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Rankin-Cohen brackets are symmetry breaking operators for the tensor product of two holomorphic discrete series representations of SL(2, R). We address a general problem to find explicit formulae for such intertwining operators in the setting of multiplicity-free branching laws for reductive symmetric pairs.

For this purpose we use a new method (F-method) developed in [KP15-1] and based on the algebraic Fourier transform for generalized Verma modules. The method characterizes symmetry breaking operators by means of certain systems of partial differential equations of second order.

We discover explicit formulae of new differential symmetry breaking operators for all the six different complex geometries arising from semisimple symmetric pairs of split rank one, and reveal an intrinsic reason why the coefficients of orthogonal polynomials appear in these operators (Rankin-Cohen type) in the three geometries and why normal derivatives are symmetry breaking operators in the other three cases. Further, we analyze a new phenomenon that the multiplicities in the branching laws of Verma modules may jump up at singular parameters.
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Introduction

What kind of differential operators do preserve modularity? R. A. Rankin [START_REF] Rankin | The construction of automorphic forms from the derivatives of a given form[END_REF] and H. Cohen [C75] introduced a family of differential operators transforming a given pair of modular forms into another modular form of a higher weight. Let f 1 and f 2 be holomorphic modular forms for a given arithmetic subgroup of SL(2, R) of weight k 1 and k 2 , respectively. The bidifferential operators, referred to as the Rankin-Cohen brackets of degree a and defined by

(1.1) RC k 3 k 1 ,k 2 (f 1 , f 2 )(z) ∶= a =0 (-1) k 1 + a -1 k 2 + a -1 a - f (a-) 1 (z)f ( ) 2 (z),
where f (n) (z) = d n f dz n (z), yield holomorphic modular forms of weight k 3 = k 1 + k 2 + 2a (a = 0, 1, 2, ⋯). (In the usual notation, these operators are written as RC a k 1 ,k 2 .) The Rankin-Cohen bidifferential operators have attracted considerable attention in recent years particularly because of their applications to various areas including -theory of modular and quasimodular forms (special values of L-functions, the Ramanujan and Chazy differential equations, van der Pol and Niebur equalities) [CL11, MR09, Z94], -covariant quantization [BTY07, CMZ97, CM04, OS00, DP07, P08, UU96], -ring structures on representations spaces [START_REF] Van Dijk | Ring structures for holomorphic discrete series and Rankin-Cohen brackets[END_REF][START_REF] Zagier | Modular forms and differential operators[END_REF].

Existing methods for the SL(2, R)-case. A prototype of the Rankin-Cohen brackets was already found by P. Gordan and S. Guldenfinger [Go1887, Gu1886] in the 19th century by using recursion relations for invariant binary forms and the Cayley processes. For explicit constructions of the equivariant bidifferential operators In the first part of our work [KP15-1] we proposed yet another method (F-method) to find differential symmetry breaking operators in a more general setting of branching laws for infinite-dimensional representations, based on the algebraic Fourier transform of generalized Verma modules. Even in the SL(2, R)-case, the method is original and simple, and yields missing operators for singular parameters (k 1 , k 2 , k 3 ), see Corollary 9.3 for the complete classification. Moreover, the F-method leads us to discover new families of covariant differential operators for six different complex geometries beyond the SL(2, R) case (see Table 1.1).

Branching laws for symmetric pairs. By branching law we mean the decomposition of an irreducible representation π of a group G when restricted to a given subgroup G ′ . An important and fruitful source of examples is provided by pairs of groups (G, G ′ ) such that G ′ is the fixed point group of an involutive automorphism τ of G, called symmetric pairs.

The decomposition of the tensor product of two representations is a special case of branching laws with respect to symmetric pairs (G, G ′ ). Indeed, if G = G 1 × G 1 and τ is an involutive automorphism of G given by τ (x, y) = (y, x), then G ′ ≃ G 1 and the restriction of the outer tensor product π 1 ⊠ π 2 to the subgroup G ′ is nothing but the tensor product π 1 ⊗ π 2 of two representations π 1 and π 2 of G 1 . The Littlewood-Richardson rule for finite-dimensional representations is another classical example of branching laws with respect to the symmetric pair (GL(p + q, C), GL(p, C) × GL(q, C)). Our approach relies on recent progress in the theory of branching laws of infinite-dimensional representations for symmetric pairs even beyond completely reducible cases (see Section 9 for instance).

Rankin-Cohen operators as intertwining operators. From the view point of representation theory the Rankin-Cohen operators are intertwiners in the branching law for the tensor product of two holomorphic discrete series representations π k 1 and π k 2 of SL(2, R). More precisely, the discrete series representation π k 1 +k 2 +2a (a ∈ N) occurs in the following branching law [START_REF] Molchanov | Tensor products of unitary representations of the three-dimensional Lorentz group[END_REF][START_REF] Repka | Tensor products of holomorphic discrete series representations[END_REF]:

(1.2) π k 1 ⊗ π k 2 ≃ a∈N ⊕ π k 1 +k 2 +2a ,
and the operator (1.1) gives an explicit intertwining operator from π k 1 ⊗ π k 2 to the irreducible summand π k 1 +k 2 +2a .

In our work [KP15-1] we developed a new method to find explicit intertwining operators for irreducible components of branching laws in a broader setting of symmetric pairs. Such operators are unique up to scalars if the representation π is a highest weight module of scalar type (or equivalently π is realized in the space of holomorphic sections of a homogeneous holomorphic line bundle over a bounded symmetric domain) and (G, G ′ ) is any symmetric pair, by the multiplicity-free theorems ( [K08, K12]).

The subject of this paper is to study concrete examples where the F-method turns out to be surprisingly efficient.

Let V X → X be a homogeneous vector bundle of a Lie group G and W Y → Y a homogeneous vector bundle of G ′ . Then we have a natural representation π of G on the space Γ(X, V X ) of sections on X, and similarly that of G ′ on Γ(Y, W Y ). Assume G ′ is a subgroup of G. We address the following question:

Question 1. Find explicit G ′ -intertwining operators from Γ(X, V X ) to Γ(Y, W Y ).
To illustrate the nature of such operators we also refer to them as continuous symmetry breaking operators. They are said to be differential symmetry breaking operators if the operators are differential operators.

The F-method proposed in [KP15-1] provides necessary tools to give an answer to Question 1 for all symmetric pairs (G, G ′ ) of split rank one inducing a holomorphic embedding Y ↪ X (see Table 2.1). We remark that the split rank one condition does not force the rank of G G ′ to be equal to one (see Table 1.1 (1), (5) below).

Normal derivatives and Jacobi-type differential operators. In representation theory, taking normal derivatives with respect to an equivariant embedding Y ↪ X is a useful tool to find abstract branching laws for representations that are realized on X (see [START_REF] Jakobsen | Restrictions and extensions of holomorphic representations[END_REF] for instance).

However, we should like to emphasize that the common belief "normal derivatives with respect to Y ↪ X are intertwining operators in the branching laws" is not true. Actually, it already fails for the tensor product of two holomorphic discrete series of SL(2, R) where the Rankin-Cohen brackets are not normal derivatives with respect to the diagonal embedding Y ↪ Y × Y with Y being the Poincaré upper half plane.

We discuss when normal derivatives become intertwiners in the following six complex geometries arising from real symmetric pairs of split rank one:

(1)

P n C ↪ P n C × P n C (4) Gr p-1 (C p+q ) ↪ Gr p (C p+q ) (2)
LGr(C 2n-2 ) × LGr(C 2 ) ↪ LGr(C 2n )

(5)

P n C ↪ Q 2n C (3) Q n C ↪ Q n+1 C (6) IGr n-1 (C 2n-2 ) ↪ IGr n (C 2n ) Table 1.1

. Equivariant embeddings of flag varieties

Here Gr p (C n ) is the Grassmanian of p-planes in C n , Q m C ∶= {z ∈ P m+1 C ∶ z 2 0 + ⋯ + z 2 m+1 = 0} is the complex quadric, and IGr n (C 2n ) ∶= {V ⊂ C 2n ∶ dim V = n, Q V ≡ 0} is the Grassmanian of isotropic subspaces of C 2n equipped with a non-degenerate quadratic form Q, and LGr n (C 2n ) ∶= {V ⊂ C 2n ∶ dim V = n, ω V ×V ≡ 0} is the Grassmanian of Lagrangian subspaces of C 2n equipped with a symplectic form ω.

For Y ↪ X as in Table 1.1 and any equivariant line bundle L λ → X with sufficiently positive λ we give a necessary and sufficient condition for normal derivatives to become intertwiners: Theorem A. (1) Any continuous G ′ -homomorphism from O(X, L λ ) to O(Y, W) is given by normal derivatives with respect to the equivariant embedding Y ↪ X if the embedding Y ↪ X is of type (4), ( 5) or (6) in Table 1.1.

(2) None of normal derivatives of positive order is a G ′ -homomorphism if the embedding Y ↪ X is of type (1), (2) and (3) in Table 1.1. See Theorem 5.3 for the precise formulation of the first statement. For the three geometries (1), (2), and (3) in Table 1.1, we construct explicitly all the continuous G ′homomorphisms which are actually holomorphic differential operators (differential symmetry breaking operators). For this, let P α,β (x) be the Jacobi polynomial, and Cα (x) the normalized Gegenbauer polynomial (see Appendix 11.3). We inflate them into polynomials of two variables by P α,β (x, y) ∶= y P α,β 2 x y + 1 and Cα (x, y) ∶=

x 2 Cα y √ x .
In what follows, L λ stands for a homogeneous holomorphic line bundle, and W a λ a homogeneous vector bundle with typical fiber S a (C m ) (m = n in (1); = n -1 in (2); m=1 in (3)) with parameter λ (see Lemma 5.5 for details). Then we prove:

Theorem B.
(1) For the symmetric pair (U (n, 1)×U (n, 1), U (n, 1)) the differential operator

P λ ′ -1, -λ ′ -λ ′′ -2a+1 a n i=1 v i ∂ ∂z i , n j=1 v j ∂ ∂z j is an intertwining operator from O(Y, L (λ ′ 1 ,λ ′ 2 ) ) ⊗O(Y, L (λ ′′ 1 ,λ ′′ 2 ) ) to O(Y, W a (λ ′ 1 +λ ′′ 1 ,λ ′ 2 +λ ′′ 2 )
), for any λ ′ 1 , λ ′′ 1 , λ ′ 2 , λ ′′ 2 ∈ Z, and a ∈ N. Here we set λ ′ = λ ′ 1λ ′ 2 and λ ′′ = λ ′′ 1λ ′′ 2 .

(2) For the symmetric pair (Sp(n, R), Sp(n -1, R) × Sp(1, R)) the differential operator

C λ-1 a 1≤i,j≤n-1 2v i v j ∂ 2 ∂z ij ∂z nn , 1≤j≤n-1 v j ∂ ∂z jn is an intertwining operator from O(X, L λ ) to O(Y, W a λ )
, for any λ ∈ Z, and a ∈ N.

(3) For the symmetric pair (SO(n, 2), SO(n -1, 2)) the differential operator

Cλ-n-1 2 a -∆ z C n-1 , ∂ ∂z n
is an intertwining operator from O(X, L λ ) to O(Y, L λ+a ), for any λ ∈ Z and a ∈ N.

See Theorems 8.1, 7.1, and 6.3 for the precise statements, respectively. In [KP15-1, Theorem 5.3], by using the theory of discrete decomposability of restrictions [K94, K98a, K98b], we have proved the localness theorem asserting that any continuous G ′ -homomorphisms are differential operators in our setting. Then we prove that the above operators exhaust all continuous symmetry breaking operators in (2) and (3), and for generic parameter (λ ′ , λ ′′ ) in (1), see (8.7) for the exact condition on the parameter. The first statement of Theorem B corresponds to the decomposition of the tensor product, and gives rise to the classical Rankin-Cohen brackets in the case where n = 1. An analogous formula for Theorem B (3) was recently found in a completely different way by A. Juhl [J09] in the setting of conformally equivariant differential operators with respect to the embedding of Riemannian manifolds S n-1 ↪ S n .

The proof of Theorem B is built on the F-method, which establishes in the present setting a bijection between the space

Hom G ′ (O(X, L λ ), O(Y, W a λ
)) of symmetry breaking operators and the space of polynomial solutions to a certain ordinary differential equation, namely

Sol Jacobi (λ ′ -1, -λ ′ -λ ′′ -2a + 1, a) ∩ Pol a [s] Sol Gegen (λ -1, a) ∩ Pol a [s] even Sol Gegen (λ - n -1 2 , a) ∩ Pol a [s] even ,
for the geometries (1), (2), and (3) in Table 1.1, respectively. Here Sol Jacobi (α, β, ) ∩ Pol a [s] and Sol Gegen ∩ Pol a [s] denote the space of polynomial solutions of degree at most a to the Jacobi differential equation (11.4) and to the Gegenbauer differential equation (11.14), respectively. (The subscript "even" stands for a parity condition (6.12).)

Surprisingly, the dimension of the space of symmetry breaking operators for the tensor product case (1) jumps up at some singular parameters. We illustrate this phenomenon by the the following result in the sl 2 -case:

Theorem C (Theorem 9.1). The following three conditions on the parameters

(λ ′ , λ ′′ , λ ′′′ ) ∈ Z 3 are equivalent: (i) dim C Hom SL(2,R) (O(L λ ′ ) ⊗O(L λ ′′ ), O(L λ ′′′ )) = 2. (ii) dim C Hom g (ind g b (-λ ′′′ ), ind g b (-λ ′ ) ⊗ ind g b (-λ ′′ )) = 2, where ind g b (-λ) is the Verma module U (g) ⊗ U (b) C -λ of g = sl(2, C). (iii) λ ′ , λ ′′ ≤ 0, 2 ≤ λ ′′′ , λ ′ + λ ′′ ≡ λ ′′′ mod 2, -(λ ′ + λ ′′ ) ≥ λ ′′′ -2 ≥ λ ′ -λ ′′ .
We also prove that the analytic continuations of the Rankin-Cohen bidifferential operators RC λ ′′′ λ ′ ,λ ′′ vanish exactly at these singular parameters (λ ′ , λ ′′ , λ ′′′ ) in this case. Moreover, we construct explicitly three symmetry breaking operators in this case, and prove that any two of the three are linearly independent. Furthermore we show that each of these three symmetry breaking operators factors into two natural intertwining operators as follows:

O(L 2-λ ′ ) ⊗O(L λ ′′ ) RC λ ′′′ 2-λ ′ ,λ ′′ * * O(L λ ′ ) ⊗O(L λ ′′ ) ∂ ∂z 1 1-λ ′ ⊗ id 4 4 id⊗ ∂ ∂z 2 1-λ ′′ / / RC 2-λ ′′′ λ ′ ,λ ′′ * * O(L λ ′ ) ⊗O(L 2-λ ′′ ) RC λ ′′′ λ ′ ,2-λ ′′ / / O(L λ ′′′ ), O(L 2-λ ′′′ ) d dz λ ′′′ -1 4 4
whereas the linear relation among the three is explicitly given by using Kummer's connection formula for Gauss hypergeometric functions via the F-method.

In Section 10 we briefly discuss some new applications of the explicit formulae of differential symmetry breaking operators. Namely, we describe an explicit construction of the discrete spectrum of complementary series representations of O(n + 1, 1) when restricted to O(n, 1) by means of the differential operator given in Theorem B (3).

In Appendix (Section 11) we collect some results on classical ordinary differential equations with focus on singular parameters for which there exist two linearly independent polynomial solutions which correspond, via the F-method, to the failure of multiplicity-one results in the branching laws.

The authors are grateful to the referee for enlightening remarks and for suggesting to divide the original manuscript into two parts and to write more detailed proofs and explanations for the second part for those who are interested in analysis and also in geometric problems. We would like to extend a special thanks to Dr. T. Kubo for providing valuable and constructive suggestions in respect to its legibility.

Notation: N = {0, 1, 2, ⋯}, N + = {1, 2, ⋯}.

Geometric setting: Hermitian symmetric spaces

In this section we describe the geometric setting in which Question 1 will be answered.

2.1. Complex submanifolds in Hermitian symmetric spaces. Let G be a connected real reductive Lie group, θ a Cartan involution, and G K the associated Riemannian symmetric space. We write c(k) for the center of the complexified Lie algebra k ∶= Lie(K) ⊗ R C ≡ k(R) ⊗ R C. We suppose that G K is a Hermitian symmetric space. This means that there exists a characteristic element H o ∈ c(k) such that we have an eigenspace decomposition

g = k + n + + n - of ad(H o ) with eigenvalues 0, 1, and -1, respectively. We note that c(k) is one- dimensional if G is simple.
Let G C be a complex reductive Lie group with Lie algebra g, and P C the maximal parabolic subgroup having Lie algebra p ∶= k + n + with abelian nilradical n + . The complex structure of the homogeneous space G K is induced from the Borel embedding

G K ⊂ G C K C exp n + = G C P C . Let G ′ be a θ-stable, connected reductive subgroup of G. We set K ′ ∶= K ∩ G ′ and assume (2.1) H o ∈ k ′ .
Then the homogeneous space G ′ K ′ carries a G ′ -invariant complex structure such that the embedding G ′ K ′ ↪ G K is holomorphic by the following diagram:

(2.2)

Y = G ′ K ′ ↪ G K = X open ⋂ ⋂ open G ′ C P ′ C ↪ G C P C , where G ′ C and P ′ C = K ′ C exp n ′ + are the connected complex subgroups of G C with Lie algebras g ′ ∶= Lie(G ′ ) ⊗ R C and p ′ ∶= k ′ + n ′ + ≡ (k ∩ g ′ ) + (n + ∩ g ′ ),
respectively. Given a finite-dimensional representation of K on a complex vector space V , we extend it to a holomorphic representation of P C by letting the unipotent subgroup exp(n + ) act trivially, and form a holomorphic vector bundle

V G C P C = G C × P C V over G C P C . The restriction to the open set G K defines a G-equivariant holomorphic vector bundle V ∶= G × K V .
We then have a natural representation of G on the vector space O(G K, V) of global holomorphic sections.

