inhibited in wines fermented by S. cerevisiae BDX. Both the

bacterial growth and the malate consumption were repressed regard-

less of the phenolic content (Tables 2 and 3). Despite high phenolic

Table 1

Reaction mixture for themonitoring of the L-malic acid consumption in vitro by themalo-

lactic enzyme of the enzymatic extract isolated from O. oeni Vitilactic F at different pH

values with or without the 5–10 kDa peptidic fractions.

Aliquot 1 (control) Aliquot 2 (test) Amounts

Enzymatic extract Enzymatic extract 1 mL

Mn2+ Mn2+ 0.1 mg

NAD+ (35 g/L) NAD+ (35 g/L) 0.1 mL

Buffera ABPb (10.5×) 0.14 mL

L-malic acid (1 g/L) L-malic acid (1 g/L) 1 mg

a ABP (10.5×): antibacterial peptides of the 5–10 kDa fractions 10.5 times concentrated.
b Buffer: 0.1 mol/L of citrate buffer pH 3.5, phosphate buffer pH 6 or phosphate buffer

pH 6.7.



contents, MLF conducted by O. oeni Vitilactic F in wines produced by S.

cerevisiae CY3079 was totally completed. In comparison to the pre-fer-

mentation maceration at 10 °C, the higher phenolic content obtained

at 60, 70 and 80 °C reduced the bacterial biomass produced and slowed

down the MLF but malate was totally consumed (Table 3).

Therefore, MLF results were reproducible in both synthetic and nat-

ural grape juice media with both yeasts/bacteria pairs tested.

The conservation of the inhibitory effect due to the 5–10 kDa yeast

peptidic fraction in naturalwinemaking conditions despite the presence

of phenolic compounds is an interestingfinding. It is usually known that

phenolic compounds are able to interact with proteins leading either to

their precipitation or to changes of their bioactive properties (Sims et al.,

1995; Yokotsuka and Singleton, 1995). Wine proteins derive mostly

from grapes but also from yeasts during AF. Both reversible (van der

Waals forces, hydrogen bonding and hydrophobic binding) and irre-

versible (covalent bonds) interactions are involved. Proline rich pro-

teins like collagen, gelatin and casein, which are commonly used as

protein fining agents in wine, and some salivary proteins reported to

be involved in astringency perception, are particularly prone to interact

with phenolic compounds. The precipitation depends on the phenols

and proteins type and concentration (McRae and Kennedy, 2011;

Ozdal et al., 2013).

Few studies investigated the possible interactions between peptides

of lowMWand phenolic compounds inwine. Besides, no previous stud-

ies dealt with peptides from wine origin. Yokotsuka and Singleton

(1995) demonstrated that gelatin peptides (2, 5 and 10 kDa) and syn-

thetic peptides of low MW (between 1.3 and 2.5 kDa) were very effec-

tive forfiningwines, at least at the same levels aswhole gelatin (70 kDa)

with high affinity for phenols. The affinity depended on the pH and tem-

perature. Osborne and Edwards (2007) found that S. cerevisiae RUBY.

Ferm was able to produce a peptide of 5.9 kDa that inhibited O. oeni

Viniflora oenos during sequential fermentations in synthetic grape

juice media lacking phenols. However, Larsen et al. (2003) who previ-

ously used the same strains combination were able to successfully

achieve MLF in Chardonnay wines. Therefore, it was suggested that

the Chardonnay wine contained phenolic compounds that may have

interacted with the 5.9 kDa peptide.

The 5–10 kDa peptides of this studymay have not presented binding

sites for phenolic compounds and thuswere not removed. Regardless of

the different types and concentrations of phenolic compounds, the

inhibition caused by the 5–10 kDa peptidic fraction released by S.

cerevisiae BDX was preserved in natural winemaking conditions.

3.2. Timing of the release of the 5–10 kDa anti-MLF peptidic fraction pro-

duced by S. cerevisiae BDX during AF

In order to assess the timing of the release of the 5–10 kDa peptidic

fraction, the AF in the SGJ medium was followed until total sugar con-

sumption. It lasted 120 h whereas the stationary growth phase started

after 50 h. A peptidic fraction of 5–10 kDa was collected each 24 h of

the AF. Five fractions were obtained and each one was tested in a mod-

ifiedMRSmediumwhere it was finally 10.5 times concentrated. The re-

sults were compared with those obtained in a modified MRS control.

Fig. 1a shows that the growth kinetic profiles of O. oeni Vitilactic F in

the presence of the fractions collected after 24, 48 and 72 h were very

similar. Although the average specific growth rates were identical to

that of the control (0.009 h−1), the final biomass reached (0.072 g/L)

was 10% less than the one obtained in the control (0.08 g/L) (Table 4).

