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Annales mathématiques Blaise Pascal 19, 455-484 (2012)

Rankin–Cohen brackets and representations of
conformal Lie groups

Michael Pevzner

Abstract

This is an extended version of a lecture given by the author at the summer
school "Quasimodular forms and applications" held in Besse in June 2010.

The main purpose of this work is to present Rankin-Cohen brackets through
the theory of unitary representations of conformal Lie groups and explain recent
results on their analogues for Lie groups of higher rank. Various identities verified
by such covariant bi-differential operators will be explained by the associativity of
a non-commutative product induced on the set of holomorphic modular forms by
a covariant quantization of the associate para-Hermitian symmetric space.

Crochets de Rankin-Cohen et représentations des groupes de Lie
conformes

Résumé
Ce texte est une version étendue d’un cours donné par l’auteur lors de l’école

d’été Formes quasimodulaires et applications qui s’est tenue à Besse en juin 2010.
L’objectif principal de ce travail est de présenter les crochets de Rankin-Cohen

dans le cadre de la théorie des représentations unitaires des groupes de Lie conformes
et d’expliquer des résultats récents sur leurs analogues pour des groupes de Lie de
rang supérieur. Diverses identités que vérifient de tels opérateurs bi-différentiels
covariants seront expliquées en terme de l’associativité d’un produit non commu-
tatif induit sur l’ensemble des formes modulaires holomorphes par la quantification
covariante de l’espace symétrique para-hermitien associé.

Acknoledgements. The author is grateful to the organizers of the Besse
summer school: François Martin, Marusia Rebolledo and Emmanuel Royer
for their kind invitation.

Keywords: Rankin-Cohen brackets, Unitary representations, Conformal groups, Covari-
ant quantization.
Math. classification: 11F11, 22E46, 47L80.
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1. Introduction

Let Π = {z = x + iy |x,∈ R, y > 0} be the upper half-plane equipped
with the Lobachevsky metric. The Lie group SL(2,R) acts conformally on
Π by fractional-linear transformations:

z → az + b

cz + d
, z ∈ Π,

(
a b
c d

)
∈ SL(2,R),

and consequently it acts on functions on Π.
One says that a function f ∈ O(Π) is a holomorphic modular form of

weight k ∈ N with respect to an arithmetic subgroup Γ of SL(2,R) if

f

(
az + b

cz + d

)
= (cz + d)kf(z), ∀

(
a b
c d

)
∈ Γ.

As far as our technics are algebraic we omit here the extra growth
condition on f at infinity that guarantees the Fourier series expansion of
f to be of the form f(z) =

∑
n∈N ane

2πinz. For such functions we shall
write f ∈Mk(Γ) or simply f ∈Mk if Γ = SL(2,Z).

The set M(Γ) :=
⊕
k∈NM

k(Γ) is a graded vector space. One of the
purposes of these notes is to discuss the supplementary algebraic structure
that this space may be endowed with.

For instance, the product of two modular forms is again a modular form.
Furthermore, even though derivations do not preserve the modularity, one
may notice that for f1 ∈ Mk1 and f2 ∈ Mk2 an appropriate combination
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Rankin–Cohen brackets and Representations

of such forms and their first order derivatives has the required covariance.
Namely,

k1f1f
′
2 − k2f

′
1f2 ∈Mk1+k2+2.

Moreover, this bilinear operator, that we denote RC1(f1, f2) := k1f1f
′
2 −

k2f
′
1f2 satisfies the Jacobi identity: � RC1(RC1(f1, f2), f3) = 0.
Set RC0(f1, f2) := f1 · f2, then (M,RC0) is an associative and commu-

tative algebra whereas (M∗−2, RC1) is a graded Lie algebra. In addition,
these structures are compatible in the sense that RC1 is a derivation of
RC0. Thus M tuns into a Poisson algebra.

This observation represents the top of the iceberg. There exists a whole
infinite series of bi-differential operators preserving modular forms and
satisfying non trivial algebraic identities. The set of all differential opera-
tors preserving holomorphic modular forms was described by R.A. Rankin
in 1956, and the set of all bi-differential operators preserving such forms
was given by H. Cohen in 1975 [3] and studied by D. Zagier (see e.g. [31]).

Namely, for every f1 ∈ Mk1(Γ), f2 ∈ Mk2(Γ) and n ∈ N the n-th
Rankin-Cohen bracket RCn is defined by:

RCn(f1, f2) :=
n∑
j=0

(−1)j
(
k2 + n− 1
n− j

)(
k1 + n− 1

j

)
f

(n−j)
1 f

(j)
2 , (1.1)

where

f (k) =
(
∂

∂z

)k
f .

It turns out that for every f1 ∈ Mk1(Γ), f2 ∈ Mk2(Γ) and n ∈ N
RCn(f1, f2) ∈Mk1+k2+2n(Γ).

We don’t prove this statement now but will show a more general result
in the next section. Notice that this fact says that Rankin–Cohen brackets
are covariant bi-differential operators and their construction was actually
described by Gordon and Gundelfinger already in 1886-87. At that time
they called such operators Überschiebungen (transvectancts), or Cayley
processes. See [2, 12, 13, 20, 21] etc.

We shall develop a slightly different approach to Rankin-Cohen brackets
based on the theory of unitary representations of the Lie group SL(2,R).
This method gives a nice framework for further developments of the initial
construction to a whole class of the so-called conformal Lie groups and
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furnishes a uniform explanation of all the identities satisfied by Rankin-
Cohen brackets.

2. Two series of unitary representations of SL(2,R)

Consider the Lie group G = SL(2,R) = {g ∈ Mat(2,R) | det g = 1}, and
its Lie algebra g = sl(2,R) = {X ∈ Mat(2,R) | tr(X) = 0}. Let

h =
(

1 0
0 −1

)
, e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
.

These elements form a basis of g and are subject to the following commu-
tation relations:

[h, e±] = ±2e±, [e+, e−] = h.

Let SO(2) be the set of orthogonal matrices of determinant 1. It is a max-
imal compact subgroup of SL(2,R) and its Lie algebra so(2) is generated

by the element e− − e+ =
(

0 −1
1 0

)
.

Let U(g) be the universal envelopping algebra of g, that is U(g) '
T (g)/I, where I is the ideal of the tensor algebra T (g) generated by X ⊗
Y − Y ⊗X − [X,Y ], with X,Y ∈ g.

The center of U(sl(2,R)) contains, and is actually generated by the
so-called Casimir element:

c = h2 + 2(e+e− + e−e+) = h2 + 2h+ 4e−e+.

Let (ρ, V ) be a representation of sl(2,R), that is, V is a vector space
and ρ is a Lie algebra homomorphism from g to End(V ). We also will say
that V is a g-module. For λ ∈ C, the generalized h-eigenspace of V is

Vλ = {v ∈ V : (h− λId)nv = 0 for somen ∈ N}.