Likewise, given a finite-dimensional representation W of K ′ , we form the G ′equivariant holomorphic vector bundle

W = G ′ × K ′ W and consider the representation of G ′ on O(G ′ K ′ , W).
Let V ∨ and W ∨ be the contragredient representations of V and W , respectively, and we define gand g ′ -modules (generalized Verma modules) by

ind g p (V ∨ ) ∶= U (g) ⊗ U (p) V ∨ , ind g ′ p ′ (W ∨ ) ∶= U (g ′ ) ⊗ U (p ′ ) W ∨
, where U (g) and U (g ′ ) denote the universal enveloping algebras of the Lie algebras g and g ′ , respectively. We endow the spaces O(G K, V) and O(G ′ K ′ , W) with the Fréchet topology of uniform convergence on compact sets, and denote by Hom G ′ ( ⋅ , ⋅ ) the space of continuous symmetry breaking operators (i.e. continuous G ′ -homomorphisms), and by Diff hol

G ′ C (V G C P C , W G ′ C P ′ C ) the space of G ′ C -equivariant holomorphic differential operators with respect to the holomorphic map G ′ C P ′ C ↪ G C P C (see [KP15-1, Definition 2.1]
for the definition of differential operators between vector bundles with different base spaces). Then the localness theorem [KP15-1, Theorem 5.3] and the duality theorem (op. cit., Theorem 2.12) assert: Theorem 2.1. We have the following natural isomorphisms:

Hom G ′ (O(G K, V), O(G ′ K ′ , W)) ≃ Diff hol G ′ C (V G C P C , W G ′ C P ′ C ) ≃ Hom g ′ (ind g ′ p ′ (W ∨ ), ind g p (V ∨ )). 2.2.
Semisimple symmetric pairs of holomorphic type and split rank. Let τ be an involutive automorphism of a semisimple Lie group G. Without loss of generality we may and do assume that τ commutes with the Cartan involution θ of G. We define a θ-stable subgroup by

G τ ∶= {g ∈ G ∶ τ g = g}.
Then the homogeneous space G G τ carries a G-invariant pseudo-Riemannian structure g induced from the Killing form of g(R) = Lie(G), and becomes an affine symmetric space with respect to the Levi-Civita connection. We use the same letters τ and θ to denote the differentials and also their complex linear extensions. We set g(R) τ ∶= {Y ∈ g(R) ∶ τ Y = Y }, the Lie algebra of G τ . The pair (g(R), g(R) τ ) is said to be a semisimple symmetric pair. It is irreducible if g(R) is simple or is a direct sum of two copies of a simple Lie algebra g ′ (R) with g(R) τ ≃ g ′ (R). Then any semisimple symmetric pair is isomorphic to a direct sum of irreducible ones. Definition 2.2. Geometrically, the split rank of the semisimple symmetric space G G τ is the dimension of a maximal flat, totally geodesic submanifold B in G G τ such that the restriction of g to B is positive definite. Algebraically, it is the dimension of a maximal abelian subspace of g(R) -τ,-θ ∶= {Y ∈ g(R) ∶ τ Y = θY = -Y }. The dimension is independent of the choice of the data, and the geometric and algebraic definitions coincide. We denote it by rank R G G τ . The automorphism τ θ is also an involution because τ θ = θτ . Since

g(R) g(R) τ g(R) τ θ 1 su(n, 1) ⊕ su(n, 1) su(n, 1) su(n, 1) 2 sp(n + 1, R) sp(n, R) ⊕ sp(1, R) u(1, n) 3 so(n, 2) so(n -1, 2) so(n -1) ⊕ so(1, 2) 4 su(p, q) s(u(1) ⊕ u(p -1, q)) s(u(1, q) ⊕ u(p -1)) 5 so(2, 2n) u(1, n) u(1, n) 6 so * (2n) so(2) ⊕ so * (2n -2) u(1, n -1)
g(R) τ θ,-θ ∶= {Y ∈ g(R) ∶ τ θY = Y, θY = -Y } coincides with g(R) -τ,-θ , we have rank R G G τ = rank R G τ θ
, the split rank of the reductive Lie group G τ θ . Suppose now that G K is a Hermitian symmetric space with a characteristic element H o as in Section 2.1. Definition 2.3. An irreducible symmetric pair (g(R), g(R) τ ) (or (G, G τ )) is said to be of holomorphic type (with respect to the complex structure on G K defined by the characteristic element

H o ) if τ (H o ) = H o , namely H o ∈ k τ . If (G, G τ ) is of holomorphic type, then G τ K τ carries a G τ -invariant complex structure such that the embedding G τ K τ ↪ G K is holomorphic.
Among irreducible symmetric pairs (g(R), g(R) τ ) of holomorphic type Table 2.1 gives the infinitesimal classification of those of split rank one.

The pairs of flag varieties (see (2.2)) associated with the six pairs (G, G τ ) in Table 2.1 correspond to the six complex parabolic geometries given in Table 1.1.

F-method in holomorphic setting

In this section we reformulate the recipe of the F-method ([KP15-1, Section 4]) in the holomorphic setting, that is, in the setting of Section 2.1 where G ′ K ′ is a complex submanifold of the Hermitian symmetric space G K.

3.1. F-method for Hermitian symmetric spaces. The algebraic Fourier transform on a vector space E is an isomorphism of the Weyl algebras of holomorphic differential operators with polynomial coefficients on a complex vector spaces E and its dual space

E ∨ : D(E) → D(E ∨ ), T ↦ T induced by (3.1) ∂ ∂z j ∶= -ζ j , ẑj ∶= ∂ ∂ζ j , 1 ≤ j ≤ n = dim E,
where (z 1 , . . . , z n ) are coordinates on E and (ζ 1 , . . . , ζ n ) are the dual coordinates on E ∨ . Let G C be a connected complex reductive Lie group with Lie algebra g and P C = K C N +,C be a parabolic subgroup with Lie algebra p = k + n + . Let λ be a holomorphic representation of K C on V . We extend it to P C by letting N +,C = exp(n + ) act trivially, and form a G C -equivariant holomorphic vector bundle V = G C × P C V over G C P C . Let C 2ρ be the holomorphic character defined by p ↦ det(Ad(p) ∶ p → p), and define a twist of the contragredient representation

(λ ∨ , V ∨ ) of P C by λ * ∶= λ ∨ ⊗ C 2ρ . We set V * ≡ V ∨ 2ρ ∶= G C × P C (V ∨ ⊗ C 2ρ )
, which is isomorphic to the tensor bundle of the dual bundle V ∨ and the canonical line bundle of G C P C . We shall apply the algebraic Fourier transform to the infinitesimal representation dπ λ * of g on O(G C P C , V * ) as follows.

We recall that the Gelfand-Naimark decomposition g = n -+ k + n + induces a diffeomorphism Furthermore, we introduce the following maps:

n -× K C × n + → G C , (X, , Y ) ↦ (exp X) (exp Y ), into an open dense subset, denoted by G reg C , of G C . Let p ± ∶ G reg C → n ± , p o ∶ G reg C → K C ,
α ∶ g × n -→ k, (Y, Z) ↦ d dt t=0
p o e tY e Z , (3.2)

β ∶ g × n -→ n -, (Y, Z) ↦ d dt t=0 p -e tY e Z . (3.3) For F ∈ O(n -, V ∨ ) ≃ O(n -) ⊗ V ∨ , we set f ∶ G reg C → V ∨ by f (exp Zp) = λ * (p) -1 F (Z)
for Z ∈ n -and p ∈ P C . Then the infinitesimal action of g on O(n -, V ∨ ) is given by

(dπ λ * (Y )F ) (Z) = d dt t=0 f (e -tY e Z ) = λ * (α(Y, Z))F (Z) -(β(Y, ⋅ )F )(Z) for Y ∈ g, (3.4)
where we use the same letter λ * to denote the infinitesimal action of p on V ∨ . This action yields a Lie algebra homomorphism

(3.5) dπ λ * ∶ g → D(n -) ⊗ End(V ∨ ).
In turn, we get another Lie algebra homomorphism by the algebraic Fourier transform on the Weyl algebra D(n -):

(3.6) dπ λ * ∶ g → D(n + ) ⊗ End(V ∨ ),
where we identify n ∨ -with n + by a g-invariant non-degenerate bilinear form on g (e.g. the Killing form).

Theorem 3.1 (F-method for Hermitian symmetric spaces). Suppose we are in the setting of Section 2.1.

(1) We have the following commutative diagram of three isomorphisms:

(3.7)

Hom K ′ (V, Pol(n + ) ⊗ W ) dπ λ * (n ′ + ) Hom p ′ (W ∨ , ind g p (V ∨ )) Fc⊗id 3 3 D X→Y ∼ / / Hom G ′ (O(X, V), O(Y, W)). Symb⊗id k k
(2) Let b(k ′ ) be a Borel subalgebra of k ′ , and assume that W is the irreducible representation of K ′ with lowest weight -χ. Then we have the following isomorphism: 2) Via the linear isomorphism Hom C (V, Pol(n + ) ⊗ W ) ≃ Pol(n + ) ⊗ Hom C (V, W ), we have an isomorphism

Hom K ′ (V, Pol(n + ) ⊗ W ) dπ λ * (n ′ + ) ∼ → {P ∈ Pol(n + ) ⊗ V ∨ ∶ P satisfies (3.
Hom K ′ (V, Pol(n + ) ⊗ W ) dπ λ * (n ′ + ) ≃ {ψ ∈ Pol(n + ) ⊗ Hom C (V, W ) ∶ ψ satisfies (3.10) and (3.11)}, ν( ) ○ Ad ♯ ( )ψ ○ λ( -1 ) = ψ for all ∈ K ′ , (3.10) ( dπ λ * (C) ⊗ id W )ψ = 0 for all C ∈ n ′ + , (3.11) where Ad ♯ ( ) ∶ Pol(n + ) → Pol(n + ), ϕ ↦ ϕ ○ Ad( ) -1 .
On the other hand, if -χ is the lowest weight of the irreducible representation W of K ′ , we have an isomorphism (3.12)

Hom K ′ (V, Pol(n + ) ⊗ W ) ≃ (Pol(n + ) ⊗ V ∨ ) χ ,
where

(Pol(n + ) ⊗ V ∨ ) χ ∶= {P ∈ Pol(n + ) ⊗ V ∨ ∶ P satisfies (3.8)} .
Therefore, Theorem 3.1 (2) is deduced from Theorem 3.1 (1) and from the following natural isomorphism:

{ψ satisfying (3.10) and (3.11)} ∼ → {P satisfying (3.8) and (3.9)}.

See also [op. cit., Lemma 4.6].

The F-method (see [op.cit., Section 4.4]) in this setting consists of the following five steps:

Step 0. Fix a finite-dimensional representation (λ, V ) of the maximal compact subgroup K. Form a G-equivariant holomorphic vector bundle

V X ≡ V = G × K V on X = G K.
Step 1. Extend λ to a representation of the Lie algebra p = k + n + by letting n + act trivially, and define another representation λ * ∶= λ ∨ ⊗ C 2ρ of p on V ∨ . Compute dπ λ * and dπ λ * .

Step 2. Find a finite-dimensional representation (ν, W ) of the Lie group K ′ such that

Hom g ′ (ind g ′ p ′ (W ∨ ), ind g p (V ∨ )) ≠ {0}, or equivalently, Hom k ′ (W ∨ , ind g p (V ∨ )) ≠ {0}. Form a G ′ -equivariant holomorphic vector bundle W Y ≡ W = G ′ × K ′ W on Y = G ′ K ′ .
According to the duality theorem [KP15-1, Theorem 2.12] the space of differential symmetry breaking operators Diff G ′ (V X , W Y ) is then nontrivial.

Step 3. Write down the condition on Hom K ′ (V, Pol(n + ) ⊗ W ) dπ λ * (n ′ + ) , namely, the space of ψ ∈ Pol(n + )⊗Hom C (V, W ) satisfying (3.10) and (3.11) or equivalently P ∈ Pol(n + ) ⊗ V ∨ satisfying (3.8) and (3.9).

Step 4. Use the invariant theory and give a simple description of

Hom K ′ (V, Pol(n + ) ⊗ W ) ≃ (Pol(n + ) ⊗ V ∨ ) χ , ψ ↔ P
by means of "regular functions g(s) on a slice" S for generic K ′ C -orbits on n + . Induce differential equations for g(s) on S from (3.11) (or equivalently (3.9)). Concrete computations are based on the technique of the T -saturation of differential operators, see Section 3.2. Solve the differential equations of g(s).

Step 5. Transfer a solution g obtained in Step 4 into a polynomial solution ψ to (3.10) and (3.11). In the diagram (3.7), (Symb ⊗ id) -1 (ψ) gives the desired differential symmetry breaking operator in the coordinates n -of X. As a byproduct, obtain an explicit K ′ -type W ∨ annihilated by n ′ + in ind g ′ p ′ (V ∨ ) (sometimes referred to as singular vectors) as (F c ⊗ id) -1 (ψ). We shall give some comments on Steps 3 and 4 in Sections 3.3 and 3.2 respectively. For Step 2, there are two approaches: one is to use (abstract) branching laws for the restriction of ind g p (V ∨ ) to the subalgebra g ′ (e.g. Fact 4.2) or the restriction of O(G K, V) to the subgroup G ′ (e.g. Fact 4.3). The other one is to apply the Fmethod and reduce it to a question of solving differential equations of second order. The former approach works well for generic parameters. We shall see that the latter approach is efficient for singular parameters in our setting (Theorems 6.1, 7.1 and 8.1, see also [START_REF] Kobayashi | Branching laws for Verma modules and applications in parabolic geometry[END_REF]).

T-saturation of differential operators. In order to implement

Step 4, our idea is to introduce saturated differential operators as follows. For simplicity consider the case when dim C V = 1. Then Hom K ′ (V, Pol(n + ) ⊗ W ) is identified with a subspace of Pol(n + ) via the isomorphism (3.12). Let C(n + ) denote the field of rational functions on n + . Suppose that we have a morphism

T ∶ C[S] → C(n + ) such that T induces an isomorphism T ∶ Γ(S) ∼ → Hom K ′ (V, Pol(n + ) ⊗ W )
for some algebraic variety S ("slice" of a generic K ′ C -orbit on n + ), and for some appropriate function space Γ(S) (e.g. Γ(S) = Pol a [t] even , see (6.12)). In the special case where V and W are the trivial one-dimensional representations of K and K ′ , respectively, we may take S = n + K ′ C (geometric quotient) and T is the natural morphism

C[S] ∼ → C[n + ] K ′ C .
Definition 3.2. A differential operator R on n + with rational coefficients is Tsaturated if there exists an operator D such that the following diagram commutes:

C[S] T / / D C(n + ) R C[S] T / / C(n + ).
Such an operator D is unique (if exists), and we denote it by T ♯ R. Then we have

(3.13) T ♯ (R 1 ⋅ R 2 ) = T ♯ (R 1 )T ♯ (R 2 )
whenever it makes sense.

Proposition 3.3. Let C 1 , ⋯, C k be a basis of n ′ + . Suppose there exist non-zero

Q j ∈ C(n + ) such that Q j dπ λ * (C j ) is T -saturated (1 ≤ j ≤ k) and set D j ∶= T ♯ (Q j dπ λ * (C j )).
Then T induces a bijection

{g ∈ Γ[S] ∶ D j g = 0, (1 ≤ j ≤ k)} ∼ → {ψ ∈ Hom K ′ (V, Pol(n + ) ⊗ W ) ∶ ψ satisfies (3.10) and (3.11)} ≃ P ∈ (Pol(n + ) ⊗ V ∨ ) χ ∶ P satisfies (3.9) .
We shall use this idea in Sections 6-8 where S is one-dimensional and D j are ordinary differential operators. We note that

D j g = 0 (1 ≤ ∀j ≤ k) is equivalent to a single equation D i g = 0 if K ′ acts irreducibly on n ′ + . 3.3.
Complement for the F-method in vector-valued cases and highest weight varieties. If the target W Y is no longer a line bundle but a vector bundle, i.e., if W is an arbitrary finite-dimensional, irreducible k ′ -module, we recall two supplementary ingredients of Step 3 in the recipe by reducing (3.10) to a simpler algebraic question on polynomial rings, so that we can focus on the crucial part consisting of a system of differential equations of second order (3.11). This construction is based on the notion of highest weight variety of the fiber W and is summarized in the following two lemmas (see [KP15-1, Lemmas 4.6 and 4.7].

We fix a Borel subalgebra b(k

′ ) of k ′ . Let χ ∶ b(k ′ ) → C be a character. For a k ′ -module U , we set U χ ∶= {u ∈ U ∶ Zu = χ(Z)u for any Z ∈ b(k ′ )}.
Suppose that W is the irreducible representation of k ′ with lowest weight -χ. Then the contragredient representation W ∨ has a highest weight χ. We fix a non-zero highest weight vector w ∨ ∈ (W ∨ ) χ . Then the contraction map

U ⊗ W → U, ψ ↦ ⟨ψ, w ∨ ⟩,
induces a bijection between the following two subspaces:

(3.14) (U ⊗ W ) k ′ ∼ → U χ ,
if U is completely reducible as a k ′ -module. By using the isomorphism (3.14), we reformulate Step 3 of the recipe for the F-method as follows:

Lemma 3.4. Assume that W is an irreducible representation of the parabolic subalgebra p ′ . Let -χ be the lowest weight of W as a k ′ -module. Then we have a natural injective homomorphism

Diff G ′ (V X , W Y ) ↪ Q ∈ (Pol(n + ) ⊗ V ∨ ) χ ∶ dπ µ (C)Q = 0 for all C ∈ n ′ + , which is bijective if K ′ is connected.
See [KP15-1, Lemma 4.6] for the proof. Since any non-zero vector in W ∨ is cyclic, the next lemma explains how to recover D X→Y (ϕ) from Q given in Lemma 3.4.

We assume, for simplicity, that the k-module (λ, V ) lifts to K C , the k ′ -module (ν, W ) lifts to K ′ C , and use the same letters to denote their liftings. Lemma 3.5. For any ϕ ∈ Hom

p ′ (W ∨ , ind g p (V ∨ )), k ∈ K ′ C and w ∨ ∈ W ∨ , (3.15) ⟨D X→Y (ϕ), ν ∨ (k)w ∨ ⟩ = (Ad(k) ⊗ λ ∨ (k)) ⟨D X→Y (ϕ), w ∨ ⟩ .
See [KP15-1, Lemma 4.7] for the proof.

Branching laws and Hermitian symmetric spaces

The existence, respectively the uniqueness (up to scaling) of differential symmetry breaking operators from V X to W Y are subject to the conditions

(4.1) dim Diff G ′ (V X , W Y ) ≥ 1, respectively ≤ 1.
So we need to find the geometric settings (i.e. the pair Y ⊂ X of generalized flag varieties and two homogeneous vector bundles V X → X and W Y → Y ) satisfying (4.1). This is the main ingredient of Step 2 in the recipe of the F-method, and thanks to [KP15-1, Theorem 2.9], the existence and uniqueness are equivalent to the following question concerning (abstract) branching laws: Given a p-module V , find all finite-dimensional p ′ -modules W such that dim Hom p ′ (W ∨ , ind g p (V ∨ )) = 1, and equivalently,

(4.2) dim Hom g ′ (ind g ′ p ′ (W ∨ ), ind g p (V ∨ )) = 1.

This section briefly reviews what is known on this question (see Fact 4.2).

Let g be a complex semisimple Lie algebra, and j a Cartan subalgebra of g. We fix a positive root system ∆ + ≡ ∆ + (g, j), write ρ for half the sum of positive roots, α ∨ for the coroot for α ∈ ∆, and g α for the root space. Define a Borel subalgebra b = j + n with nilradical n ∶= ⊕ α∈∆ + g α .

The BGG category O is defined as the full subcategory of g-modules whose objects are finitely generated, j-semisimple and locally n-finite [START_REF] Bernstein | A certain category of g-modules[END_REF].

As in the previous sections, fix a standard parabolic subalgebra p with Levi decomposition p = k + n + such that the Levi factor k contains j. We set ∆ + (k) ∶= ∆ + ∩ ∆(k, j). The parabolic BGG category O p is defined as the full subcategory of O whose objects are locally k-finite.

We define

Λ + (k) ∶= {λ ∈ j * ∶ ⟨λ, α ∨ ⟩ ∈ N for any α ∈ ∆ + (k)},
the set of linear forms λ on j whose restrictions to j ∩ [k, k] are dominant integral. We write V λ for the finite-dimensional simple k-module with highest weight λ, regard it as a p-module by letting n + act trivially, and consider the generalized Verma module

ind g p (λ) ≡ ind g p (V λ ) ∶= U (g) ⊗ U (p) V λ .
Then ind g p (λ) ∈ O p and any simple object in O p is the quotient of some generalized Verma module. If

(4.3) ⟨λ, α ∨ ⟩ = 0 for all α ∈ ∆(k),
then V λ is one-dimensional, to be denoted also by C λ . In this case we say ind g p (λ) is of scalar type.

