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ABSTRACT

In this paper, we propose a descriptor for image matching un-
der multiple mirror reflections. Indeed, existing adaptations
of SIFT for the mirror transformation are not successful when
object and mirrors orientations are not constrained. Hence,
we propose to combine MIFT and Affine-SIFT descriptors
as the Affine Mirror Invariant Feature Transform (AMIFT).
The experimental results and given evaluation show that our
proposed descriptor outperforms MIFT and ASIFT on both
synthetic and real images datasets.

Index Terms— SIFT, Affine transformation, local fea-
tures, reflection invariant feature.

1. INTRODUCTION

A Planar Catadioptric System (PCS) is an imaging sys-
tem made of refracting lenses (dioptrics) and reflecting mir-
rors (catoptrics) [1]. Using planar mirrors, one can change the
view direction, expand the field of view of a pinhole camera,
and, with two mirrors, acquire multiple views of the same ob-
ject in a single image (Fig. 1). Considered in this paper, the
latter captures, in a single PCS image, a direct view of the
scene and its single and multiple reflections on mirrors, pro-
viding a surrounding image acquisition. Enough information
is then available for the 3D reconstruction of the entire object,
despite the part in contact with the ground, obviously.

3D reconstruction of objects, observed by PCS made with
two planar mirrors, is well known considering the object en-
velop [2] but, to our knowledge, not considering the object
texture as in common 3D reconstruction pipelines. The lat-
ter, in a few words, would provide more details of the object
surface than the former, but need to match every view of the
same object (or scene). Such matching is the key issue of the
pipeline. It is done from detected image features, and compu-
tation leads to their corresponding 3D point coordinates.

Matching detected features is done thanks to feature
descriptors as SIFT, the most popular method. SIFT [3]
computes a descriptor for each feature point that is invari-
ant to scale and image plane rotation transformations. Ex-
tensions of SIFT consider more degrees of freedom of the
transformations that a feature point descriptor is invariant
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Fig. 1: A captured image of the PCS.

to: mirror transformation (MIFT [4], ISIFT[5], MI-SIFT[6],
Max-SIFT[7], FIND[8], MBR-SIFT[9]) or limited-range
affine transformation (ASIFT [10]). Once candidate matches
are computed, a random sample consensus (RANSAC) [11],
exploiting epipolar geometry [12], is performed to keep cor-
rect matches (inliers) only, for a robust 3D reconstruction.
However, the performance of these descriptors-based match-
ing decreases a lot when encountering both affine and mirror
transformations, which is the case when considering PCS sys-
tems. To overcome the issues encountered by SIFT methods-
based matching in a single image acquired by a PCS, we
propose to:

• Combine ASIFT and MIFT together as AMIFT, for
Affine-Mirror Invariant Feature Transform.

• Consider the modeling of the epipolar geometry for a
PCS in a single image in order to extend RANSAC-
based robust point matching to a PCS image, as
Reflective-RANSAC.

AMIFT and Reflective-RANSAC are the contributions of the
paper. Both are described in Section 2. Section 3 presents
simulation and actual scene results and their evaluation with



respect to state-of-the-art methods. Section 4 concludes the
paper.

2. PROPOSED METHOD

This section presents our Affine-Mirror Invariant Feature
Transform used for point matching further improved by
Reflective-RANSAC. The latter is based on Reflective Fun-
damental matrix computed in the PCS. The latter system
consists of a perspective camera and two planar mirrors and
is equivalent to a system of five cameras pointed to the same
object surrounding it. Hence, this system provides four pairs
of views in a single image. Each pair is composed of an image
of the object and its reflection through one of the mirrors.

2.1. Epipolar geometry

The epipolar constraint in PCS with two mirrors was investi-
gated in [2], [13], [14] and [15]. Forbes et al [2] determined
the epipoles from the silhouette outlines of the object and its
reflection. Gluckman et al [15] shew that the degrees of free-
dom of the fundamental matrix in mirror reflection case is
reduced from 7 to 6. In [13] and [14], authors gave some
properties of multi-views camera-mirrors systems and studied
a large variety of their geometric constraints. In this section,
we show how it is possible to obtain the epipolar geometry by
estimating the fundamental matrix from the correspondence
between some points, without additional information on the
intrinsic or extrinsic parameters of the used camera.
For each pair of views and since the two cameras are symmet-
ric, their epipolar lines and epipoles are identical. This allows
to reduce the number of degrees of freedom of the fundamen-
tal matrix from 7 (in standard two view geometry) to 2 in
our case [13], [14]. So, from minimum two couples of non-
coplanar matches, we are able to find an estimation of the
antisymmetric matrix F given by :

F =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 (1)

where e =
[
e1, e2, e3

]T
is the epipole between two symmet-

ric cameras.
By using this simple method, the two epipoles ({eV 1, eV 2}
see Fig . 2) from the considered four pairs of views in one
image can be determined. The fundamental matrix will be
used in this work to eliminate the false matching points.

