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a b s t r a c t

Mild steel couponswere exposed to hydrogenase in a 10mMphosphate solution. Control coupons were covered

by a layer of vivianite. The injection of hydrogenase caused a fast increase in the open circuit potential; this in-

crease depended on the amount of hydrogenase injected and increased from 8 mV for 30 μL hydrogenase to

63 mV for 80 μL. The presence of enzyme resulted in a thicker deposit: high amounts induced the accumulation

of corrosion products. Hydrogenase thatwas deactivated by air revealed a protective effect: non-degradationwas

observed. In contrast, hydrogenase thatwas denatured by heat provoked an important deposit of corrosion prod-

uctswith a heterogeneous, cracked structure. The study showed that the action of hydrogenase is not linked to its

regular enzymatic activity but to a balance between the protective effect of its protein shell and the electrochem-

ical action of its iron-sulphur clusters. Depending on the operating conditions, hydrogenase can either enhance or

mitigate the formation of a corrosion layer on mild steel.

Keywords:

Hydrogenase

Mild steel

Phosphate medium

Microbial corrosion

Microbially influenced corrosion

1. Introduction

Sulphate-reducing bacteria and thiosulphate-reducing bacteria

(SRB/TRB) are the most clearly identified causes of anaerobic

microbially influenced corrosion (MIC) of steels in natural environ-

ments [1–7]. Severalmechanisms have been proposed to explain anaer-

obic MIC by SRB and TRB [8–15]. As far as SRB are concerned, the most

often evoked mechanism is based on the production of sulphide ions

by the metabolic reduction of sulphates. Sulphide ions react with iron

ions, forming iron sulphide which deposits on the material surface

and catalyses the reduction of proton:

Hþ þ e− ⇨ 1=2H2 or H2O þ e− ⇨ 1=2H2 þ OH− ð1Þ

Several studies have discussed the efficiency of iron sulphides in

catalysing proton reduction depending on the crystal state and the

structure of the deposit [16–17]. Contrarily towhat has been said some-

times in the past, the consumptionof thefinal hydrogen, by SRBor other

means, cannot have a direct effect on the corrosion rate [18]. In Eq. (1)

the forward reaction of electron uptake by the proton is the rate-

limiting step on steel surfaces in anaerobic environments. Consuming

the final hydrogen product cannot consequently have any direct effect

on the rate of electron extraction from the material. Consequently,

consuming the final hydrogen cannot enhance the corrosion process.

Consumption of hydrogen by SRB can only have an indirect effect

by promoting the development of SRB on the material surface and

enhancing the production of sulphide ions, for instance.

Some studies have demonstrated that there is a direct correlation

between the presence of hydrogenase in SRB and corrosion [19–20],

while it has also been claimed that a hydrogenase-negative strain of

SRB is more corrosive than hydrogenase-positive strains [21]. Hydroge-

nases are a group of enzymes that catalyse the reversible oxidation of

hydrogen (Eq. (1)) [22–23]. Hydrogenases are divided into three groups

according to the composition of their active site [22,24]: [NiFe]-, [FeFe]-,

and the Fe\\S cluster-free hydrogenases (initially called metal-free

and now renamed [Fe]-hydrogenase [25–26]). The [NiFe]- and [FeFe]-

enzymes form the vast majority. [FeFe]-hydrogenases are known

to have 100 times more H2 production specific activity than [NiFe]-hy-

drogenases [27]. In the metabolic pathway, they transfer the electrons

to specific redox partners (Med) like cytochromes, nicotinamide ade-

nine dinucleotide (NAD+) or ferredoxin (FdOx). They also can use artifi-

cial mediators as electron acceptors. For instance, the [Fe]-hydrogenase

from Clostridium acetobutylicum that was used in this work can ex-

change electrons with ferredoxin (natural partner) or methyl viologen

(artificial mediator), both following the global reaction:

H2 þ MedOx ⬄ 2Hþ þ MedRed ð2Þ

Hydrogenases have been claimed to be involved in corrosion

mechanisms either by being present inside bacterial cells or by being

free after cell lysis [20,28]. Several studies have tried to elucidate the

possible effect of free hydrogenases on the corrosion of steels and

have proposed two kinds of mechanisms.
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1.1. Mechanism 1: catalysis of hydrogen consumption with involvement of

phosphate species (Schematic 1)

A synergetic effect of hydrogenase and phosphate species on corro-

sionwasfirst pointed out by Bryant and Laishley [29–30], who observed

that hydrogenase increased the corrosion rate of carbon steel when

used in a phosphate solution. These authors proposed a direct reaction

between steel and phosphate ions:

3FeB þ 4H2PO
−

4 → Fe3ðPO4Þ2 þ 3H2 þ 2HPO2−
4 ð3Þ

This mechanismwas then reworked, demonstrating that phosphate

species undergo a so-called cathodic deprotonation on steel surfaces

[31]:

H2PO
−

4 þ e
−

⬄ HPO2
4− þ §H2 ð4Þ

This reaction, coupled with acid equilibrium:

HPO2
4− þ Hþ

⬄ H2PO
−

4 ð5Þ

presents the phosphate species as an efficient homogeneous catalyst

for the reduction of proton/water [8]. The cathodic deprotonation of

phosphate species (Reaction (4)) is relatively fast on steel surfaces

and not strictly limited by the forward electron uptake (as is Eq. (1)).