Let τ ∈ Aut(g) be an involutive automorphism of the Lie algebra g. We write

g ±τ ∶= {v ∈ g ∶ τ v = ±v}
for the ±1 eigenspaces of τ , respectively. We say that (g, g ′ ) is a symmetric pair if g ′ = g τ for some τ . For a general choice of τ and p, the space considered in (4.2) may be reduced to zero for all p ′ -modules W . Suppose V ≡ V λ with λ ∈ Λ + (k) generic. Then a necessary and sufficient condition for the existence of W such that the left-hand side of (4.2) is non-zero is given by the geometric requirement on the generalized flag variety

G C P C , namely, the set G τ C P C is closed in G C , see [K12, Proposition 3.8]
. Consider now the case where the nilradical n + of p is abelian. Then, the following result holds :

Fact 4.1 ([K12]
). If the nilradical n + of p is abelian, then for any symmetric pair (g, g τ ) the restriction of a generalized Verma module of scalar type ind g p (-λ) ι(g τ ) is multiplicity-free for any embedding ι ∶ g τ → g such that ι(G τ C )P C is closed in G C and for any sufficiently positive λ.

A combinatorial description of the branching law is given as follows. Suppose that p is g τ -compatible (see [KP15-1, Definition 4.5]). Then the involution τ stabilizes k and n + , respectively, the nilradical n + decomposes into a direct sum of eigenspaces

n + = n τ + + n -τ + and G τ C P C is closed in G C . Fix a Cartan subalgebra j of k such that j τ ∶= j ∩ g τ is a Cartan subalgebra of k τ .
We define θ ∈ End(g) by θ k = id and θ n++n-=id. Then θ is an involution commuting with τ . Moreover it is an automorphism if n + is abelian. The reductive subalgebra g τ θ = k τ + n -τ -+ n -τ + decomposes into simple or abelian ideals ⊕ i g τ θ i , and we write the decomposition of n -τ + as n -τ + = ⊕ i n -τ +,i correspondingly. Each n -τ +,i is a j τ -module, and we denote by ∆(n -τ +,i , j τ ) the set of weights of n -τ +,i with respect to j τ . The roots α and β are said to be strongly orthogonal if neither α + β nor αβ is a root. We take a maximal set of strongly orthogonal roots {ν

(i) 1 , ⋯, ν (i) k i } in ∆(n -τ +,i , j τ ) inductively as follows: 1) ν (i) 1 is the highest root of ∆(n -τ +,i , j τ ). 2) ν (i)
j+1 is the highest root among the elements in ∆(n -τ +,i , j τ ) that are strongly orthogonal to ν

(i) 1 , ⋯, ν (i) j (1 ≤ j ≤ k i -1).
We define the following subset of

N k (k = ∑ k i ) by (4.4) A + ∶= i A i , A i ∶= {(a (i) j ) 1≤j≤k i ∈ N k i ∶ a (i) 1 ≥ ⋯ ≥ a (i) k i ≥ 0}.
Introduce the following positivity condition:

(4.5) ⟨λρ g , α⟩ > 0 for any α ∈ ∆(n + , j).

Fact 4.2 ([K08]

). Suppose p is g τ -compatible, and λ satisfies (4.3) and (4.5). Then the generalized Verma module ind g p (-λ) decomposes into a multiplicity-free direct sum of irreducible g τ -modules :

(4.6) ind g p (-λ) g τ ≃ ⊕ (a (i) j )∈A + ind g τ p τ (-λ j τ - i k i j=1 a (i) j ν (i) j ).
In particular, for a simple p τ -module W (namely, a simple k τ -module with trivial action of n τ ),

dim Hom g τ (ind g τ p τ (W ∨ ), ind g p (C -λ )) = 1 if and only if the highest weight of the k τ -module W is of the form λ j τ +∑ i ∑ k i j=1 a (i) j ν (i) j for some (a (i) j ) ∈ A + .
Notice that when τ is a Cartan involution, G τ is compact and g τ = p τ . In this case, the formula (4.6) is due to L. K. Hua [H63] (classical case), B. Kostant (unpublished), and W. Schmid [START_REF] Schmid | Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen[END_REF]. In general G τ is non-compact, and we need to consider infinite-dimensional irreducible representations of G τ when we consider the branching law G ↓ G τ .

In remaining Sections 5, 6, 7 and 8 we construct a family of equivariant differential operators for all symmetric pairs (g, g τ ) with G τ non-compact and k = 1 (in particular, ∆(n -τ +,i , j τ ) is empty for all but one i). In conclusion, we recall the corresponding branching laws in the category of unitary representations, which are the dual of the formulae in Fact 4.2. We denote by H 2 (M, V) the Hilbert space of square integrable holomorphic sections of the Hermitian vector bundle V over a Hermitian manifold M . If the positivity condition (4.5) holds, then H 2 (G K, L λ ) ≠ {0}, and G acts unitarily and irreducibly on it.

Given a = (a

(i) j ) ∈ A + (⊂ N k ), we write W a λ for the G τ -equivariant holomorphic vector bundle over G τ K τ associated to the irreducible representation W a λ of k τ with highest weight λ j τ + ∑ i ∑ k i j=1 a (i) j ν (i) j . Fact 4.3 ([K08]). If the positivity condition (4.5) is satisfied, then H 2 (G τ K τ , W a λ )
is non-zero and G τ acts on it irreducibly and unitarily for any a ∈ A + . Moreover, the branching law for the restriction G ↓ G τ is given by

(4.7) H 2 (G K, L λ ) ≃ ⊕ a∈A + H 2 (G τ K τ , W a λ ) (Hilbert direct sum).

Normal derivatives versus intertwining operators

Let G ′ K ′ be a subsymmetric space of the Hermitian symmetric space G K as in Section 2.1. Consider the Taylor expansion of any holomorphic function (section) on G K with respect to the normal direction. Then the coefficients give rise to holomorphic sections of a family of vector bundles over the submanifold G ′ K ′ . This idea was used earlier by Jakobsen and Vergne [START_REF] Jakobsen | Restrictions and extensions of holomorphic representations[END_REF], and by the first author [K08] for filtered modules to find abstract branching laws.

However, it should be noted that normal derivatives do not always give rise to symmetry breaking operators. In this section we clarify the reason in the general setting, and then give a classification of all irreducible symmetric pairs (g(R), g(R) τ ) of split rank one for which it happens. 5.1. Normal derivatives and the Borel embedding. Suppose E = E ′ ⊕ E ′′ is a direct sum of complex vector spaces. Let V E ∶= E × V and W E ′ ∶= E ′ × W be direct product vector bundles over E and E ′ , respectively. Clearly, we have isomorphisms

O(E, V E ) ≃ O(E) ⊗ V , and O(E ′ , W E ′ ) ≃ O(E ′ ) ⊗ W . Take coordinates y = (y 1 , ⋯, y p ) in E ′ and z = (z 1 , ⋯, z n ) in E ′′ . The subspace E ′ is given by the condition z = 0 in E = {(y, z) ∶ y ∈ E ′ , z ∈ E ′′ }. A holomorphic differential operator T ∶ O(E) ⊗ V → O(E ′ ) ⊗ W, f (y, z) ↦ ( T f )(y) is said to be a normal derivative with respect to the decomposition E = E ′ ⊕ E ′′ if it is of the form (5.1) T f (y) = α∈N q T α (y) ∂ α f (y, z) ∂z α z=0 , for some T α ∈ O(E ′ ) ⊗ Hom C (V, W ).
We write N Diff hol (V E , W E ′ ) for the space of (holomorphic) normal derivatives. This notion depends on the direct sum decomposition

E = E ′ ⊕ E ′′ .
Since the commutative groups E ⊃ E ′ act on the direct product bundles V E and W E ′ , respectively, we can consider symmetry breaking operators in this abelian setting, namely, E ′ -equivariant normal derivatives, which amount to the condition that T α (y) in (5.1) is a differential operator with constant coefficients for every α ∈ N q . We denote

N Diff const (V E , W E ′ ) the subspace of N Diff hol (V E , W E ′ ) consisting of those operators.
Thus we have seen the following:

Lemma 5.1. There is a natural isomorphism:

Hom C (V, W ) ⊗ S(E ′′ ) ∼ → N Diff const (V E , W E ′ ).
Suppose we are in the setting of Section 2.1. We apply the concept of normal derivatives to the subsymmetric space G ′ K ′ in the Hermitian symmetric space G K. Let V be a homogeneous vector bundle over X = G K associated with a finite-dimensional representation V of K. Similarly, let W be a homogeneous vector bundle over the subsymmetric space Y = G ′ K ′ associated with a finite-dimensional representation W of K ′ .

By using the Killing form, we take a complementary subspace g ′′ of g ′ in g so that g = g ′ ⊕g ′′ is a direct sum of G ′ -modules. We set n ′′ -∶= n -∩g ′′ . Since the characteristic element H o ∈ g ′ (see (2.1)), we have a direct sum decomposition of K ′ -modules:

(5.2) n -= n ′ -⊕ n ′′ -.
Accordingly, we can consider the space N Diff hol (V n-, W n ′ -) of holomorphic normal derivatives with respect to (5.2).

We write

N Diff hol (V X , W Y ) and N Diff const (V X , W Y ) for the images of N Diff hol (V n-, W n ′ -) and N Diff const (V n-, W n ′ -)
, respectively, under the natural injective map:

Diff hol (V n-, W n ′ -) / / Diff hol (V X , W Y )
induced by the following map:

O(n -, V ) / / _ restriction O(n ′ -, W ) _ restriction O(G K, V) / / O(G ′ K ′ , W).
(5.3)

Since the trivialization of the vector bundle

G C × P C V n -× V / / G C × P C V V X ? _ o o n - / / G C P C X = G K ? _ o o is K C -equivariant, Lemma 5.1 implies: Proposition 5.2.
There is a natural isomorphism:

Hom K ′ (V, S(n ′′ -) ⊗ W ) ∼ → N Diff const K ′ (V X , W Y ).
We study whether or not the following two subspaces

• N Diff K ′ (V X , W Y ) of K ′ -equivariant normal derivatives and • Hom G ′ (O(V X ), O(W Y )) of symmetry breaking operators coincide in Hom C (O(V X ), O(W Y )).
Owing to Theorem 3.1 and Proposition 5.2, it reduces to an algebraic problem to compare

• Hom K ′ (V, S(n ′′ -) ⊗ W ) and • Hom K ′ (V, Pol(n + ) ⊗ W ) dπ λ * (n ′ + )
in Hom C (V, Pol(n + )⊗W ) ≃ Hom C (V, S(n -)⊗W ). We shall see in the next subsection that they actually coincide for the three families of symmetric pairs out of the six listed in Table 2.1.

5.2.

When are normal derivatives intertwining operators? Let dim V = 1, and we write as before L λ for the homogeneous line bundle over X = G K associated to the character C λ of K.

Theorem 5.3. Suppose (g(R), g(R) τ ) is a split rank one irreducible symmetric pair of holomorphic type (see Definition 2.3). Then, the following three conditions on the pair (g(R), g(R) τ ) are equivalent: (i) For any λ satisfying the positivity condition (4.5) and for any irreducible

K τ -module W , all continuous G τ -homomorphisms O(X, L λ ) → O(Y, W),
are given by normal derivatives with respect to the decomposition n -= n τ -⊕n -τ -. (ii) For some λ satisfying (4.5) and for some irreducible K τ -module W , there exists a non-trivial G τ -intertwining operator

O(X, L λ ) → O(Y, W)
which is given by normal derivatives of positive order. (iii) The symmetric pair (g(R), g(R) τ ) is isomorphic to one of (su(p, q), s(u(1) ⊕ u(p -1, q))), (so(2, 2n), u(1, n)) or (so * (2n), so(2) ⊕ so * (2n -2)).

Notice that the geometric nature of embeddings Y ↪ X mentioned in the condition (iii) corresponds to the following inclusions of flag varieties: Gr p-1 (C p+q ) ↪ Gr p (C p+q );

P n C ↪ Q 2n C; IGr n-1 (C 2n-2 ) ↪ IGr n (C 2n ), where Gr p (C k ) ∶= {V ⊂ C k ∶ dim V = p} is the complex Grassmanian, Q m C ∶= {z ∈ P m+1 C ∶ z 2 0 + ⋯ + z 2 m+1 = 0} is the complex quadric and IGr n (C 2n ) ∶= {V ⊂ C 2n ∶ dimV = n, Q V ≡ 0}
is the isotropic Grassmanian for C 2n equipped with a non-degenerate quadratic form Q.

5.3.

Outline of the proof of Theorem 5.3. The implication (i)⇒(ii) is obvious. On the other hand, for split rank one symmetric spaces there are three other cases (i.e., (1), (2) and (3) in Table 2.1) where the G τ -intertwining operators are not given by normal derivatives. In Sections 6, 7 and 8 we construct them explicitly. This will conclude the implication (ii)⇒(iii). For the rest of this section we shall give a proof for the implication (iii)⇒(i).

Consider a homomorphism:

T ∶ W ∨ → S(n -τ -) ⊗ V ∨ . We regard S(n -τ -) ⊗ V ∨ as a subspace of Pol(n + ) ⊗ V ∨ on which the Lie algebra g acts by dπ λ * , see (3.6). If T is a K τ -homomorphism, the differential operator T ∶ O(G K, V X ) → O(G τ K τ , W Y ) is K τ -equivariant.
The following statement gives a sufficient condition for T to be G τ -equivariant.

Proposition 5.4. The normal derivative

T ∈ N Diff const (V X , W Y ) induces a G τ - equivariant differential operator from V X to W Y if and only if T is a K τ -homo- morphism and T (W ∨ ) is contained in (Pol(n + ) ⊗ V ∨ ) dπ λ * (n τ + ) .
Proof. The proof is a direct consequence of the F-method. Indeed, by Theorem 3.1,

T ∈ N Diff const (V X , W Y ) ⊂ Diff const (n -) ⊗ Hom C (V, W ) is a G τ -equivariant differential operator if and only if (Symb ⊗ id)( T ) ∈ (Pol(n + ) ⊗ Hom(V, W )) dπ λ * (p τ )
where

(Pol(n + ) ⊗ Hom(V, W )) dπ λ * (p τ ) = (Pol(n + ) ⊗ Hom(V, W )) dπ λ * (k τ ) ∩ (Pol(n + ) ⊗ Hom(V, W )) dπ λ * (n τ + ) .
Furthermore, by Theorem 3.1, for

T ∈ N Diff const (V X , W Y ), we have (Symb ⊗ id)( T ) ∈ (Pol(n + ) ⊗ Hom(V, W )) dπ λ * (k τ ) if and only if T ∈ Hom k τ (W ∨ , S(n -τ -) ⊗ V ∨ ), as (Symb ⊗ id)( T ) = (F c ⊗ id)(T ).
Hence the statement is proved.

Lemma 5.5. Suppose (g(R), g(R) τ ) is a split rank one irreducible symmetric pair of holomorphic type and λ satisfying (4.3) and (4.5). For a ∈ N we define a K τ -module:

(5.4) W a λ ∶= S a (n -τ -) ⊗ C λ . (1) The module W a λ is irreducible for any a ∈ N. (2) If for an irreducible K τ -module W there exists a non-zero continuous G τ - homomorphism O(G K, L λ ) → O(G τ K τ , W), then the module W is isomor- phic to W a λ for some a ∈ N. (3) Assume that (5.5) Hom k τ (S a (n -τ -), S a 1 (n τ -) ⊗ S a-a 1 (n -τ -)) = {0} for any 1 ≤ a 1 ≤ a. Then, the normal derivative T corresponding to the natural inclusion T ∶ (W a λ ) ∨ → S(n -τ -) ⊗ (C λ ) ∨ is a G τ -equivariant differential operator. Proof. If rank R G G τ = 1, then the non-compact part of g(R) τ θ is isomorphic to su(1, n) for some n.
Thus the first statement follows from the observation that S a (C n ) is an irreducible gl n (C)-module for any a ∈ N because the action of k τ on n -τ + corresponds to the natural action of gl n (C) on C n .

The second statement is due to the localness theorem [KP15-1, Theorem 5

.3] for k = rank R G G τ = 1.
To show the third statement, observe that we have the following natural inclusions A ⊂ B ⊃ C, where

A ∶= Pol a (n -τ + ) ⊗ C ∨ λ , B ∶= Pol a (n + ) ⊗ C ∨ λ , C ∶= (Pol a (n + ) ⊗ C ∨ λ ) dπ λ * (n τ + ) . Therefore Hom k τ ((W a λ ) ∨ , A) ↪ Hom k τ ((W a λ ) ∨ , B) ↩ Hom k τ ((W a λ ) ∨ , C
). By Proposition 5.2 and Theorem 3.1, we have

N Diff const K τ (V X , W Y ) ↪ Hom k τ ((W a λ ) ∨ , B) ↩ Hom G ′ (O(X, V), O(Y, W)). Since Pol a (n + ) ≃ a ⊕ a 1 =0
Pol a 1 (n τ + ) ⊗ Pol a-a 1 (n -τ + ), the assumption (5.5) implies that

Hom k τ ((W a λ ) ∨ , A) ∼ → Hom k τ ((W a λ ) ∨ , B)
, and therefore the first inclusion is an isomorphism. Moreover, since A is isomorphic to the irreducible k τ -module (W a λ ) ∨ , the first term is one-dimensional by Schur's lemma. The last one is also one-dimensional according to the multiplicity-one decomposition given in Fact 4.2. Therefore, all the three terms coincide.

Hence the canonical isomorphism T ∶ (W a λ ) ∨ → S(n -τ -) ⊗ (C λ ) ∨ satisfies the assumption of Proposition 5.4. Thus Lemma follows.

Remark 5.6. The highest weight vectors of the generalized Verma module ind g p (C ∨ λ ) with respect to p τ have a particularly simple form if the condition (5.5) is satisfied. In fact, by Poincaré-Birkhoff-Witt theorem ind g p (C ∨ λ ) is isomorphic, as a k-module, to S(n -) ⊗ C ∨ λ , when n -is abelian. Under the assumption (5.5) we thus have

ind g p (C ∨ λ ) n τ + ≃ ∞ ⊕ a=0 S a (n -τ -) ⊗ C ∨ λ .
This formula is an algebraic explanation of the fact that G τ -equivariant operators are given by normal derivatives in this setting.

In order to conclude the proof of Theorem 5.3 we have to show that in all cases mentioned in (iii) the condition (5.5) is fulfilled. It will be done in the next subsection.

An application of the classical branching rules.

In what follows, we shall verify the condition (5.5) for the last three cases (4), ( 5) and (6) in Table 2.1 by using some classical branching rules of irreducible representations of gl m (C).

Denote by F (gl m (C), µ) the finite dimensional irreducible gl m (C)-module with highest weight µ. For example, the natural representation of the Lie algebra gl m (C) on C m corresponds to F (gl m (C), (1, 0, . . . , 0)) and its contragredient representation on (C m ) ∨ to F (gl m (C), (0, 0, . . . , 0, -1)), while the action of gl m (C) on the space of symmetric matrices Sym(m, C) ≃ S 2 (C m ) given by C ↦ XC t X for X ∈ gl m (C) and C ∈ Sym(m, C) corresponds to F (gl m (C), (2, 0, . . . , 0)). More generally, the action of gl m (C) on the space of i-th symmetric tensors is no longer irreducible and decomposes as follows:

S i (Sym(m, C)) ≃ S i S 2 (C m ) ≃ ⊕ i 1 ≥⋯≥im≥0 i 1 +⋅⋅⋅+im=i F (gl m (C), (2i 1 , 2i 2 , . . . , 2i m )). (5.6)
In turn, classical Pieri's rule gives the following irreducible decomposition for the tensor product of such modules:

S i S 2 (C m ) ⊗ S k (C m ) ≃ ⊕ i 1 ≥⋯≥im≥0, i 1 +⋅⋅⋅+im=i ⊕ 1 ≥2i 1 ≥⋯≥ m≥2im, ∑ m r=1 ( r -2ir)=k F (gl m (C), ( 1 , . . . , m )).
Remark 5.7. The summand of the form F (gl m (C), ( , 0, . . . , 0)) occurs in the righthand side if and only if i 2 = ⋯ = i m = 0, hence i 1 = i and -2i = k. This remark will be used in Section 7.

