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Abstract 

Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary 

advantage. This study examined the strategies humans choose when manipulating an object with 

underactuated internal dynamics, such as a cup of coffee. The object’s dynamics renders the temporal 

evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely 

mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. 

Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the 

oscillation frequency, while the amplitude was prescribed. Three hypotheses were tested: 1) humans 

decrease interaction forces between hand and object; 2) humans increase the predictability of the object 

dynamics; 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that 

humans chose either a high-frequency strategy with anti-phase cup-and-ball movements or a low-

frequency strategy with in-phase cup-and-ball movements. Counter Hypothesis 1, they did not decrease 

interaction force; instead, they increased the predictability of the interaction dynamics, quantified by 

mutual information, supporting Hypothesis 2. To address Hypothesis 3, frequency analysis of the coupled 

hand-object system revealed two resonance frequencies separated by an anti-resonance frequency. The 

low-frequency strategy exploited one resonance, while the high-frequency strategy afforded more choice, 

consistent with the frequency response of the coupled system; both strategies avoided the anti-resonance. 

Hence, humans did not prioritize small interaction force, but rather strategies that rendered interactions 

predictable. These findings highlight that physical interactions with complex objects pose control 

challenges not present in unconstrained movements.  

 

Key Words: motor skill, rhythmic movements, object manipulation, prediction, interaction force, 

impedance   
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New and Noteworthy 

Daily actions involve manipulation of complex non-rigid objects which presents a challenge since 

humans have no direct control of the whole object. We used a virtual-reality experiment and simulations 

of a cart-and-pendulum system coupled to hand movements with impedance to analyze the manipulation 

of this underactuated object. We showed that participants developed strategies that increased the 

predictability of the object behavior by exploiting the object’s resonance structure, but did not minimize 

the hand-object interaction force.  
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Introduction 

Using tools has been essential in human evolution, and a large variety of tools now enhance and augment 

our daily actions. Tool-supported actions range from the simple swinging of a hammer and cutting meat 

with a knife to more complex or exotic actions, such as eating spaghetti and cracking a whip. The latter 

tasks are challenging and require practice because the objects themselves, spaghetti and whip, are flexible 

hence underactuated, i.e. have internal degrees of freedom that are not directly controlled by the user. 

Another seemingly mundane example is carrying a cup of coffee: the human manipulates the cup that, in 

turn, exerts a force on the coffee that exerts forces back on the cup and the hand. Complex interaction 

forces arise between the hand, the cup and the coffee. Despite this complexity, humans are extremely 

skilled at interacting with such underactuated objects. Our understanding of how humans achieve such 

dexterity is still limited and becomes an ever-growing barrier to current developments in prosthesis 

control, brain-machine interfaces and robotic rehabilitation. 

 

Despite the abundant literature on the control of goal-directed upper-limb movements, most studies have 

focused on free movements without physical interaction, such as reaching and pointing (Flash and Hogan 

1985; Bhushan and Shadmehr 1999; Krakauer et al. 1999; Sabes 2000), or interactions with rigid objects, 

such as grasping with isometric grip forces (Flanagan and Wing 1997; Fu and Santello 2014). The control 

of “complex objects”, which we define as objects with underactuated internal dynamics, i.e. non-rigid 

objects, has been largely ignored. The few studies that examined the control of complex objects have 

focused on the two classic control models of balancing a pole and manipulating a linear mass-spring 

system. For balancing a pole one needs to stabilize an inherently unstable inverted pendulum. Based on 

kinematic measurements and mathematical modeling, different mechanisms have been suggested, such 

as intermittent, continuous or predictive control, with forward or inverse models (Mehta and Schaal 2002; 
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Gawthrop et al. 2013; Insperger et al. 2013). Another set of studies on the inverted pendulum system 

focused on noise and delays to distinguish between the continuous vs. intermittent nature of control 

(Cluff et al. 2009; Milton 2011; Milton et al. 2013). A linear mass-spring system has served as a model 

to examine optimization criteria in human control, such as generalized kinematic smoothness (Dingwell 

et al. 2014), effort and accuracy (Nagengast et al. 2009), or minimum acceleration with constraints on 

the center of mass (Leib et al. 2012). Two studies compared the contributions of visual and haptic 

feedback and their results highlighted the essential role of haptic feedback over visual feedback in 

controlling the object (Huang et al. 2007; Danion et al. 2012). Lastly, another set of studies looked at the 

compression of a buckling spring, modeling the buckling behavior with a subcritical pitchfork bifurcation 

of the nonlinear dynamic system, including integration of multi-sensory information with different time 

delays (Venkadesan et al. 2007; Mosier et al. 2001). 

 

All these studies examined point-to-point movements, or short sequences of discrete movements, in 

which the full complexity of the system’s dynamics may not yet be fully manifest. A more extended 

continuous interaction may reveal more of the challenges arising from complex underactuated dynamics. 

For instance, when a system is near an anti-resonance frequency, its evolution is very sensitive to small 

changes in the input, rendering the system's behavior chaotic, and essentially unpredictable in the longer 

term. Such small perturbations readily arise from the fact that human movements are intrinsically 

variable. This presents a problem for the widely-held assumption that humans rely on internal models of 

the manipulated object to select and execute a movement policy (Flanagan et al. 2006; Dingwell et al. 

2012, Danion et al. 2012). How can humans learn an internal model of a complex underactuated object 

that has a potentially unpredictable temporal evolution? How can humans control the behavior of such 

objects? Relying on feedback control is largely insufficient for the manipulation of objects with complex 

dynamics due to neural transmission delay. Despite these challenges, humans skillfully manipulate 
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complex objects of all degrees of complexity. How humans achieve this is an open question. 

 

Extending previous work by Sternad and colleagues (Hasson et al. 2012a; Nasseroleslami et al. 2014; 

Sternad and Hasson 2016, Bazzi et al. 2018), this paper investigates continuous manipulation of an 

underactuated object with nonlinear internal dynamics. The task of moving a bowl-shaped cup with a 

ball inside was implemented in a virtual environment, using a cart-and-pendulum model to mimic the 

ball rolling in the moving cup. Notably, one of our previous studies demonstrated that the continuous 

evolution of this system shows features of deterministic chaos (Nasseroleslami et al. 2014). Using 

mathematical modeling and simulation of the task dynamics, this previous study examined the strategy 

that humans adopt when manipulating this complex object in continuous rhythmic fashion. Moving at an 

imposed frequency, participants chose movement amplitudes that made the interaction easier to predict. 

Counter to expectation, interaction force and smoothness were not minimized.  

 

The present study examined the same task, but extended the question in two ways. First, rather than 

imposing a frequency for the oscillatory movement, the present study prescribed the movement 

amplitude, leaving frequency free to choose. The task of choosing a frequency gave rise to new behaviors 

and new questions, because the resonance structure of the system may now play a significant role in the 

choice of strategy. Second, we extended the modeling of human control by including the mechanical 

impedance of the hand. The previous study on the same system only considered the dynamics of the cart-

and-pendulum system (Nasseroleslami et al. 2014). However, the object is in continuous interaction with 

the human, whose neuromechanical properties are likely to influence the cart-and-pendulum dynamics. 

Therefore, this study introduced a simplified model of hand mechanical impedance interacting with the 

cart-and-pendulum system.  
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Several studies on unconstrained movements have demonstrated that humans tend to move in a way that 

minimizes physical effort (e.g. Alexander 2000; Prilutsky and Zatsiorsky 2002). Extending these findings 

to the manipulation of complex underactuated objects, our first hypothesis is that humans seek to 

minimize the effort, or specifically the interaction force (Hypothesis 1). We assessed this hypothesis by 

quantifying the root-mean-squared value of the interaction force between the object and the hand. 

However, while demonstrated for free movements, this principle may become less prominent when the 

manipulated object presents additional challenges, specifically when it develops increasingly erratic 

behavior that becomes hard or impossible to predict. Therefore, we also tested the hypothesis that humans 

adopt strategies that make the hand-object interaction more predictable (Hypothesis 2). When interactions 

are predictable it is easier for humans to anticipate the object motion and hence the force arising from 

the object’s internal dynamics. Anticipating this “perturbing” force, subjects can directly generate the 

appropriate interaction force to achieve the desired movement. Conversely, unpredictable object behavior 

requires continuous correction and adaptation of the hand movement, which may be tiring, both 

physiologically and cognitively. Predictability of the object dynamics may therefore obviate 

computational effort and afford simpler internal models to guide feedforward control. We assessed 

predictability by quantifying mutual information between the hand-cup interaction force and the object 

kinematics. 

