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CLASSIFICATION OF DIFFERENTIAL SYMMETRY BREAKING
OPERATORS FOR DIFFERENTIAL FORMS

TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, MICHAEL PEVZNER

ABSTRACT. We give a complete classification of conformally covariant differential
operators between the spaces of differential i-forms on the sphere S™ and j-forms
on the totally geodesic hypersphere S"~! by analyzing the restriction of principal
series representations of the Lie group O(n + 1,1). Further, we provide explicit
formulee for these matrix-valued operators in the flat coordinates and find factor-
ization identities for them.

This note was published in| C. R. Acad. Sci. Paris, Ser. I, (2016),/http://dx.doi.org/
10.1016/j.crma.2016.04.012.

Key words and phrases: Symmetry breaking operators, branching laws, F-method,
conformal geometry, Verma module, Lorentz group.

1. INTRODUCTION

Suppose a Lie group G acts conformally on a Riemannian manifold (X, g). This
means that there exists a positive-valued function Q2 € C*°(G x X) (conformal factor)
such that

Ligne = Q(h,1)%g, forallh € Gandz € X,

where Ly : X — X, x + h-x denotes the action of G on X. Since € satisfies a cocycle

condition, we can form a family of representations wg) foru e Cand 0 <i<dimX
on the space £'(X) of differential i-forms on X by

(1.1) wD(h)o == QRr™, )L (h € Q).

The representation @) of the conformal group G on £(X) will be simply denoted
by E(X)y.
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If Y is a submanifold of X, then we can also define a family of representations
@ on EI(Y) (v e C,0<j < dimY) of the subgroup

G ={heG:h Y=Y},

which acts conformally on the Riemannian submanifold (Y, g |y).

We study differential operators D : £(X) — &7(Y) that intertwine the two
representations .’ | and = of G'. Here wq(f)k,v stands for the restriction of
the G-representation @ to the subgroup G’. We say that such D is a differential
symmetry breaking operator, and denote by Diff¢/(£%(X),,E7(Y),) the space of all
differential symmetry breaking operators. We address the following problems:

Problem A. Determine the dimension of the space Diffgr (E4(X )y, E/(Y),). In par-
ticular, find a necessary and sufficient condition on a quadruple (i, j,u,v) such that
there exist nontrivial differential symmetry breaking operators.

Problem B. Construct explicitly a basis of Diff g/ (E1(X )y, E/(Y),).

In the case where X =Y, G = G', and i = j = 0, a classical prototype of such
operators is a second order differential operator called the Yamabe operator

n—2
A+ =" € Diff¢(E%(X) 21, E%(X)n 1),
where n is the dimension of X, A is the Laplace-Beltrami operator, and x is the
scalar curvature of X. Conformally covariant differential operators of higher order
are also known: the Paneitz operator (fourth order) [11], which appears in four
dimensional supergravity [2], or more generally, the so-called GJMS operators [3] are
such examples. Analogous conformally covariant operators on forms (i = j case)
were studied by Branson [I]. On the other hand, the insight of representation theory
of conformal groups is useful in studying Maxwell’s equations, see [I0], for instance.

Let us consider the more general case where Y # X and G’ # G. An obvious
example of symmetry breaking operators is the restriction operator Resty which
belongs to Diffgr (E/(X)y, EY(Y),) for all u € C. Another elementary example is
Resty o tny(x) € Diffr (E/(X)y, E71(Y),) if v = u+ 1 where ¢y, (x) denotes the
interior multiplication by the normal vector field to Y when Y is of codimension one
in X.

In the model space where (X,Y) = (8", S"™1), the pair (G, G’) of conformal groups
amounts to (O(n + 1,1),0(n, 1)) modulo center, and Problems [A| and [B| have been
recently solved for ¢ = j = 0 by Juhl [4], see also [5,[7] and [9] for different approaches
by the F-method and the residue calculus, respectively.

Problems [A] and [B] for general 7 and j for the model space can be reduced to analo-
gous problems for (nonspherical) principal series representations by the isomorphism
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(2.2) below. In this note we shall give complete solutions to Problems |A| and |B| in

those terms (see Theorems and [4.1).
Notation: N={0,1,2,---}, N, ={1,2,--- }.

2. PRINCIPAL SERIES REPRESENTATIONS OF G = O(n+1,1)

We set up notations. Let P = M AN be a Langlands decomposition of a minimal
parabolic subgroup of G = O(n +1,1). For 0 <i < n, § € Z/2Z, and \ € C, we
extend the outer tensor product representation \'(C")®(—1)°®Cy of M A ~ (O(n)x
O(1)) x R to P by letting N act trivially, and form a G-equivariant vector bundle
Vis == G xp </\Z(C”) ® (—1)° ®C,\) over the real flag variety X = G/P ~ S™.

Then we define an unnormalized principal series representations

(2.1) I(i, \)s := IndS (/\(cn) ® (-1 ® <cA>

of G on the Fréchet space C*°(X, V5 5) of smooth sections.