Example 5.8.

Let G = U (p, q), G τ = U (1) × U (p -1, q) and k τ = k τ (R) ⊗ R C ≃ gl 1 (C) ⊕ gl p-1 (C) ⊕ gl q (C). Then, the decomposition n -= n τ -⊕ n -τ -as a k τ -module amounts to (C p ) ∨ ⊠ C q ≃ (C ⊠ (C p-1 ) ∨ ⊠ C q ) ⊕ (C -1 ⊠ C ⊠ C q )
, where ⊠ stands for the outer tensor product representation. Therefore, for a = a 1 +a 2 ,

Hom k τ (S a (n -τ -), S a 1 (n τ -) ⊗ S a 2 (n -τ -)) ≃ Hom gl 1 (C) (C -a , C -a 2 ) ⊗ Hom gl p-1 (C) (C, S a 1 ((C p-1 ) ∨ )) ⊗ Hom gl q (C) (S a (C q ), S a 2 (C q ))
is not reduced to zero if and only if a 1 = 0 and a 2 = a. Thus, the condition (5.5) is satisfied.

Example 5.9.

Let G = SO(2, 2n), G τ = U (1, n) and k τ = gl 1 (C) ⊕ gl n (C). Then the decomposition n -= n τ -⊕ n -τ -as a k τ -module amounts to C -1 ⊠ C 2n ≃ (C -1 ⊠ C n ) ⊕ (C -1 ⊠ (C n ) ∨ ).
Therefore, for a = a 1 + a 2 , we have

Hom k τ (S a (n -τ -), S a 1 (n τ -) ⊗ S a 2 (n -τ -)) ≃ Hom gl 1 (C) (C -a , C -a 1 -a 2 ) ⊗ Hom gl n (C) (S a ((C n ) ∨ ), S a 1 (C n ) ⊗ S a 2 ((C n ) ∨ )) ≃ min(a 1 ,a 2 ) ⊕ b=0 Hom gl n (C) (F (gl n (C), (0, ⋯, 0, -a)), F (gl n (C), (a 1 -b, 0, ⋯, 0, -a 2 + b))),
where the second isomorphism follows from Pieri's rule. Thus, the left-hand side is not reduced to zero if and only if a 1 = 0 and a 2 = a. Hence, the condition (5.5) is satisfied.

Example 5.10. Let G = SO * (2n), G τ = SO * (2n -2) × SO(2) and k τ = gl n-1 (C) ⊕ gl 1 (C). In this case, the decomposition n -= n τ -⊕ n -τ -as a k τ -module amounts to

(Alt(C n-1 ) ∨ ⊠ 1) ⊕ ((C n-1 ) ∨ ⊠ C -1 ). Therefore, for a = a 1 + a 2 Hom k τ (S a (n -τ -), S a 1 (n τ -) ⊗ S a 2 (n -τ -)) ≃ Hom gl n-1 (C) (S a ((C n-1 ) ∨ ), S a 1 (Alt(C n-1 ) ∨ ) ⊗ S a 2 ((C n-1 ) ∨ )) ⊗ Hom gl 1 (C) (C -a , C -a 2 ).
In view of the gl 1 (C)-action on the right-hand side, it is non-zero only if a 2 = a (and therefore a 1 = 0). Thus the condition (5.5) is satisfied.

Hence we have verified the assumption (5.5) for all the three symmetric pairs (g(R), g(R) τ ) corresponding to the three complex geometries (4), ( 5) and (6) in Table 1.1, and have proved the implication (iii) ⇒ (i) in Theorem 5.3 by Lemma 5.5 (3).

Symmetry breaking operators for the restriction

SO(n, 2) ↓ SO(n -1, 2) Let n ≥ 3.
In what follows, we realize the indefinite orthogonal group SO(n, 2) in a slightly non-standard way, namely, use a non-degenerate quadratic form on C n+2 defined by

Q(w) ∶= w 2 0 + ⋯ + w 2 n -w 2 n+1 for w = (w 0 , ⋯, w n+1 ) ∈ C n+2 ,
and restrict it to a certain real form E(R) (see (6.3) below) of C n+2 . (The restriction to the standard real form R n+2 yields conformally covariant differential operators corresponding to another pair of real forms (SO(n + 1, 1), SO(n, 1)), see Remark 6.13.) Let G C be the complex special orthogonal group SO(C n+2 , Q) with respect to the quadratic form Q. Then G C acts transitively on the isotropic cone

Ξ C ∶= {w ∈ C n+2 ∖ {0} ∶ Q(w) = 0},
and also on the complex quadric

Q n C ∶= Ξ C C * ⊂ P n+1 C by w → g ⋅ [w] ∶= [gw] for w ∈ C n+1 ∖ {0}. Let w o = t (1, 0, ⋯, 0, 1) ∈ Ξ C , and P C be the stabilizer of the base point [w o ] = [1 ∶ 0 ∶ ⋯ ∶ 0 ∶ 1] ∈ Q n C, which is a maximal parabolic subgroup of G C . Then we have an isomorphism Q n C ≃ G C P C . We define an embedding (6.1) ι ∶ C n → Ξ C , z ↦ t (1 -Q n (z), 2z 1 , ⋯, 2z n , 1 + Q n (z)),
where

Q n (z) ∶= ∑ n j=1 z 2 j for z = (z 1 , ⋯, z n ) ∈ C n . Then we get coordinates on Q n C by (6.2) C n ↪ Q n C, z ↦ [ι(z)]
which define the open Bruhat cell (see (6.7) below).

The quadratic form Q is of signature (n, 2) when restricted to the real vector space

(6.3) E(R) ∶= √ -1Re 0 + n+1 j=1 Re j ,
where {e j ∶ 0 ≤ j ≤ n+1} is the standard basis in C n+2 . Thus we have an isomorphism:

SO(C n+2 , Q) ∩ GL R (E(R)) ≃ SO(n, 2).
Let G be its identity component SO o (n, 2). Then the G-orbit through the base point 

[w o ] in Q n C is still contained in C n , and is identified with the Lie ball X ∶= {z ∈ C n ∶ z t z 2 + 1 -2z t z > 0, z t z < 1} ≃ G K
Y ∶= X ∩ {z n = 0}. Then Y ≃ G ′ K ′ = SO o (n -1, 2) SO(n -1) × SO(2) a subsymmetric space of X of complex codimension one.
We take H o ∶= E 0,n+1 + E n+1,0 .Then H o is a characteristic element as in Section 2.1. For λ ∈ Z we define a character of c(k) by tH o ↦ λt, and lift it to a character C λ of K. Let L λ be the G-equivariant holomorphic line bundle G × K C λ . The holomorphic line bundle L λ → X is trivialized by using the open Bruhat cell, and the representation of G on O(X, L λ ) is identified with the multiplier representation π λ ≡ π G λ of the same group on O(X) given by (6.4)

F (z) ↦ (π λ (g)F )(z) = J(g -1 , z) -λ F (g -1 ⋅ z),
where we define a map

J ∶ G × X → C * by J(g, z) ∶= 1 2 t w o gι(z), for g ∈ G and z ∈ X. Since H o ∈ k ′ (see (2.1)), we can also define a G ′ -equivariant holomorphic line bundle L ν = G ′ × K ′ C ν over Y = G ′ K ′ for ν ∈ Z.
Let G be the universal covering group of G = SO o (n, 2). Then for any λ ∈ C one can define a G-equivariant holomorphic line bundle

L λ = G × K C λ over X = G K ≃ G K,
and a representation of the same group on O(X, L λ ). Similarly, for ν ∈ C, the universal covering group G′ of

G ′ = SO o (n -1, 2) acts on O(Y, L ν ).
Here is a complete classification of symmetry breaking operators from O(X, L λ ) to O(Y, L ν ) with respect to the symmetric pair G ⊃ G′ : Theorem 6.1. Let n ≥ 3 and G′ be the universal covering group of SO o (n -1, 2). Suppose λ, ν ∈ C. Then the following three conditions on the parameters (λ, ν) ∈ C 2 are equivalent:

(i) Hom G ′ (O(X, L λ ), O(Y, L ν )) ≠ {0}. (ii) dim C Hom G ′ (O(X, L λ ), O(Y, L ν )) = 1. (iii) ν -λ ∈ N.
Remark 6.2. The equivalence (i)⇔(ii) in Theorem 6.1 is not true for singular parameters (λ, ν) in the case of n = 2. This situation will be treated carefully in Section 9. In fact, the symmetric pair

(SO o (2, 2), SO o (2, 1)
) is locally isomorphic to the pair (SL(2, R) × SL(2, R), ∆(SL(2, R)) modulo the center. We note that n = 2 in Theorem 6.1 corresponds to λ ′ = λ ′′ in Theorem 9.1.

Let Cα (x) be the renormalized Gegenbauer polynomial (see Appendix 11.3). We inflate it to a polynomial of two variables x and y:

Cα (x, y) ∶= x 2 Cα y √ x (6.5) = 2 k=0 (-1) k Γ( -k + α) Γ α + +1 2 Γ(k + 1)Γ( -2k + 1) (2y) -2k x k .
For instance, Cα 0 (x, y) = 1, Cα 1 (x, y) = 2y, Cα 2 (x, y) = 2(α + 1)y 2x, etc. Notice that Cα (x 2 , y) is a homogeneous polynomial of x and y of degree . Theorem 6.3. Retain the setting of Theorem 6.1. Let a ∶= νλ ∈ N. Then the differential operator from O(X) to O(Y ) defined by

(6.6) D X→Y,a ∶= Cλ-n-1 2 a -∆ z C n-1 , ∂ ∂z n intertwines the restriction π G λ G ′ with π G ′ λ+a (see (6.4)). Here ∆ z C m ∶= ∑ m k=1 ∂ 2 ∂z 2 k denotes the holomorphic Laplacian on C m in the coordinates (z 1 , ⋯, z m ).
It follows from Theorems 6.1 and 6.3 that any symmetry breaking operator from O(X, L λ ) to O(Y, L λ+a ) is proportional to D X→Y,a for any λ ∈ C and a ∈ N. Remark 6.4. If λ ∈ R and λ > n -1, then H 2 (X, L λ ) ∶= O(X, L λ ) ∩ L 2 (X, L λ ) is a nonzero Hilbert space on which G acts unitarily and irreducibly, giving a holomorphic discrete series representation of G modulo the center. By [KP15-1, Theorem 5.13] the same statement as Theorems 6.1 and 6.3 remains true for symmetry breaking operators between the unitary representations H 2 (X, L λ ) and H 2 (Y, L λ+a ).

In order to prove Theorems 6.1 and 6.3 we apply the F-method (see Section 3.1). The Lie algebra g = so(C n+2 , Q) has a direct sum decomposition g = n -+ k + n + of -1, 0, and 1 eigenspaces of ad(H o ), respectively. Then the maximal parabolic subgroup P C has a Levi decomposition P C = K C N +,C , where N +,C = exp n + .

As Step 1 of the F-method we define the standard basis of n + ≃ C n by

C j ∶= E j,0 -E j,n+1 -E 0,j -E n+1,j (1 ≤ j ≤ n),
and similarly the standard basis of n -≃ C n by

C j ∶= E j,0 + E j,n+1 -E 0,j + E n+1,j (1 ≤ j ≤ n).
Then the decomposition n + = n τ + ⊕ n + -τ is given by

n + = n-1 j=1 CC j ⊕ CC n . Let Z = ∑ n i=1 z i C i ∈ n -and Y = ∑ n j=1 y j C j ∈ n + . By a simple computation we have (6.7) exp(Z) ⋅ w o = ι(z) ∈ C n+2 ,
the open Bruhat cell is given by (6.2). Moreover, by using exp(tY

) exp(Z)w o = ι(z) -2t ⎛ ⎜ ⎝ (y, z) Q(z)y (y, z) ⎞ ⎟ ⎠ + o(t),
we obtain formulae of the maps (3.2) and (3.3), as

α(Y, Z) = -2(z, y)H o mod so(n, C); β(Y, Z) = 2(z, y)E z -Q n (z) n j=1 y j ∂ ∂z j ,
where we regard β(Y, ⋅) as a holomorphic vector field on n -and recall that

E z ∶= ∑ n j=1 z j ∂ ∂z j , Q n (z) = z 2 1 + ⋯ + z 2 n and (z, y) = z 1 y 1 + ⋯ + z n y n . Then the infinitesimal action dπ λ * (C j ) with λ * = λ ∨ ⊗ C 2ρ = -λ + n, is given by (6.8) dπ λ * (C j ) = 2(λ -n)z j -2z j E z + Q n (z) ∂ ∂z j . Lemma 6.5. For C ∈ C n ≃ n + and ζ ∈ C n ≃ n -one has, dπ λ * (C j ) = 2λ ∂ ∂ζ j + 2E ζ ∂ ∂ζ j -ζ j ∆ ζ C n 1 ≤ j ≤ n,
where

E ζ ∶= ∑ n i=1 ζ i ∂ ∂ζ i and ∆ ζ C n = ∂ 2 ∂ζ 2 1 + ⋯ + ∂ 2 ∂ζ 2
n . Proof. According to Definition 3.1 we have ẑj = ∂ ∂ζ j and hence Êz = -E ζn. On the other hand, using the commutation relations of the Weyl algebra (see e.g. [KP15-1, (3.2)]) we get

∆ ζ C n ζ j = ζ j ∆ ζ C n + 2 ∂ ∂ζ j , ∂ ∂ζ j E ζ = E ζ ∂ ∂ζ j + ∂ ∂ζ j .
Thus the above formula for the algebraic Fourier transform dπ λ * (C j ) of the differential operator (6.8) follows.

For

Step 2 we apply Lemma 5.5 (2) and get the following.

Proposition 6.6. Assume λ > n -1. If

Hom G ′ (O(G K, L λ ), O(G ′ K ′ , W)) ≠ {0}
for an irreducible representation W of K ′ , then W must be one-dimensional and of the form (6.9)

W a λ ∶= S a (n -τ -) ⊗ C λ ≃ Pol a (n -τ + ) ⊗ C λ for some a ∈ N.
We denote by ν the action of K ′ on W a λ . In our setting where dim

V = dim W a λ = 1 we write ζ = (ζ ′ , ζ n ) ∈ C n with ζ ′ = (ζ 1 , . . . , ζ n-1 ) ∈ C n-1 ,
and identify an element of Hom C (C λ , Pol(n + ) ⊗ W a λ ) with a polynomial ψ(ζ) of n variables. Then, for Step 3, the condition (3.10) implies that ψ(ζ) is homogeneous of degree a and the condition (3.11) amounts to the system of differential equations:

dπ λ * (C j )ψ = 2λ ∂ ∂ζ j + 2E ζ ∂ ∂ζ j -ζ j ∆ ζ C n ψ = 0, 1 ≤ j ≤ n -1
by Lemma 6.5. To be prepared for Step 4, observe that the

K ′ C -action on n -= n τ -⊕ n -τ -is identified with the action of SO(n -1, C) × SO(2, C) on C n given as C n ⊠ C -1 ≃ (C n-1 ⊠ C -1 ) ⊕ (C ⊠ C -1 ).
Then generic K ′ C -orbits are of codimension one in n -, and the

K ′ C -orbit space in {ζ ∈ C n ∶ Q n-1 (ζ ′ ) ≠ 0} has coordinates ζ 2 n Q n-1 (ζ ′ ) .
For a ∈ N, we introduce an operator T a by (6.10)

(T a g) (ζ) ∶= Q n-1 (ζ ′ ) a 2 g ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ , for g ∈ C[t]. We note that T a g is a (multi-valued) meromorphic function of ζ 1 , . . . , ζ n . We set Pol a [t] ∶= C -span ⟨t a-i ∶ 0 ≤ i ≤ a⟩ , (6.11) Pol a [t] even ∶= C -span ⟨t a-2j ∶ 0 ≤ j ≤ a 2 ⟩ . (6.12) Then (T a g) (ζ) is a homogeneous polynomial of degree a if g ∈ Pol a [t] even .
Remark 6.7. In this section we have assumed n ≥ 3, and therefore

Q n-1 (ζ ′ ) 1 2 = (ζ 2 1 + ⋯ + ζ 2 n-1 )
1 2 is not a polynomial and the parity condition in (6.12) is necessary. However, for n = 2, T a g is a polynomial for g ∈ Pol a [t] as we can take a branch as

Q 1 (ζ ′ ) 1 2 = ζ 1 .
The first half of Step 4 is summarized in the following lemma: Lemma 6.8. For n ≥ 3 we have,

Hom k ′ (C λ , Pol(n + ) ⊗ C ν ) ≃ {0} if ν -λ ∈ N, T ν-λ (Pol ν-λ [t] even ) if ν -λ ∈ N.
Proof. As modules of k ′ = so(n-1, C)⊕so(2, C), we have the following isomorphisms:

Pol(n + ) ≃ S(n -) ≃ ⊕ a 1 ,a 2 ∈N S a 1 (n τ -) ⊗ S a 2 (n -τ -) ≃ ∞ ⊕ a=0 a ⊕ a 1 =0 S a 1 (C n-1 ) ⊠ C -a . Therefore Hom k ′ (C λ , Pol(n + ) ⊗ C ν ) ≃ ∞ ⊕ a=0 a ⊕ a 1 =0 S a 1 (C n-1 ) SO(n-1,C) ⊠ (C ν-a-λ ) SO(2,C) .
The right-hand side is non-zero only when νλ ∈ N. In this case the summand is non-trivial only when a = νλ. On the other hand, since n ≥ 3, we have

S a 1 (C n-1 ) SO(n-1,C) ≃ CQ n-1 (ζ ′ ) a 1 2 if a 1 ∈ 2N, 0 if a 1 ∈ 2N.
Hence the lemma follows.

To implement the second part of Step 4 we apply Proposition 3.3 to the map (6.10). For this we collect some formulae for saturated differential operators that we shall use later. Lemma 6.9. For every 0 ≤ j ≤ n -1 one has:

T ♯ a ζ j E ζ ′ -Q n-1 (ζ ′ ) ∂ ∂ζ j = 0, (6.13) T ♯ a (a -1)ζ n -E ζ ∂ ∂ζ j = 0. (6.14)
Proof. The proof of both statements is straightforward from the definition of T a . Lemma 6.10. Let T a be the operator defined in (6.10). We write ζ ′ = (ζ 1 , ⋯, ζ n-1 ) and ϑ t ∶= t d dt . One then has:

(1) T ♯ a (E ζ ′ ) = a -ϑ t . (2) T ♯ a Q n-1 (ζ ′ ) ζ j ∂ ∂ζ j = a -ϑ t , (1 ≤ j ≤ n -1). (3) T ♯ a Q n-1 (ζ ′ ) ζ j E ζ ∂ ∂ζ j = (a -1)(a -ϑ t ), (1 ≤ j ≤ n -1). (4) T ♯ a (ζ 2 n ∆ ζ C n-1 ) = t 2 (ϑ t -a)(ϑ t -n -a + 3). (5) T ♯ a (Q n-1 (ζ ′ )∆ ζ C n-1 ) = (ϑ t -a)(ϑ t -n -a + 3). (6) T ♯ a (Q n-1 (ζ ′ ) ∂ 2 ∂ζ 2 n ) = t -2 (ϑ 2 t -ϑ t ). (7) T ♯ a (ζ n ∂ ∂ζn ) = ϑ t . (8) T ♯ a (ζ 2 n ∂ 2 ∂ζ 2 n ) = ϑ 2 t -ϑ t . Proof.
Notice first that the identity (1) is equivalent to (2) according to (6.13) and that the identity (3) may be deduced from (1) or (2) by (6.14). Furthermore, identities (4) and (5) on the one hand and ( 6) and (8) on the other are equivalent according to the definition of the T -saturation as t = ζn Q n-1 (ζ ′ ) . Thus, it would be enough to show the identities (1), (4), ( 7) and (8). We give a proof for the first statement, and the remaining cases can be treated in a similar way. Let 1 ≤ j ≤ n -1. Then

T ♯ a (E ζ ′ )g (t) = n-1 j=1 ζ j ∂ ∂ζ j ⎛ ⎝ Q n-1 (ζ ′ ) a 2 g ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ ⎞ ⎠ = aQ n-1 (ζ ′ ) a 2 -1 g ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ n-1 j=1 ζ 2 j -Q n-1 (ζ ′ ) a 2 g ′ ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ n-1 j=1 ζ 2 j ζ n Q 3 n-1 (ζ ′ ) = aQ n-1 (ζ ′ ) a 2 g ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ - ζ n Q n-1 (ζ ′ ) Q n-1 (ζ ′ ) a 2 g ′ ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ = a -t d dt g(t).
For the second half of Step 4 we apply the idea of T -saturated differential operators (see Definition 3.2). Although the differential operator dπ λ * (C j ) itself is not T asaturated, we shall see that

Q j dπ λ * (C j ) is T a -saturated if we set Q j = ζ -1 j Q n-1 (ζ ′ ).
In the following lemma, we note that the right-hand side is independent of j.