 

Addressing Hypotheses 1 and 2 rendered insight into human movement strategies (what do humans 

optimize), but they did not inform how humans achieved these strategies. Such explanation required 

closer analysis of the object dynamics. Numerous studies on rhythmic movements have provided 

evidence that resonance properties of the limbs or the object influence behavior. For example, in walking, 

the preferred stepping frequency maps onto the resonance frequency of the leg modeled as a simple 

pendulum (Holt et al. 1990). A study of infants in a “jolly jumper” showed that infants tune into the 
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resonance frequency of the jolly jumper (Goldfield et al. 1993). Rhythmically swinging hand-held 

pendulums of different mass and length has demonstrated that humans have a tendency to oscillate at the 

natural frequency of the hand-pendulum system (Yu et al. 2003). One main advantage of moving at the 

resonance frequency is its energetic efficiency: in oscillatory systems at resonance, the ratio between the 

amplitude of the movement output and the force input is maximal. Another feature of oscillating at 

resonance has been shown by Goodman et al. (2000) in a study on rhythmic limb movements. Time 

series analysis using phase space embedding revealed that the trajectories became more predictable when 

oscillating at resonance. However, that study focused on pendular limb movements, and the applicability 

of its findings to the manipulation of underactuated objects is unclear. We therefore tested an additional 

hypothesis that in complex underactuated object control, humans exploit the resonance structure of the 

manipulated object (Hypothesis 3). As the analyses showed, the manipulated object together with the 

hand not only had one, but two resonance frequencies separated by an anti-resonance frequency, a 

structure that will aid in interpreting the results. 

 

In the experiment, participants manipulated a virtual cart-and-pendulum system at their preferred 

frequency with the movement amplitude prescribed. To evaluate the strategies that humans adopted we 

mathematically examined the cart-and-pendulum system coupled to a simple model of hand impedance. 

This model-based analysis allowed us to assess alternative execution strategies, i.e. different values of 

frequency and hand impedance that could be used to perform the task. Interaction forces and the degree 

of predictability were calculated both experimentally and in simulation. Comparison of human behavior 

with the mathematically derived results showed that participants did not minimize interaction force, but 

favored strategies with high predictability. In addition, frequency analysis of the coupled object-hand 

system showed that the degree of predictability was closely related to the resonance and anti-resonance 

frequencies of the system.  
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Behavioral Experiment 

Participants 

Ten young adults with no self-reported neuromuscular pathology volunteered for the experiment (mean 

age = 24.3±1.8 yrs). All participants performed the task with their dominant hand. They were naive to 

the purpose of the study and gave written informed consent before the experiment. All procedures were 

approved by the Northeastern University Institutional Review Board. 

 

The Virtual Task 

To test the three hypotheses, a virtual task mimicking the manipulation of a bowl-shaped cup with a ball 

inside was developed. Importantly, this system is underactuated, since moving the cup causes movements 

of the ball, which simultaneously exerts forces on the cup: the person moving the cup has to take into 

account these indirectly-controlled forces to obtain the desired movement of the cup. A simplified model 

of a cup-and-ball was simulated in a virtual environment with visual and haptic feedback via a robotic 

manipulandum. Participants were asked to move this virtual cup rhythmically between two specified 

targets, but were allowed to choose their preferred frequency.  

 

The Mechanical Model  

Similar to (Hasson et al. 2012a, 2012b; Nasseroleslami et al. 2014; Sternad and Hasson 2016), the cup-

and-ball system was modeled as a ball sliding in a semi-circular cup (Fig 1A). The cup motion was 

limited to one direction in the horizontal plane, without any friction. Under the assumption that the ball 

does not roll, but only slides without friction between the cup and ball, the cup-and-ball system was 

mathematically equivalent to an undamped pendulum attached to a moving cart (Fig 1B). The ball 
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corresponded to the pendulum bob, the cup’s horizontal position corresponded to the cart position, and 

the arc of the cup corresponded to the pendulum’s semi-circular path. With this simple model, the full 

dynamics of the task could be computed more easily, without sacrificing the essential elements of the 

dynamics: underactuated and nonlinear. Hence, the equations of the cart-and-pendulum motion are 

(𝑚𝑐 + 𝑚𝑝) 𝑋̈ = 𝑚𝑝𝑑 [ 𝜃2̇ sin 𝜃 − 𝜃̈ cos 𝜃] + 𝐹𝑖𝑛𝑡𝑒𝑟 = 𝐹𝑏𝑎𝑙𝑙 + 𝐹𝑖𝑛𝑡𝑒𝑟 

𝜃̈ = − 
𝑋̈

𝑑
cos 𝜃 −  

𝑔

𝑑
sin 𝜃                                                        ( 1 ) 

where X is the cart position, θ is the pendulum angle, Finter is the force applied by the human on the cart, 

and Fball is the force applied by the pendulum (the ball in the conceptual model) on the cart. Parameters 

of the system are the mass of the cart mc, mass of the pendulum mp, the pendulum length d, and the 

gravitational acceleration g. The following values were used: mc = 2.40 kg, mp = 0.60 kg, d = 0.45 m. 

These values were chosen because they rendered resonance and anti-resonance frequencies of the system 

that were well within human motor capacities and within reach of participants. The cart and pendulum 

masses were chosen to make the object light enough to avoid fatigue. The ratio of cart and pendulum 

masses was set to make the underactuated internal dynamics a prominent feature, i.e. participants clearly 

felt the forces generated by the ball. For lighter ball masses, the cart-and-ball system approximated a 

rigid object. 

 

 

Fig 1. Model of the task. A: Conceptual model of the cup-and-ball system. B: Mechanical model of cup-and-ball 

dynamics as a cart-and-pendulum system. 
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Apparatus and Data Acquisition 

The dynamics of the cup-and-ball system were simulated in a virtual environment (Fig 2). Participants 

were seated on an adjustable chair in front of a screen and interacted with the virtual environment via a 

3-degree-of-freedom robotic manipulandum (HapticMaster®, Motekforce, Amsterdam, Netherlands) 

(Van der Linde and Lammertse 2003). The force applied by the participants on the handle of the robotic 

arm (Finter in Eq 1) controlled the position of the virtual cup (X in Eq 1). The movements of the robotic 

arm were restricted to horizontal translations parallel to the participant's frontal plane to ensure a one-

dimensional motion of the cup as in the model. Participants felt the interaction force (system inertia and 

ball force Fball in Eq 1) via the force feedback provided by the robotic manipulandum. A custom-written 

C++ program based on the HapticAPI (Moog FCS Control Systems) computed the ball kinematics and 

controlled the virtual display as well as the force feedback. 

 

 

Fig 2. Experimental set-up of the ball-and-cup task using virtual reality and force feedback. A: Rendering 

of the task in the virtual environment: the robotic manipulandum provided haptic feedback of the mechanical 

interaction with the object, while the behavior of the system was displayed online on the back-projection screen. 

The physical model used the distances shown on the figure, while the distances displayed on the screen were 

multiplied by a factor of 4 for visibility. The cup displayed was 7.5 times smaller than the physical arc determined 

by the length d of the pendulum. B: A participant using the HapticMaster to interact with the simulated cup-and-

ball system. The position of the cup was controlled by the position of the end-effector of the robot. 
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The cup and ball movements were displayed on a 2.40 m × 2.40 m back-projection screen located 2.15 

m in front of the participants. The display consisted of two green rectangular targets on a horizontal line 

delimiting the displacement of the cup; a yellow semi-circle represented the cup and a small white circle 

represented the ball (Fig 2). Although the cup was only displayed as a semi-circle, there was no restriction 

on the ball angle and the pendular rotations could exceed 90° without the ball escaping the cup. The 

visual translation of the cup was 4.0 times the physical displacement of the manipulandum. The cup 

displayed on the screen was 7.5 times smaller than the physical dimension of the cup (set by the pendulum 

length d), in order to have plausible dimensions and fit the display. The force applied by the participants 

on the robotic arm (Finter), the cup kinematics (position X, velocity 𝑋̇, and acceleration 𝑋̈) and the 

computed ball kinematics (angular position θ, angular velocity 𝜃̇, and angular acceleration 𝜃̈) were 

recorded at 120 Hz. 

 

Experimental Task and Instructions 

Participants were asked to move the cup rhythmically between two targets located at a horizontal distance 

of 16.5 cm from one another (physical distance between the center of each target, Fig 2A). Participants 

were instructed to place the cup within the target rectangle at each excursion, so movement amplitude 

was prescribed. However, the scaled cup was 3 cm wide, while each target was 4.5 cm wide; the peak-

to-peak excursion of the physical cup oscillation could therefore range from 15 to 18 cm and still satisfy 

the task. This tolerance gave participants some leeway to develop their preferred motion. Further, 

participants were told that they could freely choose their frequency of oscillation and that they could 

change it throughout the experiment to arrive at their most preferred frequency. Even though participants 

did not receive explicit restrictions on the movement frequency, a demonstration of the task by the 
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experimenter and the emphasis to “move rhythmically” discouraged them from extremely slow 

movements. Note that people do not necessarily prefer to move as slowly as possible, even though this 

may save effort (Van der Wel et al. 2010, Park et al. 2017). No instruction was given regarding the 

position of the ball within the cup, but participants were informed that the ball could not escape the cup 

(i.e. the behavior was that of a pendulum – attached with a string – rather than that of a loose ball). 

However, due to the haptic feedback provided by the manipulandum, participants could not ignore the 

movement of the ball: the ball movement affected the cart movement, as in a real system, and participants 

felt and saw it. Note that this experimental design intentionally refrained from specifying a single optimal 

task performance, but rather aimed to give insight into what participants preferred to do, especially after 

some exploration and practice.  

 

The experiment consisted of 5 blocks of 10 trials each. Each trial lasted 45 s. The trials within a block 

were separated by a 15 s pause, and the blocks were separated by a break of several minutes. At the 

beginning of each trial, the cup was positioned at the center of the left target, and the ball rested at the 

bottom of the cup. 