When the fractions collected after 96 and 120 hwere tested, the specific

growth rates were slightly higher (0.013 h−1, p b 0.05), but the maxi-

mum biomass reached (0.03 g/L) was reduced by 62.5% compared to

the control (Table 4). Moreover, a decline phase was detected with

these two fractions leading to the death of the whole population with

the last fraction (120 h).

The malate was totally consumed in the presence of the fractions

collected after 24 h (D1), 48 h (D2) and 72 h (D3) butwith a gradual de-

crease of the consumption kinetics (Fig. 1b and Table 4). The average

specific rate of malate consumption in the presence of the fraction D1

was similar to that of the control (0.37 g g−1 h−1, p N 0.05). In the pres-

ence of the fractions D2 and D3, the specific rates were 23% lower than

in the control (p b 0.05). The fractions taken after 96 h (D4) and 120 h

(D5) of AF were the most inhibiting ones as only 0.37 and 0.19 g/L of

L-malic acid were consumed reducing the control specific rate of 57

and 77% respectively (p b 0.05).

Therefore, we can conclude that the 5–10 kDa peptidic fraction was

gradually released during AF and reached its maximum inhibitory con-

centration at late stages of the yeast stationary phase (96 and 120 h). Its

effect started to be detectable with the fraction D2 (48 h) which

corresponded to the end of the AF exponential growth phase, reducing

Table 2

Total phenolic content (mg/L equivalent gallic acid) in Cabernet Sauvignon and Syrah wines at the end of the AF carried out by S. cerevisiae CY3079 and S. cerevisiae BDX.a

Pre-fermentation maceration temperature (°C) Cabernet Sauvignon wine Syrah wine Cabernet Sauvignon wine Syrah wine

Phenolic content at the end of the AF carried out by

S. cerevisiae CY3079 (mg/L)

Phenolic content at the end of the AF carried out by

S. cerevisiae BDX (mg/L)

10 513 ± 18 365 ± 7 868 ± 18 378 ± 32

60 2635 ± 21 2425 ± 106 2925 ± 7 2718 ± 117

70 3725 ± 21 3043 ± 88 3978 ± 11 3645 ± 170

80 2985 ± 21 2295 ± 35 3078 ± 11 2585 ± 42

a Results are mean ± SD values of three replications.

Table 3

Growth of O. oeni Vitilactic F and malate consumption during MLF performed in the Syrah and Cabernet Sauvignon wines obtained after AF by S. cerevisiae CY3079 or S. cerevisiae BDX.a

Pre-fermentation maceration

temperature (°C)

AF carried out by S. cerevisiae CY3079 AF carried out by S. cerevisiae BDX

Cabernet Sauvignon wine Syrah wine Cabernet Sauvignon wine Syrah wine

10 60, 70 and 80 10 60, 70 and 80 10 60, 70 and 80 10 60, 70 and 80

Bacterial biomass produced (g/L) 0.120 ± 0.005 0.080 ± 0.004 0.120 ± 0.006 0.080 ± 0.004 0.0024 ± 0.0002 0.0004 ± 0 0.0044 ± 0.0002 0.0004 ± 0

Consumed L-malic acid (g/L) 3.00 ± 0.06 3.00 ± 0.06 3.00 ± 0.06 3.00 ± 0.06 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Experiment duration (days)b 30 45 30 45 90 90 90 90

a The experiment was followed until total consumption of L-malic acid (30 and 45 days) in wines produced by S. cerevisiae CY3079 (non-inhibitory strain). Although malate was not

consumed, it was followed for 90 days in wines produced by S. cerevisiae BDX (inhibitory strain).
b Results are mean ± SD values of three replications.



mainly the rate of malate consumption. The same was noticed with the

fraction D3 (72 h). The strong inhibition of malate consumption with

the fractions D4 (96 h) and D5 (120 h) can somewhat explain the

weak final biomasses formed. It is known that MLF produces ATP

through a chemiosmotic mechanism thus enhancing the bacterial

growth (Bouix and Ghorbal, 2015; Cox and Henick-Kling, 1995). The

MLF is one of the main sources of energy for bacteria in winemaking

conditions. Therefore, an inhibition of malate consumption can also af-

fect the bacterial growth.