Lemma 6.11. The T a -saturation of the differential operators dπ λ * (C j ) with C j ∈ n τ + is given for any 1 ≤ j ≤ n -1 by

T ♯ a Q n-1 (ζ ′ ) ζ j dπ λ * (C j ) = -1 t 2 (1 + t 2 )ϑ 2 t -(1 -(2λ -n + 1)t 2 )ϑ t -a(a + 2λ -n + 1)t 2 .
Proof. Suppose 1 ≤ j ≤ n -1. Applying (2), (3) and ( 5), (6) of Lemma 6.10, respectively, we have following identities:

T ♯ a Q n-1 (ζ ′ ) ζ j ∂ ∂ζ j = a -θ t , T ♯ a Q n-1 (ζ ′ ) ζ j E ζ ∂ ∂ζ j = (a -1)(a -ϑ t ), T ♯ a Q n-1 (ζ ′ ) ζ j ζ j ∆ ζ C n = T ♯ a Q n-1 (ζ ′ ) ∆ ζ C n-1 + ∂ 2 ∂ζ 2 n = (ϑ t -a)(ϑ t -n + 3 -a) + t -2 (ϑ 2 t -ϑ t ). We recall from Lemma 6.5 that dπ λ * (C j ) = 2λ ∂ ∂ζ j + 2E ζ ∂ ∂ζ j -ζ j ∆ ζ C n .
Summing up these terms we get the lemma. Proposition 6.12. Let a ∈ N, and T a be as in (6.10). The polynomial ψ(ζ) = (T a g)(ζ) of n variables satisfies the system of partial differential equations (3.11) if and only if g(t) satisfies the following single ordinary differential equation:

(6.15) (1 -s 2 )ϑ 2 s -(1 + (2λ -n + 1)s 2 )ϑ s + a(a + 2λ -n + 1)s 2 g(- √ -1s) = 0,
or equivalently, g(t) is proportional to the normalized Gegenbauer polynomial Cλ-n-1 2 a ( √ -1t). (For the Gegenbauer polynomial, see Section 11.3.)

Proof. The statement follows from Lemma 6.11 after the change of variable t = -√ -1s.

We have carried out the crucial part of the F-method. Let us complete the proof of Theorems 6.1 and 6.3.

Proof of Theorems 6.1 and 6.3. By the general result of the F-method (see Theorem 3.1), the symbol map of differential operators gives an isomorphism

Hom G′ (O(X, L λ ), O(Y, L ν )) Symb ∼ → Hom k ′ (C λ , Pol(n + ) ⊗ C ν ) dπ λ * (n ′ + ) .
By Lemma 6.8, the right-hand side is reduced to zero if νλ ∈ N. From now on, we assume a ∶= νλ ∈ N, and identify the right-hand side with a subspace of Pol(n + ).

Then it follows from Lemma 6.8 and Proposition (6.12) that the bijections

Pol a [s] even Ta ∼ → Pol a [t] even ∼ → Hom k ′ (C λ , Pol(n + ) ⊗ C ν ) h(s) ↦ g(t) = h( √ -1t) ↦ Q n-1 (ζ ′ ) a 2 g ⎛ ⎝ ζ n Q n-1 (ζ ′ ) ⎞ ⎠ induces an isomorphism Sol Gegen λ - n -1 2 , a ∩ Pol a [s] even ∼ → Hom k ′ (C λ , Pol(n + ) ⊗ C ν ) dπ λ * (n ′ + ) .
Since the left-hand side is always one-dimensional (see Theorem 11.4 in Appendix), the first statement follows.

Furthermore, since Sol Gegen λ

-n-1 2 , a ∩ Pol a [s] even is spanned by Cλ-n-1 2 a (s) by Theorem (11.4) (2), the space Hom G′ (O(X, L λ ), O(Y, L ν )) is spanned by Symb -1 ○ T a Cλ-n-1 2 a ( √ -1t) = (-1) -a 2 Cλ-n-1 2 a -∆ z C n-1 , ∂ ∂z n .
Hence Theorems 6.1 and 6.3 are proved.

Remark 6.13. Theorem 6.3 is a "holomorphic version" of the conformally covariant operator considered by A. Juhl [J09] in the setting S n-1 ↪ S n , with equivariant actions of the pair of groups SO(n, 1) ⊂ SO(n + 1, 1), respectively. Our proof based on the F-method is much shorter than the original proof in [J09, Chapter 6] that relies on combinatorial argument using recurrence relations of the coefficients of differential operators. The F-method gives a conceptual explanation for the appearance of Gegenbauer polynomials in Theorem 6.3. The relationship of symmetry breaking operators between real flag varieties (e.g. [START_REF] Juhl | Families of conformally covariant differential operators, Q-curvature and holography[END_REF][START_REF] Kobayashi | Branching laws for Verma modules and applications in parabolic geometry[END_REF]) and the holomorphic setting is illustrated by an SL 2 -example in [START_REF] Kobayashi | Vector-valued covariant differential operators for the Möbius transformation[END_REF].

Symmetry breaking operators for the restriction

Sp(n, R) ↓ Sp(n -1, R) × Sp(1, R) Let n ≥ 2.
In what follows, we realize the real symplectic group G = Sp(n, R) as a subgroup of the indefinite unitary group U (n, n), so that we can directly apply the computation of

dπ λ * (C) (C ∈ n + ) in [KP15-1, Example 3.7].
Let G C be the complex symplectic group Sp(n, C) which preserves the standard symplectic form ω defined on C 2n by

ω(u, v) ∶= t uJ n v, for u, v ∈ C 2n , where J n ∶= 0 -I n I n 0 . Let E(R) ∶= z z ∶ z ∈
C n be a totally real vector subspace of C 2n , and we set

G ∶= GL R (E(R)) ∩ Sp(n, C) ≃ Sp(n, R).
Then the Lie algebra g(R) ≃ sp(n, R) of G is given by

g(R) = gl R (E(R)) ∩ sp(n, C) = A B B A ∶ A = -t A, B ∈ Sym(n, C) ,
where we recall that Sym(n, C) is the space of complex symmetric matrices. Let H n ∶= {Z ∈ Sym(n, C) ∶ Z op < 1} be the bounded symmetric domain of type CI in the É. Cartan classification, where Z op denotes the operator norm of Z ∈ End(C n ). The Lie group G = Sp(n, R) acts biholomorphically on H n by

g ⋅ Z = (aZ + b)(cZ + d) -1 for g = a b c d ∈ G, Z ∈ H n .
The isotropy subgroup K of G at the origin 0 is identified with U (n) by the isomorphism:

K ∼ → U (n), A 0 0 t A -1 ↦ A.
We write G for the universal covering of G, and K for the connected subgroup with Lie algebra k(R).

Let G ′ be the subgroup of G = Sp(n, R) that preserves the direct sum decomposition E(R) ≃ R 2n = R 2n-2 ⊕ R 2 in the standard coordinates. Then G ′ is isomorphic to the connected group Sp(n -1, R) × Sp(1, R). The pair (G, G ′ ) is a symmetric pair as G ′ is the fixed point subgroup of an involution τ of G defined by

τ (g) = I n-1,1 0 0 I n-1,1 g I n-1,1 0 0 I n-1,1 ,
where

I n-1,1 = diag(1, ⋯, 1, -1). We set X ∶= H n ≃ G K and Y ∶= X ∩ a 0 0 d ∶ a ∈ Sym(n -1, C), d ∈ C ≃ H n-1 × H 1 ≃ G ′ K ′ . The symmetric pair (G, G ′
) is of holomorphic type, and the embedding of the complex manifold Y ↪ X is G ′ -equivariant. Let j be the standard Cartan subalgebra ∑ n i=1 C(E ii -E n+i,n+i ) of k, and {e 1 , ⋯, e n } the standard basis. Then j is a Cartan subalgebra of g and we choose ∆ + (k, j) = {e ie j ∶ 1 ≤ i < j ≤ n} and ∆(n + , j) = {-(e i + e j ) ∶ 1 ≤ i ≤ j ≤ n} so that ρ g = (-1, -2, ⋯, -n).

Then we have the following decomposition of the Lie algebra

g = sp(n, C) = n -+ k + n + , A B C -t A ↦ (B, A, C)
with B = t B and C = t C. Here we have chosen a realization of n + in the lower triangular matrices. Accordingly, we adopt the following notation for characters of k ≃ gl n (C): for λ ∈ C the character C λ of k is defined by:

k → C, A 0 0 -t A ↦ -λ Trace A.
Its restriction to j is given by (-λ, ⋯, -λ) ∈ j ∨ ≃ C n . For λ ∈ C, the character C λ lifts to K and defines a G-equivariant holomorphic line bundle

L λ over X = G K ≃ G K. It descends to a G-equivariant bundle if λ ∈ Z. In our parametrization, L n+1 is the canonical line bundle of X = G K, namely, C 2ρ = C n+1 .
We shall construct differential symmetry breaking operators from O(X, L λ ) to O(Y, W Y ) where W Y is a G ′ -equivariant holomorphic vector bundle over Y . Unlike in the previous section, we have to deal with vector bundles rather than line bundles because, by Proposition 7.4 below, there exists a non-trivial

G ′ -intertwining operator from O(X, L λ ) to O(Y, W Y ) only if dim W > 1 for generic λ except for the case when W Y = L λ Y or n = 2.
More precisely, such an irreducible representation W of k ′ ≃ gl n-1 (C)⊕gl 1 (C) must be isomorphic to W a λ = F (gl n-1 (C), (-λ, ⋯, -λ, -λa)) ⊠ F (gl 1 (C), (-λa)e n ), (7.1) for some a ∈ N. This is a representation of

K ′ = GL(n -1, C) × GL(1, C) on the space Pol a [v 1 , ⋯, v n-1
] of homogeneous polynomials of degree a on C n-1 twisted by the one-dimensional representation (det n-1 ) -λ (det 1 ) -λ-a of K ′ where det k A denotes the determinant of A ∈ M (k, C).

In order to give a concrete model for the natural action of G on O(X, V) consider an irreducible representation ν of U (m) with highest weight (ν 1 , ⋯, ν m ) acting on a finite-dimensional complex vector space W . We extend it into a holomorphic representation denoted by the same letter ν of GL(m, C) on W . Then the holomorphic vector bundle W = Sp(m, R) × U (m) W over H m is trivialized using the open Bruhat cell, and the regular representation of Sp(m, R) on O(H m , W) is identified with the multiplier representation of the same group on O(H m ) ⊗ W given by π Sp(m,R)

(ν 1 ,⋯,νm) (g)F (Z) = ν ( t (cZ + d)) F (aZ + b)(cZ + d) -1 , for g -1 = a b c d ∈ Sp(m, R), Z ∈ H m .
For λ ∈ Z, the one-dimensional representation C λ of K has a highest weight (-λ, ⋯, -λ) and we shall simply write π Sp(m,R) λ

for the representation π Sp(m,R) 

(-λ,⋯,-λ) of Sp(m, R) on O(H m ) given by π Sp(m,R) λ (g)F (Z) = det(cZ + d) -λ F (aZ + b)(cZ + d) -1 , for g -1 = a b c d ∈ Sp(m, R), Z ∈ H m . For λ ∈ C, it
O(H m ) ⊗ Pol a [v 1 , ⋯, v m ].
The representation W a λ may be realized on the space Pol a [v 1 , ⋯, v n-1 ] where (v 1 , ⋯, v n-1 ) are the standard coordinates on n -τ -≃ C n-1 . Hence, the differential symmetry breaking operators can be thought of as elements of

C ∂ ∂z ij ⊗ Pol a [v 1 , . . . , v n-1 ], where z ij (1 ≤ i, j ≤ n) are the standard coordinates on n -≃ Sym(n, C). Theorem 7.1. Let n ≥ 2. Suppose λ ∈ C and a ∈ N.
(1) The vector space

Hom Sp(n-1,R)×Sp(1,R) (O(H n , L λ ), O(H n-1 × H 1 , W a λ )) is one-dimensional.
(2) The vector-valued differential operator from O(X) to O(Y ) ⊗ W defined by (7.2)

D X→Y,a ∶= Cλ-1 a 1≤i,j≤n-1 2v i v j ∂ 2 ∂z ij ∂z nn , 1≤j≤n-1 v j ∂ ∂z jn ∈ C ∂ ∂z ij ⊗ Pol a [v 1 , ⋯, v n-1 ]
intertwines the restriction π

Sp(n,R) λ Sp(n-1,R)×Sp(1,R)
and π

Sp(n-1,R) λ,a ⊠ π Sp(1,R) λ+a .
Here the polynomial Cλ-1 a (x, y) is the inflated normalized Gegenbauer polynomial defined in (6.5).

It follows from Theorem 7.1 that any symmetry breaking operator from

O(X, L λ ) to O(Y, W a λ ) is proportional to D X→Y,a . Remark 7.2. If λ > n then H 2 (X, L λ ) ∶= O(X, L λ ) ∩ L 2 (X, L λ ) is a non-zero Hilbert space on which G acts unitarily and irreducibly. Then, H 2 (Y, W a λ ) ∶= O(Y, W a λ ) ∩ L 2 (Y, W a λ ) ≠ {0}
for any a ∈ N, and the same statements as in Theorem 7.1 remain true for symmetry breaking operators between the representation spaces H 2 (X, L λ ) and H 2 (Y, W a λ ). In order to prove Theorem 7.1 we apply the F-method. Its Step 1 is given by

Lemma 7.3. For λ ∈ C, we set λ * = λ ∨ ⊗ C 2ρ = -λ + n + 1. For C ∈ Sym(n, C) ≃ n + and Z ∈ Sym(n, C) ≃ n -we have dπ λ * (C) = (-λ + n + 1) Trace(CZ) + i≤j k, C k z ik z j ∂ ∂z ij , dπ λ * (C) = -λ i≤j C ij ∂ ∂ζ ij - 1 2 ⎛ ⎝ i≤k,j≤ C k ζ ij ∂ 2 ∂ζ ik ∂ζ j + i≥k,j≥ C k ζ ij ∂ 2 ∂ζ ik ∂ζ j ⎞ ⎠ .
Proof. We embed the group Sp(n, R) into U (n, n) and apply the results of [KP15-1, Example 3.7] with p = q = n. Thus, the first statement follows from the formula (3.4). We consider a bilinear form

n + × n -→ C, (C, Z) ↦ Trace(C t Z),
where n + ≃ Sym(n, C) ≃ n -. Recall that ζ ij with 1 ≤ i ≤ j ≤ n are the coordinates on n + ≃ Sym(n, C). However, it is convenient for the computations below to allow us to use ∂ ∂ζ ij (i > j) for the same meaning with ∂ ∂ζ ji . Then

z ij = 1 2 (1 + δ ij ) ∂ ∂ζ ij , ∂ ∂z ij = (δ ij -2)ζ ij .
Thus the algebraic Fourier transform of the first term of dπ λ * (C) amounts to

(Trace(CZ)) ̂= 1 2 i,j C ij (1 + δ ij ) ∂ ∂ζ ij = i≤j C ij ∂ ∂ζ ij ,
whereas that of the second term of dπ λ * (C) amounts to

⎛ ⎝ i≤j k, C k z ik z j ∂ ∂z ij ⎞ ⎠ ̂= -(n + 1) i≤j C ij ∂ ∂ζ ij - 1 4 i,j,k,l C kl (1 + δ ik )(1 + δ jl )ζ ij ∂ 2 ∂ζ ik ∂ζ j = -(n + 1) i≤j C ij ∂ ∂ζ ij - 1 2 ⎛ ⎝ i≤k,j≤ C k ζ ij ∂ 2 ∂ζ ik ∂ζ j + i≥k,j≥ C k ζ ij ∂ 2 ∂ζ ik ∂ζ j ⎞ ⎠ .
Hence the formula for dπ λ * (C) follows.

The condition (4.5) amounts to

⟨(-λ + 1, ⋯, -λ + n), -(e i + e j )⟩ > 0 for any 1 ≤ i ≤ j ≤ n, namely λ > n.
For the Step 2 we apply Lemma 5.5.

Proposition 7.4. Assume λ > n. If Hom G ′ (O(G K, L λ ), O(G ′ K ′ , W)) ≠ {0}
for an irreducible representation W of K ′ , then W is of the form

W = W a λ = S a (n -τ + ) ⊗ (-λ Trace n ),
for some a ∈ N see (7.1).

From now on, we aim to construct (differential) symmetry breaking operators from O(X, L λ ) to O(Y, W) in the case W = W a λ . Define a Borel subalgebra b(k ′ ) corresponding to the positive root system ∆ + (k ′ , j) ∶= ∆ + (k, j) ∩ ∆(k ′ , j).

For Step 3 we apply Lemma 3.4 and we get:

Lemma 7.5. Let W a λ be the irreducible k ′ -module defined in (7.1). (1) The highest weight of (W a λ ) ∨ is given by χ = (a, 0, . . . , 0; a) + (λ, . . . , λ; λ).

(2) For the k-module Pol(n + ) ⊗ C ∨ λ , the χ-weight space for b(k ′ ) is given by:

(7.3) (Pol(n + ) ⊗ C ∨ λ ) χ ≃ ⊕ 2j+k=a Cζ j 11 ζ k 1n ζ j nn ,
where we identify Pol(n + ) ⊗ C ∨ λ with Pol(n + ) as vector spaces. Proof. The statement (1) is clear from the definition of W a λ given in (7.1). Notice that in our convention ∆(n -) is given as ∆

(n -) = {e i + e j ∶ 1 ≤ i ≤ j ≤ n}. Thus n - decomposes into irreducible representations of k ′ as n -≃ (Sym(n -1), C) ⊠ C) ⊕ (C ⊠ C 2 ) ⊕ (C n-1 ⊠ C 1 ) ≃ (F (gl n-1 , 2e 1 ) ⊠ F (gl 1 , 0)) ⊕ (F (gl n-1 , 0) ⊠ F (gl 1 , 2e n )) (7.4) ⊕ (F (gl n-1 , e 1 ) ⊠ F (gl 1 , e n ))
.

Accordingly we get an isomorphism of k ′ -modules:

Pol(n + ) ≃ S(n -) ≃ ⊕ i,j,k S i (Sym(n -1), C)) ⊗ S k (C n-1 ) ⊠ C 2j+k . (7.5) Since ζ 11 , ζ nn and ζ 1n are highest weight vectors in the k ′ -module n -with respect to ∆ + (k ′ ) (see (7.4)), so is any monomial ζ i 11 ζ j nn ζ k 1n in the k ′ -module S(n -) ≃ Pol(n + ) of weight (2i + k)e 1 + (k + 2j)e n .
According to the irreducible decomposition (7.5) and Remark 5.7, it follows that the right-hand side of (7.3) exhausts all highest weight vectors in Pol(n + ) of weight a(e 1 + e n ). Thus, taking into account the k ′ -action on C ∨ λ ≃ λ Trace n , we get Lemma.