 

Data Analysis 

As the task could be achieved by multiple solutions, i.e. it had redundancy, we distinguished between 

execution and the outcome or result of the movement. Performance was quantified by variables that fully 

described the kinematics of the system, i.e. amplitude and frequency of cart and pendulum, while the 

outcome was quantified by the task or result variables interaction force, predictability and resonance. 

Result variables are metrics that explicitly tested the hypotheses.  

 

Task Performance and Kinematic Variables: The task instructions elicited trajectories close to a 
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sinusoid, therefore the movements of the cart (cup) were characterized by the amplitude Ak and the 

frequency fk of each cycle k (i.e. each back-and-forth movement). The cart amplitude Ak was defined as 

the half-distance between the minimum and the maximum of the cart position during cycle k. The cart 

period Tk was defined as the time between two successive maxima of the cart position; the oscillation 

frequency was fk = 1/Tk. In addition, we quantified the relative phase between the cart and pendulum 

movements by computing the time lag that maximized the cross-correlation between the time-series of 

the cart position and pendulum angle. The resulting time lag was then converted into relative phase. 

 

In order to detect the extrema in the cart position, the difference between successive data points, i.e. 

velocity, was computed. Extrema were detected as those values where the sign changed. In order to 

ensure robust detection of the cart extrema, the cart position data were smoothed with a zero-phase-lag, 

fourth-order, low-pass Butterworth filter with a 3 Hz cut-off frequency. Note that this smoothing was 

used only for detecting the extrema. 

 

Result Variables: Hypothesis 1 – Minimize Interaction Force: The net force required to perform the task 

was estimated by the root mean square of the continuous interaction force RMSF  

𝑅𝑀𝑆𝐹(𝐹𝑖𝑛𝑡𝑒𝑟) =
1

𝑇
∫ 𝐹𝑖𝑛𝑡𝑒𝑟

2 (𝑡)𝑑𝑡
𝑇

0
  (2) 

where T is the duration of the trial. Note that this hypothesis is about the hand-cart interaction force and 

not the overall force exerted by the participants. In particular, muscular effort was not evaluated. 

 

Hypothesis 2 – Maximize Predictability: Predictability is a mathematical concept that can be 

operationalized in several ways. We opted to characterize the degree of predictability of the object 

dynamics by the mutual information between the input and the output of the system, i.e. the cart trajectory 



 

15 

 

and the interaction force Finter. Mutual information is an information-theoretic metric that quantifies the 

statistical dependency between two variables, and thereby quantifies how much knowing one of the 

variables reduces the uncertainty about the other. High mutual information indicates a small degree of 

uncertainty (Cover and Thomas 2012). In the present context, mutual information quantifies the degree 

to which the long-term evolution of the interaction force can be expected, i.e. predicted, if the cart 

trajectory is known. Unlike cross-correlation, which is limited to linear relations between variables, 

mutual information assesses both linear and nonlinear dependency. It is therefore more suitable for this 

nonlinear system. In particular, mutual information has been commonly used to quantify predictability 

of weather and climate, which are modeled by chaotic dynamical systems (DelSole 2004; Kleeman 

2011).  

 

The cart trajectory, which was close to sinusoidal, was represented by its phase in state space φ(t) = 

arctan(𝑋́/ (2 f π X)). The interaction force Finter(t) was used as defined above. The predictability measure 

MI was therefore  

𝑀𝐼(𝜑, 𝐹𝑖𝑛𝑡𝑒𝑟) = ∬ 𝑝(𝜑, 𝐹𝑖𝑛𝑡𝑒𝑟)𝑙𝑛 [
𝑝(𝜑,𝐹𝑖𝑛𝑡𝑒𝑟)

𝑝(𝜑)𝑝(𝐹𝑖𝑛𝑡𝑒𝑟)
] 𝑑𝜑𝑑𝐹𝑖𝑛𝑡𝑒𝑟  ( 3 ) 

where p denotes the probability density functions for φ(t) and Finter(t). Mutual information is a 

dimensionless quantity, and its unit depends on the base of the logarithm that is used. Here, the natural 

logarithm was used, and the unit of mutual information is the nat. 

 

Hypothesis 3 – Exploit Resonance: Determining the resonance structure of the system requires analytical 

or numerical analysis of the system dynamics and cannot be inferred from the behavioral data alone. 

Therefore, Hypothesis 3 will be addressed later in the modeling and simulation section. 

 

https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
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Data Processing: For all kinematic and result variables, only the data between t = 20 s and t = 40 s of 

each trial were analyzed to eliminate transients at the beginning and end of the trial. As the experimental 

data were compared with model simulations described below, trials that significantly deviated from 

periodicity needed to be excluded as the model assumed periodicity. Hence, when the standard deviation 

of the oscillation frequency exceeded 10% of its mean, the trial was excluded as this indicated significant 

deviation from the instructed periodic movements. Similarly, a trial was excluded if the mean cart 

excursion was smaller than 12 cm or larger than 21 cm, as it did not satisfy the instructed excursion (15 

to 18 cm), even allowing an additional 3 cm of tolerance. These relatively stringent inclusion criteria 

were adopted in post-processing only to enable meaningful comparison with the simulation study 

reported below (the simulation assumed constant movement frequency within a given amplitude range). 

They were not success/failure criteria for the participants. One participant's majority of trials did not 

satisfy these criteria and his entire data were eliminated from subsequent analysis. From the remaining 

450 trials of 9 participants, only 17 trials did not meet these criteria. These 17 trials were not at the 

beginning of the experiment, but distributed across early and late trials. This indicated that the task did 

not require practice, and performing with periodicity was not a challenge per se. 

 

The data processing and analyses were performed with MATLAB® (The Mathworks Inc., Natick, MA) 

and Gnumeric. The numerical values of the interaction force and predictability estimates for each 

experimental trial were computed with Matlab from the experimental trajectories. Mutual information 

was calculated with the Matlab MIToolbox-2.1.2. Statistical comparisons were performed using t-tests 

since the measures were normally distributed (confirmed by Kolmogorov–Smirnov tests). 

 

Results 

Task Performance and Kinematic Variables: As a first overview of participants' performance, Fig 3 
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shows the frequencies fk adopted by participants plotted as a histogram. To obtain a sufficiently large 

number of data, each cycle, i.e. one back-and-forth movement, was a data point. Two distinct strategies 

were observed: frequencies were concentrated either between 0.4 and 0.7 Hz (low-frequency strategy) 

or between 0.9 and 1.8 Hz (high-frequency strategy). The low frequencies were densely concentrated 

with a sharp peak at around 0.65 Hz, while the higher frequencies were distributed more broadly. These 

two strategies were separated by a gap between 0.7 and 0.9 Hz: only very few oscillations had a frequency 

within this range. Four participants adopted the low-frequency strategy, and four participants chose the 

high-frequency strategy. One participant used low frequencies for the first 35 trials, and then switched to 

high frequencies; his first 35 trials were therefore put in the low-frequency strategy, and the subsequent 

trials in the high-frequency strategy. All others were consistent in their choice throughout their 50 trials, 

excluding the very first trials that were exploration. 

 

 

Fig 3. Distribution of frequencies adopted by all participants when manipulating the virtual cup-and-ball 

system. The histogram represents the frequencies fk of every single cycle of the 433 valid trials (total: 7350 cycles). 

Note that the x-axis is in log scale. 
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Fig 4 depicts a low- and a high-frequency strategy with exemplary time series of the cart and pendulum 

positions of two representative participants. For the low-frequency strategy, the cart and pendulum 

movements were in-phase (the pendulum’s maximum angle was synchronized with the cart’s maximum 

position). In contrast, the cart and pendulum movements of the high-frequency strategy were in anti-

phase relation (the pendulum maximum angle was synchronized with the cart’s minimum position).  

 

 

Fig 4. Experimental cart and pendulum trajectories. Representative trajectories of the cart (top panel) and 

pendulum (bottom panel) from one participant who chose the low-frequency strategy (A) and one participant who 

chose the high-frequency strategy (B). With the low-frequency strategy the cart and pendulum movements were 

in-phase, and the pendulum oscillations were large. With the high-frequency strategy the cart and pendulum 

movements were anti-phase and the pendulum oscillations were smaller. 

 

Fig 5 shows how the kinematic variables A, f and the relative phase between the cart and pendulum 

movements changed over the 50 practice trials for the two groups, i.e. two strategies. In overview, all 

kinematic variables tended to show an initial transient and then reached a plateau relatively early on.  
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Fig 5. Evolution across trials of the experimental kinematic variables. A: Amplitude A of the cart oscillations. 

B: Frequency f of the cart oscillations. C: Relative phase between the cart movement and the pendulum movement. 

Note that the amplitude A is defined as the half-distance between the cup extrema. Each of the 433 valid trials was 

represented by one single value of A, f and 𝜃́0 𝜃́𝑚𝑎𝑥⁄  by averaging across all the cycles within 20 ≤ t ≤ 40 s in the 

trial. The blue and red colors correspond to the two frequency groups. The thick lines denote the mean across 

participants; the shaded areas denote the standard deviations across participants.  