Information about the timing of the release of antibacterial peptides/

proteins is scarce and to our best knowledge no previous work has de-

scribed simultaneously the kinetics of their production and the kinetics

of their anti-MLF activity. Albergaria et al. (2010) showed that S.

cerevisiae CCMI 885 started to secrete three antifungal peptides of

about 6, 4.5 and 4 kDa at the end of the AF exponential growth phase

(day 2) with a gradual increase of their concentration during the sta-

tionary growth phase (days 4 and 7). Later on, Branco et al. (2014)

who used the same yeast strain demonstrated that these peptides

were also active against the growth of O. oeni and corresponded to

GAPDH-derived peptides of 1.6 kDa. They suggested that the peptides

were released by apoptotic yeast cells during the stationary phase. In

fact, Silva et al. (2011) showed that GAPDH is presumably a substrate

of metacaspases during apoptosis. Our findings present some similari-

tieswith these conclusions since themost important antibacterial effect

was detected with the fractions obtained from late stationary phase.

However, further investigation must be carried out to see if any of the

5–10 kDa peptides is possibly a GAPDH fragment.

The timing results are in accordancewith the co-culture results pub-

lished by Nehme et al. (2010) who demonstrated that the co-culture

strategy improved the MLF output with the same pair (S. cerevisiae

BDX/O. oeni Vitilactic F). During co-cultures, AF and MLF were conduct-

ed simultaneously by inoculating yeasts and bacteria at the same time

from the beginning in a membrane bioreactor using the same experi-

mental conditions. The bacterial growth was twice better and 74% of

the initial malate were successfully consumed in 3 weeks without any

risk of increased volatile acidity or off-flavors. Although the 5–10 kDa

peptides gradually appeared during the AF as demonstrated by the

present study, the MLF was improved. More recently, co-inoculation

was suggested as aworthwhile alternative forwinemaking both for bet-

ter malate consumption and sensorial characteristics when compared

with the traditional sequential inoculation (Cañas et al. 2015; Versari

et al., 2015; Tristezza et al., 2016).

Information about the timing of the release of the inhibitory pep-

tides is very useful for the determination of the best moment for bacte-

rial inoculation and for an optimum extraction of the targeted

molecules.

3.3. In vitro evaluation of the malolactic enzyme inhibition by the 5–10 kDa

peptidic fractions

In this experiment, the malolactic enzyme of the cell-free bacterial

enzymatic extract was directly exposed to the inhibitory peptides. The

five fractions of 5–10 kDa collected each 24 h of the AF (D1 to D5)

were tested as described in Table 1. Table 5 shows the amounts of L-

malic acid consumed, L-lactic acid produced and the inhibition percent-

age of malate consumption for each 5–10 kDa fraction tested at pH 6.7.

For pH 6 and 3.5, only the values of the inhibition percentage of malate

consumption are given.

Thefirst set of experimentswas conducted at pH6.7which is around

the cytoplasmic pH of the majority of lactic acid bacteria. First, the re-

sults clearly show that the 5–10 kDa fractions were able to reduce the

amount of L-malic acid consumed of 28% (D1) to 91% (D5) when com-

pared to the control, thus exhibiting a direct inhibitory effect on thema-

lolactic enzyme activity (p b 0.05). The ethanol concentration in the five

fractions was evaluated and a residual amount of 0.02 g/L was found in

the 5–10 kDa fraction corresponding to D5. Therefore, all the fractions

were ethanol free and the inhibition observedwas only due to the pres-

ence of the peptides. Second, the kinetic of the inhibition was in agree-

ment with the results of the timing experiment (Fig. 1b) proving once

again that the 5–10 kDa peptidic fraction was gradually released during

the AF with the highest concentration reached at the end of the station-

ary phase. Third, it is known that during the malolactic fermentation,

each mole of L-malic acid decarboxylated by the malolactic enzyme re-

leases onemole of L-lactic acid and onemole of CO2. Therefore, themea-

surement of the lactate produced was an additional indicator of the

malolactic enzyme activity. The amounts of L-lactic acid produced

were measured and found to be stoichiometrically equivalent to the

amounts of L-malic acid consumed. As an example, in the presence of

the fraction D1, 0.72 g/L of L-malic acid equivalent to 5.4 mmol/L were

consumed and gave 0.48 g/L of L-lactic acid which corresponded to

5.3 mmol/L. Consequently, the gradual decrease in the amount of L-lac-

tic acid produced proved that the 5–10 kDa peptidic fractions targeted

Fig. 1. Growth (a) and malic acid consumption (b) kinetics of O. oeni Vitilactic F in the

control and in the presence of the 5–10 kDa inhibitory fractions collected at different

intervals of the AF. (♦) Control: modified MRS medium, (■) 5–10 kDa collected after

24 h of the AF (D1), (▲) 5–10 kDa collected after 48 h of the AF (D2), (×) 5–10 kDa

collected after 72 h of the AF (D3), (○) 5–10 kDa collected after 96 h of the AF (D4), (●)

5–10 kDa collected after 120 h of the AF (D5). Each value is the mean of triplicate

experiments ± SD.



specifically the malolactic enzyme and not any other enzyme of the cy-

tosolic extract.