On steel surfaces, Reaction (4) is a balanced reaction that can be shifted

by the consumption of hydrogen. In this case, with significant concen-

trations of phosphate in the solution, the consumption of hydrogen

can increase the rate of electron extraction from the material, and con-

sequently increase corrosion. This process has been shown onmild steel

using hydrogenase from Ralstonia eutropha, which catalysed the oxida-

tion of hydrogen with NAD+ as a final electron acceptor [32]. However

hydrogenase can enhance corrosion following this mechanism only in

the presence of two different compounds:

- a compound able to ensure a balanced cathodic deprotonation (like

phosphate species, Reaction (4))

- a final electron acceptor, with which the enzyme is able to work

(depends on the hydrogenase species).

1.2. Mechanism 2: catalysis of proton reduction by adsorbed hydrogenase

(Schematic 1)

The second mechanism is based on the direct catalysis of proton re-

duction by adsorbed hydrogenase. The catalysis by adsorbed hydroge-

nase of direct electron extraction from different metals has already

been demonstrated in the literature. Hydrogenases from Thiocapsa

roseopersicina and Lamrobacter modestohalophilus have been shown to

catalyse the oxidation of metals directly, without the need for a media-

tor [33]. Hydrogenases from T. roseopersicina and Alcaligenes eutrophus

can use cadmiumparticles directly as electron donors toproducehydro-

gen or to reduce NAD+. It has been assumed that this mechanism can

accelerate metal dissolution and thus be a key to MIC processes [34].

Moreover, hydrogenases from Methanococcus maripaludis can use iron

granules to produce hydrogen by a direct electron transfer [35]. As

well, on pyrolytic graphite, hydrogenases from Escherichia coli are able

to catalyse some electrochemical reactions which are only possible

with a large overpotential in absence of catalyser [36]. Hydrogenase

from R. eutropha (new name for A. eutrophus) adsorbed on stainless

steel has also been claimed to create a direct cathodic reaction on stain-

less steel [37]. Nevertheless, in this case, because of the presence of both

a final electron acceptor and phosphate buffer, significant involvement

of Mechanism 1 may be suspected.

Catalysis of electron extraction by adsorbed hydrogenase has been

evoked several times in the literature as a likely key step in anaerobic

MIC. Nevertheless, to our knowledge, our previous work carried out

with hydrogenase from C. acetobutylicum was the first experimental

demonstration that hydrogenase increased the corrosion of steel [38].

In this study, experiments have been performed in the absence of any

final electron acceptor other than protons and water. In this condition,

hydrogenase cannot oxidise the hydrogen that results from the corro-

sion process. ConsequentlyMechanism1 cannot occur andhydrogenase

can act only via the direct catalysis of proton or water reduction.

The purpose of the current study was to progress in deciphering the

fine mechanisms of hydrogenase action in the corrosion of mild steel.

The high concentration of phosphate that was used in the previous

study (100mM) interferedwith the results because of the large amount

of vivianite that formed rapidly on the steel surface. Here, the experi-

ments were performed with less concentrated phosphate solutions

(10 mM). No other electron acceptor than proton and water was pres-

ent in solution, neither natural redox partner (oxidised ferredoxin)

nor artificialmediator, in order to avoid the occurrence ofMechanism1.

2. Materials and methods

2.1. Chemicals and biochemicals

Solutions were prepared in deionised water (ELGA PURELAB, 10–

15 MΩ·cm) with analytical grade chemicals: sodium dihydrogeno-

phosphate (Prolabo), tris(hydroxyl-methyl) aminomethane (named

Scheme 1.Mechanisms for hydrogenase action on steel corrosion in anaerobic phosphate

medium; a) Mechanism 1: Catalysis of hydrogen consumption with involvement of

phosphate species. b) Mechanism 2: catalysis of proton reduction by adsorbed

hydrogenase. Hase is for hydrogenase in its reduced (red) or oxidized (Ox) form. Med is

for mediator in its reduced (red) or oxidized (Ox) form.



Tris-HCl fromAcros Organic), hydrochloric acid (Acros Organics), and so-

dium hydroxide. C. acetobutylicum cells were cultured and hydrogenase

extracted following the procedures reported elsewhere [39].

Hydrogenase solution was divided into aliquots that were stored at

−80 °C. Each aliquot was used only once in order to limit loss of activity.

For a given set of experiments, all the aliquots came from the same

purification process. Hydrogenase activity was measured at 37 °C for H2

consumption in a phosphate buffer 0.1 M pH 7.2. The purified hydroge-

naseused in thestudy,hadaspecificactivityof194,339μmolmin−1mg−1

that led to an activity of 4250 μmolmin−1mL−1 (or 4250Units·mL−1) in

the aliquots. Injecting 30 μL, 50 μL or 80 μL hydrogenase into the 50 mL

cells was equivalent to final activities of around 2.5 U·mL−1,

4.25 U·mL−1 and 6.8 U·mL−1 respectively.

2.2. Electrochemical measurements

The electrochemical experiments were performed with a three-

electrode system in closed cells (Metrohm) containing 50 mL solution.