 

Cart Oscillation Amplitude (Fig 5A): The amplitude A of the cart was relatively invariant throughout the 

whole experiment in the low-frequency group, while for the high-frequency group it only stabilized in 

approximately the last 20 trials. The mean cart amplitude in the last 20 trials converged to similar values 

in both frequency groups: 8.8 ± 0.1 cm in the low-frequency group and 8.9 ± 0.1 cm in the high-frequency 

group. These values were within the instructed amplitude range – though close to the higher limit – 

showing that both participant groups satisfied the task. The mean amplitudes over the last 20 trials were 

not significantly different between groups (p = 0.47). 

 

Cart Oscillation Frequency (Fig 5B): After initial exploration in which all participants adopted relatively 

low frequencies (around 0.5 Hz in the very first trials), the frequency f stabilized after approximately 15 

trials in both groups. The low-frequency group arrived at a mean movement frequency of 0.65 ± 0.01 Hz 

(average and standard deviations across the last 35 trials). The high-frequency group adopted a mean 
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movement frequency of 1.27 ± 0.04 Hz (average and standard deviations across the last 35 trials), 

although the variability across participants was much higher, as already indicated by the broad 

distribution in Fig 3. The mean frequencies over the last 35 trials were significantly different between 

groups (p < 0.01).   

 

Cart and Pendulum Synchronization (Fig 5C): In the low-frequency group, the relative phase between 

the cart and pendulum movements remained close to zero for all trials, indicating in-phase movements 

(average relative phase over all trials: 4.92 ± 2.71 degrees). In the high-frequency group, after abruptly 

transitioning from 0 to 180 degrees in the first 5 trials, relative phase stabilized at around 180 degrees, 

indicating anti-phase movements (average relative phase over the last 45 trials: 181.9 ± 4.47 degrees). 

No intermediate relative phase values were observed in any of the experimental trials.  

 

Result Variables and Hypothesis Testing: Fig 6A and C display the evolution of the result variables 

interaction force RMSF and mutual information MI, averaged over all participants across trials. The two 

frequency strategies are again shown separately. Similar to the kinematic variables, there is an initial 

change leading to a plateau relatively early. To evaluate the hypotheses the initial 5 trials were compared 

with the final 5 trials. 
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Fig 6. Evolution across trials of the result variables. Evolution of the experimental (A, C) and simulated (B, D) 

result variables root mean square interaction force RMSF and mutual information MI across trials. The 

experimental variables were computed from the measured time-series. The simulated variables were computed 

from time-series obtained by simulation of the coupled model (described below). The simulations were run using 

the experimental values of the cart amplitude and frequency. The solid lines represent the average over all 

participants in each of the two frequency groups, and the shaded areas represent one standard deviation. 

 

Hypothesis 1 – Interaction Force: The root mean square interaction force RMSF increased from 2.57 ± 

0.56 N to 5.49 ± 0.10 N in the low-frequency group, and from 5.48 ± 1.59 N to 9.09 ± 0.38 N in the high-

frequency group between early and late trials. The increase was significant in both groups (p < 0.001). 
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This evolution suggests that participants did not minimize interaction force, counter to Hypothesis 1. 

Instead, with practice they increased the exerted interaction force. Further, 5 out of the 9 participants 

chose the high-frequency strategy which was associated with significantly higher RMSF values. If 

minimization of interaction forces had been the criterion, all participants should have converged to the 

low-frequency strategy. 

 

Hypothesis 2 - Predictability: Mutual information MI between the interaction force and the cart 

kinematics of the low-frequency group increased from 1.25 ± 0.05 nat in the first 5 trials to 1.44 ± 0.06 

nat in the last 5 trials. In the high-frequency group, mutual information increased from 1.36 ± 0.08 nat to 

1.53 ± 0.03 nat between early and late trials. The increase was significant in both groups (p < 0.003) 

supporting Hypothesis 2 that participants sought to increase predictability of the system they interacted 

with. Note that though the increase in MI seemed modest, the maximum achievable value of MI was 

around 1.8 nat (for achievable oscillation frequencies). Therefore, the observed relative increases were 

important. 

 

Simulations and Analysis of the Result Space 

The results of the behavioral experiment provided support for Hypothesis 2 that humans strive to increase 

the predictability of the interaction when manipulating an inherently erratic or unpredictable system. 

Conversely, the interaction force was not minimized in this interactive task (counter to Hypothesis 1). To 

further evaluate these findings and to test Hypothesis 3, we compared the strategies adopted by 

participants with possible alternative executions to shed light on priorities in human control. To this end, 

model simulations were performed to compute the result variables for alternative executions that could 

have achieved the task. 
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A Coupled Model 

In a previous study, the task dynamics was analyzed by considering the behavior of the cart-and-

pendulum system alone without including the controlling hand (Nasseroleslami et al. 2014). However, 

this uncoupled model only partly replicated our experimental data (see Appendix A). We therefore 

extended the model to include the continuous coupling between the cart and the hand. 

 

Mechanical Model and Forward Dynamics: To capture the dynamics of the task more accurately, the 

cart-and-pendulum system was coupled to the hand dynamics (Fig 7). The hand dynamics was 

represented by an ideal force generator (force Finput) in parallel with a spring (stiffness K) and a damper 

(damping coefficient B). 𝐹𝑖𝑛𝑝𝑢𝑡(𝑡) was the force required to follow a desired trajectory (𝑋𝑑𝑒𝑠(𝑡), 𝑋́𝑑𝑒𝑠(𝑡)). If 

the full dynamics of the task – including the pendulum force – were perfectly anticipated, participants 

would be able to generate an input force Finput allowing the cart to exactly follow the desired trajectory 

Xdes(t). In reality, however, it was unlikely that participants learnt the perfect model due to the pendulum 

force acting as a perturbation. Therefore the motion due to the generated input force Finput(t) did not 

exactly track the desired cart trajectory, so that the actual cart trajectory X differed from Xdes. The spring 

and damper – which were a simplified model of hand impedance – then served to resist this perturbation. 

Note that this model represented the impedance at the level of the limb: the stiffness K and damping B 

corresponded to limb features and not to properties of the involved muscles. The equations of motion of 

the coupled model are  

(𝑚𝑐 + 𝑚𝑝) 𝑋̈ = 𝑚𝑝𝑑 [ 𝜃2̇ sin 𝜃 − 𝜃̈ cos 𝜃] + 𝐹𝑖𝑛𝑡𝑒𝑟 = 𝐹𝑏𝑎𝑙𝑙 + 𝐹𝑖𝑛𝑡𝑒𝑟 

𝜃̈ = − 
𝑋̈

𝑑
cos 𝜃 −  

𝑔

𝑑
sin 𝜃                               (4)                           

𝐹𝑖𝑛𝑡𝑒𝑟 = 𝐹𝑖𝑛𝑝𝑢𝑡 − 𝐾(𝑋 − 𝑋𝑑𝑒𝑠) − 𝐵(𝑋̇ − 𝑋̇𝑑𝑒𝑠) 

Given the task instructions, the desired trajectory was a sinusoid Xdes(t) = A sin(2 π f t + π/2).  

https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
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Fig 7. Model used to analyze the dynamics of the task in simulation.  Forward dynamics of the cart-and-

pendulum system coupled to a model of hand impedance. 

 

The coupled model was simulated with forward dynamics, i.e. computing the system state variables 

𝑋(𝑡), 𝑋́(𝑡), 𝜃(𝑡), 𝜃́(𝑡) and interaction force Finter(t) from a known Finput(t). Since Finput(t) could not be 

measured experimentally, it was chosen to match the force required to manipulate a rigid object of similar 

mass, i.e. 𝐹𝑖𝑛𝑝𝑢𝑡(𝑡) = (𝑚𝑐 + 𝑚𝑝) 𝑋̈𝑑𝑒𝑠(𝑡). Humans can manipulate rigid objects very accurately, suggesting 

that they have a good model of the task dynamics. The hand impedance parameters K and B were 

considered constant during a trial. 

 

Execution Variables: To evaluate the three hypotheses, one must first define a ”strategy”: a strategy 

was defined by the set of execution variables that participants directly controlled and that fully 

determined the task outcome (and hence referred to as result variables). While the cart oscillation 

amplitude A was prescribed in the experiment, participants could freely choose three variables of the 

coupled model: the movement frequency f, the hand stiffness K and the damping B, referred to as 

execution variables. 

 

Unlike the movement frequency f, the experimental hand stiffness and damping could not be measured 

directly, but had to be estimated to afford forward simulations. To this end, an optimization was 
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conducted which aimed to estimate the values of K and B for which the simulated cart and pendulum 

trajectories best resembled the experimental trajectories. The optimization process and the cost criterion 

C are detailed in Appendix B.  

 

Simulation of Result Variables and Hypothesis Testing: As for the behavioral experiment, the 

simulation tested the hypotheses by evaluating the result variables root mean squared interaction force 

RMSF (Eq. 2) and mutual information MI between the cart kinematics and the interaction force (Eq. 3). 

To obtain the space of all executions spanned by execution variables f, K and B forward dynamics 

simulation of the coupled model were run to generate the profiles of the cup kinematics φ(t) and the 

interaction force Finter(t). Using Matlab-Simulink, the simulation time was 45 s, but only data from 20 ≤ 

t ≤ 40 s were analyzed to eliminate transients. The two result variables MI and RMSF were then calculated 

with Matlab as for the experimental data. These results then served to test Hypotheses 1 and 2. 