As

Step 4, we reduce the system of differential equations (3.11), i.e. dπ λ * (C)ψ = 0, to an ordinary differential equation. For this, we identify Pol(n + )⊗V ∨ with the space of polynomials in ζ on n + ≃ Sym(n, C). For a polynomial g(t) ∈ Pol a [t] even (see (6.12)) we set

(T a g) (ζ) ∶= ( 2ζ 11 ζ nn ) a g ζ 1n √ 2ζ 11 ζ nn .
Proposition 7.6. Let χ be as in Lemma 7.5 (1).

(1)

T a ∶ Pol a [t] even ∼ → (Pol(n + ) ⊗ V ∨ ) χ . (2) The map T a induces an isomorphism Sol Gegen (λ -1, a) ∩ Pol a [t] even ∼ → (Pol(n + ) ⊗ V ∨ ) dπ λ * (n ′ + ) χ .
(3) Any polynomial ψ(ζ) ≡ ψ(ζ ij ) in the right-hand side of (7.3) is given by

(7.6) ψ(ζ) = (T a g) (ζ) ∶= ( 2ζ 11 ζ nn ) a g ζ 1n √ 2ζ 11 ζ nn ,
for some g(t) ∈ Pol a [t] even . (4) The polynomial ψ(ζ) on Sym(n, C) satisfies the system of partial differential equations dπ λ * (C)ψ = 0 for any C ∈ n ′ + if and only if g(t) satisfies the Gegenbauer differential equation

(7.7) (1 -t 2 )ϑ 2 t -(1 + 2(λ -1)t 2 )ϑ t + a(a + 2(λ -1))t 2 g(t)
= 0, where we denote ϑ t = t d dt as before. Proof. The first two statements follow from Theorem 3.1, Proposition 3.3 and Lemma 3.4. The third statement is clear from (7.3). The proof of the last assertion is similar to the one of Lemma 6.11 and uses the following identities for T a -saturated differential operators:

T ♯ a ϑ ζ 11 = T ♯ a ϑ ζnn = 1 2 (a -ϑ t ), T ♯ a ϑ ζ 1n = ϑ t ,
where

ϑ ζ ij = ζ ij ∂ ∂ζ ij .
We are ready to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. By the general result of the F-method (see Theorem 2.1) and owing to Proposition 3.3 and Lemma 3.4, we have the following isomorphism

Sol Gegen (λ -1, a) ∩ Pol a [t] even ≃ Hom G′ (O(X, L λ ), O(Y, W a λ )).
Hence, the uniqueness of the G ′ -intertwining operator amounts to the fact that the Gegenbauer differential equation has a unique polynomial solution up to a scalar multiple (see Theorem 11.4 (2) in Appendix).

Let us prove that D X→Y,a defined in (7.2) belongs to Diff G ′ (L λ , W a λ ). Using the Fmethod we have proved that if D ∈ Diff G ′ (L λ , W a λ ) and w ∨ is a highest weight vector in (W a λ ) ∨ , then ⟨D, w ∨ ⟩ is of the form (Symb -1 ⊗ id)T a g, where g(t) is a polynomial satisfying (7.7). Hence g(t) is, up to a scalar multiple, the Gegenbauer polynomial Cλ-1 a (t). In turn,

(T a g)(ζ) = Cλ-1 a (2ζ 11 ζ nn , ζ 1n ) up to a scalar. Thus, in order to show D X→Y,a ∈ Diff G ′ (L λ , W a λ ) it is sufficient to verify for all ∈ K ′ C : (7.8) (Symb ⊗ id)⟨D X→Y,a , ν ∨ ( -1 )w ∨ ⟩ = (Ad ♯ ( -1 ) ⊗ λ ∨ ( -1 ))(T a g),
by Lemma 3.5 and by the observation that every non-zero w ∨ ∈ W ∨ is cyclic. The left-hand side of (7.8) amounts to

⟨ Cλ-1 a 1≤i,j≤n-1 2v i v j ζ ij ζ nn , 1≤j≤n-1 v j ζ jn , ν ∨ ( -1 )w ∨ ⟩ = (det ) -λ ⟨ Cλ-1 a 1≤i,j≤n-1 2( v) i ( v) j ζ ij ζ nn , 1≤j≤n-1 ( v) j ζ jn , w ∨ ⟩ ,
where v = t (v 1 , . . . , v n-1 ) stands for the column vector. Since ⟨Q(v), w ∨ ⟩ gives the coefficients of v a 1 in the polynomial Q(v), it is equal to

(det ) -λ Cλ-1 a 1≤i,j≤n-1 2 i1 j1 ζ ij ζ nn , 1≤j≤n-1 j1 ζ jn = (det ) -λ Cλ-1 a 1≤i,j≤n-1 2( t ζ ) 11 ζ nn , 1≤j≤n-1 ( t ζ) 1n .
On the other hand, the action of Ad( -1 ) on Pol(n + ) is generated by

ζ ij ↦ ( t ζ ) ij , ζ in ↦ ( t ζ) in .
Hence, the right-hand side of (7.8) amounts to

(det ) -λ Cλ-1 a 1≤i,j≤n-1 2( t ζ ) 11 ζ nn , 1≤j≤n-1 ( t ζ) 1n ,
whence the equality (7.8).

For the existence, we know that Hom

G ′ (O(G K, L λ ), O(G ′ K ′ , W a λ
)) ≠ {0}for λ > n by Theorem 2.1 and the branching law given by Fact 4.2. In this case, it is given by the differential operator (7.2) by the F-method. The same formula defines a non-zero differential operator which depends holomorphically on λ ∈ C. Since the actions of G on O(G K, L λ ) and that of G′ on O(G ′ K ′ , W a λ ) can be realized on H n and H n-1 × H 1 , respectively, by operators depending holomorphically on λ ∈ C, the differential operator (7.2) respects the G′ for all λ ∈ C by holomorphic continuation. 8. Symmetry breaking operators for the tensor product representations of U (n, 1)

In this section we discuss a higher dimensional generalization of the Rankin-Cohen bidifferential operators by considering the symmetric pair (G ′ × G ′ , G ′ ) with G ′ = U (n, 1). First we fix some notations. Let U (n, 1) be the Lie group of all matrices preserving the standard Hermitian form of signature (n, 1) on C n+1 given by I n,1 = diag(1, ⋯, 1, -1) ∈ GL(n + 1, C).

Let D be the unit ball {Z ∈ C n ∶ Z < 1}, where Z 2 ∶= ∑ n j=1 z j 2 for Z = (z 1 , ⋯, z n ). It is the Hermitian symmetric domain of type AIII in C n in É. Cartan classification. Then the Lie group U (n, 1) acts biholomorphically on D by

g ⋅ Z = (aZ + b)(cZ + d) -1 for g = a b c d ∈ U (n, 1), Z ∈ D,
and the isotropy subgroup at the origin is isomorphic to U (n) × U (1). Since cZ + d ∈ GL(1, C), we identify cZ + d as a non-zero complex number and write aZ+b cZ+d instead of (aZ + b)(cZ + d) -1 from now on.

We adapt the same convention as in [KP15-1, Example 3.7] with p = n and q = 1. In particular, we use the decomposition of the Lie algebra

Lie(U (n, 1)) ⊗ R C ≃ gl n+1 (C) = n ′ -+ k ′ + n ′ + , A B C d ↦ (B, (A, d), C).
Given a representation ν = ν 1 ⊠ ν 2 of U (n) × U (1) on a finite-dimensional complex vector space W , we extend it to a holomorphic representation, denoted by the same letter ν = ν 1 ⊠ν 2 , of GL(n, C)×GL(1, C) on W . Then the holomorphic vector bundle W = U (n, 1) × U (n)×U (1) W over D is trivialized by using the open Bruhat cell n ′ -≃ C n , and the regular representation of U (n, 1) on O(D, W) is identified with the multiplier representation π W of the same group on O(D) ⊗ W given by (8.1)

(π W (g)F )(Z) ∶= ν 1 a - (aZ + b)c cZ + d -1 ν 2 (cZ + d) -1 F aZ + b cZ + d , for F ∈ O(D) ⊗ W, g -1 = a b c d ∈ U (n, 1) and Z ∈ D. We note that cZ + d ≠ 0. For λ 1 , λ 2 ∈ C, the map (8.2) gl n (C) ⊕ gl 1 (C) → C, (A, d) ↦ -λ 1 Trace A -λ 2 d
is a one-dimensional representation of the Lie algebra k ′ , which we denote by C (λ 1 ,λ 2 ) . The negative signature in (8.2) is chosen according to our realization of n + in the lower triangular matrices. For integral values of λ 1 and λ 2 the character

C (λ 1 ,λ 2 ) lifts to U (n) × U (1).
The restriction of the one-dimensional representation (8.2)

to the Cartan subalgebra n+1 ⊕ i=1 CE ii is given by (-λ 1 , ⋯, -λ 1 ; -λ 2 ) in the dual basis {e 1 , ⋯, e n+1 }. For λ 1 , λ 2 ∈ Z, we form a U (n, 1)-equivariant holomorphic line bundle L λ 1 ,λ 2 = U (n, 1)× U (n)×U (1) C (λ 1 ,λ 2 ) over D. By (8.1), the representation of U (n, 1) on O(D, L λ 1 ,λ 2 )
is identified with the multiplier representation, denoted simply by π λ 1 ,λ 2 , of U (n, 1) on O(D) given by

(π λ 1 ,λ 2 (g)F ) (Z) = (cZ + d) -λ 1 +λ 2 (det g) -λ 1 F aZ + b cZ + d .
In our normalization, the canonical bundle of D is given by L (1,-n) associated with

C 2ρ = Trace(ad(⋅) ∶ n + → n + ) ≃ C (1,-n)
with the notation of (8.2), and the dualizing bundle of L λ 1 ,λ 2 is given as

(8.3) L * λ 1 ,λ 2 = L ∨ λ 1 ,λ 2 ⊗ C 2ρ ≃ L -λ 1 +1,-λ 2 -n , associated with C * (λ 1 ,λ 2 ) = C (-λ 1 ,-λ 2 ) ⊗ C 2ρ ≃ C (-λ 1 +1,-λ 2 -n)
. Now we consider the setting of symmetry breaking operators for the tensor product representations. We set X ∶= D × D and Y ∶= ∆(D). Thus, we have the following diagram:

X = D × D ⊂ C n × C n ≃ n -⊂ P n C × P n C ∪ ∪ ∪ ∪ Y = ∆(D) ⊂ ∆(C n ) ≃ n ′ -⊂ ∆(P n C).
We also set G ∶= U (n, 1) × U (n, 1), and let τ be the involution of G acting by τ ∶ (g, h) ↦ (h, g). Then the fixed point subgroup G τ is isomorphic to ∆(U (n, 1)). Its identity component G ′ coincides with G τ which is already connected. We consider the symmetric pair of holomorphic type (G, G ′ ).

According to the branching law in Fact 4.3, for

(λ ′ 1 , λ ′ 2 , λ ′′ 1 , λ ′′ 2 ) ∈ Z 4 with λ ′ 1 -λ ′ 2 > n and λ ′′ 1 -λ ′′ 2 > n, there exists a non-trivial G ′ -intertwining operator D X→Y (ϕ) from O(X, L (λ ′ 1 ,λ ′ 2 ) ⊠ L (λ ′′ 1 ,λ ′′ 2 ) ) to O(Y, W Y ) if
and only the irreducible representation W of U (n) × U (1) has the highest weight (-λ 1 , ⋯, -λ 1 , -λ 1a; -λ 2 + a) for some a ∈ N. We denote it by W a (λ 1 ,λ 2 ) and realize on the space Pol a [v 1 , ⋯, v n ] of homogeneous polynomials of degree a where (v 1 , . . . , v n ) are the standard coordinates on n -τ -≃ C n . Then the vector-valued differential symmetry breaking operators can be thought of as elements of (8.4)

C ∂ ∂z ′ 1 , . . . , ∂ ∂z ′ n , ∂ ∂z ′′ 1 , . . . , ∂ ∂z ′′ n ⊗ Pol a [v 1 , . . . , v n ],
where z ′ i , z ′′ j (1 ≤ i, j ≤ n) are the standard coordinates on n -≃ C n ⊕ C n . Let P α,β (t) be the Jacobi polynomial defined by

P α,β (t) = Γ(α + + 1) Γ(α + β + + 1) m=0 m Γ(α + β + + m + 1) !Γ(α + m + 1)
t -1 2 m , (8.5) see Appendix 11.2 for more details. We inflate it to a homogeneous polynomial of two variables x and y by (8.6) P α,β (x, y) ∶= y P α,β 2 x y + 1 .

For instance, P α,β 0 (x, y) = 1, P α,β 1 (x, y) = (2 + α + β)x + (α + 1)y, etc. We write U (n, 1) for the universal covering of the group U (n, 1). Then we can define a U (n, 1)-equivariant holomorphic line bundle L (λ 1 ,λ 2 ) over D for all λ 1 , λ 2 ∈ C, as well as a representation of U (n, 1) on O(D, L (λ 1 ,λ 2 ) ).

We denote by ⊗ the completion of the tensor product of two nuclear spaces.

Theorem 8.1. Suppose that λ ′ 1 , λ ′ 2 , λ ′′ 1 , λ ′′ 2 ∈ C and a ∈ N. We set λ ′ ∶= λ ′ 1 -λ ′ 2 and λ ′′ ∶= λ ′′ 1 -λ ′′ 2 .
(1) The dimension of the vector space

Hom U (n,1) O(D, L (λ ′ 1 ,λ ′ 2 ) ) ⊗ O(D, L (λ ′′ 1 ,λ ′′ 2 ) ), O(D, W a (λ ′ 1 +λ ′′ 1 ,λ ′ 2 +λ ′′ 2 
) ) is either one or two. It is equal to two if and only if

(8.7) λ ′ , λ ′′ ∈ {-1, -2, ⋯} and a ≥ λ ′ + λ ′′ + 2a -1 ≥ λ ′ -λ ′′ .
(2) The vector-valued differential operator from

O(D×D) to O(D)⊗Pol a [v 1 , ⋯, v n ] defined by (8.8) D X→Y,a ∶= P λ ′ -1,-λ ′ -λ ′′ -2a+1 a n i=1 v i ∂ ∂z i , n j=1 v j ∂ ∂z j intertwines π λ ′ 1 ,λ ′ 2 ⊠ π λ ′′ 1 ,λ ′′ 2 G ′ and π W , where W ≃ W a λ ′ 1 +λ ′′ 1 ,λ ′ 2 +λ ′′ 2 .
(3) If the triple (λ ′ , λ ′′ , a) satisfies (8.7), then D X→Y,a = 0. Otherwise, any symmetry breaking operator is proportional to D X→Y,a .

Remark 8.2.

(1) The representation theoretic interpretation of the condition (8.7) will be clarified in Section 9 in the case n = 1, where we construct three symmetry breaking operators for singular parameters satisfying (8.7) and discuss their linear relations.

(2) The fiber of the vector bundle W a (λ 1 ,λ 2 ) is isomorphic to the space S a (C n ) of symmetric tensors of degree a. It is a line bundle if and only if a = 0 or n = 1. In the case n = 1, the formula (8.8) reduces to the classical Rankin-Cohen bidifferential operators (see (1.1)) with an appropriate choice of spectral parameters, namely, for a ∶= 1 2 (λ ′′′λ ′λ ′′ ) ∈ N, the following identity holds:

(8.9)

RC λ ′′′ λ ′ ,λ ′′ = (-1) a P λ ′ -1,1-λ ′′′ a ∂ ∂z 1 , ∂ ∂z 2 z 1 =z 2 =z .
(2) We regard the k-module Pol(n + ) ⊗ V ∨ as a b(k ′ )-module. Then the χ-weight space is given by

(8.11) (Pol(n + ) ⊗ V ∨ ) χ ≃ ⊕ i+j=a C(ζ ′ 1 ) i (ζ ′′ 1 ) j ,
where we identify Pol(n + ) ⊗ V ∨ with Pol(n + ) as vector spaces.

Proof. 1) Since the highest weight of W is given by

(-λ ′ 1 -λ ′′ 1 , ⋯, -λ ′ 1 -λ ′′ 1 ; -λ ′ 2 -λ ′′
2 ) + (0, ⋯, 0, -a; a), see (7.1), the first statement is clear.

2) The Lie algebra k ′ ≃ gl n (C) ⊕ gl 1 (C) acts on n + ≃ C n ⊕ C n as the direct sum of two copies of irreducible representations F (gl n (C), (0, ⋯, 0; -1)) ⊠ F (gl 1 (C), 1), and thus one has the following irreducible decomposition

Pol(n + ) ≃ ⊕ i,j Pol i (C n ) ⊗ Pol j (C n ) ≃ ⊕ i,j (F (gl n (C), (i, 0, ⋯, 0)) ⊗ F (gl n (C), (j, 0, ⋯, 0))) ⊠ F (gl 1 (C), -(i + j)) ≃ ⊕ i,j ⊕ s F (gl n (C), (s 1 , s 2 , 0, ⋯, 0)) ⊗ F (gl 1 (C), -(i + j)),
where the sum in the last line is taken over all s = (s 1 , s 2 , 0, ⋯, 0) ∈ N n satisfying s 1 ≥ s 2 ≥ 0, and i + j ≥ s 1 ≥ max(i, j) and s 1 + s 2 = i + j. In particular, the weight χ occurs a highest weight in Pol(n + ) ⊗ V ∨ , or equivalently, the one-dimensional b(k ′ )module (a, 0, ⋯, 0; -a) occurs in Pol(n + ), if and only if i + j = a and s 2 = 0. In this case the weight vectors are the monomials (ζ ′ 1 ) i (ζ ′′ 1 ) j . Lemma follows. As Step 4, we reduce the system of differential equations (3.9) to an ordinary differential equation. For this, we recall from (6.11) that Pol a [t] is the space of polynomials in one variable t of degree at most a. We identify Pol(n + ) ⊗ V ∨ with the space of polynomials in

(ζ ′ , ζ ′′ ) on n + ≃ C n ⊕ C n . For g ∈ Pol a [t] we set (T a g)(ζ ′ , ζ ′′ ) ∶= (ζ ′′ 1 ) a g ζ ′ 1 ζ ′′ 1 .
Proposition 8.7. Let χ be the character of b(k ′ ) given in Lemma 8.6.

(1) The map T a induces an isomorphism

T a ∶ Pol a [t] ∼ → (Pol(n + ) ⊗ V ∨ ) χ .
(2) The polynomial T a g satisfies the system of partial differential equations (3.9) if and only if the polynomial g(t) solves the single ordinary differential equation (8.12)

(t + t 2 ) d 2 dt 2 + (λ ′ -(λ ′′ -2a + 2)t) d dt + a(λ ′′ + a -1) g(t) = 0.
For the proof of Proposition 8.7 we use the following identities for T a -saturated operators whose verification is similar to the one for Lemma 6.10. Lemma 8.8. One has:

(1)

T ♯ a ζ ′′ 1 ∂ ∂ζ ′ 1 = d dt . (2) T ♯ a ζ ′ 1 ζ ′′ 1 ∂ 2 ∂(ζ ′ 1 ) 2 = t d 2 dt 2 . (3) T ♯ a ζ ′′ 1 ∂ ∂ζ ′′ 1 = a -t d dt . (4) T ♯ a (ζ ′′ 1 ) 2 ∂ 2 ∂(ζ ′′ 1 ) 2 = a(a -1) -2(a -1)t d dt + t 2 d 2 dt 2 .
Proof of Proposition 8.7. The general condition (3.9) of the F-method amounts to the following differential equation:

(8.13) λ ′ ∂ ∂ζ ′ i + ζ ′ i ∂ 2 ∂(ζ ′ i ) 2 + λ ′′ ∂ ∂ζ ′′ i + ζ ′′ i ∂ 2 ∂(ζ ′′ i ) 2 ψ(ζ ′ , ζ ′′ ) = 0, for C i = (0, . . . , 0, i-1 1, 0, ⋯, 0) + (0, . . . , 0, i-1 1, 0, ⋯, 0) ∈ ∆(n + ) ≃ n ′ + ≃ C n (1 ≤ i ≤ n).
Applying this to ψ = T a g, and using Lemma 8.8, we obtain the differential equation (8.12) for g(t).