The working electrodes were 2-cm-diameter cylinders of 1145 mild

steel purchased from Thyssen KruppMaterials, France (elemental com-

position by weight percentage: 0.46 C, 0.31 Si, 0.65 Mn, 0.01 P, 0.032 S,

0.1 Cr, 0.1 Ni, 0.02 Mo, 0.05 Al, 0.11 Cu) embedded in resin (Resipoly

Chrysor). The electrical connection was made through titanium wire

screwed into the steel sample and protected with resin. Coupons were

ground successively with SiC papers of P120, P180, P400, P800, P1200,

P2400, P4000 grit (Lam Plan) and rinsed thoroughly with distilled

water. A platinum-iridium (10% iridium) grid was used as the auxiliary

electrode and a saturated calomel electrode (SCE, radiometer analytical)

as the reference.

The electrochemical cell was hermetically closed. The steel coupon

wasfirstmaintained above the solution surfacewhile nitrogenwas con-

tinuously bubbled into the solution for 40 min. It was then immerged

into the solution and the nitrogen flow was maintained during the

whole experiment. 15 min after the coupon was immersed in the

solution, hydrogenase was injected with a syringe in strict anaerobic

conditions, oxygen having been removed from the syringe with

nitrogen. All experiments were carried out at room temperature.

The electrochemical measurements were performed by using a

VMP2 multipotentiostat (Bio-Logic, SA) monitored by the software

EC-lab 9.2. The open-circuit potential (Eoc), also called free corrosion po-

tential, was monitored over time when the steel coupon was immersed

in the solution for 24 h. Polarisation resistance (Rp) was recorded every

4 h using voltammetry technique around the Eoc scanning the potential

from Eoc− 10 mV to Eoc + 10 mV, at 0.2 mV s−1.

Considering the Tafel law for the anodic (mainly oxidation of iron)

and cathodic (mainly reduction of proton/water) reactions, the anodic

(ia) and cathodic (ic) currents are given by Eqs. (6) and (7):

ia ¼ icorr exp
aa F

RT
E−Ecorrð Þ

! "# $

ð6Þ

ic ¼ icorr − exp
−ac F

RT
E−Ecorrð Þ

! "# $

ð7Þ

where αa and αc are the anodic and cathodic transfer coefficients, re-

spectively, icorr is the corrosion current density and Ecorr the corrosion

potential [40].

In the vicinity of Ecorr, the global current (ia + ic) can be linearized

using the Stern-Geary model [41] that results in the following:

ia ¼ ic ¼ icorr 1þ
aa F

RT
E−Ecorrð Þ

! "

− 1−
ac F

RT
E−Ecorrð Þ

! "! "

ð8Þ

ia þ ic ¼ icorr E−Ecorrð Þ 1=βa þ 1=βcð Þ: ð9Þ

Eq. (9) is the equation of a straight line. Consequently, the slope of

the polarisation curve in the vicinity of the corrosion potential (Δi/ΔE)

is proportional to the corrosion rate (which is proportional to the corro-

sion current density) and corresponds to the inverse of the polarisation

resistance (Rp) as follows:

Δi=ΔE ¼ icorr=B ¼ R−1
P ð10Þ

with

B ¼ βaβcð Þ= βaβcð Þ: ð11Þ

Software based on this Stern-Geary model was used to determine

the polarisation resistances Rp from the experimental current-

potential measurements.

2.3. Surface imaging and analysis

Metal deterioration was assessed by Scanning Electron Microscopy

(SEM) using a LEO 435 VP-Carl Zeiss SMT (10,000× magnification,

10 kV acceleration voltage). Surface chemical analysis was performed

by energy dispersive X-ray analysis (EDX). For each sample, the average

values and standard deviations resulted from many measurements

performed at different spots on the sample surface.

Fig. 1.Open circuit potential versus time for 1145 carbon steel electrode immersed in anaerobic 10mNphosphate solution pH7.2,with orwithout addition of hydrogenase. Fluctuations of+/−

10 mV that appeared on the graph every four hours were due to polarization resistance measurements.



3. Results and discussion

3.1. Influence of active hydrogenase on open circuit potential and deposit

composition

Mild steel 1145 coupons were immersed in phosphate solution

10 mM, pH 7.2 for 24 h. The electrochemical cell was hermetically

closed and great care was taken to bring the steel coupon into contact

with the solution only after it had been strictly deoxygenated (see the

Materials and methods section). The potential was stabilised for

15 min and hydrogenase was then injected in strictly anaerobic

conditions, because the hydrogenase from C. acetobutylicum is highly

sensitive to oxygen. The variation of the open-circuit potential Eoc was

recorded as a function of time for 24 h (Fig. 1).

Seven control experiments were performed without any injection,

or with injection of only deoxygenated phosphate solution at t =

15 min, to check that the injection process did not introduce traces of

oxygen into the cell. No significant potential evolution was observed.