 

To evaluate Hypothesis 3 (exploit resonance), a frequency response analysis of the coupled model was 

conducted in Matlab. Due to the nonlinearity of the coupled cart-and-pendulum plus human hand system, 

classic frequency response tools could not be used. However, the system could be linearized assuming 

small pendulum angles. Although this approximation was not valid for all frequencies, the linear analysis 

allowed further insight into the behavior of the system. In the frequency response analysis, only one of 

the execution variables, the movement frequency f, was varied, while the hand stiffness K and damping 

B were fixed to typical values: one corresponding to the mean values of K and B adopted by participants 

in the low-frequency group, and the other to the mean values in the high-frequency group (see Appendix 

B for the identification procedure of experimental values of K and B). 
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Simulation Results of the Coupled Model 

Figs 8A and 9A display the 3D execution space spanned by frequency f, stiffness K and damping B. For 

each combination or point in this space the result variables RSMF and MI were calculated (resolution of 

f: 0.005 Hz, resolution of K: 2 N/m, resolution of B: 1 N.s/m). The green shades denote the area of low 

interaction force RMSF (Fig 8A) and the pink shades denote the areas of high MI or predictability (Fig 

9A), the hypothesized strategies according to Hypothesis 1 and 2, respectively. The blue dots are the 

participants’ data, one point for each trial. Note that the participants’ data points in the two figures are 

the same to compare them with the two simulated result variables. Figs 8B and 9B show a 2D contour 

map of the same RMSF and MI, plotted for a constant value of hand damping B = 10 N.s/m. Hence, this 

2D space only shows a subset of all participants’ data points (for 8 < B < 12 N.s/m). The result space for 

MI contains one area of very low predictability for frequencies around 0.8 Hz (Fig 9). This area coincides 

with an area where the interaction force RMSF is low (Fig 8); therefore, the two hypotheses of interaction 

force minimization and predictability maximization are mutually exclusive. Conversely, for frequencies 

around 0.64 Hz and higher than 1.20 Hz, predictability was high, but interaction force was high as well. 
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Fig 8. 3D plot and 2D contour map of RMSF in the space of the execution variables. A: 3D plot of the root 

mean square interaction force RMSF in the space spanned by the three execution variables f, K and B. The green 

shading represents areas of low interaction force, RMSF < 3 N. B: 2D map of RMSF in the space spanned by two 

of the execution variables: f and K. The hand damping B was fixed at 10 N.s/m. The blue dots represent the 

strategies (f, K, B) adopted by participants in the experiment. The dark blue dots correspond to trials for which the 

impedance fit was good (cost C < 0.15, 80 % of trials); the lighter dots are trials where 0.15 < C < 0.20 (12 % of 

trials). The trials where the impedance fit was poor (C > 0.20) are not represented since they were not reliable (8 % 

of trials). The cost C is defined in Appendix B. 
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Fig 9.  3D plots and 2D contour map of MI in the space of the execution variables. A: 3D plot of the mutual 

information MI between the cart trajectory and interaction force in the space spanned by the three execution 

variables f, K and B. The pink shading represents areas of high mutual information, MI > 1.2 nat. B: 2D map of 

MI in the space spanned by two of the execution variables: f and K. The hand damping B was fixed at 10 N.s/m. 

The blue dots represent the strategies (f, K, B) adopted by participants in the experiment. The dark blue dots 

correspond to trials for which the impedance fit was good (cost C < 0.15, 80 % of trials); the lighter dots are trials 

where 0.15 < C < 0.20 (12 % of trials). The trials where the impedance fit was poor (C > 0.20) are not represented 

since they were not reliable (8 % of trials). The cost C is defined in Appendix B. 

 

Hypothesis 1 – Interaction Force: As seen in Fig 8A, very few experimental trials overlapped with low 

RMSF solutions (indicated by green areas) that separated the two frequency groups. Very few trials were 

centered in the low interaction force/low predictability area, and two of these data points were based on 

only a moderately good impedance fit (light blue dot). The 2D section in Fig 8B shows the modulation 
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of RMSF for different frequency and stiffness combinations. Notably, the low interaction force solutions 

are indicated at movement frequencies lower than 0.5 Hz or between 0.7 and 0.9 Hz. The experimental 

data points clearly were not in these regions and therefore did not support Hypothesis 1.  

 

In addition, the simulated time series of the model were analyzed in analogous fashion to the 

experimental time series. The simulated RMSF was computed from time-series obtained by simulation 

of the coupled model initialized with the experimental values of the execution variables. Fig 6B displays 

the evolution across trials of the simulated RMSF averaged over all participants in each of the two 

frequency groups. The significant increase in RMSF from early to late trials in both groups was a further 

indicator that low interaction force was not a priority. The simulated RMSF increased from 2.35 ± 0.51 

N to 4.89 ± 0.07 N in the low-frequency group and from 4.42 ± 1.89 N to 7.44 ± 0.58 N in the high-

frequency group (p < 0.001). Note that despite some discrepancies between the experimental and 

simulated RMSF, the general trends in their evolution and even the magnitudes were remarkably similar, 

supporting the adequacy of the coupled model and the estimated values of K and B. 

 

Hypothesis 2 - Predictability: According to Fig 9A, none of the participants chose a strategy located in 

the area of lowest MI, or low predictability (non-shaded areas). The two frequency groups were clearly 

separated by the low MI area around 0.8 Hz. Fig 9B details the irregular pattern of MI for different 

frequency-stiffness combinations, with adjacent regions of high and low MI between 0.6 and 0.8 Hz. 

This fast change in MI was likely due to the resonance structure of the system detailed below. The more 

intricate variation of MI at higher frequencies might be due to chaotic behavior. The data suggest that 

participants adopted strategies with relatively high MI or high predictability.  

 

Additionally, MI was computed from the time series of the simulated data and is presented in Fig 6D. MI 
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increased from 1.11 ± 0.05 nat in the early (first 5) trials to 1.30 ± 0.03 nat in the late (last 5) trials in the 

low-frequency group (p = 0.003). In the high-frequency group, the simulated MI increased from 1.21 ± 

0.07 nat to 1.29 ± 0.02 nat (p = 0.02). Again, note that the maximum value of MI was about 1.8 nat. 

Comparing this progression with the experimental values (Fig 6C) shows that both the time course and 

the magnitudes of the MI simulated values were close to the experimental values, supporting the 

adequacy of the coupled model and the estimated values of stiffness and damping. This simulation result 

strengthens the experimental results that predictability was increased with practice.  

 

Hypothesis 3 - Resonance: One essential feature of the task dynamics is its resonance structure: the 

coupled system has two resonance peaks and one anti-resonance frequency or dynamic zero between the 

two resonance frequencies. Fig 10 displays Bode magnitude and phase plots of the linearized coupled 

model for two representative values of hand impedance. System A was simulated with K = 100 N/m and 

B = 10 N.s/m, values that were typical for the low-frequency group. System B with K = 200 N/m and B 

= 15 N.s/m was typical for the high-frequency group. As the responses of the two systems reveal, the 

resonance peaks depend on the values of K and B. The panels for pendulum angle show one clear resonant 

peak at 0.68 Hz for system A and at 0.71 Hz for system B.  

 

Surprisingly at first sight, the second peaks at the higher frequencies are hardly noticeable. This arises 

from the fact that the simulation assumed that subjects generated a sinusoidal predictive force Finput(t) 

intended to produce the desired cart motion Xdes(t). This predictive force was based on an incomplete 

model of the object dynamics which considered only its lowest-frequency mode of behavior, i.e. as 

though the pendulum and the cart moved as one body 𝐹𝑖𝑛𝑝𝑢𝑡 = (𝑚𝑐 + 𝑚𝑝)𝑋́𝑑𝑒𝑠. This imperfect predictive 

force only partially compensated for object dynamics, which was nevertheless sufficient to counteract 

the object’s resonances, especially at the higher frequencies. Mathematically, the predictive force 
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introduced complex-valued zeros near the complex-valued poles that describe the high-frequency 

resonance. These zeros tended to cancel or ‘mask’ the effect of the adjacent poles, converting a sharp 

resonant peak into a broad region of nearly-constant magnitude (see Footnote 1).  

 

Importantly, the response of cup displacement for both systems shows a sharp valley, indicating the anti-

resonance at 0.74 Hz between the two resonances. Note that the anti-resonance frequency is identical in 

system A and B, i.e. independent of the values of K and B.  The phase plots in Fig 10 display the relative 

phase between the input force and the cart movement (red line), and the relative phase between the input 

force and the pendulum movement (blue line). Comparison between these two curves highlights that for 

low frequencies the cart and pendulum are in-phase, while for frequencies higher than the anti-resonance 

frequency, cart and pendulum motions are anti-phase. In addition, the relative phase between the input 

force and the cart movement (red line) reveals that for frequencies outside the two resonance frequencies, 

the cart movement is anti-phase with the input force. Conversely, over a small interval between the two 

resonance frequencies, the relative phase between the input force and the cart movement is changing. 