We give a proof of Theorem 8.1 below. Note that the proof requires some general argument on the Jacobi polynomials, which is summarized in Appendix, namely, Section 11.2. We naturally quote necessary facts from the section, although they are discussed later.

Proof of Theorem 8.1. We set h(s) ∶= g s -1 2 .

Then 

d ds + a(a + α + β + 1) h(s) = 0,
where α ∶= λ ′ -1 and β ∶= -λ ′λ ′′ -2a + 1. Thus, combining with Theorem 3.1, we have shown the following bijection

Hom U (n,1) O(D, L (λ ′ 1 ,λ ′ 2 ) ) ⊗ O(D, L (λ ′′ 1 ,λ ′′ 2 ) ), O(D, W a (λ ′ 1 +λ ′′ 1 ,λ ′ 2 +λ ′′ 2 ) ) ≃ Sol Jacobi (λ ′ -1, -λ ′ -λ ′′ -2a + 1, a) ∩ Pol a [s], (8.15)
where Sol Jacobi (α, β, ) ∩ Pol a [s] denotes the space of polynomials of degree at most a satisfying the Jacobi differential equation (11.4).

By the bijection (8.15) the first statement is reduced to Theorem 11.2 in Appendix on the dimension of polynomial solutions to the Jacobi differential equation.

Since the Jacobi polynomial P λ ′ -1,-λ ′ -λ ′′ -2a+1 a (s) belongs to the right-hand side of (8.15), it follows from Theorem 3.1 (2) and Lemma 3.5 that D X→Y,a is a symmetry breaking operator. The last statement follows from the fact that Jacobi polynomial P λ ′ -1,-λ ′ -λ ′′ -2a+1 a (t) is identically zero as a polynomial of t if and only if the triple (λ ′ , λ ′′ , a) satisfies (8.7), by Theorem 11.2 (1) in Appendix.

Remark 8.9. In all the three cases we have reduced a system of partial differential equations to a single ordinary differential equation in Step 4 of the F-method. The latter equation has regular singularities at t = ±1 and ∞. We describe the corresponding singularities via the map T a as follows:

(1) The singularities of the differential equation ( 6 (3) The singularities of the differential equation (8.14) correspond to the varieties given by ζ ′ 1 = 0 and ζ ′ 1 = ±ζ ′′ 1 .

Higher multiplicity phenomenon for singular parameter

It is well-known that the branching law for the tensor product of two holomorphic discrete series representations of SL(2, R) (≃ SU (1, 1)) is multiplicity free. More generally, the branching laws for holomorphic discrete series representations of scalar type in the setting of reductive symmetric pairs remain multiplicity free for positive parameters [K08], as well as their counterpart for generalized Verma modules for generic parameters [K12]. However, we discover that such multiplicity one results may fail for singular parameters. In this section, we examine why and how it happens in the example of SL(2, R). We shall see that the F-method reduces it to the question of finding polynomial solutions to the Gauss hypergeometric equation with all the parameters being negative integers. We give a complete answer to this question in Appendix. 9.1. Multiplicity two results for singular parameters. From now on, we consider the setting of the previous section for n = 1, and let G = SU (1, 1) rather than U (1, 1).

For λ ∈ Z, we write L λ for the G-equivariant holomorphic line bundle over the unit disk D = {z ∈ C ∶ z < 1}, where λ = λ 1λ 2 in the notations of the previous section. Using the Bruhat decomposition, we trivialize the line bindle L λ and identify the regular representation of G on O(D, L λ ) with the following multiplier representation on O(D):

(π λ (g)F ) (z) = (cz + d) -λ F az + b cz + d , for g -1 = a b c d and F ∈ O(D).
For λ ∈ C, we extend π λ to a representation of the universal covering group G = SU (1, 1).

We write ind g b (ν) for the Verma module U (g) ⊗ U (b) C ν of the Lie algebra g = sl(2, C). In our parametrization, if λ = 1k (k ∈ N), then the k-dimensional irreducible representation occurs as a subrepresentation of (π λ , O(D)) and as a quotient of ind g b (-λ). We consider symmetry breaking operators from the tensor product representation

O(L λ ′ ) ⊗ O(L λ ′′ ) to O(L λ ′′′ )
, where ⊗ denotes the completion of the tensor product of two nuclear spaces. As we saw in (1.1), the Rankin-Cohen bidifferential operator RC λ ′′′ λ ′ ,λ ′′ is an example of such an operator when λ ′′′λ ′λ ′′ ∈ 2N (see also Example 9.9 below).

For (λ ′ , λ ′′ , λ ′′′ ) ∈ C 3 , we set

H(λ ′ , λ ′′ , λ ′′′ ) ∶= Hom G(O(L λ ′ ) ⊗O(L λ ′′ ), O(L λ ′′′ )) = Diff G(O(L λ ′ ) ⊗O(L λ ′′ ), O(L λ ′′′ )) ≃ Hom g (ind g b (-λ ′′′ ), ind g b (-λ ′ ) ⊗ ind g b (-λ ′′ ))
, where the second equality and the third isomorphism follow from Theorem 2.1. The general theory (see Fact 4.2) shows that H(λ ′ , λ ′′ , λ ′′′ ) is generically equal to 0 or 1.

Here is a precise dimension formula:

Theorem 9.1. The vector space H(λ ′ , λ ′′ , λ ′′′ ) is finite dimensional for any (λ ′ , λ ′′ , λ ′′′ ) ∈ C 3 . More precisely,

(1) dim C H(λ ′ , λ ′′ , λ ′′′ ) ∈ {0, 1, 2}.

(2) H(λ ′ , λ ′′ , λ ′′′ ) ≠ {0} if and only if

(9.1) λ ′′′ -λ ′ -λ ′′ ∈ 2N.
(3) Suppose (9.1) is satisfied. Then the following three conditions are equivalent:

(i) dim C H(λ ′ , λ ′′ , λ ′′′ ) = 2. (ii) (9.2) λ ′ , λ ′′ , λ ′′′ ∈ Z, 2 ≥ λ ′ + λ ′′ + λ ′′′ , and λ ′′′ ≥ λ ′ -λ ′′ + 2. (iii) RC λ ′′′ λ ′ ,λ ′′ = 0.
Next, let us give an explicit basis of H(λ ′ , λ ′′ , λ ′′′ ). For this consider the polynomials of one variable gj (j = 1, 2, 3) which will be defined in Lemma 11.3 with

α = λ ′ -1, β = 1 -λ ′′′ , and = 1 2 (-λ ′ -λ ′′ + λ ′′′ ).
We inflate gj into homogeneous polynomials of degree of two variables by

G j (x, y) ∶= (-y) gj 1 + 2x y ,
and set

D j ∶= Rest z 1 =z 2 =z ○ G j ∂ ∂z 1 , ∂ ∂z 2 , for j = 1, 2, 3.
Theorem 9.2. Suppose the conditions (9.1) and (9.2) hold.

(1) The operators

D j (j = 1, 2, 3) are G-homomorphisms from O(L λ ′ ) ⊗O(L λ ′′ ) to O(L λ ′′′ ).
(2) 1λ ′ , 1λ ′′ and 1λ ′′′ ∈ N + , and the operators D j (j = 1, 2, 3) factorize into two natural intertwining operators as follows:

D 1 = RC λ ′′′ 2-λ ′ ,λ ′′ ○ ∂ ∂z 1 1-λ ′ ⊗ id , D 2 = RC λ ′′′ λ ′ ,2-λ ′′ ○ id ⊗ ∂ ∂z 2 1-λ ′′ , D 3 = d dz λ ′′′ -1 ○ RC 2-λ ′′′ λ ′ ,λ ′′ .
(3) The following linear relation holds:

D 1 -D 2 + (-1) λ ′ D 3 = 0.
The factorizations in Theorem 9.2 are illustrated by the following diagram:

(9.3) O(L 2-λ ′ ) ⊗ O(L λ ′′ ) RC λ ′′′ 2-λ ′ ,λ ′′ + + O(L λ ′ ) ⊗O(L λ ′′ ) ∂ ∂z 1 1-λ ′ ⊗ id 3 3 id ⊗ ∂ ∂z 2 1-λ ′′ / / RC 2-λ ′′′ λ ′ ,λ ′′ + + O(L λ ′ ) ⊗ O(L 2-λ ′′ ) RC λ ′′′ λ ′ ,2-λ ′′ / / O(L λ ′′′ ), O(L 2-λ ′′′ ) d dz λ ′′′ -1 3 3
To summarize we consider the following three cases.

Case 0. λ ′′′λ ′λ ′′ ∈ 2N. Case 1. λ ′′′λ ′λ ′′ ∈ 2N but the condition (9.2) is not fulfilled. Case 2. λ ′′′λ ′λ ′′ ∈ 2N and the condition (9.2) is satisfied.

Corollary 9.3.

H(λ ′ , λ ′′ , λ ′′′ ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ {0} Case 0, C ⋅ RC λ ′′′ λ ′ ,λ ′′ Case 1, C⟨D 1 , D 2 ⟩ = C⟨D 1 , D 3 ⟩ = C⟨D 2 , D 3 ⟩ Case 2.
The rest of this section is devoted to the proof of Theorems 9.1 and 9.2. 9.2. Application of the F-method. For α, β ∈ C, and ∈ N, we denote by Sol Jacobi (α, β, ) ∩ Pol [t] the space of polynomials g(t) of degree at most satisfying the Jacobi differential equation (see Appendix 11.2):

(1 -t 2 )g ′′ (t) + (β -α -(α + β + 2)t)g ′ (t) + ( + α + β + 1)g(t) = 0. Lemma 9.4. Suppose (λ ′ , λ ′′ , λ ′′′ ) ∈ C 3 . Then, (1) H 
(λ ′ , λ ′′ , λ ′′′ ) = {0} if λ ′′′ -λ ′ -λ ′′ ∈ 2N. (2) Suppose λ ′′′ -λ ′ -λ ′′ ∈ 2N.
Then the F-method gives a bijection

H(λ ′ , λ ′′ , λ ′′′ ) ∼ → Sol Jacobi (α, β, ) ∩ Pol [t], with α = λ ′ -1, β = 1 -λ ′′′ , and = 1 2 (λ ′′′ -λ ′ -λ ′′ ) ∈ N. Proof. By
Step 3 of the F-method, the symbol map induces a bijection between H(λ ′ , λ ′′ , λ ′′′ ) and the space of polynomials ψ(ζ 1 , ζ 2 ) of two variables satisfying the following two conditions

• ψ(ζ 1 , ζ 2 ) is homogeneous of degree 1 2 (λ ′′′ -λ ′ -λ ′′ ), • λ ′ ∂ ∂ζ 1 + ζ 1 ∂ 2 ∂ζ 2 1 ψ = λ ′′ ∂ ∂ζ 2 + ζ 2 ∂ 2 ∂ζ 2 2 ψ = 0,
corresponding to (3.10) and (3.11), respectively. Hence the first statement follows.

The second statement follows from Step 4 of the F-method, namely, Proposition 8.7 with n = 1 shows that there is a correspondence between ψ(ζ 1 , ζ 2 ) and g(t) ∈ Sol Jacobi (α, β, ) ∩ Pol [t] with α, β and as above given by

ψ(ζ 1 , ζ 2 ) = ζ 2 g 2ζ 1 ζ 2 + 1 .
We consider the transformation (λ ′ , λ ′′ , λ ′′′ ) ↦ (α, β, ) given by (9.4)

α ∶= λ ′ -1, β ∶= 1 -λ ′′′ , ∶= 1 2 (λ ′′′ -λ ′ -λ ′′ ).
The proof of factorization of symmetry breaking operators will be reduced to the following elementary factorization of homogeneous polynomials (I g)(x, y). The following observation follows immediately from the definition. Lemma 9.8.

(1) Suppose g 1 (s) is of the form g 1 (s) = s m h 1 (s) for some polynomial h 1 (s) of degreem, then (I g 1 )(x, y) = (-x) m (I -m h 1 )(x, y).

(2) Suppose g 2 (s) is a polynomial of degreem, then

(I g 2 )(x, y) = (-y) m (I -m g 2 )(x, y).
(3) Suppose g 3 (s) is a polynomial of the form g 3 (s) = (1s) m h 3 (s) for some polynomial h 3 (s) of degreem, then

(I g 3 )(x, y) = (-1) m (x + y) m (I -m h 3 )(x, y). Suppose = 1 2 (λ ′′′ -λ ′ -λ ′′ ) ∈ N.
Then it follows from the proof of Lemma 9.4 that the inverse of the following bijection (9.8)

H(λ ′ , λ ′′ , λ ′′′ ) ∼ → Sol Jacobi (λ ′ -1, 1 -λ ′′′ , ) ∩ Pol [t], D ↦ g
is given (up to multiplication by (-1) ) by

D = Rest z 1 =z 2 =z ○ (I g(1 -2s)) ∂ ∂z 1 , ∂ ∂z 2 .
Example 9.9. The Rankin-Cohen bidifferential operator (1.1) is given for

(λ ′ , λ ′′ , λ ′′′ ) ∈ C 3 with ∶= 1 2 (λ ′′′ -λ ′ -λ ′′ ) ∈ N by (9.9) RC λ ′′′ λ ′ ,λ ′′ = Rest z 1 =z 2 =z ○ I P λ ′ -1,1-λ ′′′ (1 -2s) ∂ ∂z 1 , ∂ ∂z 2 . Proof of Theorem 9.2. 1) Since gj ∈ Sol Jacobi (λ ′ -1, 1 -λ ′′′ , ) ∩ Pol [t] with = 1 2 (λ ′′′ - λ ′ -λ ′′ ) ∈ N
by Theorem 11.2 in the Appendix, we have D j ∈ H(λ ′ , λ ′′ , λ ′′′ ) by (9.8).

2) Combining Lemmas 9.8 and 11.3 we have the following identities of the homogeneous polynomials G j (x, y): y). The first two identities yield the factorization of D 1 and D 2 , and the last one yields the factorization of G 3 in light of the formula:

G 1 (x, y) = (-x) -α I α+ P -α,β α+ (1 -2s) (x, y), G 2 (x, y) = (-y) -β I β+ P α,β -α-β--1 (1 -2s) (x, y), G 3 (x, y) = (-x -y) -β I β+ P α,-β β+ (1 -2s) (x,
Rest z 1 =z 2 =z ○ ∂ ∂z 1 + ∂ ∂z 2 j = d dz j ○ Rest z 1 =z 2 =z , for all j ∈ N.
3) The identity is reduced to the linear relations among the polynomials gj (s) (j = 1, 2, 3) (see Lemma 11.3) which are obtained by Kummer's connection formula for the Gauss hypergeometric function at the regular singularities s = 0 (g 1 (s) and g2 (s)) and s = 1 (g 3 (s)). Hence Theorem 9.2 is proved.

10. An application of differential symmetry breaking operators 10.1. Remark on the discrete spectrum of the branching rule for complementary series for O(n + 1, 1) ↓ O(n, 1). B. Kostant proved in [START_REF] Kostant | On the existence and irreducibility of certain series of representations[END_REF] the existence of the "long" complementary series representations of SO(n, 1) and SU (n, 1). In general, branching problems for the complementary series are more involved than the ones for principal series representations because the Mackey machinery does not apply.

In this section we explain briefly how the differential operators D X→Y,a (a ∈ N) given in Theorem 6.3 explicitly characterize discrete summands in the branching laws of the complementary series representations of O(n + 1, 1) when restricted to the subgroup O(n, 1).

For this we first observe that G ′ C -equivariant holomorphic differential operators D X→Y,a associated to the embedding of complex flag varieties

G C P C ↩ G ′ C P ′ C induce G R -equivariant differential operators associated to the embedding of the real flag varieties G R P R ↩ G ′ R P ′ R for any pair (G R , G ′ R ) of real forms of (G C , G ′ C ) as far as (P C , P ′ C ) have real forms (P R , P ′ R ) in (G R , G ′ R ). In particular, for the pair (G, G ′ ) = (SO o (n, 2), SO o (n -1, 2)) and (G R , G ′ R ) ∶= (SO o (n + 1, 1), SO o (n, 1)) whose complexifications are the same, we see that G- equivariant holomorphic differential operators D X→Y,a ∶ O(G K, L λ ) → O(G ′ K ′ , L λ+a ) induce a G ′ R -equivariant differential operators (10.1) D X R →Y R ,a ∶ C ∞ (G R P R , L λ ) → C ∞ (G ′ R P ′ R , L λ+a )
, for two spherical principal series representations of G R and G ′ R , owing to [KP15-1, Theorem 5.3 (2)] (extension theorem). In our parametrization, for 0 < λ < n, there is a complementary series H λ that contains C ∞ (G R P R , L λ ) as a dense subset.

We define a family of Hilbert spaces L 2 (R n ) s with parameter s ∈ R by

L 2 (R n ) s ∶= L 2 (R n , (ξ 2 1 + ⋯ + ξ 2 n ) s 2 dξ 1 ⋯dξ n ).
Then, for 0 < λ < n, the Euclidean Fourier transform F R n on the N -picture gives a unitary isomorphism

F R n ∶ H n-λ ∼ → L 2 (R n ) 2λ-n .
Correspondingly to the explicit formula

D X R →Y R ,a = Cλ-n-1 2 a -∆ C n-1 , ∂ ∂z n (iv-b) b ≥ c > a.
In this case the two linearly independent polynomial solutions are of degree -a and -b. Combining Case 1 and Case 2, we conclude the equivalence of (i) and (ii) in (1) for c ∈ -N.

(2) We recall that the differential equation (11.1) has regular singularities at z = 0, 1, and ∞, and its characteristic exponents are indicated in the Riemann scheme

P ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ z = 0 1 ∞ 0 0 a 1 -c c -a -b b ; z ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ .
(iii)⇒(iv). Suppose (iii) holds. Since the space of local solutions to (11.1) is two dimensional, any solution must be a polynomial. This forces the characteristic exponents to satisfy the following conditions:

1c, cab ∈ N, and a, b ∈ N.

Furthermore, the condition (iii) shows that there is no local solution which involves a non-zero logarithmic term near each regular singularity point, which in particular implies that the two characteristic exponents at z = 0, 1 or ∞ cannot coincide. Hence we get 1c ≠ 0, cab ≠ 0, and a ≠ b. Thus we have shown that the condition (iii) implies (11.3) a, b, c ∈ -N.

From now we assume c ∈ -N. As in the proof of (1), the condition (iii) implies that Res are both polynomial solutions to (11.1), corresponding to the characteristic exponents 1c and 0, respectively. Thus they are linearly independent, and we have completed the proof of the equivalence of (iii) and (iv).

11.2. Jacobi polynomials. In this subsection, we discuss polynomial solutions to the Jacobi differential equation with emphasis on singular parameters where the corresponding Jacobi polynomial P α,β (t) vanishes. In particular, we give a criterion for the space of polynomial solutions to be two-dimensional, and find its explicit basis.

