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Abstract

This paper proposes a new generator function based on the inverted Kumaraswamy distribu-
tion “Generalized Inverted Kumaraswamy-G” family of distributions. We provide a comprehen-
sive account of some of its mathematical properties that include the ordinary and incomplete
moments, quantile and generating functions and order statistics. The infinite mixture represen-
tations for probability density and cumulative density and entropy functions of the new family
are also established. The density function of the ith order statistics is expressed as an infinite
linear combination of baseline densities and model parameters are estimated by maximum like-
lihood method. Four special models of this family are also derived along with their respective
hazard rate functions. The maximum likelihood estimation (MLE) method is used to obtain the
model parameters. Monte Carlo simulation experiments are executed to assess the performance
of the MLE estimators under the corresponding generated models while some data applications
are also illustrated.

Keywords— Kumaraswamy distribution, quantile function, Simulation, maximum likelihood
estimation.
Mathematics Subject Classification. 60E05, 62E15, 62F10.

1 Introduction

In the recent times, there has been an increased interest in applying some inverted distributions
to data applications in the areas of medical, economic and engineering sciences (See Calabria and

1



Pulcini (1990), Al-Dayian (1999),Abd El-Kader et al. (2003), Prakash (2012)). Such distributions
include the inverse Weibull, inverted Burr Type XII, the Pareto Type I and the exponentiated
inverted Weibull models. However, to further improve the goodness of fit especially in exploring
tail properties, researchers have also considered to derive new generators for univariate continuous
families of distributions by introducing one or more additional shape parameter(s) to the baseline
distribution.

In this context, some well-known generators are the beta-G by Eugene et al. (2002) and Jones
(2004), Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011), McDonald-G (Mc-G) by
Alexander et al. (2012), gamma-G (type 1) by Zografos and Balakrishnan (2009), gamma-G (type 2)
by Ristic and Balakrishnan (2012), gamma-G (type 3) by Torabi and Montazari (2012), logistic-G by
Torabi and Montazari (2014), exponentiated generalized-G by Cordeiro et al. (2013), transformed-
transformer (T-X) by Alzaatreh et al. (2013), Weibull-G by Bourguignon et al. (2014), Lomax-
G by Cordeiro et al. (2014b), and logistic-X by Tahir et al. (2014). Other recent family of
distributions are Garhy-G by Elgarhy et al. (2016), Kumaraswamy Weibull-G by Hassan and
Elgarhy (2016a), exponentiated Weibull-G by Hassan and Elgarhy (2016b), additive Weibull-G by
Hassan and Hemeda (2016), exponentiated extended-G by Elgarhy et al. (2017), and type II half
logistic-G by Hassan et al. (2017).
Most recently,

Al-Fattah et al. (2017) introduced the inverted Kumaraswamy (IKw) distribution with two
positive shape parameters α > 0 and β > 0, where the cumulative distribution function (cdf) is
given by

Π(x; α, β) =
[
1− (1 + x)−α

]β
, x > 0 (1.1)

The probability density function (pdf) corresponding to (1.1) is

π(x;α, β) = α β (1 + x)−α−1
[
1− (1 + x)−α

]β−1
. (1.2)

The curves of the pdf show that the IKw distribution exhibits a long right tail and as illustrated in
the paper by Al-Fattah et al. (2017), IKw produces optimistic predictions of rare events occurring
in the right tail of the distribution as compared with other distributions. However, in many applied
areas such as lifetime analysis, finance and insurance, the data are seen to exhibit heavy-tail while
in practice, there is also a strong need to generate distributions with symmetric, left-skewed, right-
skewed and reverse J-shaped and hence to provide consistently better fits than other generated
models under the same underlying distribution.

The basic motivations for obtaining GIKw-G family in practice are: (i) to make the kurtosis
more flexible as compared to the baseline model; (ii) to produce skewness for symmetrical distribu-
tions; (iii) to construct heavy-tailed distributions that are not longer-tailed for modeling real data;
(iv) to generate distributions with symmetric, left-skewed, right-skewed and reversed-J shape; (v) to
provide consistently better fits than other generated models under the same underlying distribution.

In this context, this paper proposes a new generalized Inverted Kumaraswamy family of distri-
butions (GIKw-G) using the generator Gγ

1−Gγ . For the conditions on the baseline distribution see
Alzaatreh et al. (2013).
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The cdf of the new family, GIKw-G, is given by

F (y) = α β

Gγ (x,ξ)
1−Gγ (x,ξ)∫

0

(1 + y)−α−1
[
1− (1 + y)−α

]β−1
dy

= [1− (1−Gγ(x, ξ))α]β . (1.3)

where the corresponding density function to (3) is given by

f(x) = α β γ g(x, ξ) Gγ−1(x, ξ) (1−Gγ(x, ξ))α−1 [1− (1−Gγ(x, ξ))α]β−1 , α, β, γ > 0. (1.4)

where ξ is the parametric space of the baseline distribution. Now onward G(x, ξ) = G(x) and
g(x, ξ) = g(x). The survival, hazard rate and reversed hazard rate functions of the GIKw-G family
are, respectively, given by

S(x) = 1− [1− (1−Gγ(x))α]β ,

h(x) =
α β γ g(x) Gγ−1(x) (1−Gγ(x))α−1 [1− (1−Gγ(x))α]β−1

1− [1− (1−Gγ(x))α]β
,

H(x) =
α β γ Gγ−1(x) (1−Gγ(x))α−1

1− (1−Gγ(x))α
.