 

For comparison of the model’s resonant peaks with the experimental data, the distributions of the 

observed frequencies in participants are shown in grey (Fig 10). For the low-frequency group (System 

A) the peak in the distribution is very close to the system’s resonance peak. For the high-frequency group, 

participants show a very broad distribution that matches with the smeared-out resonance peak of System 

B. Comparison between Fig 9 and 10 reveals that the two resonance frequencies of the system coincided 

with areas of high MI. This suggests that the behavior of the system is easily predictable when oscillating 

at a resonance frequency. Conversely, the anti-resonance frequency coincides with a region of low MI, 

therefore the behavior of the system is hard to predict when oscillating at or around the anti-resonance 

frequency. These results are consistent with Hypothesis 3. 
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Fig 10: Bode amplitude and phase plots of the linearized coupled model, for different values of hand 

impedance. A: K = 100 N/m and B = 10 N.s/m, typical for the low-frequency group. B: K = 200 N/m and B = 15 

N.s/m, typical for the high-frequency group. Note that the pendulum amplitude plots have different scales in A 

and B. The phase plots of the cart and pendulum are superimposed to highlight the synchronization of their 

movements. For comparison, the grey histogram represents the distribution of frequencies adopted by participants 

in the experiment (identical to Fig 3). The part of the graph right (resp. left) of the anti-resonance frequency is 

greyed out because it is not relevant for system A (resp. B) with values of K and B for which the frequency analysis 

was performed. 

 

 

Discussion 

This study examined strategies that humans adopt when manipulating objects with underactuated internal 

dynamics. To date, the majority of research in motor neuroscience has examined unconstrained 
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movements in highly controlled experimental tasks to render interpretable data; only relatively few 

studies have examined control of complex objects. However, everyday behavior is full of complex 

manipulations that set humans apart from primates and other animals. The present study focused on 

continuous physical interaction with a cart-and-pendulum system, representing the simplified dynamics 

of a moving a cup of coffee. Participants had to move with a prescribed amplitude, but could choose their 

preferred frequency. Importantly, in continuous interaction with the complex object, the dynamics of this 

system is underactuated and can exhibit erratic and unpredictable behavior. Such unpredictable dynamics 

poses significant challenge to any internal model guiding the goal-directed manipulation.  

 

Using both behavioral data and numerical analysis of the cart-and-pendulum system coupled to a model 

of hand impedance, we tested three hypotheses: humans minimize the interaction force required to move 

the system (Hypothesis 1); alternatively, they maximize predictability of the system behavior (Hypothesis 

1); and/or they exploit the resonance structure of the system (Hypothesis 3). Interaction force between 

hand and cart was quantified by its root mean squared value. Predictability was operationalized by the 

mutual information between the kinematics of the cart and the interaction force. Exploiting resonance 

was tested by comparing the chosen frequencies with the resonance structure of the system. Results of 

the experiment showed that participants increased, not decreased, the interaction force (counter to 

Hypothesis 1), while they also increased predictability of the system with practice (consistent with 

Hypothesis 2). Half the participants chose a strategy that had significantly higher interaction forces, while 

affording similarly high degree of predictability. 

 

The results of the simulations gave further support that, among alternative strategies (defined by values 

of movement frequency and hand impedance that humans could adopt), participants chose strategies with 

high predictability, but not with low interaction force. These results corroborate and generalize those 
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obtained by Nasseroleslami et al. (2014) in a similar experiment that prescribed movement frequency, 

but left amplitude free to choose. In addition, frequency response analysis of the linearized coupled 

system showed that participants chose movement frequencies close to the resonance frequencies of the 

system, while avoiding the anti-resonance frequency (consistent with Hypothesis 3). These findings 

demonstrate that predictability is a control priority in complex underactuated object manipulation, which 

takes precedence over principles such as interaction force minimization. The fact that results support 

both Hypothesis 2 and Hypothesis 3 suggests that predictability may be explained by the resonance 

structure of the system. Therefore, manipulation of underactuated objects cannot be understood simply 

by extending principles of free movements or rigid object manipulation; underactuated object 

manipulation constitutes a different class of tasks with different control challenges.  

 

Assumptions of the Coupled Model 

To provide an entry to a quantitative understanding of this complex task, an essential element in our 

approach was simulation of the task dynamics with only minimal assumptions about the controller. We 

therefore coupled a simplified model of hand impedance to the cart-and-pendulum system. This coupled 

model approximated the experimental data more accurately than a previous model with the cart-and-

pendulum alone (Appendix A). However, as this model went beyond the physics of the task alone and 

included the human controller, certain assumptions had to be made.   

 

Invariance of Input Force: One first assumption was that the input force (Eq 4) was equal to the force 

required to move a rigid object of the same mass as the cart-and-pendulum system; further, the amplitude, 

frequency, and phase of this input force was the same sinusoidal signal during and across trials. While 

this is a reasonable initial assumption, it is likely that humans learned to adapt their input force, based on 

the perceived interaction force and/or the cart displacement. As the simulation kept the input force 
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invariant, the desired cart trajectory was not always accurately tracked, especially when the hand 

impedance was low. A plausible next modeling step would be to modulate the amplitude of the sinusoidal 

input force based on the difference between the actual and desired cart amplitude. Even though it is 

relatively straightforward to include such an adaptation of the input force, this would evidently make the 

model more complex and not necessarily help to understand the data. 

 

Invariance of Hand Impedance: A second simplifying assumption was that the hand impedance was 

constant throughout one trial. Given the task instruction and the virtual display, the amplitude of the cart 

movement was the main concern for participants, while the actual trajectory between the two targets was 

secondary. Therefore, it could be speculated that participants may increase their arm impedance close to 

the targets to ensure accuracy in the amplitude, but decrease impedance during translation between 

targets. A sinusoidally changing impedance might therefore better match experimental data. However, 

as with the modulation of input force, the potential gain in realism would be at the cost of more 

parameters to identify. Therefore, constant impedance and constant input force is a reasonable 

compromise between accurate replication of experimental data and transparency of the model. 

 

Predictability, Muscular Effort and Antagonist Co-Contraction 

The simulations reveal that high predictability and low interaction force are non-overlapping strategies 

and the data provide evidence that it is predictability that determines the choice of control strategy. The 

finding that humans do not try to minimize interaction force may seem to run counter to many studies on 

unconstrained movements that have shown that humans favor energy- or effort-efficient strategies 

(Nelson 1983; Alexander 2000; Prilutsky and Zatsiorsky 2002). It should be pointed out that our force 

criterion only quantified the net external force, i.e. interaction force. While this external force increased, 

it might be that higher predictability had a secondary effect on decreasing internal muscular effort: when 
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the system dynamics is erratic, it is difficult to anticipate and preempt the perturbing force of the 

pendulum by feedforward control. The user may then rely on his/her hand impedance to reject these 

perturbations and maintain the desired cart trajectory. This requires increasing the impedance through 

co-activation of antagonist muscles, which results in higher muscular effort without any consequences 

on the net external force. Conversely, predictable object dynamics may enable participants to anticipate 

the perturbing interaction force, and thereby reduce effort due to co-contraction. Predictability can 

therefore afford a way to minimize the overall muscular effort. 

 

The strongest evidence that force minimization was not an objective was that half of the participants 

chose the high-frequency strategy associated with higher forces than the low-frequency strategy (Fig 6).  

If effort were the main concern, all participants should have chosen the lower frequency and lower 

impedance (Appendix B). As mutual information was similar in both frequency groups, the low-

frequency solution would have decreased the overall effort and reconciled the predictability and 

interaction force objectives. However, one point to note is that the task required only relatively low 

forces, which may be one reason why optimizing effort was not a priority. Testing the same experiment 

with different masses for the cart-and-pendulum system is a direction for future work. 

 

Predictability, Error Correction and Computational Cost 

Another factor that may have influenced participants' choices was that the low-frequency strategy was 

close to the boundary of the low predictability zone (starting around 0.7 Hz in Fig 9), compared to the 

high-frequency solution that was more robust or tolerant to variation in frequency. With the low-

frequency strategy, small variations could easily lead to erratic behavior and perturbations that require 

correction. If such error corrections were executed by the CNS, then the computational cost would 

increase. Computational effort has been recognized and included as a cost in several optimization studies 



 

37 

 

(Todorov and Jordan 2002; Ronsse et al. 2010). Yet in these modeling approaches, computational cost 

terms have remained unspecified placeholders for unaccounted factors contributing to human control 

choices. A series of studies by Sternad and colleagues have argued that the human controller may exploit 

the stability properties of a task to avoid computationally expensive corrections (Sternad 2017). Using 

the task of rhythmically bouncing a ball with a paddle, several experiments provided robust evidence that 

human subjects learned to attain dynamic stability, such that small errors passively decayed, obviating 

the need for explicit corrections (Schaal et al. 1996; Sternad et al. 2000; de Rugy et al. 2003). When 

applying larger perturbations, additional corrections were evidenced, although the signature of dynamic 

stability was still visible (Siegler et al. 2010; Wei et al. 2007, 2008). In a similar spirit, mathematical and 

empirical studies of a throwing task showed that humans seek solutions that are tolerant to error and 

noise, therefore requiring fewer corrections (Sternad et al. 2001, 2014; Cohen and Sternad 2009). 

Predictability of the interactive dynamics of complex object manipulation may again be a manifestation 

of human controllers seeking to simplify the control task. 