Notice that for λ 6= µ one has Vλ ∩ Vµ = {0}.
One says that the representation ρ is h-admissible if V =

∑
λ∈C Vλ and

dimVλ <∞ for every λ ∈ C. If these conditions are satisfied and all Vλ’s
are genuine eigenspaces, that is, Vλ = {v ∈ V : hv = λv} for every λ ∈ C,
then one says that the representation ρ is h-semisimple.

The eigenvalues of h, that is, {λ ∈ C : Vλ 6= {0}} are called weights. If
the Casimir element c acts by a multiple of identity on V one says that the
representation ρ is quasi-simple. It is possible, using the following result,
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to classify all h-admissible, h-semi-simple, quasi-simple representations of
sl(2,R).
Proposition 2.1. Let V be a sl(2,R)-module and v0 ∈ V an h−eigen-
vector: hv0 = λv0.

(1) Then,
(a) The vector vk = (e+)kv0 is either 0 or an h-eigenvector of

eigenvalue λ+ 2k for every k ∈ N.
(b) The vector v−k = (e−)kv0 is either 0 or an h-eigenvector of

eigenvalue λ− 2k for every k ∈ N.
Thus the sl(2,R)-module V0 generated by v0 is h-semi-simple.

(2) Suppose that moreover v0 is an eigenvector of the Casimir element:
cv0 = µv0 for some µ ∈ C. Then, the set of non zero vectors vk
forms a basis of V0 and the following relations hold

e+vk = vk+1, k ≥ 0,
e−vk = vk−1, k ≤ 0,

e+vk = 1
4(µ− (λ+ 2(k + 1))2 + 2(λ+ 2(k + 1)))vk+1, k < 0,

e−vk = 1
4(µ− (λ+ 2(k − 1))2 + 2(λ+ 2(k − 1)))vk−1, k > 0.

In particular V0 is h-semi-simple and quasi-simple and all non
trivial h-eigenspaces of V0 are one-dimensional.

We omit the full construction, which is classical and may be found for
instance in [15], and concentrate on some particular examples.

(1) Lowest weight modules Vλ with λ ∈ C. Such a module has a basis
of h-eigenvectors {vj , j ∈ N} such that

hvj = (λ+ 2j)vj , j ∈ N,
e+vj = vj+1, j ∈ N,
e−vj = −j(λ+ j − 1)vj−1, j ∈ N \ {0},
e−v0 = 0,
cv = (λ2 − 2λ)v, v ∈ Vλ.

The element v0 is called in this case the lowest weight vector and
λ – the lowest weight of the module Vλ.
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(2) Highest weight modules V̄λ with λ ∈ C. Such a module has a basis
of h-eigenvectors {v̄j , j ∈ N} such that

hv̄j = (λ− 2j)v̄j , j ∈ N,
e−v̄j = v̄j+1, j ∈ N,
e+v̄j = j(λ− j − 1)v̄j−1 j ∈ N \ {0},
e+v̄0 = 0,
cv = (λ2 + 2λ)v, v ∈ V̄λ.

The element v0 is called in this case the highest weight vector and
λ - the highest weight of the module V̄λ.

(3) Modules W (µ, λ) with λ, µ ∈ C have a basis of h-eigenvectors
{vj : j ∈ Z} such that

hvj = (λ+ 2j)vj , j ∈ N,
e+vj = vj+1, j ∈ N,

e−vj = 1
4(µ− (λ+ 2j − 1)2 + 1)vj−1, j ∈ N,

cv = µv, v ∈Wλ,µ.

It turns out that these representations of the Lie algebra sl(2,R) extend
into unitary representations of the Lie group SL(2,R) and give rise to the
so-called discrete (holomorphic and anti-holomorphic) series in cases (1)
and (2) and principal series representations in case (3).

Indeed, let λ > 1, then Vλ corresponds to the holomorphic discrete
series representation Tλ of SL(2,R) acting on the weighted Bergman space
H2
λ(Π) := O(Π) ∩ L2(Im (z)λ−2dz ∧ dz̄) by(

Tλ

(
a b
c d

)
f

)
(z) = (−cz + a)−λf

(
dz − b
−cz + a

)
.

Considering the corresponding infinitesimal action d Tλ we get:

d Tλ(e−)f(z) = λzf(z) + z2f ′(z),
d Tλ(e+)f(z) = −f ′(z),
d Tλ(h)f(z) = −λf(z)− 2zf ′(z).
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Thereby, letting vj := (λ+j−1)!
(λ−1)! z

−λ−j one gets the identification of Vλ with
the set of smooth vectors of Tλ in H2

λ(Π) that generate finite dimensional
spaces under the action of rotation group SO(2). We refer to the last
module as to the underlying (g,K)-module of Tλ. Being finitely generated
this module is actually a lowest weight Harish-Chandra module.

Consider now the tensor product Vλ1 ⊗ Vλ2 as a sl(2,R)-module via
the diagonal embedding of sl(2,R) into sl(2,R)× sl(2,R). This module is
reducible and it decomposes multiplicity free and discretely into a direct
sum of lowest weight modules of weight λ1 + λ2 + 2n with n ∈ N see [26].
In order to describe all the irreducible components we have to determine
for every n an element∑

j

aj(vj ⊗ ṽn−j) ∈ Vλ1 ⊗ Vλ2 ,

annihilated by the diagonal action of e−. Notice that in general an h-
eigenvector is of the form vj ⊗ ṽk whose h-eigenvalue is λ1 +λ2 + 2(j+ k).
So, the eigenspace corresponding to the eigenvalue λ1+λ2+2n is generated
by vectors vj ⊗ ṽn−j with j = 0, ..., n.

In order to determine the coefficients aj we may either calculate directly
the kernel of the diagonal action of e− (i.e. solve a system of linear equa-
tions of size n× (n+ 1) of very specific form see [9]) or solve the following
recurrence relation :

aj+1(j + 1)(λ1 + j) + aj(n− j)(λ2 + n− j − 1) = 0,

that gives

aj = (−1)j (λ1 + n− 1)n−j
(n− j)!

(λ2 + n− 1)j
j! ,

where (x)k = x!
(x−k)! is the Pochhammer symbol.

On the level of the underlying lowest weight Harish-Chandra modules
the diagonal action e− is given by:

∆e− =
(
λ1z + z2 d

dz

)
⊗ Id+ Id⊗

(
λ2w + w2 d

dw

)
.
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Thus, after identification of two models the lowest weight vector in the
underlying Harish-Chandra module is

fλ1,λ2,n(z, w)

:=
n∑
j=1

(−1)n
(
n
j

) (λ1 − n+ 1)!(λ2 − n+ 1)!
n!(λ1 − 1)!(λ2 − 1)! z−λ1−jw−λ2−n+j

= 1
n!

(λ1 − n+ 1)!(λ2 − n+ 1)!
(λ1 − 1)!(λ2 − 1)! · (w−1 − z−1)n

zλ1wλ2
.