After 24 h immersion, the electrode was covered by a uniform, greyish

film (Fig. 2A) that tended to become bluish on exposure to air, a behav-

iour that is characteristic of vivianite (Fe3(PO4)2, 8H2O) [42]. SEM

micrography of these coupons (immersed in the absence of hydroge-

nase) showed a grey surface with the presence of crystals (Fig. 3).

EDX analyses averaged over different spots of the surface did not reveal

the presence of carbon although it was clearly detected on clean cou-

pons before they were immersed in the phosphate solution, confirming

that the deposit coated uniformly the surface of the coupon. In terms of

atomic mass percentages, the deposit was mainly composed of iron

(51–64%) and oxygen (32–38%) (Table 1). The percentage of phospho-

rous, around 3%, was smaller than expected for pure vivianite, which

usually contains around 9% phosphorous. As the amounts of iron were

rather high, the deposit was probably a mixture of vivianite and iron

oxide. Moreover, other products containing simultaneous iron and

phosphorous were also suggested in literature: for instance, the forma-

tion of an amorphous type of iron phosphide Fe2P is possible, this

deposit was observed under biotic and abiotic conditions, especially

when culture media for testing microbial corrosion are supplemented

with phosphates and sulphates [43,44]. A compoundwith average stoi-

chiometric formula Zn0·5K1.1PO3·35Fe0.4 was also detected during the

protection process of 1138 carbon steel by zinc phosphatation followed

by a post-treatment with potassium monofluorophosphate [45].

As shown in Fig. 1, injecting hydrogenase caused a fast increase in

potential. Most of the potential increase occurred during the first hour

Fig. 3. SEMmicrograph for 1145 carbon steel surface after 24 hour immersion in anaerobic

10mMphosphate solution pH7.2, in the absence of hydrogenase. 10000 × magnification,

10 kV acceleration voltage.

Fig. 2. Photographs of 1145 carbon steel coupons after 24 hour immersion in anaerobic 10 mMphosphate solution pH 7.2 in the absence of hydrogenase (A) and in the presence of 30 µL

hydrogenase (B), 50 µL hydrogenase (C) and 80 µL hydrogenase (D).



after injection of the enzyme. Full potential increase values (ΔE) were

evaluated by subtracting the value of the potential just before hydroge-

nase injection (t=15min) from the value at t=7.50 h (before the sec-

ondpolarisation resistancemeasurement).ΔE depended on the amount

of hydrogenase injected and increased from8mV for 30 μL hydrogenase

to 63mV for 80 μL (Table 2). The visual aspects of the deposits obtained

after 24 h were also clearly dependent on the amount of hydrogenase

(Table 2). With 30 μL hydrogenase, the coupon was covered with a blu-

ish mineral that indicated a marked presence of vivianite (Fe3(PO4)2,

8H2O). A few pits that turned red when exposed to air also indicated

the presence of slight local corrosion (Fig. 2B). Addition of 50 μL hydrog-

enase increased the free potential up to 43 mV and the electrode was

covered by a grey deposit that seemed more thick (Fig. 2C). 80 μL hy-

drogenase led to a green deposit that was unstable and turned red in

contact with air, corresponding to a large production of iron hydroxides

Fe(OH)2 and Fe(OH)3 (Fig. 2D) [46]. SEM surface analysis of coupons ex-

posed to 80 μL hydrogenase (couponD) showed a highly heterogeneous

corrosion layer: some surface zones were covered by small crystals

(Fig. 4A) and an heterogeneous deposit appeared on others (Fig. 4B).

The chemical analysis of the corrosion products on the surface gave

around 61% iron, 22% carbon and 16% oxygen (Table 1). The high

percentages of iron and carbon indicated that the steel surface was

certainly reached by the EDX probe in the zones where the deposit

was not present. The standard deviations of the measurements made

on 5 different spots, which were significantly higher than for the previ-

ousmeasurements (Table 1), confirmed that the deposit had an hetero-

geneous chemical composition. In contrast with all the other cases, no

phosphorous was detected in the presence of 80 μL hydrogenase. This

is in agreement with the visual observation of the electrode (Fig. 2D),

where the surface of the steel was covered by a reddish iron oxide

layer and no vivianite was detected. It can be concluded that a large

amount of hydrogenase accelerated the formation of the corrosion

products with a FeII/FeIII ratio unfavorable to vivianite deposition.

3.2. Effect of deactivated and denatured hydrogenase

Similar experiments were performed with hydrogenase that was

previously deactivated by exposure to air for 2 h and 30 min or dena-

tured by heating the aliquot at 100 °C for 30 min until the solution

boiled (Fig. 5).

Injection of 30 μL hydrogenase aliquot deactivated by exposure to air

increased the free potential by 7 mV. At the end of the experiment, no

deposit was visible on the surface of the electrode. On the contrary,

the electrode was still electrically conductive and reflected the light as

shown in Fig. 6 where the image of the camera lens can be seen on

the coupon surface.

Addition of 30 μL hydrogenase denatured by heating increased the

free potential by 26 mV. At the end of the experiment, the mild steel

electrode surface was covered by an important non-conductive deposit

with cracks spreading all over the layer (Fig. 7).