 

Resonance/Anti-Resonance Structure, Effort and Predictability 

Did participants choose to move at resonance peaks to reduce effort? As Fig 10A showed, participants 

who moved the cart and pendulum in phase could take advantage of the low-frequency resonance to 

reduce effort, but had to exert precise control of frequency to avoid the nearby anti-resonance frequency. 

Participants who chose the anti-phase strategy expended more muscular effort due to the higher 

frequency of anti-phase motion and to the elevated stiffness and damping they exhibited. However, the 

anti-phase motion was available over a much broader range of frequencies (Fig 10B) and therefore 

required much less precise control of frequency. Further, they were far away from the anti-resonance 

frequency or dynamic zero at 0.74 Hz. 
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Did participants prefer certain cup frequencies because they were associated with specific relative phases 

between the cart and the pendulum movements or between the input force and the cart movement? 

Several studies on rhythmic bimanual coordination have shown that humans prefer in-phase and anti-

phase relations between two limbs over other phase relations (Kelso 1984; Schöner and Kelso 1988; 

Sternad et al. 1992, 1996). In the present experiment, participants also oscillated the cart either in-phase 

(at low frequencies) or anti-phase (at high frequencies) with the ball movements and avoided 

intermediate relative phases at the anti-resonance frequency. However, this observation does not imply 

that participants chose strategies for their relative phase values. Except at anti-resonance, the task 

dynamics did not allow other relative phases as the frequency response plots show (Fig 10). The entire 

frequency range below 0.65 Hz corresponds to in-phase coupling, but participants of the low-frequency 

group nevertheless all converged to a narrow area of high predictability (Fig 9). Similarly, the high-

frequency group favored those subsets of the frequency range with high predictability. In addition, a 

large set of frequencies outside of the two resonance frequencies correspond to anti-phase coupling 

between the input force and the cart movement (red line in Fig 10). It is reasonable to think that 

participants may prefer this anti-phase coupling between what they predict (input force) and what they 

actually obtain (cart movement) over any other relative phase. Indeed, anti-phase coupling between force 

and movement is what one gets in the very common situation of manipulating a rigid object. However, 

if relative phase was the only concern, participants’ data points would be spread over all the frequencies 

with anti-phase coupling, and not grouped over a narrow frequency range. These observations support 

that potential phase preferences alone do not account for our observations. 

 

Why did participants avoid the anti-resonance frequency? At anti-resonance, the force generated by the 

pendulum movement (Fball in Eq 4) exactly opposes the interaction force exerted by the human (Finter in 

Eq 4), resulting in zero displacement of the cart. In addition, near the anti-resonance frequency the 
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relation between cart motion and input force undergoes a large and rapid, almost discontinuous, phase 

shift, whereas the relation between pendulum motion and input force does not (phase plot in Fig 10). 

Around the anti-resonance frequency, the oscillations of the cart and pendulum desynchronize very 

quickly and small variations result in large changes in the direction of the perturbing force due to 

pendulum motion. This makes the compensatory input force that should be applied to obtain the desired 

cart movement hard or impossible to predict. The results clearly showed that subjects consistently 

avoided the anti-resonance frequency and, implicitly, favored predictability.  

 

A Task-Dynamic Approach, Internal Models and Predictability 

Most computational studies on movement control start with a hypothesis about the human controller. For 

example, several studies of the pole-balancing task investigated specific hypotheses about the neural 

control system, ranging from different control models to the role of noise or sensory feedback (Mehta 

and Schaal 2002; Venkadesan et al. 2007; Milton 2011; Milton et al. 2013; Gawthrop et al. 2013; 

Insperger et al. 2013). In contrast, our task-dynamic approach shifted the emphasis to first understand 

the task and its affordance, while minimizing assumptions about human neuromotor control (Sternad 

2017). Starting with a mathematical model of the task and analysis of its dynamics, the solution space 

can be derived and human solutions can be evaluated. To make this mathematical approach transparent 

a simplified model is advantageous. Here, we reduced the fluid dynamics of the coffee to a single degree 

of freedom. As with any virtual implementation, this may raise the question whether the problem has 

become too simple and results will generalize to the real cup of coffee. Recently, two theoretical studies 

have indeed analyzed the cup of coffee system in its full physical complexity (Mayer & Kretchetnikov 

2012, Han 2016). Comparison of these and our studies may reveal the advantages and disadvantages of 

the realistic versus computationally simplified approach. 
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Our task-based approach does not contradict, but complement controller-based approaches. When for 

example Nagengast et al. (2009) studied optimal control for the manipulation of a virtual mass-spring-

damper system, they assumed that participants had complete knowledge of the system dynamics. 

Similarly, Dingwell et al. (2002, 2004) showed that participants manipulating a linear mass-spring 

system displayed behavior compatible with learning an internal model of the object dynamics. However, 

underactuated objects, such as our cup-and-pendulum system pose a significant challenge due to their 

possibly unpredictable dynamics leading to an apparent absence of correlation between the human action 

and the resulting behavior of the system. Increasing the predictability of object dynamics might therefore 

be a way to increase the chance of acquiring an internal model. 

 

Footnotes 

Footnote 1: With K = 100 N/m and B = 10 N.s/m, the high-frequency poles are -1.87 +/- 6.72i and the 

zeros are -1.67 +/- 5.53i (in rad/s). With K = 200 N/m and B = 15 N.s/m, the high-frequency poles are  

-3.06 +/- 8.95i and the zeros are -2.50 +/- 7.77i (in Hz). 

 

Appendix A: Limitations of a Model without Hand Impedance 

In a previous study, the dynamics of the cup-and-ball task was analyzed by looking at the behavior of 

the cart-and-pendulum system alone without the controlling hand (Nasseroleslami et al. 2014). This 

uncoupled model is depicted in Fig A1 and the motion of the system is described solely by Eq 1. It is 

straightforward to simulate this uncoupled model using inverse dynamics calculations: if the cart 

trajectory X(t) and initial conditions of the cart and pendulum (𝑋0, 𝑋́0, 𝜃0, 𝜃́0) are given, the pendulum 

trajectory θ(t) and the interaction forces Finter(t) can be computed using Eq 1 and a numerical integration 

scheme for θ. This uncoupled model has the advantage that it does not require any assumptions about 

control by the human (contrary to the coupled model). The only assumption is about the movement of 
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the cart, which could reasonably be modeled by a sinusoid X(t) = A sin (2 π f t + π/2) given the task 

instructions. 

 

 

Fig A1. Model of the dynamics of the task. Inverse dynamics model of the cart-and-pendulum system alone.  

 

A first approach used this simple model to analyze the task in this work. In order to test to what degree 

this model faithfully reproduced human behavior, we ran inverse dynamics simulations to compute θ(t) 

and Finter(t). A separate simulation was run for each experimental trial based on X(t) and initial conditions 

taken from experimental values of (𝑋0, 𝑋́0, 𝜃0, 𝜃́0) and cart amplitude A and frequency f. This afforded direct 

comparison of the experimental and simulated trajectories of cart and pendulum and the interaction 

forces. The cart initial conditions X0 and Ẋ0 were fixed by the assumed sinusoidal shape of X(t): X0 = A 

and Ẋ0 = 0. Although all experimental trials started with the same nominal conditions (immobile 

pendulum at zero angle), trials contained a transient before participants settled onto their approximate 

steady-state with their chosen frequency. Initial transients were excluded, because the oscillation 

frequency varied substantially during this stage. Therefore, the values of the amplitude A, frequency f, 

and pendulum initial conditions 𝜃0 and 𝜃́0 were the experimental averages across all cycles within 20 ≤ t 

≤ 40 s, as in the experimental data analysis. The simulated cart, pendulum and force profiles were then 

compared with the experimental time-series of the corresponding trial. A simulation was run for each of 

the 433 experimental trials with their respective values. 

https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
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Fig A2 displays one representative example of cart and pendulum trajectories X(t) and θ(t) and the 

interaction force Finter(t) from the two frequency strategies. For the high-frequency strategy, all three 

simulated time-series (cart position, pendulum angle, interaction force) closely matched their 

experimental counterparts. For the low-frequency strategy, the experimental cart trajectory closely 

resembled the simulated trajectory, but the pendulum trajectory and the interaction force diverged after 

a few cycles. The experimental profiles were close to periodic, whereas the simulated profiles differed 

at each oscillation, developing complex, erratic (possibly chaotic) patterns. 

 

 

Fig A2. Comparison of experimental and simulated trajectories and force time-series for the uncoupled 
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model. Experiment (red) and simulation (blue) profiles of the cart trajectory, pendulum trajectory and interaction 

force for one trial of each frequency strategy. Experimental data correspond to one representative trial in each of 

the two frequency strategies. Simulation data were computed from inverse dynamics of the uncoupled model, 

initialized with the experimental values of A, f, θ0 and 𝜃́0. A: High-frequency strategy (A = 8.9 cm, f = 1.182 Hz, 

θ0 = -0.31 rad, 𝜃́0 = -0.05 rad/s). B: Low-frequency strategy (A = 8.8 cm, f = 0.655 Hz, θ0 = 0.79 rad, 𝜃́0  = -0.08 

rad/s). 