5–10 kDa fractions isolated from the SGJ media fermented by S.

cerevisiae CY3079 (reference strain or non-inhibitory strain) were also

tested and gave results similar to the control (data not shown). In fact,

the 1 g/L of L-malic acid were totally decarboxylated by the malolactic

enzyme in the presence of these fractions showing no inhibition. There-

fore, the inhibition of the malolactic enzyme by the 5–10 kDa peptides

of S. cerevisiae BDX was highly specific.

The same experiment was repeated by changing the pH (Table 5).

The pH 6 was chosen because it is the optimum pH for activity of the

malolactic enzyme of O. oeni (Schümann et al., 2013). The inhibition of

malate consumption gradually increased in the presence of the 5–

10 kDa fractions leading to the same conclusions obtained at pH 6.7.

However, the reaction was faster. 30 min instead of 40 min were re-

quired to entirely decarboxylate 1 g/L of L-malic acid into L-lactic acid

and CO2 in the control. The pH 3.5 was also tested because it represents

the pH of wine at the beginning of theMLF in this study. At this extreme

pH, similar results were also obtained. However, the reaction was the

slowest and took 70 min in the control. Interestingly, Bouix and

Ghorbal (2015) demonstrated that at low extracellular pH, O. oeni

cells were able to drop their intracellular pH to values as low as 3.5

(equal to the extracellular pH). The MLF was then initiated indicating

that the malolactic enzyme was active at this low pH. During MLF, the

intracellular pH increased again due to theproton extrusion that accom-

panied the release of lactate and CO2. It reached 6 at the end of the MLF

and dropped again to 3.5 when the malate was totally consumed. The

results of the in vitro experiment performed at 3.5 showed that the en-

zymewas indeed active at this low pH although the enzymatic reaction

was 2.3 times slower than at pH 6 (Table 5).

From theprevious results, it can be concluded that the peptideswere

able to exert their inhibitory effect in a pH range between 3.5 and 6.7.

The results also suggest that in vivo, the peptides of the 5–10 kDa

fraction released by S. cerevisiae BDX would enter the bacterial cells by

mechanisms yet to be identified and directly inhibit the malolactic en-

zyme. The presence of cell receptors to these peptides could be

suggested.

No previous works have shown the involvement of yeast proteina-

ceous metabolites in the direct inhibition of the malolactic enzyme ac-

tivity. Few have attempted to explain the mechanism of action of the

yeast antibacterial peptides/proteins and evaluated mainly their impact

on the bacterial growth. The proteinaceous compound ≥10 kDa found

by Comitini et al. (2005), was dose dependent and was able to reduce

the bacterial growth with a typical saturation kinetic thus suggesting

the presence of a receptor on the bacterial cell. Therefore its bacterio-

static or bactericidal effect depended on its concentration and the MLF

inhibitionwas correlated to its bactericidal effect. The 3–10 kDapeptidic

fraction found by Mendoza et al. (2010) inhibited the bacterial growth

but not themalate consumptionwith a typical saturation kinetic similar

to that suggested by Comitini et al. (2005). Osborne and Edwards

(2007) suggested that the antibacterial peptide of 5.9 kDa worked syn-

ergically with SO2. The mechanism proposed was that of bacteriocins

Table 4

Determination of the average specific growth rates and the average specific rates of malate consumption during theMLF carried out byO. oeniVitilactic F in themodifiedMRSmedia con-

taining the 5–10 kDa fractions collected each 24 h of the AF as well as in the control.1

Control: modified

MRS medium

Modified MRS

medium + D12

fraction

Modified MRS

medium + D22

fraction

Modified MRS

medium + D32

fraction

Modified MRS

medium + D42

fraction

Modified MRS

medium + D52

fraction

X0: Initial biomass (g/L) 0.0016 ± 0.0002 0.0016 ± 0.0002 0.0016 ± 0.0002 0.0016 ± 0.0002 0.0016 ± 0.0002 0.0016 ± 0.0002

Xf: Final biomass (g/L) 0.080 ± 0.006 0.072 ± 0.006 0.073 ± 0.005 0.072 ± 0.006 0.031 ± 0.002 0.030 ± 0.002

dt1: Growth duration (h) 216 216 216 216 144 144

μ
3: average specific growth

rate (h−1)