Consequently, one may see the lowest weight vector fλ1,λ2,n(z, w) as the
image of the element v0 ⊗ ṽ0 by the application:

n∑
j=1

(−1)j (λ1 + n− 1)n−j
(n− j)!

(λ2 + n− 1)j
j! (e+)j ⊗ (e+)n−j .

By identifying the elements of U(sl(2,R)) with left invariant differen-
tial operators on G and hence with differential operators on Π it be-
comes possible to interpret the Rankin-Cohen brackets (1.1) as elements
of Homsl(2,R)(Vk1 ⊗ Vk2 , Vk1+k2+2n). That is,

Tk1+k2+2n(g)RCn(f1, f2) = RCn(Tk1(g)f1, Tk2(g)f2),

for any g ∈ G and particularly for any g in a given arithmetic subgroup.
Hence RCn do preserve modularity.

The above computations are standard and may be found in many grad-
uate text books (see for instance [15]) but this remark gives us a way
to study and develop the theory of Rankin-Cohen brackets through the
theory of intertwining operators for discrete series representations of con-
formal Lie groups. Furthermore, we will see that the numerous algebraic
relations between Rankin-Cohen brackets are governed by a higher order
structure related to the covariant quantization of causal symmetric spaces.

Before ending this section we would like to mention very roughly some
other facets of Rankin-Cohen brackets.

Any Hermitian vector bundle has a covariant differentiation ∇ compat-
ible with both the metric and the complex structures:

∇ = ∇(1,0) + ∂.
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For instance, in case of the unit disc, the Rankin-Cohen brackets may be
expressed in terms of ∇(1,0):

RCn(f1, f2) =
n∑
j=0

(−1)j
(
n
j

) 1
(k1)j(k2)j

j−1∏
i=0

Dk1+2i(f1)
n−j−1∏
`=0

Dk2+2`(f2),

where Dk = ∂ − k(1− |z|2)z̄ (see [32]).

In a series of fundamental papers about the Hopf algebra symmetries
of foliations, A. Connes and H. Moscovici interpreted the RC1 as a repre-
sentative of the so-called transverse fundamental class in the Hopf cyclic
cohomology of a particular Hopf algebra H1 (kind of noncommutative
Poisson structure). Higher order Rankin-Cohen brackets do also admit
such a cohomological interpretation that provides a formal deformation of
RC1 see [5, 6] .

3. Covariant quantization on co-adjoint orbits

The sl(2,R)–modulesWµ,λ correspond to the so-called principal series rep-
resentations of the Lie group G = SL(2,R) that we recall the construction
(in the unitary case).

Let P− be the parabolic subgroup ofG consisting of the lower triangular
matrices

P− =
{(

a 0
c a−1

)
, c ∈ R, a ∈ R∗

}
,

and let P+ be the group of upper triangular matrices

P+ =
{(

a b
0 a−1

)
, b ∈ R, a ∈ R∗

}
.

The group G acts on the sphere S =
{
s ∈ R2 : ‖s‖2 = 1

}
and acts tran-

sitively on S̃ = S/ ∼, where s ∼ s′ if and only if s = ±s′, by

g.s = g(s)
‖g(s)‖ .

Clearly, Stab(0̃, 1) = P−. So S̃ ' G/P−. Similarly S̃ ' G/P+: S̃ =
G.(1̃, 0). If ds is the usual normalized surface measure on S, then

d(g.s) = ‖g(s)‖−2ds.
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For µ ∈ C, define the character ωµ of P± by
ωµ(p) = |a|µ.

Consider the parabolically induced representations π±µ = IndGP±ω∓µ. By
definition, they act by left translations on the Hilbert completion of the
set of smooth sections of the line bundle G×ω∓µP±. Hence we may realize
these representations, usually referred to as the principal series represen-
tations, on C∞(S̃) – the space of smooth functions φ on S satisfying

φ(−s) = φ(s), (s ∈ S).
The formula for π−µ is

π−µ (g)φ(s) = φ(g−1.s)‖g−1(s)‖µ.

Let θ be the Cartan involution of G given by θ(g) = tg−1. Then

π+
µ (g)φ(s) = φ(θ(g−1).s)‖θ(g−1)(s)‖µ.

Since here
θ

(
a b
c d

)
= w

(
a b
c d

)
w−1

with w =
(

0 1
−1 0

)
, one has that π−µ ∼ π+

µ .

Let ( , ) denote the standard inner product on L2(S):

(φ, ψ) =
∫
S
φ(s)ψ(s)ds.

Then this form is invariant with respect to the pairs
(π−µ , π−−µ̄−2), and (π+

µ , π
+
−µ̄−2).

Therefore if µ = −1 + iσ, then the representations π±µ are unitary, the
inner product being ( , ). They are irreducible for any σ 6= 0 [18].
G acts also on S̃ × S̃ by

g.(u, v) = (g.u, θ(g)v). (3.1)
This action is not transitive: the orbit

(S̃ × S̃)# = {(u, v) : 〈u, v〉 6= 0} = G.((0̃, 1), (0̃, 1))

is only dense in (S̃ × S̃)#. Moreover (S̃ × S̃)# is isomorphic to the one-
sheeted hyperboloid G/H, where H =

{(
a 0
0 a−1

)
, a ∈ R∗

}
' SO(1, 1).
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The symmetric space G/H is a co-adjoint orbit of G and therefore has a
canonical symplectic structure.

The map
f → f(u, v)|〈u, v〉|−1+iσ, (σ ∈ R),

is a unitary G-isomorphism between L2(G/H) and

π−−1+iσ⊗̂2π
+
−1+iσ

acting on L2(S̃ × S̃). The latter space is provided with the usual inner
product.

Define the operator Aµ on C∞(S̃) by the formula

Aµφ(s) =
∫
S
|〈s, t〉|−µ−2φ(t)dt.

This integral is absolutely convergent for <µ < −1, and can be analytically
extended to the whole complex plane as a meromorphic function. It is
easily checked that Aµ is an intertwining operator

Aµπ
±
µ (g) = π∓−µ−2(g)Aµ.

The operator A−µ−2 ◦ Aµ intertwines π±µ with itself, and is therefore a
scalar c(µ). It can be computed using K-types:

c(µ) = π
Γ
(
µ+1

2

)
Γ
(
−µ+1

2

)
Γ
(
−µ
2

)
Γ
(
1 + µ

2
) .

One also shows that : A∗µ = Aµ̄. So that for µ = −1 + iσ we get (by abuse
of notation):

c(σ) = π
Γ
(
iσ
2

)
Γ
(
− iσ

2

)
Γ
(

1−iσ
2

)
Γ
(

1+iσ
2

) ,
and moreover

A(−1+iσ) ◦A∗(−1+iσ) = c(σ)I,

so that π−
1
2

Γ( 1+iσ
2 )

Γ( iσ2 ) A(−1+iσ) = d(σ)A(−1+iσ) is a unitary intertwining op-

erator between π+
−1+iσ and π−−1−iσ.
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We thus get a π−−1+iσ⊗̂2π
−
−1+iσ invariant map from L2(G/H) onto

L2(S̃ × S̃) given by

f → d(σ)
∫
S
f(u,w)|〈u,w〉|−1+iσ|〈v, w〉|−1−iσdw

=: (Kσf)(u, v), s 6= 0. (3.2)
This integral does not converge: it has to be considered as obtained by
analytic continuation.