Note that when γ = 1 we obtain the exponentiated generalized family of distributions that was
introduced by Cordeiro et al. (2013). The GIKw-G family is easily simulated by inverting (1.3) as
follows: if u has a uniform U(0, 1) distribution, then the solution of the nonlinear equation is given
by

Qx(u) = G−1

{
1−

(
1− u

1
β

) 1
α

} 1
γ

.

The rest of the paper is organized as follows: In Section 2, four special models of the new family
are given with their plots of density and hazard rate functions. In Section 3 , Structural Properties
are discussed while in Section 4, parameter estimation and a Monte Carlo simulation study are
presented. In Section 5, the proposed GIKw-G is applied to some real-life data and also compared
with other well-known distributions.

2 Some Special Models of the GIKw-G Family

In this section, we give some examples of the GIKw-G family of distributions, namely: the gen-
eralized inverted Kumaraswamy-uniform, generalized inverted Kumaraswamy-Weibull, generalized
inverted Kumaraswamy-log logistic and generalized inverted Kumaraswamy-Lomax distributions.

2.1 Generalized inverted Kumaraswamy-uniform (GIKw-U) distribution

The pdf of the GIKw-U is derived from (1.4), by taking g(x; θ) = 1
θ , 0 < x < θ, and G(x; θ) = x

θ

as follows:
f(x) =

α β γ

θ

(x

θ

)γ−1 [
1−

(x

θ

)γ]α−1 {
1−

[
1−

(x

θ

)γ]α}β−1
.
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The corresponding cdf takes the following form

F (x) =
{

1−
[
1−

(x

θ

)γ]α}β

The plots of density and hazard rate functions of the GIKw-U are presented in Figure 1. As seen
in 1(a), the density function has reversed J and upside-down bathtub shapes. Figure 1(b) shows
that the hazard rate function gives increasing and bathtub shapes.
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Figure 1: Plots of pdf and hrf for the GIKw-U distribution with several values of parameters

2.2 Generalized inverted Kumaraswamy-Weibull (GIKw-W) distribution

We consider the Weibull distribution with scale and shape parameters a, b > 0. The pdf and cdf
are g(x) = a b xb−1 e−a xb

and G(x) = 1 − e−a xb
, respectively. Then, the pdf of the GIKw-W is

given by

f(x) = a b α β γ xb−1 e−a xb
(
1− e−a xb

)γ−1 [
1 +

(
1− e−a xb

)γ]α−1 {
1−

[
1 +

(
1− e−a xb

)γ]α}β−1
,

The corresponding cdf takes the following form

F (x) =
{

1−
[
1 +

(
1− e−a xb

)γ]α}β

Figure 2 shows the plots of density and hazard functions of GIKw-W distribution. The density
function in Figure 2(a) has reversed J, left, right skewed and symmetrical shapes. The hrf in Figure
2(b) gives bathtub, upside-down bathtub and increasing shapes.

2.3 Generalized inverted Kumaraswamy-Log logistic (GIKw-LL) distribution

We consider the log-logistic distribution with scale parameter θ > 0. The pdf and cdf are given by
g(x) = θ xθ−1

(1+xθ)2
and G(x) = xθ

1+xθ , respectively. Then, the cdf of the GIKw-LL distribution is given
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Figure 2: Plots of pdf and hrf for the GIKw-W distribution with several values of parameters

by

f(x) = α β γ
θ xθ−1

(1 + xθ)2

(
xθ

1 + xθ

)γ−1 [
1−

(
xθ

1 + xθ

)γ]α−1
{

1−
[
1−

(
xθ

1 + xθ

)γ]α
}β−1

The corresponding cdf takes the following form

F (x) =

{
1−

[
1−

(
xθ

1 + xθ

)γ]α
}β

The plots of density and hazard rate functions of GIKw-LL are given in Figure 3. The density
in Figure 3(a) gives reversed J, nearly symmetrical and positively skewed shapes. As seen in Figure
3(b), the hazard rate function has the bathtub, upside-down bathtub, increasing and decreasing
shapes.