2.2. Affine Mirror reflection invariant feature transform

In this section, we propose a new approach, named AMIFT
which combines affine and mirror reflection transformation
for points matching within the PCS. In addition, AMIFT pre-
serves all the advantages such as rotation and scale invari-
ances exhibited by SIFT. The image given by the PCS in-
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Fig. 2: Epipoles and epipolar lines in PCS

cludes 4 pairs of views. Each pair, selected manually, is com-
posed of an image of the object and its reflection on a mir-
ror called the sub-images. The AMIFT approach is based on
four steps: (1) affine transformation of sub-images, (2) detec-
tion of keypoints in each transformed sub-image and creation
of ASIFT descriptor vectors, (3) flipping and matching these
vectors and finally (4) eliminating the false matching points
based on Reflective-RANSAC constrained by the reflective
fundamental matrix (Equation. 1).

The affine transformation simulates some possible affine
distortions caused by the change of the camera optical axis
orientation from a frontal position. The distortion depends on
two parameters: the longitude angle φ and the latitude angle
θ. The sub-images undergo φ rotations followed by tilts with
parameters t given by:

|t| = | 1

cos θ
| (2)

The affine transformation f, defined in Equation. 3, allows
to determine the sub-image u′(x, y) obtained using bilinear
interpolated transform of the initial sub-image u(x, y):

f :

(
x
y

)
7→
[
a b
c d

](
x
y

)
(3)

where
[
a b
c d

]
= λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]

λ is the scale parameter, and ψ is the rotation angle of
camera around optical axis.

In order to match the key-points computed in two trans-
formed sub-images, we used the same approach as the orig-
inal ASIFT [10]. In the phase of descriptor establishing, as
SIFT, this descriptors are made of 128 values using 8 orien-
tation bins to describe each keypoint. The modification of
the MIFT algorithm [4] is used in this process to flip the de-
scriptor vectors. Then, we need to reorganize the sequence of
bins in anticlockwise direction as shown in Fig. 3 to ensure
the symmetric transformation of the features due to the use
of the mirror. The descriptors resulting from the application
of AMIFT can be matched using any matching algorithm that
would work for SIFT since their structure is preserved. The



Fig. 3: AMIFT pipeline

basic idea for the matching stage is to find the minimum dis-
tance between each feature descriptor from each transformed
sub-image and all other features from all their transformed
reflection. The final step discards the false matches using the
constraint of epipolar geometry as Reflective-RANSAC.

3. EXPERIMENTAL RESULTS

3.1. Dataset construction

First, we consider a dataset of mirror images using two static
planar mirrors, fixed using angle αl = 35◦, αr = 125◦, and
various camera poses as shown in Fig. 4(a). A representa-
tive sample of this database are illustrated in Fig. 4(b). As
can be seen, varying one-shot views enables acquiring various
views of the object of interest. Each image was divided into
five sub-images (direct view sub-image and four virtual sub-
images). Grouping the real view with its reflections enables to
obtain four correspondences groups. Therefore, a number of
40 views was used to evaluate the relevance of the proposed
approach.
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Fig. 4: Experiment setup: (a) different camera positions
within PCS. (b) multi-view image captured by the PCS.

3.2. AMIFT evaluation

We compare AMIFT to SIFT, MIFT and ASIFT. According
to results depicted in Fig. 5, which is one of 40 images in the
database, the total number of correspondences is obtained by
taking sums of each one of the four correspondence groups in
the synthetic image. AMIFT generates the highest number of
correct correspondences under high viewpoint mirror changes
(612 points for AMIFT, 301 points for MIFT, 138 points for
ASIFT and 65 points for SIFT). MIFT generates many incor-
rect correspondences in the case where the principal axis of
the camera is not perfectly perpendicular to the planar mirror.
Only a few number of correct correspondences is recovered
using ASIFT.

Recall-Precision analysis: To deeply evaluate our approach,
we create synthetic images using the Pov-Ray Tool in order
to generate the ground truth. Thereafter, to evaluate the per-
formance of each method, the Precision and Recall values
of each image from the acquired dataset are computed [16].
Recall-Precision curve analysis was used to compare AMIFT
behavior, on synthetic data, to SIFT, MIFT and ASIFT. Re-
call represents the ratio of correct matches MC to the total
number of correspondences MT between two sub-images:

Recall =
MC

MT
. (4)

Precision describes the ratio of correctly matched descriptors
to the total positive matches PT determined by the ground
truth.

Precision =
MC

PT
. (5)

Precision and Recall for our 40 PCS images dataset are re-
ported in Fig. 6. As can be seen, curves obtained, with
and without Reflective-RANSAC, demonstrate that our ap-
proach depicts high performances comparing to the other ap-



Fig. 5: Recovered matching correspondences obtained on the synthetic and real sets using the different methods.

proaches. This proves the ability of AMIFT to deal efficiently
with changes including mirror reflection and important trans-
formations with respect to mirrors.
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(b) PR Curve after outliers elimination step

Fig. 6: PR curves obtained from synthetic dataset

4. CONCLUSION

In this paper, we proposed a new feature descriptor that is
robust to multiple planar mirror reflections: AMIFT. We
also derived geometric constraints for corresponding features
in direct-reflection or reflection-reflection pairs of views.
Based on the geometric constraints, we built the Reflective-
RANSAC to enhance even more the robustness of AMIFT.
Results demonstrate the clearly higher robustness of AM-

IFT, over SIFT, MIFT and ASIFT, on both synthetic and real
datasets. Future works will be dedicated to evaluate AMIFT
on some higher scale PCS, for outdoor scenes where large ob-
jects back-faces are physically inaccessible by direct camera
views.
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