Summarizing we have a G-equivariant embedding of square-integrable
functions on the symmetric space G/H into the composition algebra of
Hilbert-Schmidt operators by means of the following diagram:

L2(G/H) ↪→ π−µ ⊗ π+
µ ↪→ π−µ ⊗ π−µ ' HS(L2(S̃)).

The first arrow is of geometric nature and it is given by the fact that
the symmetric space G/H is an open dense subset of G/P− ∩G/P̄+. The
last isomorphism is given by

L2(S̃)⊗ L2(S̃) ' HS(L2(S̃)).
This embedding gives rise to a covariant symbolic calculus on G/H.
Let Op(f) on L2(S̃) be a Hilbert-Schmidt operator with the kernel

(Kσf)(u, v) defined in (3.2). Then we set:
Op(f#σg) := Op(f) ◦Op(g).

This is an associative product such that:

• ‖f]σ g‖2 ≤ ‖f‖2 · ‖g‖2.

• Op(Lxf) = π−−1+iσ(x)Op(f)π−−1+iσ(x−1), so
Lx(f#σg) = (Lxf)#σ(Lxg), for x ∈ G.

Let us write down a formula for f#σg; we have:

d−1(σ)(f#σg)(u, v) =
∫
S

∫
S
f(u, x)g(y, v)|[u, y, x, v]|−1+iσdµ(x, y),

where dµ(x, y) = |〈x, y〉|−2dxdy is a G-invariant measure on S̃× S̃ for the
G-action (3.1). Here

[u, y, x, v] = 〈u, x〉〈y, v〉
〈u, v〉〈y, x〉

.
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As far as the Laplace-Beltrami operator

∆G/H = (1− xy)2 ∂2

∂x∂y

of the one-sheeted hyperboloid G/H is G-invariant, G acts on its eigen-
spaces in L2(G/H). It is known (see [29]) that the spectrum of ∆G/H

consists of a continuous part [1
4 ,∞[ (those are generalized eigenvalues)

together with the set of all numbers of the form −n(n+ 1) with n ∈ N.
The eigenspace corresponding to −n(n + 1) decomposes into a direct

sum E+
n ⊕ E−n of two irreducible representations of G equivalent to the

lowest and the highest weight modules Vn and V̄n. The map

Jn(f)(z) = c

∫
S̃×S̃

f(x, y)ḡn+1
z (x, y)dm(x, y),

where gn+1
z (x, y) =

(
〈x,y〉

〈x,z̄〉〈y,z̄〉

)n+1
and dm the G-invariant measure on

G/H is an isometry (with an appropriate choice of the normalizing con-
stant c) from E+

n onto the Bergman space H2
2n+2(Π) on which we did

realize the holomorphic discrete series representations T2n+2 of G.
The non-commutative product ]σ being defined on the whole space

L2(G/H), it induces a ring structure on the set ⊕nE+
n . Namely the fol-

lowing theorem due to A. and J. Unterberger (see [30, Theorems 3.6 and
4.2]) holds:

Theorem 3.1. Let f1 ∈ E+
k1

and f2 ∈ E+
k2

for some k1, k2 ∈ N. Then
f1]sf2 is given by an absolutely convergent series

∑
n≥0 hn, of pairwise

orthogonal elements of L2(G/H). More precisely, for every n ∈ N the
function hn ∈ E+

k1+k2+1+n and

Jk1+k2+1+n(hn) = cn(k1, k2, σ)RCn(Jk1(f1), Jk2(f2)).

Moreover, the coefficients cn(k1, k2, σ) are given by

cn(k1, k2, σ) = Γ(k1 + 1− iσ)Γ(k2 + 1− iσ)
Γ(k1 + k2 + n+ 2− iσ)Γ(−iσ)Pn(k1, k2, σ),

where Pn(k1, k2, σ) are even polynomials in σ.

It is noteworthy that up to a constant the coefficients cn(k1, k2, σ), that
actually encode the associativity of the ]σ-product, were conjectured by
Cohen, Manin and Zagier in [4].
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4. Toward a generalization of Rankin-Cohen brackets

Before discussing our method let us mention a series of papers by Eholzer,
Ibukayama and Ban [8, 1] where a construction of Rankin-Cohen brack-
ets for Siegel modular forms was developed by means of the Howe θ-
correspondence. The advantage of the method that we are going to present
is twofold. It gives closed explicit formulas for such bi-differential operators
and applies for a large class of reductive Lie groups.

4.1. Underlying geometric setting

In the previous section two particular symmetric spaces played an impor-
tant role: the upper half-plane Π ' G/K = SL(2,R)/SO(2) and the one-
sheeted hyperboloid G/H = SL(2,R)/SO(1, 1). The first symmetric space
Π ' G/K is Hermitian of tube type. It implies that rankG = rankK and
thus guarantees that G has holomorphic discrete series representations
(i.e. the underlying Harish-Chandra modules are lowest weight modules).

The second one, G/H, is para-Hermitian, that is, the tangent bundle
T (G/H) splits into the sum of two isomorphic G-equivariant sub-bundles
(see [16] for more details). This structure generalizes the fact that the
one-sheeted hyperboloid in R3 is generated by two families of straight
lines. This splitting induces a G-invariant polarization on T (G/H) that
one needs in order to define a covariant quantization f 7→ Op(f).

It turns out that there exists a whole class of real semi-simple Lie groups
having such two types of co-adjoint orbits : G/K being an Hermitian
symmetric space of tube type andG/H a para-Hermitian symmetric space.
Their infinitesimal classification is given by the following table:

g k h
su(n, n) su(n) + su(n) + iR sl(n,C) + R
so∗(4n) su(2n) + iR su∗(2n) + R
sp(n,R) su(n) + iR sl(n,R) + R
so(n, 2) so(n) + iR so(n− 1, 1) + R
e7(−25) e6 + iR e6(−26) + R

Figure 4.1. Infinitesimal classification
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Such Lie groups may be seen as those of all conformal transformations
of Euclidean Jordan algebras and the para-Hermitian symmetric spaces
G/H are endowed with a natural G-invariant causal structure.

From now we denote by G one of these connected Lie groups.

4.2. Holomorphic discrete series

Holomorphic induction from a maximal compact subgroup leads to a se-
ries of unitary representations of G, called holomorphic discrete series
representations, that one usually realizes on holomorphic sections of holo-
morphic vector bundles over G/K.