2.4 Generalized inverted Kumaraswamy-Lomax (GIKw-Lx) distribution

We consider the Lomax distribution with scale parameter a, b > 0. The pdf and cdf are g(x) =
a
b

(
1 + x

b

)a−1 and g(x) = 1− (
1 + x

b

)a, respectively. Then, the pdf of GIKw-L is given by

f(x) = α β γ
a

b

(
1 +

x

b

)a−1 [
1−

(
1 +

x

b

)a]γ−1 {
1−

[
1−

(
1 +

x

b

)a]γ}α−1

[
1−

{
1−

[
1−

(
1 +

x

b

)a]γ}α]β−1

The corresponding cdf takes the following form

F (x) =
[
1−

{
1−

[
1−

(
1 +

x

b

)a]γ}α]β
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Figure 3: Plots of pdf and hrf for the GIKw-LL distribution with several values of parameters

The plots of density and hazard rate functions of the GIKw-L are given in Figure 4. Figure 4(a)
shows that reversed J and positively skewed shapes are possible for the density function. Figure
4(b) also shows that the hazard rate function has upside-down bathtub, increasing and decreasing
shapes.
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Figure 4: Plots of pdf and hrf for the GIKw-L distribution with several values of parameters

3 Structural Properties

The several types of moments of a random variable are important especially in applied work.
Some of the most important features and characteristics of a distribution can be studied through
moments, e.g., tendency, dispersion, skewness and kurtosis, mean deviations, Bonferroni and Lorenz
curves, etc. In this section, we will provide the expansions of GIKw-G densities, rth moment, sth
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incomplete moment, moment generating function and mean deviations.

3.1 Useful expansions

Here, the infinite mixture representations for the cdf and pdf of the GIKw-G family are given in
terms of baseline densities. Consider following series expansion

(1− z)b =
∞∑

j=0

(
b

j

)
(−1)j zj . (3.1)

Using the series expansion in (3.1), the equation (1.3) becomes

F (x) =
∞∑

j=0

(
β

j

)
(−1)j

∞∑

i=0

(
α j

i

)
(−1)i Gγ i

where Gγ i =
∞∑

q=0

∞∑
q=k

(
γ i
k

)(
k
q

)
(−1)q+kGq(x). Now the above expression can be written as

F (x) =
∞∑

j=0

∞∑

i=0

(
β

j

) (
α j

i

)
(−1)i+j

∞∑

q=0

∞∑

q=k

(
γ i

k

)(
k

q

)
(−1)q+kGq(x)

. Rewriting the above expression, we obtain an expansion for the cdf of the GIKw-G family

F (x) =
∞∑

q=0

aq Hq(x), (3.2)

where aq =
∞∑

j=0

∞∑
i=0

(
β
j

) (
α j
i

)
(−1)i+j

∞∑
q=k

(
γ i
k

)(
k
q

)
(−1)q+k and Hq(x) = Gq(x).

Similarly, we have an expansion for the pdf of the GIKw-G family as

f(x) =
∞∑

q=0

aq hq−1(x) (3.3)

where hq−1(x) = q × g(x) Gq−1(x).

3.2 Moments and moment generating function

Moments are necessary and important in any statistical analysis, especially in applications. It can
be used to study the most important features and characteristics of a distribution (e.g., tendency,
dispersion, skewness and kurtosis). The rth moment of GIKw-G family is given by

µ′r =

∞∫

0

xr f(x) dx
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. Using the infinite mixture representation of the pdf in equation (3.3), we have

µ′r =
∞∑

q=0

aq ∆′
r

where ∆′
r =

∞∫
0

xr hq−1(x) dx

Similarly, the sth incomplete moment of GIKw-G family is defined as

µ′s =

x∫

0

xs f(x) dx

From the infinite mixture representation of pdf in equation (3.3), we get

µ′s =
∞∑

q=0

aq T ′s(x)

where T ′s(x) =
x∫
0

xs hq−1(x) dx.

Now, we define the moment generating function of GIKw-G family as

M0(t) =

∞∫

0

et x f(x) dx

From the infinite mixture representation of pdf in equation (3.3), we obtain

M0(t) =
∞∑

q=0

aq Mq−1(t)

where Mq−1(t) =
x∫
0

et x hq−1(x) dx.

Note that the integrals ∆′
r, T ′s(x) and Mq−1(t) depend only for any choice of baseline distribution.

The mean deviations of GIKw-G family is obtained by

δ1 = 2 µF (µ)− 2 J(µ), δ2 = µ− 2 J(x̃)

where µ = mean = E(X), x̃ = median = Qx(0.5) and j(c) =
x∫
0

x f(x) dx. Using the infinite

mixture representation of pdf in equation (3.3), we get

j(c) =
∞∑

q=0

aq S′q−1(c)

where S′q−1(c) =
c∫
0

xhq−1(x) dx the integral depends on G(x) and g(x).
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3.3 Entropies

The entropy of a random variable X is a measure of variation of uncertainty and has been used
in many fields such as physics, engineering, and economics. In this section, we will consider two
well known entropy measures, Reǹyi and Shannon entropies. According to Reǹyi (1961), the Reǹyi
entropy is defined by

IR =
1

1−R
log

∞∫

0

fR(x) dx (3.4)

where fR(x) =
[
α β γ g(x) Gγ−1(x) (1−Gγ(x))α−1 [1− (1−Gγ(x))α]β−1

]R
.