First we quickly review the classical facts on Jacobi polynomials. Suppose α, β ∈ C and ∈ N. The Jacobi differential equation The Jacobi polynomial P α,β (t) is the normalized polynomial solution to (11.4) that is subject to the Rodrigues formula (1t) α (1 + t) β P α,β (t) = (-1) 2 ! d dt (1t) +α (1 + t) +β , from which we have (11.5) P β,α (-t) = (-1) P α,β (t).

The Jacobi polynomial P α,β (t) is generically non-zero (see Theorem 11.2 below for a precise condition) and is a polynomial of degree satisfying P α,β (1) = Γ(α+ +1) Γ(α+1) ! . Explicitly, for α ∈ -N + , Here are the first three Jacobi polynomials.

• P α,β 0 (t) = 1. • P α,β 1 (t) = 1 2 (αβ + (2 + α + β)t). • P α,β 2 (t) = 1 2 (1+α)(2+α)+ 1 2 (2+α)(3+α+β)(t-1)+ 1 8 (3+α+β)(4+α+β)(t-1) 2 . If α > -1 and β > -1, then the Jacobi polynomials P α,β (t) ( ∈ N) form an orthogonal basis in L 2 ([-1, 1], (1t) α (1 + t) β dt).

When α = β these polynomials yield Gegenbauer polynomials (see the next section for more details), and they further reduce to Legendre polynomials in the case when α = β = 0.

Theorem 11.2. Suppose ∈ N. We recall from (9.5) that Λ ⊂ (-N) 2 is a finite set of the cardinality 1 2 ( + 1). (1) The following three conditions on (α, β) ∈ C 2 are equivalent:

(i) The Jacobi polynomial P α,β (t) is equal to zero as a polynomial of t.

(ii) There exist two linearly independent polynomial solutions to (11.4) of degree less than or equal to , namely,

dim C (Sol Jacobi (α, β, ) ∩ Pol [t]) = 2.
(iii) (α, β) ∈ Λ .

(2) If one of (therefore any of ) the equivalent conditions (i)-(iii) is satisfied, then (11.7) lim ε→0 2 F 1 (-, α + β + 1; α + ε + 1; z) exists and is a polynomial in z, which we denote by 2 F 1 (-, α + β + 1; α + 1; z). Then any two of the following three polynomials g 1 (z) ∶= z -α 2 F 1 (-α -, β + + 1; 1α; z), (11.8) g 2 (z) ∶= 2 F 1 (-, α + β + + 1; α + 1; z), (11.9) g 3 (z) ∶= (1z) -β 2 F 1 (-β -, α + + 1; 1β; 1z), (11.10) with z = 1 2 (1t) are linearly independent polynomial solutions to (11.4) of degree , -(α + β + + 1), and , respectively. In particular, any polynomial solution is of degree at most . Proof. (1). (i)⇔(iii). By the expression P α,β (t) = j=0 (α + j + 1) -j (α + β + + 1) j j!(j)! t -1 2 j , one has P α,β (t) ≡ 0 as a polynomial of t if and only if (11.11) (α + j + 1)⋯(α + )

-j

(α + β + + 1)⋯(α + β + + j) j = 0, for all j (0 ≤ j ≤ ).

The condition (11.11) implies α ∈ {-1, ⋯, -} by taking j = 0. Conversely, if α ∈ {-1, ⋯, -}, then (α + j + 1)⋯(α + ) = 0 for all j (0 ≤ j ≤ ), and therefore (11.11) is equivalent to (α + β + + 1)⋯(α + β + + j) = 0 with j = 1α, namely, α + β + + 1 ≤ 0 ≤ β + + 1. Hence the equivalence of (i) and (iii) is proved.

(ii)⇔(iii). We recall from Theorem 11.1 that if the condition (iii), or equivalently (iv), is satisfied, then there are two linearly independent polynomial solutions to (11.1) of degrees -a and -b, respectively. Applying Theorem 11.1 (2) with a = -, b = α + β + + 1, and c = 1 + α, we see that the condition on the degree of polynomials in (ii) corresponds to the condition -a ≥ -b, which excludes (iv-b) in Theorem 11.1, and therefore, the condition (ii) is equivalent to -, α + β + + 1, 1 + α ∈ -N, α + β + + 1 ≥ 1 + α > -, which is nothing but (α, β) ∈ Λ .

(2). Suppose (α, β) ∈ Λ for some ∈ N.

Since -α -∈ -N and β + + 1, 1α ∈ -N, the polynomial g 1 (z) is of degree -α + (α + ) = .

Secondly, the expression -(α +β + +1) defines a non-negative integer smaller than and we have: (-) j (α + β + + 1) j (α + ε + 1) j j! z j .

Since α + j ≤ -(β + + 1) < 0 for all j with 0 ≤ j ≤ -(α + β + + 1), the denominator in each summand does not vanish at ε = 0, and therefore, g 2 (z) is well-defined and is a polynomial of degree -(α + β + + 1). Thirdly, since -β -∈ -N and α + + 1, 1β ∈ N + , the function 2 F 1 (-β -, α + + 1; 1β; 1z) is a polynomial of homogeneous degree + β, and thus g 3 (z) is a polynomial of degree .

Moreover, since g j (z) (j = 1, 2, 3) are local solutions to (11.12) z(1z) d 2 dz 2 -((α + 1) -(α + β + 2)z)

d dz + (α + β + + 1) u(z) = 0
near zero depending meromorphically on parameters (α, β) ∈ C 2 , and since they do not admit poles at any point of Λ , they are actually solutions to (11.12). Since g 1 (0) = 0 and g 2 (0) = 1, these functions are linearly independent. Finally, we apply Kummer's connection formula (see [EMOT53, 2.9 (4. and taking the limit ε → 0, we obtain (11.13) g 3 (z) = (-1) α+β+ (-β)!(β + )! (-α)!(α + )! g 1 (z) + (-α -1)!(-β)! l!(-αβ --1)! g 2 (z).

Since the scalars of this linear combination are non-zero, both pairs {g 1 (z), g 3 (z)} and {g 2 (z), g 3 (z)} are linearly independent.

To end this subsection, we express g j (z) (j = 1, 2, 3) in terms of the Jacobi polynomials. As a byproduct, we also give an identity among the Jacobi polynomials when (α, β) ∈ Λ , or equivalently, when P α,β (t) ≡ 0 (Theorem 11.2).

  (1.1), several different methods have been developed: -Recurrence relations [C75, El06, HT92, P12, Z94]. -Taylor expansions of Jacobi forms [EZ85, IKO12, Ku75]. -Reproducing kernels for Hilbert spaces [PZ04, UU96, Zh10]. -Dual pair correspondence [B06, EI98].

  be the projections characterized by the identity exp(p -(g))p o (g) exp(p + (g)) = g.

  8) and (3.9)} ZP = χ(Z)P, for all Z ∈ b(k ′ ). (3.8) dπ λ * (C)P = 0, for all C ∈ n ′ + . (3.9) Proof. 1) The first statement follows from Theorem 2.1 and [KP15-1, Corollary 4.3].

  which is the bounded Hermitian symmetric domain of type IV in the É. Cartan classification.Let τ be the involution of GL(n + 1, C) by conjugation by diag(1, . . . , 1, -1, 1). It leaves G invariant, and we denote by G ′ the identity component of the fixed point group G τ . The group G ′ = SO o (n -1, 2) acts on the subsymmetric domain

  gives a representation of Sp(m, R) on the same space O(H m ). Similarly, for a ∈ N, we denote by π ⋯,0,-a)+(-λ,⋯,-λ) of the same group on

  .15) correspond to the varieties given by ζ n = 0 and Q n-1 (ζ ′ ) = 0. (2) The singularities of the differential equation (7.7) correspond to the varieties given by ζ 1n = 0 and det ζ 11 ζ 1n ζ 1n ζ nn = 0.

Proof. ( 1 )

 1 We have already discussed the case where c ∈ -N. Suppose now that c ∈ -N. Since 1c > 0, we have linearly independent solutions to (11.1) near z = 0 as followsh 1 (z) = z 1-c 2 F 1 (ac + 1, bc + 1; 2c; z), h 2 (z) = g(z) + (Res γ=c 2 F 1 (a, b; γ; z)) log z,where g(z) is a holomorphic function near z = 0 satisfying g(0) = 1. We divide the proof into two cases depending on whether Res γ=c 2 F 1 (a, b; γ; z) = 0 or not.Case 1. Assume Res γ=c 2 F 1 (a, b; γ; z) = 0. In view of the residue formulaRes γ=c 2 F 1 (a, b; γ; z) = (-1) c (a) 1-c (b) 1-c (-c)!(1c)! z 1-c 2 F 1 (a + 1c, b + 1c; 2c; z) this expression vanishes if and only if (a) 1-c (b) 1-c = 0, namely -N ∋ a ≥ c or -N ∋ b ≥ c.In this case 2 F 1 (a, b; γ; z) is holomorphic in γ near γ = c, andlim γ→c 2 F 1 (a, b; γ; z) = L j=0 (a) j (b) j (c) j j! z j ,where L = -a or -b, is a polynomial solution to (11.1). Case 2. Assume Res γ=c 2 F 1 (a, b; γ; z) ≠ 0. Since the logarithmic term does not vanish, there exists a non-zero polynomial solution to (11.1) if and only if h 1 (z) is a polynomial, or equivalently,ac + 1 ∈ -N or bc + 1 ∈ -N, namely,-N ∋ a < c or -N ∋ b < c.

  γ=c 2 F 1 (a, b; γ; z) = 0, and h 1 (z) is a polynomial. The latter conditions amount to-N ∋ a ≥ c or -N ∋ b ≥ c, -N ∋ a < c or -N ∋ b < c,respectively. Equivalently, we have either a ≥ c > b or b ≥ c > a under the condition that a, b, c ∈ -N (see (11.3)). Hence the implication (iii)⇒(iv) is proved. (iv)→(iii). Conversely, suppose (iv) holds. Then as we saw in the proof of (1), h 1 (z) and lim γ→c 2 F 1 (a, b; γ; z) = min(-a,-b) j=0 (a) j (b) j (c) j j! z j

  t 2 ) d 2 dt 2 + (βα -(α + β + 2)t) d dt + ( + α + β + 1) y = 0is a particular case of the Gauss hypergeometric equation (11.1), and has at least one non-zero polynomial solution by Theorem 11.1 (1).

P

  α,β (t) = Γ(α + + 1) Γ(α + 1) ! 2 F 1 -, α + β + + 1; α + 1; 1t 2 (11.6) = Γ(α + + 1) Γ(α + β + + 1) m=0 m Γ(α + β + + m + 1) Γ(α + m + 1) ! t -1 2 m .

2 F 1

 1 (-, α + β + 1; α + ε + 1; z) = -(α+β+ +1) j=0

  3)]) (1z) c-a-b 2 F 1 (ca, cb; cab + 1; 1z) = Γ(c -1)Γ(cab + 1) Γ(ca)Γ(cb) z 1-c 2 F 1 (a + 1c, b + 1c; 2c; z) + Γ(1c)Γ(cab + 1) Γ(1a)Γ(1b) 2 F 1 (a, b; c; z) with a = -, b = α + β + + 1, c = 1 + α + ε,

Table 2 .

 2 1. Split rank one irreducible symmetric pairs of holomorphic type

  g(t) ∈ Pol a [t] if and only if h(s) ∈ Pol a [s],

			and g(t) satisfies (8.12) if and only
	if h(s) satisfies	
	(8.14)	(1 -s 2 )	d 2 ds 2 + (β -α -(α + β + 2)s)

(t).
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Remark 8.3.

(1) If λ ′ 1 , λ ′ 2 , λ ′′ 1 , λ ′′ 2 ∈ Z and a ∈ N, then the linear groups G and G ′ act equivariantly on the two bundles L (λ ′ 1 ,λ ′ 2 ) ⊠L (λ ′′ 1 ,λ ′′ 2 ) → D×D and W a (λ 1 ,λ 2 ) → D, respectively.

(2) If λ ′ , λ ′′ > n, then analogous statements as in Theorem 8.1 remain true for continuous G ′ -homomorphisms between the Hilbert spaces H 2 X,

(3) Similar statements hold for continuous G ′ -homomorphisms between the Casselman-Wallach globalizations by the localness theorem [KP15-1, Theorem 5.3].

In order to prove Theorem 8.1, we apply again the F-method. Its Step 1 is given by Lemma 8.4.

For the Step 2 we apply Lemma 5.5.

for some a ∈ N.

For Step 3 we apply Lemma 3.4 and we get:

(1) The highest weight of the contragredient representation W ∨ with respect to the standard Borel subalgebra b(k ′ ) of k ′ is given by

For ∈ N, we define a finite set by

We note that Λ ∈ (-N + ) × (-N + ) and #Λ = 1 2 ( + 1). Lemma 9.5. Suppose α, β, are given by (9.4). Then ∈ N and (α, β) ∈ Λ if and only if (λ ′ , λ ′′ , λ ′′′ ) ∈ C 3 satisfies the following two conditions:

Since the proof is elementary and follows from the definition, we omit it. Note that the conditions (9.6) and (9.7) imply that λ ′ ≤ 0, λ ′′ ≥ 0, and 2 ≤ λ ′′′ , which are equivalent to α ≤ -1, α + β + 2 ≥ 0, and β ≤ -1, respectively.

Proof of Theorem 9.1. By Lemma 9.4, the proof is reduced to the computation of the dimension of Sol Jacobi (α, β,

1) Since the Jacobi differential equation is of second order, the space of its polynomial solutions is at most two-dimensional.

2

3) The equivalence follows from Theorem 11.2 (1) in light of Lemma 9.5. 9.3. Factorization of symmetry breaking operators. We have seen in Theorem 9.1 that dim C Hom G(O(L λ ′ ) ⊗O(L λ ′′ ), O(L λ ′′′ )) = 2, when (λ ′ , λ ′′ , λ ′′′ ) satisfies (9.6) and (9.7). In this subsection, we show that the other three symmetry breaking operators in the diagram (9.3) are unique up to scalars. To be precise, we prove the following. Proposition 9.6. Suppose (λ ′ , λ ′′ , λ ′′′ ) satisfies (9.6) and (9.7). Then

Proof. The transformation (λ ′ , λ ′′ , λ ′′′ ) ↦ (α, β, ) given by (9.4) yields

Then the proposition follows from Lemma 9.4 (2) and Theorem 11.2 (1). 9.4. Differential intertwining operators for SL 2 . Obviously, both the F -method and the localness theorem hold in the case when G = G ′ , for which symmetry breaking operators are usual intertwining operators, and have been extensively studied. Lemma 9.7 below is well-known, but we illustrate its proof by using the F-method. The operators d dz k are used for the factorization of D j (j = 1, 2, 3) in Theorem 9.2.

For (λ, ν) ∈ C 2 , we set

(1) dim C H(λ, ν) ≤ 1, and the equality holds if and only if

Proof. By the F-method, we have the following bijection between H(λ, ν) and the space of polynomials g(t) of one variable satisfying the following two conditions

dt 2 g(t) = 0, according to (3.10) and (3.11).

The first condition forces νλ to be in 2N in order to have H(λ, ν) not reduced to zero, whereas the second one implies (νλ)(λ + ν -2) = 0. Hence either λ = ν or (λ, ν) = (1 + k, 1k) for some k ∈ N. In the latter case, g(t) = Ct k for some k ∈ N, which yields d dz k as a G-intertwining operator from O(L λ ) to O(L ν ). 9.5. Construction of homogeneous polynomials by inflation. In order to analyze symmetry breaking operators in the setting when the Rankin-Cohen bidifferential operators RC λ ′′′ λ ′ ,λ ′′ vanish identically, we introduce the following notation. For a polynomial g(s) of degree at most , we set a polynomial of two variables

that was established in Theorem 6.3, we see that the multiplication of the inflated Gegenbauer polynomial Cλ-n-1 2 a ( ξ 2 , ξ n ) (see (6.5)) yields an explicit construction of discrete summands of the branching law for the restriction of complementary series as follows:

is an isometric and G ′ R -intertwining map from the complementary series of

See [START_REF] Kobayashi | Symmetry Breaking for Representations of Rank One Orthogonal Groups[END_REF]Chapter 15] for the proof that (10.1) implies the proposition in the case a ∈ 2N (with both G R and G ′ R replaced by disconnected groups O(n + 1, 1) and O(n, 1), respectively). 11. Appendix: Jacobi polynomials and Gegenbauer polynomials 11.1. Polynomial solutions to the hypergeometric differential equation. In this subsection we discuss polynomial solutions to the Gauss hypergeometric differential equation

For c ∈ -N, the hypergeometric series

is a non-zero solution to (11.1). It is easy to see from (11.2) that 2 F 1 (a, b; c; z) is a polynomial if and only if a ∈ -N or b ∈ -N. Furthermore, we may ask if there exist two linearly independent polynomial solutions to (11.1). In fact, this never happens when c ∈ -N. More precisely, we have the following:

(1) The following two conditions are equivalent.

(i) There exists a non-zero polynomial solution to (11.1).

(ii) a ∈ -N or b ∈ -N.

(2) The following two conditions are equivalent.

(iii) There exist two linearly independent polynomial solutions to (11.1).

(iv) a, b, c ∈ -N and either (iv-a) or (iv-b) holds:

(2) (-1) α g3 (z) = g1 (z) -g2 (z), namely,

Proof. 1) The first and third formulae follow from the equation (11.6) and the identity Γ(λ)Γ(1λ) = λ sin πλ . The second one is more subtle because g 2 (z) is defined as the limit of the Gauss hypergeometric function in a specific direction (see (11.7)). Taking this into account, we deduce the second formula from (11.6).

2) The second identity follows directly from the first statement and (11.13).

11.3. Gegenbauer Polynomials. Let ϑ t ∶= t t dt . For α ∈ C and ∈ N, the Gegenbauer differential equation

or, equivalently, (11.14) (1t 2 )ϑ 2 t -(1 + 2αt 2 )ϑ t + ( + 2α)t 2 y = 0 is a particular case of the Jacobi differential equation (11.4) where (α, β) are set to be (α-1 2 , α-1 2 ), and has at least one non-zero polynomial solution owing to Theorem 11.1 (1). The Gegenbauer (or ultraspherical) polynomial C α (t) is a solution to (11.14) given by the following formula:

It is a specialization of the Jacobi polynomial

The Gegenbauer polynomial C α (t) is a polynomial of degree . Here are the first five Gegenbauer polynomials.

•

). We note that C α (t) ≡ 0 if ≥ 1 and α = 0, -1, -2, ⋯, --1 2 . Slightly differently from the usual notation in the literature, we renormalize the Gegenbauer polynomial by (11.16)

Then Cα (t) is a non-zero solution to (11.14) for all α ∈ C and ∈ N.

As in the case of the Jacobi differential equation, there are some exceptional parameters (α, ) for which the Gegenbauer differential equation (11.14) has two linearly independent polynomial solutions. For this we denote by Sol Gegen (α, ) ∩ Pol [t] the space of polynomial solutions to (11.14), and consider its subspace Sol Gegen (α, )∩ Pol (2) For any ∈ N and any α ∈ C, the space Sol Gegen (α, ) ∩ Pol [t] even is onedimensional, and is spanned by Cα (t).

Proof.

(1) The first statement follows immediately from Theorem 11.2 by replacing (α, β) with (α -1 2 , α -1 2 ). (2) Clearly, Cα (t) ∈ Sol Gegen (α, ) ∩ Pol [t] even for all α ∈ C and ∈ N. Hence it suffices to show that another solution (see Theorem 11.2 and (11.7))

when α satisfies (11.17). Indeed 2 F 1 -, 2α + ; α + 1 2 ; 1-t 2 is a polynomial in t whose top term is a non-zero multiple of t -(2α+ ) , but -(2α + ) ≡ mod 2 because α ∈ Z + 1 2 . Hence Theorem is proved.