0.009 ± 0.001a 0.009 ± 0.001a 0.009 ± 0.001a 0.009 ± 0.001a 0.013 ± 0.002b 0.013 ± 0.001b

S0: Initial L-malic acid (g/L) 3.25 ± 0.16 3.01 ± 0.16 3.03 ± 0.20 3.03 ± 0.15 3.04 ± 0.15 3.09 ± 0.12

Sf: Final L-malic acid (g/L) 0 ± 0 0.03 ± 0 0 ± 0 0 ± 0 2.67 ± 0.12 2.90 ± 0.16

dt2: Duration of MLF (h) 216 216 288 288 144 144

Qs
4: average specific rate of

malate consumption

(g g−1 h−1)

0.37 ± 0.02a 0.375 ± 0.020a 0.28 ± 0.02b 0.290 ± 0.015b 0.16 ± 0.01c 0.084 ± 0.006d

1 Results are mean ± SD values of three replications. In comparison to the control, values of average specific rates (growth or malate consumption) within the same row followed by

different letters are significantly different (p b 0.05) according to Tukey's HSD test.
2

μ (h−1) = (dX / dt1).1/X with dX= (Xf− X0) and X = (Xf + X0) / 2.
3 Qs (g g−1 h−1) = (dS / dt2).1/X with dS = (S0 − Sf) and X = (Xf + X0) / 2.
4 D1 to D5 (day 1 to day 5): 5–10 kDa fractions collected at 24, 48, 72, 96 and 120 h of the AF performed by S. cerevisiae BDX.

Table 5

Amount of L-malic acid consumed (g/L) and L-lactic acid produced (g/L) during the enzymatic reaction in vitro performed at different pH in the presence of the 5–10 kDa fractions (ABP)

collected each 24 h of the AF.1

Sampling time of the 5–10 kDa fractions

during the AF

pH = 6.7

t = 40 min

pH = 6

t = 30 min

pH = 3.5

t = 70 min

Consumed L-malic

acid

(g/L)

Produced L-lactic

acid

(g/L)

Inhibition % of malate

consumption2

Inhibition % of malate

consumption

Inhibition % of malate

consumption

Control 3(absence of ABP) 1.00 ± 0.02a 0.670 ± 0.013a 0 ± 0 0 ± 0 0 ± 0

After 24 h of the AF (D1) 0.720 ± 0.015b 0.48 ± 0.01b 28.0 ± 0.6 8.00 ± 0.16 7.30 ± 0.15

After 48 h of the AF (D2) 0.630 ± 0.013c 0.420 ± 0.009c 37.0 ± 0.8 15.0 ± 0.3 14.6 ± 0.3

After 72 h of the AF (D3) 0.560 ± 0.011d 0.380 ± 0.008d 44 ± 1 30.0 ± 0.6 32.30 ± 0.65

After 96 h of the AF (D4) 0.100 ± 0.002e 0.070 ± 0.002e 90 ± 2 90.4 ± 2.0 94 ± 2

After 120 h of the AF (D5) 0.090 ± 0.002f 0.060 ± 0.002f 91 ± 2 94 ± 2 100 ± 2

1 Results aremean±SDvalues of three replications. In comparison to the control, values ofmalate consumed and lactate produced followedbydifferent letterswithin the same column

are significantly different (p b 0.05) according to Tukey's HSD test.
2 Inhibition % of malate consumption = (consumed L-malic acid in the control − consumed L-malic acid in the presence of ABP) × 100 / (consumed L-malic acid in the control).
3 Absence of ABP: absence of antibacterial peptides.



forming membrane pores and facilitating the entry of SO2 inside the

cells thus leading to the bacterial death and arrest of MLF. The mecha-

nism of action of the GAPDH-derived peptides identified by Branco et

al. (2014) and that inhibited the growth of O. oeni was not elucidated.

In addition no data concerning the malate consumption was shown.

In conclusion, the results of the present work revealed that the anti-

MLF peptidic fraction of 5–10 kDa produced by S. cerevisiae BDX was

gradually released during AF with an increasing inhibitory effectmainly

detected between the beginning and the late stages of the stationary

phase. The MLF inhibition due to the peptidic fraction was maintained

in natural winemaking conditions. It was shown for the first time that

yeast proteinaceous compounds were able to inhibit the L-malic acid

consumption by directly targeting the malolactic enzyme activity. Cur-

rentwork is carried out in order to purify and sequence the putative bio-

active peptides of the 5–10 kDa fraction. Futurework should investigate

their antimicrobial range of action, their biochemical and inhibitory

properties and the possibility of using them as natural alternative

biopreservatives in food products.
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