Using series expansion in equation (3.1), we have

fR(x) =
∞∑

i=0

wi(j) gγ(i+R)−R(x)

Here, we define wi(j) = (α β γ)R
∞∑

j=0

(
R(β−1)

j

)(
α(j+R)−R

i

) (−1)i+j

γ(i+R)−R+1

and gγ(i+R)−R(x) = [γ(i + R)−R + 1] gR(x) Gγ(i+R)−R(x).
Now equation (3.5) becomes

IR =
1

1−R
log



∞∑

i=0

wi(j)

∞∫

0

gγ(i+R)−R(x) dx


 (3.5)

The above integral depends on G(x) and g(x).
The Shannon entropy of a random variable X is defined by Shannon (1948) as

ηx = −E [log f(x)]

From equation (1.4), we have

ηx = −E

[
log γ + log g(x) + (γ − 1) log (1−Gγ(x)) + log r

{
Gγ(x)

1−Gγ(x)

}]
(3.6)

Let T = Gγ(x)
1−Gγ(x) then G(x) =

[
T

1+T

] 1
γ and 1−Gγ(x) =

[
1

1+T

]
.

Now equation (3.6) becomes

ηx = −E

[
log γ + log g(x) +

(
1− 1

γ

)
log T +

(
1 +

1
γ

)
log(1 + T ) + log r(T )

]

After some algebra we have

ηx = ηg + ηT − log γ −
(

1− 1
γ

) ∞∑

j=0

(−1)j

j!

B
(
1− j

α , β
)

Γ(1− j)
[
Γ′(1)− ψ(1− j)

]

+
1
α

(
1 +

1
γ

) [
Γ′(1)− ψ(β + 1)

]
(3.7)

where ηT is the Shannon entropy of IKw distribution and ηg is the Shannon entropy of baseline
distribution. where ψ(a) = Γ′(a)

Γ(a) and Γ′(1) is Euler’s constant.
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3.4 Order Statistics

Order statistics have been extensively applied in many fields of statistics, such as reliability and
life testing. They enter in the problems of estimation and hypothesis tests in a variety of ways.
We now discuss some properties of the order statistics for the GIKw-G family. Let Xi:n denote the
ith order statistic from a random sample X1, . . . , Xn from the GIKw-G family. Then, the density
function of ith order statistic is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x) F i−1(x) [1− F (x)]n−i

Using series expansion in equation (3.1), we have

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑

j=0

(
n− i

j

)
(−1)j f(x) F j+i−1(x) (3.8)

Consider f(x) F j+i−1(x), using infinite mixture representation in equations (3.2) and (3.3), we
obtain 


∞∑

q=0

aq hq−1(x)


×

[ ∞∑

m=0

am Hm(x)

]j+i−1

From power series raised to a positive power expansion
[ ∞∑

k=0

ak Gk(x)
]r

=
∞∑

k=0

dk:r Gk(x) we have



∞∑

q=0

aq q g(x) Gq(x)


×

∞∑

m=0

dm:j+i−1 Gm(x)

After simplification, we have


∞∑

q=0

∞∑

m=0

aq dm:j+i−1 q g(x) Gq+r(x)




Now equation (3.8) becomes

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑

j=0

(
n− i

j

)
(−1)j

∞∑

q=0

∞∑

m=0

aq dm:j+i−1 q g(x) Gq+r(x)

Rewriting the equation, the density function of ith order statistic is given by

fi:n(x) =
n−i∑

j=0

∞∑

q=0

∞∑

m=0

Vj(q,m) hq+m−1(x)

, where Vj(q, m) = n!
(i−1)!(n−i)!

(
n−i

j

) (−1)j aq dm:j+i−1 q
q+m

and hq+m−1(x) = (q + m) g(x) Gq+m−1.
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4 Estimation and Simulation

4.1 Estimation

Here, we consider the estimation of the unknown parameters of GIKw-G family by the maximum
likelihood method for the complete samples. The maximum likelihood estimates (MLEs) enjoy
desirable properties that can be used when constructing confidence intervals and deliver simple
approximations that work well in finite samples. The resulting approximation for the MLEs in
distribution theory is easily handled either analytically or numerically. Let x1, ..., xn be a sample
of size n from GIKw-G family given in (1.3). The log-likelihood function of GIKw-G family for the
vector of parameter Θ = (α, β, γ , ξ)T is given by

`(Θ) = n log(α β γ) +
n∑

i=1

log g(xi, ξ) + (γ − 1)
n∑

i=1

log G(xi, ξ) + (α− 1)
n∑

i=1

log [1−Gγ(xi, ξ)]

+(β − 1)
n∑

i=1

log [1− {1−Gγ(xi, ξ)}α]

The components of score vector U = (Uβ, Uα, Uγ , Uξ)
T are given by

Uβ =
n

β
+

n∑

i=1

log [1− {1−Gγ(xi, ξ)}α]