According to our convenience and easiness of presentation we shall use
both bounded and unbounded realizations of the symmetric space G/K.
Notice that in our settingG/K is of tube type. Therefore it may be realized
as (an unbounded) complex domain TΩ = V + iΩ, where V is a real
vector space (actually a Euclidean Jordan algebra) and Ω a symmetric
cone (consisting of Jordan squares) in V . The group G may be seen as the
group of holomorhpic automorphisms Aut(TΩ) of the tube domain. For
instance, if G = Sp(n,R) then, V = Sym(n,R) and Ω = Sym+(n,R) the
set of positive definite real symmetric matrices. We also denote by ∆ the
Jordan determinant on V . In case, when V = Sym(n,R) it coincides with
the usual matrix determinant.

Consider the invariant spectral norm | · | on VC := V + iV . Let

D = {w ∈ V : |w| < 1},

be the corresponding open unit ball. Then the Cayley transform p : z 7→
(z − ie)(z + ie)−1 is a holomorphic isomorphism from the tube TΩ onto
the domain D. Thus, the group of holomorphic automorphisms of D that
one denotes G(D) = Aut(D) is conjugate to G : G(D) = pGp−1. We shall
refer to the domain D as to the Harish-Chandra bounded realization of
the symmetric space G/K and will describe it later.

We start with the simplest case of scalar holomorphic discrete series.
For a real parameter ν consider the weighted Bergman spaces H2

ν (TΩ)
of complex valued holomorphic functions f ∈ O(TΩ) such that

‖f‖2ν =
∫
TΩ
|f(z)|2∆ν−2n

r (y)dxdy <∞,
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where z = x + iy ∈ TΩ. Note that the measure ∆−2n
r (y)dxdy on TΩ is

invariant under the action of the group G. For ν > 1+d(r−1) these spaces
are non empty Hilbert spaces with reproducing kernels. More precisely, the
space H2

ν (TΩ) has a reproducing kernel Kν which is given by

Kν(z, w) = cν∆
(
z − w̄

2i

)−ν
, (4.1)

where cν is some expression involving Gindikin’s conical Γ-functions (see
[10] p.261).

The action of G on H2
ν (TΩ) given for every integer ν > 1 + d(r − 1) by

πν(g)f(z) = Detν(Dg−1(z))f(g−1.z) (4.2)

is called a scalar holomorphic discrete series representation.1
In the above formula Dg(z) denotes the differential of the conformal

transformation z → g.z of the tube TΩ.

Now we describe some of the vector valued holomorphic discrete series
representations. Let h(z, w) be the so-called canonical polynomial (see [10,
p.262] ). It is the pull back of K1(z, w) by the Cayley transform.

Then the group G(D) acts on the spaceH2
ν (D) of holomorphic functions

f on D such that

‖f‖2ν,D = c′ν

∫
D
|f(z)|2h(z, z)ν−2n

r dxdy <∞

by the similar formula πν(g)f(z) = Detν(Dg−1(z))f(g−1.z).
More generally let g be the Lie algebra of the automorphisms group

G(D) with complexification gc. Let g = k⊕ p be a Cartan decomposition
of g. Let z be the center of k. In our case the centralizer of z in g is equal
to k and the center of k is one-dimensional. There is an element Z0 ∈ z
such that (adZ0)2 = −1 on p. Fixing i a square root of −1, one has
pc = p + ip = p+ + p− where adZ0|p+ = i, adZ0|p− = −i. Then

gc = p+ ⊕ kc ⊕ p−. (4.3)

1Notice that in general one shows, by use of analytic continuation, that the repro-
ducing kernel (4.1) is positive-definite for a larger set of spectral parameters, namely
for every ν in the so-called Wallach set W (TΩ) =

{
0, d2 , . . . , (r − 1) d2

}
∪](r − 1) d2 ,∞[.

However we restrict our considerations only to the subset ofW (TΩ) consisting of integer
ν > 1 + d(r − 1) in order to deal with spaces of holomorphic functions.
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and [p±, p±] = 0, [p+, p−] = kc and [kc, p±] = p±. The vector space p+ is
isomorphic to V and furthermore it inherits its Jordan algebra structure.
Let Gc be a connected, simply connected Lie group with Lie algebra gc and
Kc, P+, P−, G,K,Z the analytic subgroups corresponding to kc, p+, p−, g,
k and z respectively. Then KcP− (and KcP+) is a maximal parabolic sub-
group of Gc with split component A = exp iRZ0. So the group G = G(D)o
is closed in Gc.

Moreover, the exponential mapping is a diffeomorphism of p− onto P−
and of p+ onto P+ [14, Ch.VIII, Lemma 7.8]. Furthermore:

Lemma 4.1. a.The mapping (q, k, p) 7→ qkp is a diffeomorphism of P+×
Kc × P− onto an open dense submanifold of Gc containing G.
b. The set GKcP− is open in P+KcP− and G ∩KcP− = K.

(see [14, Ch VIII, Lemmæ 7.9 and 7.10]).
Thus G/K is mapped on an open, bounded domain D in p+ This is

an alternative description of the Harish-Chandra bounded realization of
G/K. The group G acts on D via holomorphic transformations.

Everywhere in this section we shall denote ḡ the complex conjugate of
g ∈ Gc with respect to G. Notice that P+ is conjugate to P−.

For g ∈ P+KcP− we shall write g = (g)+ (g)0 (g)−, where (g)± ∈
P±, (g)0 ∈ Kc. For g ∈ Gc, z ∈ p+ such that g. exp z ∈ P+KcP− we define

exp g(z) = (g. exp z)+ (4.4)
J(g, z) = (g. exp z)0. (4.5)

J(g, z) ∈ Kc is called the canonical automorphic factor of Gc.

Lemma 4.2. [27, Ch.II, Lemma 5.1.] The map J satisfies

(i) J(g, o) = (g)0, for g ∈ P+KcP−,

(ii) J(k, z) = k for k ∈ Kc, z ∈ p+.

If for g1, g2 ∈ Gc and z ∈ p+, g1(g2(z)) and g2(z) are defined, then
(g1g2)(z) is also defined and

(iii) J(g1g2, z) = J(g1, g2(z)) J(g2, z).
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For z, w ∈ p+ satisfying (exp w̄)−1. exp z ∈ P+KcP− we define
K(z, w) = J((exp w̄)−1, z)−1 (4.6)

= ((exp w̄)−1. exp z)−1
0 . (4.7)

This expression is always defined for z, w ∈ D, for then

(exp w̄)−1. exp z ∈ (GKcP−)−1
GKcP− = P+KcGKcP− = P+KcP−.

K(z, w), defined on D×D, is called the canonical kernel on D ( by Satake).
K(z, w) is holomorphic in z, anti-holomorphic in w, with values in Kc.
Here are a few properties:

Lemma 4.3. [27, Ch.II, Lemma 5.2] The map K satisfies:

(i) K(z, w) = K(w, z)−1 if K(z, w) is defined,

(ii) K(o, w) = K(z, o) = 1 for z, w ∈ p+.