The surfacewas analysed carefully discriminating twodifferent zones:

on the upper side of the deposit (Fig. 7C spot 1) and in the crack (Fig. 7C

spot 2). EDX analysis (Table 1) indicated that the amount of iron on the

top of the layer (45%) was around half that in the crack (83%). Phospho-

rous was present in the deposit (6%) whereas it was not detected in the

Fig. 4. SEM micrographs of 1145 carbon steel surface after 24 hour immersion in anaerobic 10 mM phosphate solution pH 7.2, containing 80 µL hydrogenase: a zone covered by small

crystals (A) and a zone with a heterogeneous deposit (B). 10000 × magnification, 10 kV acceleration voltage.

Table 2

Potential ennoblement ΔE (Et = 7.5 h− Et = 15 min) and visual aspect of the surface at the

end of the experiments (t = 24 h) for 1145 carbon steel coupons immersed in anaerobic

10 mM phosphate solution pH 7.2, with or without hydrogenase.

Hydrogenase

amount/corresponding

activity

ΔΕ

(mV)

Visual aspect of the surface

0 μL/0 U·mL−1 1 Uniform deposit containing vivianite

30 μL/2.5 U·mL−1 8 Deposit containing vivianite and a few pits

50 μL/4.25 U·mL−1 48 Thick greyish deposit

80 μL/6.8 U·mL−1 63
Marked heterogeneous red deposit

Fe(OH)2/3
30 μL-oxygenated/0 U·mL−1 7 No visible deposit

30 μL-heated/0 U·mL−1 26
Thick deposit containing vivianite with

deep cracks

Table 1

EDX analysis (atomic mass %) of 1145 carbon steel surface after 24 h immersion in anaerobic 10 mM phosphate solution pH 7.2, with or without hydrogenase.

Hydrogenase amount/

element

Fe O P C K Cl Mn Na

Control, no hydrogenase

0 μLa
64/51 32/38 3/4 − 0/1 1/2 − −

80 μL hydrogenaseb 61 ± 16 16 ± 10 − 22 ± 21 − 1 ± 0.9 − −

30 μL heated hydrogenase

On deposit (spot 1 in Fig. 7C)

45 40 6 − 0.5 − 0.5 8

30 μL heated hydrogenase

In crack (spot 2 in Fig. 7C)

83 14 − − − − − 2

a Maximum/minimum values.
b Mean and standard deviation for 5 points analysed.



crack. These data indicate that the deposit was made up of corrosion

products mixed with vivianite, while only iron and iron hydroxides/ox-

ides were present inside the cracks. The cracks were anodic areas where

corrosion was occurring, while the phosphate layer was protective.

3.3. Measures of Rp and estimation of corrosion rate

During the immersion, a potential scan was performed every 4 h,

at 0.2 mV s−1 around the open circuit potential (Eoc) in the range

[Eoc− 10mV, Eoc+10mV]. The Stern-Gearymodel was used to deter-

mine the polarisation resistances Rp from the experimental current-

potential measurements (Fig. 8). The values of 1/Rp that give an evalu-

ation of the corrosion rates (Eq. (10)) are gathered in Table 3.

Seven control experiments performedwithout hydrogenase showed

identical 1/Rp that means identical icorr values, which remained stable

during the 24 h experiments. In particular, only a slight modification

of 1/Rp values was observed during the first 2 h of immersion from 8

to 9.10−4 to 6.10−4 Ω−1·cm−2, then it did no longer significantly

vary. A1/Rp value around 6.10−4 Ω−1·cm−2 (average value from

seven experiments) can be considered as the stable estimated corrosion

current that corresponds to the “mild steel/10 mM phosphate solution”

interface used here. It can be noticed that these values were close

to those reported in the literature for mild steel at open circuit condi-

tions [47]. Indeed, in NaH2PO4 0.1 M, pH 6.0, Rp has been noted to

increase from 188 Ω·cm2 (i.e. 1/Rp = 5.3.10−3 Ω−1·cm−2) at 1 min

to 1516Ω cm2 (i.e. 1/Rp = 6.7.10−4 Ω−1·cm−2) at 60 min.

For the experiments performed with hydrogenase, Tafel plots were

recorded every 4 h. No measurement was made in the period t = 0 to

t=4h to avoid any possible disturbance for the surface state of the cou-

pons. In the presence of the hydrogenase, 1/Rp values remained almost

constant in all cases and lower than the 6.10−4 Ω−1·cm−2 obtained in

control experiments, except for the heated hydrogenase. In agreement

with the variation of the free potential, 1/Rp values indicated that the

main action of hydrogenase occurred before 4 h. After 4 h, 1/Rp values

indicate a “passive” behaviour of the mild steel due to the phosphate

treatment and the vivianite formation, which was favoured by the

presence of hydrogenase. This favourable effect of hydrogenase on the

formation of a protective deposit of vivianite has already been shown

[32]. The heated hydrogenase induced more complex behaviour,

with a first increase of icorr (high values of 1/Rp) followed by a slow con-

tinuous decrease. Heated hydrogenase increased corrosion rate and

then the formation of a thick deposit slowed down corrosion. The pres-

ence of cracks where corrosion could continue explained why 1/Rp

(thus icorr) remained higher for some hours with respect to the other

cases that did not show deep cracks.