Uα =
n

α
+

n∑

i=1

log [1−Gγ(xi, ξ)] + (β − 1)
n∑

i=1

[{1−Gγ(xi, ξ)}α log {1−Gγ(xi, ξ)}
1− {1−Gγ(xi, ξ)}α

]

Uγ =
n

γ
+

n∑

i=1

log G(xi, ξ) + (α− 1)
n∑

i=1

[
Gγ(xi, ξ) log G(xi, ξ)

1−Gγ(xi, ξ)

]

+(β − 1)α
n∑

i=1

[
{1−Gγ(xi, ξ)}α−1 Gγ(xi, ξ) log G(xi, ξ)

1− {1−Gγ(xi, ξ)}α

]

Uξ =
n∑

i=1

[
gξ(xi, ξ)
g(xi, ξ)

]
+ (γ − 1)

n∑

i=1

[
Gξ(xi, ξ)
G(xi, ξ)

]
− γ (α− 1)

n∑

i=1

[
Gγ−1(xi, ξ) Gξ(xi, ξ)

1−Gγ(xi, ξ)

]

−α γ (β − 1)
n∑

i=1

[
{1−Gγ(xi, ξ)}α−1 Gγ−1(xi, ξ) Gξ(xi, ξ)

1− {1−Gγ(xi, ξ)}α

]

Setting Uβ, Uα, Uγ and Uξ equal to zero and solving these equations simultaneously yields the the
MLEs. These equations cannot be solved analytically, and analytical softwares are required to solve
them numerically.

4.2 Simulation study

In this section, an extensive numerical investigation will be carried out to evaluate the performance
of the MLEs for the GIKw-W model. Performance of estimators is evaluated through their biases,
and mean square errors (MSEs) for different sample sizes. A numerical study is performed using
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Mathematica (9) software. Different sample sizes (n = 30, 50, 75, 100, 200 and 300) and different
values of parameters are considered. The experiment is repeated 3000 times. In each experiment,
the estimates of the parameters are obtained by maximum likelihood method. The means, MSEs
and biases for the different estimators are reported from these experiments.

The values in Table 1 indicate that the estimates are quite stable and, more importantly, are
close to the true values for the these sample sizes. From Table 1, it is observed that in general
the standard deviation decreases as n increases. The simulation study shows that the maximum
likelihood method is appropriate for estimating the GIKw-W parameters. In fact, the MSEs of the
parameters tend to be closer to the true parameter values when n increases. This fact supports
that the asymptotic normal distribution provides an adequate approximation to the finite sample
distribution of the MLEs. The normal approximation can be often times improved by using bias
adjustments to these estimators.

Table 1: The parameter estimations from the GIKw-W distribution using the maximum likelihood
method

n Par Init MLE Bias MSE Init MLE Bias MSE
γ 2 2.0915 0.0915 0.2296 2 2.0905 0.0905 0.2085
α 2 2.0580 0.0580 0.1427 2 2.0488 0.0488 0.1308

50 β 1.5 1.5316 0.0316 0.0522 1.5 1.5330 0.0330 0.0485
a 2 2.0752 0.0752 11.7134 2 2.1234 0.1234 0.4287
b 0.5 0.5293 0.0293 0.0200 2 2.1119 0.1119 0.2870
γ 2 2.0679 0.0679 0.1361 2 2.0559 0.0559 0.1356
α 2 2.0311 0.0311 0.0882 2 2.0430 0.0430 0.0897

75 β 1.5 1.5255 0.0255 0.0335 1.5 1.5196 0.0196 0.0332
a 2 2.0775 0.0775 0.2373 2 2.0952 0.0952 0.2366
b 0.5 0.5204 0.0204 0.0114 2 2.0679 0.0679 0.1647
γ 2 2.0434 0.0434 0.0940 2 2.0433 0.0433 0.0945
α 2 2.0290 0.0290 0.0625 2 2.0259 0.0259 0.0610

100 β 1.5 1.5161 0.0161 0.0239 1.5 1.5155 0.0155 0.0241
a 2 2.0630 0.0630 0.1512 2 2.0598 0.0598 0.1523
b 0.5 0.5136 0.0136 0.0074 2 2.0526 0.0526 0.1197
γ 2 2.0190 0.0190 0.0425 2 2.0227 0.0227 0.0426
α 2 2.0164 0.0164 0.0302 2 2.0122 0.0122 0.0293

200 β 1.5 1.5071 0.0071 0.0115 1.5 1.5089 0.0089 0.0115
a 2 2.0335 0.0335 0.0679 2 2.0274 0.0274 0.0663
b 0.5 0.5063 0.0063 0.0034 2 2.0273 0.0273 0.0547
γ 2 2.0128 0.0128 0.0272 2 2.0155 0.0155 0.0282
α 2 2.0070 0.0070 0.0194 2 2.0104 0.0104 0.0200