If g(z), ḡ(w) and K(z, w) are defined, then K(g(z), ḡ(w)) is also defined
and one has:

(iii) K(g(z), ḡ(w)) = J(g, z)K(z, w) J(ḡ, w)−1.

Lemma 4.4. [27, Ch.II, Lemma 5.3.] For g ∈ Gc the Jacobian of the
holomorphic mapping
z 7→ g(z), when it is defined, is given by

Jac (z 7→ g(z)) = Adp+(J(g, z)).

For any holomorphic character χ : Kc 7→ C we define:
jχ(g, z) = χ(J(g, z)), (4.8)
kχ(z, w) = χ(K(z, w)). (4.9)

Since χ(k̄) = χ(k)−1 we have :
kχ(z, w) = kχ(w, z), (4.10)

kχ(g(z), ḡ(w)) = jχ(g, z)kχ(z, w)jχ(ḡ, w) (4.11)
in place of Lemma 4.3 (i) and (iii).

The character χ1(k) = detAdp+(k), (k ∈ Kc) is of particular impor-
tance. We call the corresponding jχ1 , kχ1 : j1 and k1. Notice that

j1(g, z) = det(Jac (z 7→ g(z))). (4.12)
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Because of (4.12), |k1(z, z)|−1dµ(z), where dµ(z) is the Euclidean mea-
sure on p+, is a G−invariant measure on D. Indeed:

dµ(g(z)) = |j1(g, z)|2dµ(z),
k1(g(z), g(z)) = j1(g, z) k1(z, z) j1(g, z), for g ∈ G.

One can actually show that k1(z, z) > 0 on D. ([27], Ch.II, Lemma 5.8).
Let τ be an irreducible holomorphic representation of Kc on a finite

dimensional complex vector space W with scalar product 〈 | 〉, such that
τ|K is unitary.

Lemma 4.5. For every k ∈ Kc one has the identity τ∗(k) = τ(k̄)−1.

This follows easily by writing k = ko · exp iX with ko ∈ K, X ∈ k and
using that τ|K is unitary.

Call πτ = IndGKτ and set Wτ for the representation space of πτ . Then
Wτ consists of maps f : G 7→W satisfying

(i) f measurable,

(ii) f(gk) = τ−1(k)f(g) for g ∈ G, k ∈ K,

(iii)
∫
G/K ‖f(g)‖2dġ <∞,

where ‖f(g)‖2 = 〈f(g)|f(g)〉 and dġ is an invariant measure on G/K. Let
us identify G/K with D and dġ with d∗z = k1(z, z)−1dµ(z). Then Wτ can
be identified with a space of maps on D, setting

ϕ(z) = τ(J(g, o))f(g), (4.13)
if z = g(o), f ∈ Wτ . Indeed, the right-hand side of (4.13) is clearly right
K−invariant. The inner product becomes

(ϕ|ψ) =
∫
D
〈τ−1(J(g, o))ϕ(z)|τ−1(J(g, o))ψ(z)〉d∗z.

Since τ−1(J(g, o))∗τ−1(J(g, o)) = τ−1(J(g, o)J(g, o)−1) = τ−1(K(z, z))
by Lemma (4.3), we may also write

(ϕ|ψ) =
∫
D
〈τ−1(K(z, z))ϕ(z)|ψ(z)〉d∗z. (4.14)

The G-action on the new space is given by
πτ (g)ϕ(z) = τ−1(J(g−1, z))ϕ(g−1(z)), (g ∈ G, z ∈ D). (4.15)
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Now we restrict to the closed sub-space of holomorphic maps and call the
resulting Hilbert space Hτ . The space Hτ is πτ (G)-invariant. We assume
that Hτ 6= {0}.

The pair (πτ ,Hτ ) is called a vector-valued holomorphic discrete series
of G.

In a similar way we can define the anti-holomorphic discrete series. We
therefore start with τ̄ instead of τ and take anti-holomorphic maps. Then

πτ̄ (g)ψ(z) = τ̄−1(J(g−1, z))ψ(g−1(z)). (4.16)

for ψ ∈ Hτ̄ . One easily sees that Hτ̄ = H̄τ and πτ̄ = π̄τ in the usual sense.
Notice that when the representation τ is one dimensional we recover scalar
holomorphic discrete series representations introduced above.

The Hilbert space Hτ is known to have a reproducing (or Bergman)
kernel Kτ (z, w). Its definition is as follows. Set

Ez : ϕ 7→ ϕ(z) (ϕ ∈ Hτ )

for z ∈ D. Then Ez : Hτ 7→ W is a continuous linear operator, and
Kτ (z, w) = EzE

∗
w, being a End(W )-valued kernel, holomorphic in z, anti-

holomorphic in w. In more detail :

〈ϕ(w)| ξ〉 =
∫
D
〈τ−1(K(z, z))ϕ(z)| Kτ (z, w)ξ〉d∗z (4.17)

for any ϕ ∈ Hτ , ξ ∈W and w ∈ D.
Since Hτ is a G−module, one easily gets the following transformation

property for Kτ (z, w) :

Kτ (g(z), g(w)) = τ(J(g, z))Kτ (z, w)τ(J(g, w))−1 (g ∈ G, z, w ∈ D).
(4.18)

Now consider H(z, w) = Kτ (z, w) · τ−1(K(z, w)).
Clearly H(g(z), g(w)) = τ(J(g, z))H(z, w)τ−1(J(g, z)) for all z, w ∈ D.

So, setting z = w = o, g ∈ K we see that H(o, o) is a scalar operator, and
hence H(z, z) = H(o, o) is so. But then H(z, w) = H(o, o). So, we get

Kτ (z, w) = c · τ(K(z, w)), (4.19)

where c is a scalar. The same reasoning yields that πτ is irreducible. Indeed,
if H ⊂ Hτ is a closed invariant subspace, then H has a reproducing kernel,
say KH and it follows that KH = cKτ , so either H = {0} or H = Hτ .
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Let us briefly recall the analytic realization of (some of) vector-valued
holomorphic discrete series representations of G. We start with the irre-
ducible representations of the maximal compact subgroup K which can
be realized on the space of polynomials P(V ) and which are parameter-
ized by the weights m = (m1, . . . ,mr) ∈ Zr with m1 ≥ · · · ≥ mr ≥ 0
and m1 + · · · + mr = m = |m|. These representations do not exhaust
all irreducible representations of K but they will produce all necessary
components for our further discussion.

Let V ′ be the dual vector space of V ' p+. Consider the m − th sym-
metric tensor power of V ′. It is naturally identified with the space Pm(V )
of polynomials of degree m on V . It is well known (see for instance [28])
that under the K-action this space decomposes multiplicity free into a
direct sum of irreducible sub-representations :

Pm(V ) =
⊕∑

|m|=m
Pm(V ),

where Pm(V ) are irreducible representations of K of highest weight m.
This decomposition is often called the Kostant-Hua-Schmid formula. De-
note by Pm the orthogonal projection of Pm(V ) onto Pm(V ).