3.4. Discussion of the mechanisms

In the control experiments no local corrosion was observed after

24 h, icorr was almost constant (1/Rp around 6.10−4 Ω−1·cm−2) and

coupons were covered with a layer containing vivianite, which is

known to have a protective effect. Vivianite is an iron (II) phosphate,

which may be used as a corrosion inhibiting layer on steel surfaces

Fig. 6. Photograph (A) and SEM micrograph (B) of 1145 carbon steel surface after

24 hour immersion in anaerobic 10 mM phosphate solution pH 7.2 in the

presence of 30 µL hydrogenase deactivated by air. SEM characteristics:

10000 × magnification, 10 kV acceleration voltage.

Fig. 5.Variation of the open circuit potential versus time for 1145 carbon steel coupons immersed in anaerobic 10 mM phosphate solution pH 7.2, with hydrogenase (in different

states) or without hydrogenase. Fluctuations of +/−10 mV that appear every four hours were due to polarisation resistance measurements.



especially because of its low solubility. It is indeed used by some

industries as a corrosion protection method; the procedure is acid

phosphating carried out at temperatures of up to 95 °C and at pH

values between 2 and 3.5 with phosphates of zinc, iron or manga-

nese, which leads to vivianite production [48]. Although the detailed

mechanisms by which phosphate species lead to the formation of

protective layers and the composition of the deposit obtained in

phosphate solutions are still research topics, the main point is to

have the right amount of Fe II (compared to Fe III) on the material

surface that, in contact with the phosphate in the medium, leads to

the formation of a vivianite deposit. This is the case in abiotic condi-

tions when using chelating agent for instance [49]; the vivianite

layer deposit also depends on phosphate concentration [50,8], on

how the preceding oxide layer forms, which is linked to the experi-

mental conditions (electrode potential [51] and the presence or not

of oxygen [47,52]). In biotic conditions, other mechanisms are sug-

gested: oxygen consumption by the biofilm as the driving force to

form vivianite [53], acceleration of Fe (III) reduction to Fe (II) in pres-

ence of microorganisms (such as Geobacter sulfurreducens [54]).

When hydrogenase was added into the solution, the fast variation

of the open circuit potential with time, the visual andmicroscopic as-

pects of the coupon surfaces after 24 h, and the 1/Rp values

(reflecting icorr) confirmed a strong effect of hydrogenase on corro-

sion of carbon steel. It should be noted that the Rp measurements

were done 4 h after hydrogenase injection, meaning when the

open circuit potential had almost recovered a constant value

(Figs. 1 and 5). Rp measurements were not performed before to

avoid any disturbance during the first hours, period in which hy-

drogenase had the most obvious effect according to Eoc records.

The different behaviours observed can consequently be attributed

to the presence of hydrogenase only, without any parasite effect

due to the measurements. 1/Rp values recorded every 4 h were

then almost constant (see Table 3), except when 80 μL enzyme was

added. Except in this latter case, the stability of 1/Rp (thus icorr) and

Eoc consistently indicated that the corrosion state reached 4 h after

hydrogenase injection was roughly stable. Thus, the 1/Rp values (as

icorr) did not correspond to the period during which hydrogenase

drastically affected the material, but they corresponded to the new

surface steady state that was reached after hydrogenase injection.

1/Rp values must consequently be commented not as direct mea-

surements of the hydrogenase action, but as characteristics of the

new state resulting from hydrogenase action.

The presence of hydrogenase always led to a fast increase in Eoc, the

amplitude of which increased with the quantity of enzyme. Adding

30 μL hydrogenase resulted in a visually more important deposit than

in control experiments, with slight local pitting. It has already been

claimed that hydrogenase can induce local cathodic sites that enhance

iron dissolution in neighbouring anodic sites; the following precipita-

tion of iron ions with phosphate forms a crystalline film partially

composed of vivianite. Following this model, hydrogenase enhanced

vivianite formation [32]. The observations made here are consistent

with this mechanism. Adding 30 μL hydrogenase favoured the forma-

tion of a better protective layer, as confirmed by the smaller 1/Rp values

(1.5 10−4 Ω−1 cm−2 instead of 6.7 10−4 Ω−1 cm−2 in control experi-

ments), representing smaller icorr, that were recorded after 4 h. Larger

amounts of hydrogenase (50 or 80 μL) resulted in visually more impor-

tant deposits that contained more and more iron oxides/hydroxides. In

these cases, iron dissolution and/or ion precipitation was enhanced to

an extent that could no longer be balanced by the reaction with

Fig. 8. Example of evaluation of Rp by plotting i = f (E) (potential scan rate: 0.2 mV s−1)

for 1145 carbon steel electrodeduring immersion in anaerobic 10mMphosphate solution

pH 7.2 in the presence of 30 µL of hydrogenase. Regression equation: i (mA) =

0.47(1/kW)xE(V) + 0.35 with R² = 0.9977.