300 β 1.5 1.5045 0.0045 0.0074 1.5 1.5066 0.0066 0.0077
a 2 2.0173 0.0173 0.0426 2 2.0211 0.0211 0.0433
b 0.5 0.5031 0.0031 0.0021 2 2.0199 0.0199 0.0351
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Continued of Table 1
n Par Init MLE Bias MSE Init MLE Bias MSE

γ 0.5 0.5216 0.0216 0.0133 1.5 1.5602 0.0602 0.1239
α 2 2.0570 0.0570 0.1301 2 2.0615 0.0615 0.1354

50 β 1.5 1.5308 0.0308 0.0493 1.5 1.5265 0.0265 0.0496
a 2 2.0233 0.0233 0.0488 2 2.1006 0.1006 0.2491
b 2 2.1281 0.1281 0.3687 2 2.1099 0.1099 0.3171
γ 0.5 0.5135 0.0135 0.0078 1.5 1.5482 0.0482 0.0745
α 2 2.0339 0.0339 0.0884 2 2.0331 0.0331 0.0833

75 β 1.5 1.5188 0.0188 0.0310 1.5 1.5241 0.0241 0.0325
a 2 2.0115 0.0115 0.0347 2 2.0543 0.0543 0.1424
b 2 2.0753 0.0753 0.1946 2 2.0867 0.0866 0.1949
γ 0.5 0.5121 0.0121 0.0058 1.5 1.5321 0.0321 0.0509
α 2 2.0300 0.0299 0.0615 2 2.0255 0.0255 0.0606

100 β 1.5 1.5192 0.0192 0.0234 1.5 1.5157 0.0157 0.0234
a 2 2.0141 0.0141 0.0248 2 2.0421 0.0421 0.1029
b 2 2.0704 0.0704 0.1417 2 2.0565 0.0565 0.1276
γ 0.5 0.5048 0.0048 0.0027 1.5 1.5162 0.0162 0.0253
α 2 2.0173 0.0173 0.0322 2 2.0176 0.0176 0.0306

200 β 1.5 1.5073 0.0073 0.0114 1.5 1.5084 0.0084 0.0119
α 2 2.0077 0.0077 0.0134 2 2.0265 0.0265 0.0497
b 2 2.0264 0.0264 0.0609 2 2.0313 0.0313 0.0611
γ 0.5 0.5019 0.0019 0.0018 1.5 1.5152 0.0152 0.0154
α 2 2.0107 0.0107 0.0198 2 2.0063 0.0063 0.0185

300 β 1.5 1.5017 0.0017 0.0077 1.5 1.5089 0.0089 0.0075
a 2 2.0042 0.0042 0.0083 2 2.0101 0.0101 0.0290
b 2 2.0116 0.0116 0.0404 2 2.0273 0.0273 0.0381
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Continued of Table 1
n Par Init MLE Bias MSE Init MLE Bias MSE

γ 2 2.0216 0.0216 0.0377 2 2.0702 0.0702 0.1469
α 0.5 0.5148 0.0148 0.0085 1.5 1.5481 0.0481 0.0817

50 β 1.5 1.5336 0.0336 0.0508 1.5 1.5350 0.0350 0.0495
a 2 2.0929 0.0929 0.2416 2 2.1382 0.1382 0.4421
b 2 2.1107 0.1107 0.2649 2 2.1004 0.1003 0.2074
γ 2 2.0142 0.0142 0.0241 2 2.0422 0.0422 0.0921
α 0.5 0.5090 0.0090 0.0053 1.5 1.5306 0.0306 0.0503

75 β 1.5 1.5221 0.0221 0.0313 1.5 1.5205 0.0205 0.0318
a 2 2.0553 0.0552 0.1382 2 2.0844 0.0843 0.2127
b 2 2.0708 0.0708 0.1574 2 2.0567 0.0567 0.1275
γ 2 2.0105 0.0105 0.0191 2 2.0358 0.0358 0.0700
α 0.5 0.5071 0.0071 0.0040 1.5 1.5206 0.0206 0.0355

100 β 1.5 1.5168 0.0168 0.0245 1.5 1.5180 0.0180 0.0246
a 2 2.0435 0.0435 0.1038 2 2.0565 0.0565 0.1402
b 2 2.0526 0.0526 0.1184 2 2.0468 0.04687 0.0962
γ 2 2.0049 0.0049 0.0093 2 2.0185 0.0185 0.0314
α 0.5 0.5036 0.0036 0.0018 1.5 1.5074 0.0074 0.0167

200 β 1.5 1.5079 0.0079 0.0115 1.5 1.5094 0.0094 0.0114
a 2 2.0215 0.0215 0.0453 2 2.0220 0.0220 0.0608
b 2 2.0271 0.0271 0.0535 2 2.0220 0.0220 0.0446
γ 2 2.0035 0.0035 0.0063 2 2.0072 0.0072 0.0206
α 0.5 0.5020 0.0020 0.0012 1.5 1.5090 0.0090 0.0105