 

To quantify the divergence, the root-mean-square errors (RMS) between the experimental and simulated 

trajectories were computed. Table A1 summarizes RMS error for each quantity X, Ẋ, θ, θ̇ and Finter, 

expressed as percent of its respective maximum value in the corresponding experimental trial. In the 

high-frequency group, the RMS error was small and fairly consistent across variables (median RMS error 

around 10% of the variable maximum experimental value), indicating a reasonably good match between 

the experimental and simulated profiles. This uncoupled model was therefore a competent representation 

of the cup-and-ball task for the high-frequency strategy. With the low-frequency strategy, however, the 

RMS error varied greatly and reached up to 30 % of the maximum value for the experimental pendulum 

angle and angular velocity (and interaction force to a lesser extent). These discrepancies between 

experimental and simulated data demonstrate that the uncoupled model did not represent the execution 

strategies adopted by the low-frequency group sufficiently accurately. 

 

Table A1. RMS error between experimental and simulated trajectories and force time-series for the 

uncoupled model. Ratio of RMS error between experimental and simulated data normalized by the maximum 

value for the cart and pendulum trajectories and interaction force in both subject groups. The simulated data were 

obtained from inverse dynamics simulation of the uncoupled model. The median and interquartile range were 

computed over all 433 valid trials. 
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 Low-frequency group High-frequency group 

 Median IQR Median IQR 

𝑟𝑚𝑠(𝑋𝑒 − 𝑋𝑠)

‖𝑋𝑒‖∞
 0.10 0.04 0.08 0.02 

𝑟𝑚𝑠(𝑋́𝑒 − 𝑋́𝑠)

‖𝑋́𝑒‖
∞

 0.13 0.06 0.08 0.03 

𝑟𝑚𝑠(𝜃𝑒 − 𝜃𝑠)

‖𝜃𝑒‖∞
 0.29 0.52 0.13 0.09 

𝑟𝑚𝑠(𝜃́𝑒 − 𝜃́𝑠)

‖𝜃́𝑒‖
∞

 0.31 0.39 0.11 0.07 

𝑟𝑚𝑠(𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 − 𝐹𝑖𝑛𝑡𝑒𝑟

𝑠 )

‖𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 ‖

∞

 0.22 0.29 0.12 0.04 

 

 

A likely reason for the divergence between experimental and simulated data is the assumption of a 

perfectly sinusoidal cart trajectory in the simulations, whereas experimental trajectories exhibited small 

deviations from this ideal shape. Given the sensitivity of the cart-and-pendulum dynamics to initial 

conditions, small changes in the participant’s movement could lead to significant changes in the system 

evolution. These deviations of the experimental cart trajectories from a perfect sinusoid could have two 

main causes: the intrinsic variability of human movements, and the perturbations caused by the internal 

dynamics of the object. The first cause results from the ever-present human variability: even if the object 

was rigid, or if there were no object at all, humans are unable to repeat the same exact movements. While 

present in both frequency strategies, this variability could have different consequences, since the 

sensitivity of the system to initial conditions is not constant.  
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The second cause – the perturbation forces created by the pendulum movements – affected the cart 

trajectory because the human hand is not an ideal position generator. Unexpected pendulum forces 

disrupted hand and hence cart movement. Though this is again true for both frequency strategies, the cart 

trajectory was likely less perturbed in the high-frequency strategy, because hand movements were faster, 

which is often associated with a higher hand impedance; higher impedance would result in better 

resistance to external perturbations and lower RMS error (Table A1).  

 

Furthermore, the interaction force Finter results from two different forces (Eq 1): one is the cart-and-

pendulum inertial force Finertia = (mc + mp) Ẍ, and the other is the pendulum force Fball. The average ratio 

between the RMS pendulum force and the RMS inertial force (computed for 20 ≤ t ≤ 40 s) was 0.70 ± 

0.16 in the low-frequency group and 0.32 ± 0.05 in the high-frequency group (averaged across all trials 

of all participants in each of the two groups). Relative to the expected force (i.e. required to accelerate 

the total system inertia, similar to the manipulation of a rigid object), the magnitude of the unexpected 

perturbation (the pendulum force) was thus much higher in the low-frequency group and was therefore 

less likely to be resisted. Hence, the current study included the effect of hand impedance on the dynamics 

of the cart-and-pendulum system.  

 

Appendix B: Estimation of Hand Impedance in the Coupled Model 

Unlike the movement frequency f, the experimental hand stiffness K and damping B could not be 

measured directly, but had to be estimated from the human data. To this end, an optimization was 

conducted which aimed at finding the values of K and B for which the simulated cart and pendulum 

trajectories most resembled the experimental trajectories. For each combination of K and B a 45 s forward 

dynamics simulation of the coupled model was performed and compared with the corresponding 

experimental trial. The continuous variations in the cart amplitude and/or frequency in the experimental 
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trials were evidently not captured in the simulation as constant desired cart amplitude/frequency was 

assumed. The simulations used the average experimental values of A and f across all cycles of the trial 

(20 ≤ t ≤ 40 s) to define the desired trajectory Xdes(t) = A sin(2 π f t + π/2) and the input force Finput(t) = 

(mc + mp) Ẍdes(t). However, the average amplitude and frequency were only representative of the 

experimental trial if they did not vary significantly throughout the trial. This motivated the stringent 

inclusion criteria in the analysis of the behavioral data. 

 

All combinations of 10 ≤ K ≤ 350 N/m (step size 2 N/m) and 3 ≤ B ≤ 50 N.s/m (step size 1 N.s/m) were 

tested to find the best fit. The difference between the experimental and simulated trajectories was 

quantified by the cost C of the normalized root mean square errors of the four quantities X(t), Ẋ(t), θ(t), 

θ̇(t)   

𝐶 =
1

4
[
𝑟𝑚𝑠(𝑋𝑒 − 𝑋𝑠)

‖𝑋𝑒‖∞

+
𝑟𝑚𝑠(𝑋́𝑒 − 𝑋́𝑠)

‖𝑋́𝑒‖
∞

+
𝑟𝑚𝑠(𝜃𝑒 − 𝜃𝑠)

‖𝜃𝑒‖∞

+
𝑟𝑚𝑠(𝜃́𝑒 − 𝜃́𝑠)

‖𝜃́𝑒‖
∞

] (1) 

where the superscripts s and e stand for simulation and experimental, respectively. Only the data within 

20 ≤ t ≤ 40 s were included to avoid confounding by transients (both for experimental and simulated 

trials). 

 

While the movement frequency f was fixed in the simulations, experimental frequencies were not exactly 

constant within trials. Such variations of the experimental frequency created a temporal offset between 

the experimental and simulated trajectories, which could lead to high RMS errors even when the two 

profiles were similar. To limit this artifact, C was computed cycle by cycle, i.e. the RMS errors were 

computed for each cycle k by time-aligning the experimental and simulated trajectories of cycle k. 

Subsequently, they were averaged over all cycles. 

 

https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
https://fr.wikipedia.org/wiki/Pi_(lettre_grecque)
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Across all trials, the median cost C measured for the best impedance fit of each trial was 0.104 with an 

interquartile range of 0.051. Table B1 gives the ratio between the RMS error between experimental and 

simulated time-series and the maximum experimental value of the corresponding trial for the state 

variables (𝑋, 𝑋́, 𝜃, 𝜃́) as well as for the interaction force Finter. The median value of the RMS error was 

between 9 and 13% of the maximum value, depending on the variable. Importantly, the error was 

consistently low in both groups, unlike for the uncoupled model above (see Table A1 in Appendix A).  

 

Table B1: RMS error between experimental and simulated trajectories and force time-series for the coupled 

model. Ratio between root mean square error RMS between experimental and simulated data and the maximum 

value for the cart and pendulum trajectories and interaction force. The results are separated for the two frequency 

groups. The simulated data were obtained with forward simulation of the coupled model, using the optimized 

values of K and B for each trial (i.e. the values for which the cost C was minimum).  

 Low-frequency group High-frequency group 

 Median IQR Median IQR 

𝑟𝑚𝑠(𝑋𝑒 − 𝑋𝑠)

‖𝑋𝑒‖∞
 0.09 0.04 0.09 0.02 

𝑟𝑚𝑠(𝑋́𝑒 − 𝑋́𝑠)

‖𝑋́𝑒‖
∞

 0.11 0.05 0.08 0.03 

𝑟𝑚𝑠(𝜃𝑒 − 𝜃𝑠)

‖𝜃𝑒‖∞
 0.11 0.07 0.12 0.07 

𝑟𝑚𝑠(𝜃́𝑒 − 𝜃́𝑠)

‖𝜃́𝑒‖
∞

 0.12 0.07 0.10 0.05 

𝑟𝑚𝑠(𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 − 𝐹𝑖𝑛𝑡𝑒𝑟

𝑠 )

‖𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 ‖

∞

 0.13 0.05 0.13 0.04 
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The values of hand impedance were different between groups. The comparison of stiffness and damping 

values between the two frequency groups was performed with a Wilcoxon signed rank test because the 

data were not normally distributed. Both the stiffness K and damping B were significantly lower in the 

low-frequency group, with p = 10e-10 and p = 10e-13 respectively. This is consistent with the known 

fact that, for a similar task accuracy, limb stiffness usually increases with movement speed.  

 

These results are the basis for characterizing experimental trials with hand impedance. The coupled 

model with optimized K and B reproduced experimental trajectory and force time-series much more 

accurately than the uncoupled model (especially for the low-frequency group), thus confirming its better 

competence to analyze the experimental task. 
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