Fig. 7. Photograph (A) and SEM micrographs (B and C) of 1145 carbon steel surface after

24hour immersion in anaerobic 10mMphosphate solution pH7.2 in the presenceof 30µL

heated hydrogenase. The markers in (C) indicate the positions where the EDX analyses

were performed: on deposit (spot 1) and in a crack (spot 2). SEM characteristics:

10000 × magnification, 10 kV acceleration voltage.



phosphate species, and corrosion products (oxides and hydroxides)

accumulated in the layer.

In the presence of 30 μL hydrogenase, the lower icorr compared

to control experiments can explain the higher value of Eoc obtained.

Indeed it means that the anodic reaction decreased, and no supplemen-

tary hypothesis is required.With50 μL and 80 μL hydrogenase, Eoc enno-

blement was roughly proportional to the amount of hydrogenase, but

icorr kept similar values. Itmust be concluded that the catalysis of the ca-

thodic process was also involved in Eoc increase. In the previous work

that dealt with the effect of hydrogenase on vivianite formation [32],

the cathodic reaction created by the presence of hydrogenase was due

to the presence of phosphate and of a final electron acceptor (the natu-

ral redox partner of the enzyme). The cathodic reaction was conse-

quently related to the Mechanism 1 described in the Introduction

section. In contrast, the cathodic reaction detected here can only be

the reduction of proton (or water) into hydrogen (Reaction (1))

catalysed by the hydrogenase because no other final reductant (electron

acceptor) was present in solution.

Hydrogenase from C. acetobutylicum is highly sensitive to oxygen

traces [55]. Keeping it at air, for more than 2 h, ensured complete loss

of its catalytic properties for hydrogen oxidation. Adding hydrogenase

after deactivating it in air led to an Eoc ennoblement similar to that

with the same amount of active hydrogenase but, in contrast, the pres-

ence of the protein avoided the formation of any deposit and even

protected the material surface against corrosion. Such behaviour was

not linked to the phosphate medium. Similar observations were made

in Tris-HCl pH 6.3: after 24 h, much of the surface remained mirror

polishedwhen 30 μL deactivated hydrogenasewas added, while control

experiments in the absence of enzyme showed a homogeneous grey

film (data not shown). In this case, Eoc ennoblement was due to the de-

crease of icorr induced by the deactivated protein (1/Rp from 6.7 10−4 to

2.4 10−4 Ω·cm−2). Eoc ennoblement was not linked to a corrosion pro-

cess but to some kind of protection of thematerial by the protein. Some

complex links between “inert” proteins and the corrosion behaviour of

metallic surfaces have already been reported in the literature. For in-

stance, bovine serum albumin (BSA) adsorbed on iron-chromium alloy

showed a protective effect against corrosion at pH 1.3, whereas it accel-

erated local corrosion at pH 5.5. In both cases, the protein has been as-

sumed to affect the metal behaviour directly, as neither the thickness

nor the composition of the protective layer was affected [56]. Using

deactivated hydrogenase revealed that the simple protein shell, without

enzymatic activity, have a remarkable protective effect. This effect due

to the protein nature of hydrogenase was certainly also one of the

causes of the icorr decreases that were recorded with active hydroge-

nase. It must be concluded that hydrogenase affects the electrochemical

behaviour of mild steel via different simultaneous effects. As already

shown, adsorbed hydrogenase can catalyse the reduction of proton/

water and induce local cathodic/anodic sites that enhance iron dissolu-

tion. In the presence of phosphate species this effect favours the forma-

tion of a protective layer containing vivianite [32]. This model remains

consistent with the data obtained here. The protective effect of the

protein shell must now be added. Moreover large amounts of hydroge-

nase lead to the accumulation of iron oxides/hydroxides in the deposit-

ed layer, which gets a cracked structure.

Hydrogenase denatured by heating had the greatest effect on the

electrochemical parameters and the deposit structure. An important de-

posit was observed with a heterogeneous, cracked structure. Obviously

the corrosive effect of hydrogenase was not linked to its traditional ac-

tivity for hydrogen oxido-reduction. Heating the enzyme completely

denatured it, by unwinding and cutting the shell of amino acids that

make up its structure. [Fe]-hydrogenases contain numerous Fe\\S clus-

ters that provide an electron transfer pathway between the buried ac-

tive site and the molecular surface. [Fe]-hydrogenases have a domain

with two [4Fe4S]-ferredoxin-like clusters not far from the active site,

which are called mesial (FS4A) and distal (FS4B). In addition, the en-

zyme has a small domain containing a [4Fe\\4S] cluster (called FS4C)

and a plant–like ferredoxin domain with a [2Fe\\2S] cluster (called

FS2) [57,58]. Heating the enzyme resulted in its architecture exploding,

exposing the metallic clusters to the external surroundings or even

releasing the Fe\\S clusters.