Let h(z, w) be as before the canonical polynomial on V × V , then ac-
cording to [10], for a real ν one has

h−ν(z, w) =
∑
m

(ν)mKm(z, w),

where Km(z, w) is the reproducing kernel of the space Pm(V ), and (ν)m
stands for the generalized Pochhammer symbol:

(ν)m =
r∏
j=1

(
ν − d

2(j − 1)
)
mj

=
r∏
j=1

mj∏
k=1

(
ν − d

2(j − 1) + k − 1
)
.

Denote Hν(Pm(V )) the Hilbert space of holomorphic functions on D with
values in Pm(V ) admitting the reproducing kernel

h−ν(z, w)⊗m Kt(z, w).
Then, for an integer ν > 1 + d(r − 1) and a given weight m the group G
acts on its unitarily and irreducibly by

πν,m(g)f(z) = Det(Dg−1(z))ν
(
⊗m(dg−1)t

)
· f(g−1.z), (4.20)

where ⊗m(dg−1)t on Pm(V ) denotes the induced action of (dg−1)t on V .
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4.3. Maximal degenerate series

Let Det(g) be the determinant of a linear transform g ∈ G(Ω) ⊂ GL(V ),
where G(Ω) is the group of all linear transformations preserving the cone
Ω. We denote by χ(g) a particular character of this reductive Lie group
given by χ(g) := Det(g)

r
n , where r is the rank and n the dimension of the

Jordan algebra V .
This character can be trivially extended to the whole parabolic sub-

group P = G(Ω) nN by χ(hn̄) := χ(h) for every h ∈ G(Ω), n̄ ∈ N ' V .

For every µ ∈ C we define a character χµ of P by χµ(p̄) := |χ(p̄)|µ.
The induced representation π−µ = IndG

P
(χµ) of the group G acts on the

space

Ĩµ := {f ∈ C∞(G) | f(gp̄) = χµ(p̄)f(g),∀g ∈ G, p̄ ∈ P},

by left translations. A pre-Hilbert structure on Ĩµ is given by ‖f‖2 =∫
K |f(k)|2 dk, where K is the maximal compact subgroup of G associated
with the Cartan involution σ, and dk is the normalized Haar measure of
K.

According to the Gelfand-Naimark decomposition a function f ∈ Ĩµ is
determined by its restriction fV (x) = f(nx) on N ' V . Let Iµ be the
subspace of C∞(V ) of functions fV with f ∈ Ĩµ. The group G acts on Iµ
by:

π−µ (g)f(x) = |A(g, x)|µf(g−1.x), g ∈ G, x ∈ V, (4.21)

where A(g, x) := χµ
(
(Dg−1)x

)
. These representations are usually called

the maximal degenerate series representations of G.
One shows that the norm of a function f(nx) = fV (x) ∈ Iµ is given by:

‖f‖2 =
∫
V
|fV (x)|2h(x,−x)2<µ+n

r dx, (4.22)

where h(z, w) is the canonical polynomial introduced above. Formula
(4.22) implies that for <µ = − n

2r the space Iµ is contained in L2(V ) and
the representation π−µ extends as a unitary representation on L2(V ).

Analogously the character χ can be extended to the subgroup P and
one defines in a similar way the representation π+

µ = IndGP (χ−µ).
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Following the standard procedure we introduce an intertwiner between
π−µ and π+

µ−n
r
. Consider the map Ãµ defined on Ĩµ by

f −→ (Ãµf)(g) :=
∫
N
f(gn)dn, ∀g ∈ G, (4.23)

where dn is a left invariant Haar measure on N . One shows that this
integral converges for <µ > n

2r0 .

Proposition 4.6. For every f ∈ Ĩµ the function Ãµf belongs to Ĩ−µ and
the map Ãµ given by (4.23) intertwines the corresponding representations
of G:

π̃+
µ−n

r
(g)(Ãµf) = Ãµ(π̃−µ (g)f), ∀f ∈ Ĩµ, g ∈ G. (4.24)

See [24] for more details.
Similarly to the construction of Section 3 we may define an operator

calculus based on intertwining operators Aµ and define a composition
formula of two symbols f1, f2 ∈ L2(G/H).

5. Rankin-Cohen brackets for conformal Lie groups

Adopting the philosophy of the previous section we define generalized
Rankin-Cohen brackets as intertwining operators between tensor prod-
ucts of scalar holomorphic discrete series of a given conformal Lie group
and their irreducible components. Let us start by introducing all the in-
gredients of this construction.

One says that a symmetric space G/H has discrete series representa-
tions if the set of representations of G on minimal closed invariant sub-
spaces of L2(G/H) is nonempty. According to a fundamental result of
Flensted-Jensen [11] the discrete series for G/H is nonempty and infinite
if

rank(G/H) = rank(K/K ∩H).
For any symmetric space G/H given by the classification table 4.1 this

condition is fulfilled and on can realize one part of its discrete series as
holomorphic discrete series representations of the whole group G.

More precisely assume that π is a scalar holomorphic discrete series rep-
resentation of G, i.e. it acts on Hπ ⊂ O(D)∩L2(D, dmπ) where D is some
symmetric domain (the image of the tube TΩ by the Cayley transform)
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and where dmπ(w) is a measure on D associated to π. In such a case the
Hilbert space Hπ has a reproducing kernel Kπ(z, w).

Assume that the representation π occurs as a multiplicity free closed
subspace in the Plancherel formula for L2(G/H) (actually this is the case
in our setting).

Consider ξπ ∈ H−∞π the unique up to scalarsH-fixed distribution vector
associated to π (see [19, p. 142] for the definition of ξπ = φλ(z)). It gives
rise to a continuous embedding map

Jπ : Hπ ↪→ L2(G/H) ⊂ (C∞c )′(G/H)
given for any analytic vector v ∈ H∞π by

(Jπv)(x) = 〈v, π(x)ξπ〉, x ∈ G/H, (5.1)
where by abusing notations we write π(x) instead of π(g) with x = g.H ∈
G/H.

For any fixed w ∈ D let us define the function vw := Kπ(·, w) which is
actually a real analytic vector in Hπ.

Consider now the following function :
gw(x) := (J vw)(x), x ∈ G/H, w ∈ D.

Because of the reproducing property of the Hilbert space Hπ for every
f ∈ Hπ one can write

f(z) =
∫
D
Kπ(z, w)f(w)dmπ(w).

Furthermore, if such a function f is an analytic vector for the represen-
tation π : f ∈ H∞π , then

(Jπf)(x) =
∫
D
f(w)gw(x)dmπ(w).

Choosing an appropriate normalization in (5.1) one can get the embed-
ding Jπ isometric. Therefore the subspace generated by gw(x),w ∈ D is a
closed subspace of L2(G/H) isometric to some holomorphic discrete series
representation of G. ( see [19, Theorem 5.4] for the precise statement).