300 β 1.5 1.5054 0.0054 0.0077 1.5 1.5033 0.0033 0.0076
β 2 2.0127 0.0127 0.0294 2 2.0221 0.0220 0.0381
b 2 2.0153 0.0153 0.0361 2 2.0127 0.0126 0.0289
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Continued of Table 1
n Par Init MLE Bias MSE Init MLE Bias MSE

γ 2 2.0677 0.0676 0.1638 2 2.1000 0.1000 0.2439
α 2 2.0258 0.0258 0.0428 2 2.0811 0.0811 0.2101

50 β 0.5 0.5108 0.0108 0.0059 2 2.0446 0.0446 0.0909
a 2 2.0540 0.0540 0.1050 2 2.2140 0.2140 1.1668
b 2 2.1049 0.1049 0.2696 2 2.1151 0.1151 0.2856
γ 2 2.0479 0.0478 0.1001 2 2.0570 0.0570 0.1322
α 2 2.0100 0.0100 0.0279 2 2.0519 0.0519 0.1092

75 β 0.5 0.5076 0.0076 0.0038 2 2.0266 0.0266 0.0541
a 2 2.0257 0.0257 0.0652 2 2.1124 0.1124 0.2881
b 2 2.0662 0.0661 0.1534 2 2.0685 0.0685 0.1559
γ 2 2.0308 0.0308 0.0680 2 2.0479 0.0479 0.1035
α 2 2.0112 0.0112 0.0213 2 2.0379 0.0379 0.0830

100 β 0.5 0.5049 0.0049 0.0027 2 2.0223 0.0223 0.0430
a 2 2.0241 0.0241 0.0493 2 2.0822 0.0822 0.2088
b 2 2.0461 0.0461 0.1043 2 2.0563 0.0563 0.1194
γ 2 2.0258 0.0258 0.0346 2 2.0265 0.0265 0.0445
α 2 2.0045 0.0045 0.0108 2 2.0153 0.0153 0.0382

200 β 0.5 0.5047 0.0047 0.0014 2 2.0135 0.0134 0.0198
a 2 2.0096 0.0096 0.0246 2 2.0330 0.0330 0.0849
b 2 2.0360 0.0360 0.0505 2 2.0316 0.0316 0.0522
γ 2 2.0056 0.0056 0.0217 2 2.0181 0.0181 0.0302
α 2 2.0042 0.0042 0.0072 2 2.0105 0.0105 0.0253

300 β 0.5 0.5007 0.0007 0.0009 2 2.0095 0.0095 0.0136
a 2 2.0093 0.0093 0.0159 2 2.0225 0.0225 0.0542
b 2 2.0083 0.0083 0.0307 2 2.0204 0.0204 0.0349
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5 Applications

In this section, real data modeling performance of GIKw-W distribution is compared with sev-
eral well-known distributions. We provide four applications to real data sets to illustrate the
applicability of the GIKw-G family. We focus on the GIKw-W distribution introduced in Sec-
tion 2. We compute the log-likelihood function evaluated at the MLEs (ˆ̀) using a limited-memory
quasi-Newton code for bound-constrained optimization (L-BFGS-B). The goodness-of-fit measures,
Anderson-Darling (A∗), Cramèr-von Mises (W ∗) are computed for all models and used to decide the
best model.The lower values of these statistics and higher p-values of K-S indicate good fits. The
value for the Kolmogorov Smirnov (KS) statistic and its p-value are also provided. We compare the
GIKw-W distribution with those of the Weibull (W), generalized inverted Kumaraswamy (GIKw)
and Kumaraswamy (IKw).

The first data is corresponding to the vinyl chloride data obtained from clean upgrading, mon-
itoring wells in mg/L (Bhaumik et al., 2009). The data set are given as follows: 5.1, 1.2, 1.3, 0.6,
0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3,3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8,
0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.

The second data set is obtained from Murthy et al. (2004). The data refers to the time between
failures for repairable items. The data set are given as follows: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49,
3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37,
0.63, 1.23, 1.24, 1.97, 1.86, 1.17

The third data set can be obtained from Hinkley (1977) and it represents thirty successive
values of March precipitation (in inches) in Minneapolis/St Paul. The data set are given as follows:
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.

The fourth data is based on the waiting times between 65 consecutive eruptions of Blowhole
(1998). The data set are given as follows: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8,
17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37,
10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

The MLEs and the goodness of fit statistics of the models for all data sets are presented in
Tables 2 to 9, respectively. As seen in Table 3, 5, 7, and 9 the GIKw-W model gives the lowest
values. Therefore, it is clear that GIKw-W distribution provides the overall best fit and therefore
could be chosen as the more adequate model for explaining data sets.

The histogram of the all data sets and the estimated pdf’s and cdf’s of the GIKw-W model and the
other competitive models are displayed in Figures 5 and 6. It is clear from Figures 5 and 6 that the GIKw-W
model provide better fits to these four data sets.
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Table 2: The MLEs and their standard errors (in parentheses) for the first data set.