As an important conclusion to this work, it can be assumed that

the catalysis of proton reduction was caused by the adsorption on

the coupon surface of the iron-sulphur clusters contained in the hy-

drogenase. This hypothesis perfectly explains that corrosion en-

hancement was controlled by the amount of hydrogenase and that

the effect was stronger after the enzyme had been denatured by

heating. The catalysis of corrosion by hydrogenase may now be

thought as another case of catalysis by iron-sulphur compounds. To

some extent, the mechanisms suggested here may be compared

with the mechanisms generally accepted for the microbial corrosion

induced by sulphate reducing bacteria (SRB). SRB reduce sulphate to

sulphide ions, which react with the iron ion forming iron sulphide

FeS. FeS deposits catalyse proton reduction [16,17]. Cathodic zones

(FeS) and anodic zones (Fe) are created on the same electrode, im-

plying accelerated deterioration of the material by galvanic corro-

sion [59,60].

Hydrogenase from C. acetobutylicum contains 20 atoms of Fe (six in

the active site, twelve in the [4Fe\\4S]-type clusters (FS4A, FS4B,

FS4C) and two in the [2Fe\\2S]-type clusters (FS2) [39]). The concen-

tration of hydrogenase in the initial aliquots was 0.33 × 10−6 M.

When 30 μL of the aliquot was injected into the 0.05 L electrochemical

cell, the final concentration in the cell was 2 × 10−10 M. The

overall amount of Fe contained in the electrochemical cell was then

4 × 10−9 M. In parallel, the hydrogenase has 18 atoms of sulphur

(four in the H cluster, twelve in the [4Fe\\4S] clusters: FS4A, FS4B,

and FS4C and two in 2Fe2S: FS2). The total concentration of sulphur in

the electrochemical cell was 3.6 × 10−9 M. These concentrations are

very low, and it must be concluded that the specific iron clusters

contained in the enzyme are highly efficient in catalysing proton reduc-

tion, certainly much more than the bulk iron sulphide deposits pro-

duced by SRB. Actually this conclusion is consistent with the function

of these clusters inside the protein that contributes to the efficiency of

Table 3

Evolution of 1/Rp versus time during the immersion of 1145 carbon steel coupons in anaerobic 10 mM phosphate solution pH 7.2, with or without hydrogenase; Rp is the polarisation

resistance calculated through Stearn-Geary model.

Hydrogenase amount 1/Rp (1/(Ω·cm2)) for t after injection

0 h 2 h 4 h 8 h 12 h 16 h 20 h

Control, no hydrogenase

0 μL

a7.6 ± 2 10−4 a9.6 ± 8 10−4 b6.7 ± 1 10−4 b6.2 ± 2 10−4 b5.9 ± 1 10−4 b6.2 ± 1 10−4 b6.6 ± 1 10−4

30 μL – – 1.5 10−4 1.6 10−4 1.5 10−4 1.7 10−4 1.9 10−4

50 μL – – 4.0 10−4 3.4 10−4 2.9 10−4 3.1 10−4 3.3 10−4

80 μL – – 2.7 10−4 1.7 10−4 1.5 10−4 1.3 10−4 1.4 10−4

30 μL-oxygenated – – 2.4 10−4 2.2 10−4 2.0 10−4 1.9 10−4 1.8 10−4

30 μL-heated – – 1.3 10−3 8.7 10−4 4.0 10−4 3.1 10−4 2.6 10−4

a Mean and standard deviation for 3 independent experiments.
b Mean and standard deviation for 7 independent experiments.



the reversible “proton reduction/hydrogen oxidation” reaction. Thanks

to this redox chain, hydrogenase has an extremely high activity, of the

order of 0.2 mol of hydrogen oxidised per minute per milligram of pro-

tein. Suitable adsorption of these clusters on the coupon surface should

also be an important factor in efficiency. The presence of amino acids

coming from the protein shell, even after unwinding or denaturing by

heating, certainly promotes effective adsorption.

4. Conclusion

Hydrogenase from C. acetobutylicum confirmed a high reactivity

with surfaces of mild steel. Using less concentrated phosphate solution

than in the previous work allowed a gradual effect of hydrogenase to be

pointed out, which increased with its concentration in solution. These

operating conditions also led to detect different effects of hydrogenase.

The action of hydrogenase on mild steel surfaces must now be consid-

ered as the result of the complex combination of different elements:

local catalysis of proton/water reduction that induces local iron dissolu-

tion, protective effect due to the protein shell, formation of a protective

layer containing vivianite when phosphate species are present, cracked

structure of the deposit that favours local corrosion. Moreover, the elec-

trochemical action of hydrogenase is not only linked to its regular en-

zyme activity but also to the presence of the ion-sulphur compounds.

The denatured enzyme revealed thus to be more active than the active

hydrogenase.

Such a versatility of the phenomenon with respect to the experi-

mental conditions, in particular the sensitivity of hydrogenase to

oxygen, which makes it shift from an active enzyme to a protective

protein, is certainly a main cause of the variety of results that have

been reported in the literature so far on the possible role of hydroge-

nases in microbial corrosion. From this study, a pre-treatment based

on the adsorption of inert proteins on steel surface could be proposed

as an eco-friend solution in the view to reduce the corrosion in field

conditions. Moreover this work may also be a track to develop a new

procedure for the deposit of vivianite protective layer on mild steel.
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