The dual map J ∗π : C∞c (G/H) 7→ Hπ is defined by
〈J ∗πφ, f〉 = 〈φ,Jπf〉

=
∫
G/H

∫
D
φ(x)f(w)gw(x)dm(w)dν(x), ∀φ ∈ C∞c (G/H),
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where dν(x) denotes the invariant measure on G/H. Therefore we have,

(J ∗πφ)(w) =
∫
G/H

φ(x)gw(x)dν(x).

Similar observations are valid for vector-valued holomorphic discrete series
representations as well.

Define the set
L2(G/H)hol =

⊕
π∈Ĝ′hol

Jπ(Hπ)

where Ĝ′hol denotes the set of equivalence classes of unitary irreducible
holomorphic discrete series representations of G with corresponding char-
acter τ trivial on H ∩ Z. Notice that the space L2(G/H)hol decomposes
multiplicity free into irreducible subspaces [22].

According to [19] the H-fixed distribution vector ξk = ξπν , associated
with the scalar holomorphic discrete series representation πν (see (4.2)) is
given up to a constant by

ξk(z) = ∆
(
η(z)− z̄

2i

)− ν2
, z ∈ V0 + iΩ. (5.2)

To get more insight in the product structure of L2(G/H)hol, we rely on
a theorem by T.Kobayashi [17, Theorem 7.4].

We are going to show that L2(G/H)hol is closed under the product
#s. It is, because of the continuity of the product, sufficient to show the
following theorem(see [7]).

Theorem 5.1. Let Hπ and Hπ′ be two irreducible closed subspaces of
L2(G/H)hol. Then

Jπ(f)#sJπ′(g) ∈ L2(G/H)hol.

for every f ∈ Hπ and g ∈ Hπ′.

The proof of this theorem uses the following result by T. Kobayashi
[17]:

Theorem 5.2. Let π and π′ be holomorphic discrete series representations
of G. Then the representation

π⊗̂2π
′
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decomposes discretely into holomorphic discrete series representations of
G with finite multiplicities. Moreover, π⊗̂2π

′ is K-admissible, i.e. every
irreducible representation of K occurs in it with finite multiplicity.

In general we do not have a multiplicity free decomposition.

Now let us show Theorem 5.1. The map f ⊗ g → Jπ(f)#sJπ′(g) clearly
gives rise to a K− and U(g)−equivariant linear map

(Hπ⊗̂2Hπ′)K = HKπ ⊗HKπ′ → L2(G/H),
and thus the result follows for f and g K−finite, and then, by continuity
of the product, for all f and g.

Example. The decomposition of the tensor product of two holomorphic
discrete series for SL(2,R) was obtained by J. Repka [26] in full generality
using the Harish-Chandra modules techniques, and it is given by

πn⊗̂2πm =
∞⊕
k=0

πm+n+2k.

In the general situation we have to consider also vector-valued holomor-
phic discrete series representations. Indeed, according to Theorem (5.2)
and particularly to the result stated in Theorem 3.3 in [23] the tensor prod-
uct of two scalar holomorphic discrete series representations decomposes
multiplicity free in the direct sum of unitary irreducible vector-valued
holomorphic discrete series representations:

Hν1 ⊗Hν2 =
∑

m≥0
Hν1+ν2(Pm(V ′)),

in the case when ν1 ≥ ν2 > 1 + d(r − 1).
In order to understand the previous decomposition we have to identify

its different ingredients.
First, we see an element of the tensor product Hν1 ⊗ Hν2 as a holo-

morphic function F (z, w) on D × D. Therefore, one can write a Taylor
expansion formula:

F (z, w) =
m∑
j=0

(F (j)(z),⊗j(w − z)) + (F (m+1)(z, w),⊗m+1(z − w)),

where F (j)(z) are Pj(V ′)-valued holomorphic functions onD, F (m+1)(z, w)
is a Pm+1(V ′)-valued holomorphic function on D×D uniquely determined
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by the data of F (z, w), and ( , ) denotes the standard pairing of corre-
sponding vector spaces.

Second, consider an End(V )-valued holomorphic differential form on D
defined for every fixed w1, w2 ∈ V and z ∈ D by

Ω(z; , w1, w2) = dzB(z, w1)B(z, w1)−1 − dzB(z, w2)B(z, w2)−1,

where B(z, w) is the Bergman operator, and denote by ω(z;w1, w2) it trace
− r

2ntrΩ(z;w1, w2). The former differential form plays a crucial role in the
construction of intertwining operators for tensor products.

Namely, for fixed w1 and w2 the expression

h(z, w1)−ν1h(z, w2)−ν2Pm ⊗|m| ω(z;w1, w2)

can be seen as an element of the space Hν1 ⊗Hν2 dual of Hν1 ⊗Hν2 . Let
〈 , 〉 stand for the corresponding pairing. Then the operator Im given by

Im(f ⊗ g)(z) = 〈h(z, ·)−ν1h(z, ·)−ν2Pm ⊗|m| ω(z; ·, ·), f ⊗ g〉, (5.3)
is a G-equivariant map from (πν1⊗πν2 ,Hν1⊗Hν2) to the space of Pm(V )-
valued holomorphic functions on D seen as the representation space of
πν1+ν2,m (see (4.20).

Theorem 4.4 in [23] gives a description of this map. Summarizing and
using Theorem (5.1), we get

Proposition 5.3. Let ν1 ≥ ν2 > 1 + d(r − 1) and f ∈ Hν1 , g ∈ Hν2.
Assume that

(
H−∞ν1

)H and
(
H−∞ν2

)H are not reduced to {0}. Then

Jπν1 (f)#s Jπν2 (g) =
∑

m≥0
cm,sJπν1+ν2

(RCm,ν1,ν2(f, g)),

where cm,s are fundamental constants given by the #s product of the re-
producing kernels of the corresponding Bergman spaces Hν1 and Hν2 and
RCm,ν1,ν2 is such a bi-differential operator on Hν1 ⊗Hν2 that

Im(RCm,ν1,ν2(f, g)) =∑
|n|+|n′|=m

C
|n|
|m| ·

(−1)|n|

(ν1)n(ν2)n′
· Pm

(
Pn∂

|n|f ⊗ Pn′∂
|n′|g

)
,

with n and n′ being all possible weights such that |n|+ |n′| = |m|.

The operators RCm,ν1,ν2 are covariant bi-differential operators that au-
tomatically preserve modularity with respect to any arithmetic subgroup
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of a given conformal group. It is natural to call them generalized Rankin-
Cohen brackets.

As far as the series Im(RCm,ν1,ν2(f, g)) defines an associative prod-
uct it gives rise to an infinite series of algebraic identities involving all
Rankin-Cohen brackets and starting from the commutativity of the point-
wise product, Jacobi identity for the Poisson bracket, etc [25]. This reach
structure is encoded by the the coefficients cm,s which, in general, are not
known individually.
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