Distribution α β γ a b
GIKw-W 3.8371 9.2165 0.1699 0.0120 1.5582

(6.2626) (25.2396) (0.4264) (0.0279) ( 1.3545)
GIKw 2.0265 0.8848 2.64300 - -

( 1.8893) ( 0.6646) ( 3.8870) - -
IKw 1.7408 2.1058 - - -

(0.3237) ( 0.5373) - - -
W - - - 0.5262 1.0102

- - - (0.1176) (0.1326)

Table 3: The goodness-of-fit statistics for the first data set
Distribution A∗ W∗ ˆ̀ K-S P-value
GIKw-W 0.1832 0.0270 54.7047 0.0770 0.9899
GIKw 0.2805 0.0379 55.7572 0.0955 0.9153
IKw 0.2764 0.0378 55.7706 0.0965 0.9090
Weibull 0.3000 0.0462 55.4496 0.0918 0.9366

Table 4: The MLEs and their standard errors (in parentheses) for the second data set.

Distribution α β γ a b
GIKw-W 0.1199 1.1017 3.3626 6.0015 1.1272

(0.0277) ( 0.2661) ( 0.0524) ( 0.0066) ( 0.0066)
GIKw 1.1631 1.847 1.4473 - -

(1.022) ( 1.1798) (1.3924) - -
IKw 2.4601 4.1715 - - -

(0.4213) ( 1.2783) - - -
W - - - 0.4560 1.4633

- - - (0.1141) (0.2029)

Table 5: The goodness-of-fit statistics for the second data set
Distribution A∗ W∗ ˆ̀ K-S P-value
GIKw-W 0.1813 0.0231 39.1069 0.0748 0.9989
GIKw 0.2653 0.0409 40.8189 0.1092 0.8665
IKw 0.3323 0.04948 41.2380 0.1111 0.8523
Weibull 0.1921 0.0299 39.9909 0.0788 0.9900
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Table 6: The MLEs and their standard errors (in parentheses) for the third data set.

Distribution α β γ a b
GIKw-W 0.1308 1.2393 2.7063 4.7484 1.2909

(0.0297) (0.3783) ( 1.6289) (0.0038) (0.0037)
GIKw 1.9540 1.4209 3.9458 - -

(1.8055) ( 1.0186) ( 5.6701) - -
IKw 2.9876 8.5933 - - -

(0.4731) (3.1240) - - -
W - - - 0.3154 1.8088

- - - (0.0906) (0.2491)

Table 7: The goodness-of-fit statistics for the third data set
Distribution A∗ W∗ ˆ̀ K-S P-value
GIKw-W 0.1038 0.0144 37.9810 0.0547 0.9988
GIKw 0.3226 0.0514 30.3017 0.1097 0.8627
IKw 0.3505 0.0561 39.4255 0.1143 0.8280
Weibull 0.1693 0.0219 38.6432 .0689 0.9901

Table 8: The MLEs and their standard errors (in parentheses) for the fourth data set.

Distribution α β γ a b
GIKw-W 0.1705 4.5176 5.4997 1.9419 0.5709

(0.0212) ( 1.0214) ( 0.0069) ( 0.0029) ( 0.0028)
GIKw 0.3096 4.2274 45.4405 - -

(1.1821) ( 16.1314) ( 16.8344) - -
IKw 1.3768 60.9128 - - -

(0.1377) ( 23.9816) - - -
W - - - 0.0085 1.2685

- - - (0.0039) (0.1089)

Table 9: The goodness-of-fit statistics for the fourth data set
Distribution A∗ W∗ ` K-S P-value
GIKw-W 0.7649 0.1039 293.2774 0.0981 0.6691
GIKw 1.2613 0.1848 295.4949 0.1018 0.5197
IKw 1.2044 0.1743 295.4044 0.0954 0.5047
Weibull 1.0078 0.1470 296.9085 0.1060 0.4681
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Figure 5: Estimated pdf in (a) and cdf in (b) for the first data set and estimated pdf in (c) and cdf
in (d) for the second data set, respectively.
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Figure 6: Estimated pdf in (a) and cdf in (b) for the third data set and estimated pdf in (c) and
cdf in (d) for the fourth data set, respectively.
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6 Conclusion

This paper introduces a new class of models called the “GIKw-G” family of distributions which can generate
all classical continuous distributions while is proved suitable for data of heavy-tails and exhibiting different
features of skewness and reverse J-shapes. For any parent continuous distribution G, we define corresponding
GKIw- G distribution. We study some of statistical and mathematical properties of the new generator, such
as ordinary moments, quantile functions, Shannon and Reǹyi, entropies and order statistics. We discuss
maximum likelihood estimates of the model parameters. Four applications of the new family and a simulation
study demonstrate its usefulness and potentiality to analysis of real data. This new family and its generated
models is commendably useful in several areas such as engineering, survival and lifetime data, hydrology,
economics, among others.
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