In our parametrization, I(i,n — 2i)s and I(7,i)s have the same infinitesimal char-
acter with the trivial one-dimensional representation of G. Then, for all u € C, we
have a natural G-isomorphism

(2.2) o) ~ T(i,u + 1)imod2-

u

Similarly, for 0 < j < n—1,¢ € Z/2Z and v € C, we define an unnormalized principal
series representation J(j,v). := Ind%, (/\j(C”_l) ® (—1)° ®(C,,> of the subgroup

G' = O(n,1) on C*(Y,Wj_), where Wi _:= G’ xp» (/\j(C"_l) ®(—1)F ® C,,) is a

('-equivariant vector bundle over Y = G'/P' ~ S"~1.

3. EXISTENCE CONDITION FOR DIFFERENTIAL SYMMETRY BREAKING
OPERATORS

A continuous G'-intertwining operator 7' : I(i,\)s — J(j,v). is said to be a
symmetry breaking operator (SBO). We say that T' is a differential operator if T’
satisfies Supp(T'f) C Suppf for all f € C*(X, Vf{’(;), and Diffe (1(3, N)s, J(J, V)e)
denotes the space of differential SBOs. We give a complete solution to Problem [A]
for (X,Y) = (S™,S"1) in terms of principal series representations:

Theorem 3.1. Let n > 3. Suppose 0 <1 <n,0<j<n—-1, \,veCC, and d,c €
Z7.)27. Then the following three conditions on 6-tuple (i,7, A\, v,d,€) are equivalent:
(Z) Diﬁ‘O(ml) (I(Z7 A)57 J(]? V)E) 7& {0}
(i) dim Diff o1y (1 (2, N)s, J(4,v):) = 1.
(iii) The 6-tuple belongs to one of the following six cases:
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Case l. j=1,0<i<n—1L,v—-XAeN e—-d=v—Amod2.

Case2. j=i—1,1<i<n,v—AeN, e—d=v—Amod2.

Case3. j=i+1,1<i<n—-2, (\,v)=(i,i+1),e=0+1mod2.
Case 3. (i,7) =(0,1), =AeN,v=1,e=5+ A+ 1 mod2.

Cased. j=i—-2,2<i<n—1,(\,v)=(n—i,n—i+1), e =J+1 mod 2.
Case 4. (i,7)=(n,n—2), = AeN,v=1,e=0+ A+ 1mod2.

We set = := {(i,7,A,v): the 6-tuple (i,j, A\, v,0,¢) satisfies one of the equivalent
conditions of Theorem [3.1| for some 6, ¢ € Z/2Z}.

4. CONSTRUCTION OF DIFFERENTIAL SYMMETRY BREAKING OPERATORS

In this section, we describe an explicit generator of the space of differential SBOs
if one of the equivalent conditions in Theorem [3.1] is satisfied. For this we use the
flat picture of the principal series representations I(i, A)s of G which realizes the
representation space C*°(X, V5 5) as a subspace of C*(R", A'(C™) by trivializing
the bundle Vi(; — X on the open Bruhat cell

R" — X, (21, -+ ,x,) — exp (Z a:ij_> P.
j=1

Here {Ny,---,N, } is an orthonormal basis of the nilradical n_(R) of the oppo-
site parabolic subalgebra with respect to an M-invariant inner product. Without
loss of generality, we may and do assume that the open Bruhat cell R* ™! < YV ~
G'/P’ is given by putting x, = 0. Then the flat picture of the principal series
representation J(j,v). of G’ is defined by realizing C*(Y, W _) as a subspace of

C=(R" 1, A(C*1)). For the construction of explicit generators of matrix-valued
SBOs, we begin with a scalar-valued differential operator. For a € C and ¢ € N, we
define a polynomial of two variables (s,t) by
~ [t
Cr | —
()

where éf(z) is the renormalized Gegenbauer polynomial given by

5] (_l)kF(€ —k+a)
T (a+ [21]) p k(0 — 2k)!

[VIEN

<[gé?) (s,t) :=s

Co(z) = (22)¢2F,
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Then C%(z) is a nonzero polynomial for all @ € C and £ € N, and a (normalized)
Juhl’s conformally covariant operator Cy,, : C*°(R™) — C=(R"!) is defined by

~ ~\_n=1 0
Cy = Restg,—p 0 <IgC’2\ : ) <_A]Rnl; %> )

for \,v € C with ¢ := v — X\ € N. For instance,

id if v =M\,
Chw = Rest,, 90§ 252 ify=A+1,

Apn-1+ (A —n+3)2 ifv=A+2.

For (i,j,\,v) € E, we introduce a new family of matrix-valued differential operators
i J

Cy, (R, () — ¥R, \(©),
by using the identifications £(R™) ~ C=(R™)® A*(C") and & (R 1) ~ C®(R* 1) ®

N (C" 1), as follows. Let d. be the codifferential, which is the formal adjoint of
the differential dg-, and ¢ h the inner multiplication by the vector field 8 . Both

operators map E(R™) to EZ 1(R”) For a« € C and ¢ € N, let v(a, {) := (6 is odd);
= a+ % (¢ is even). Then we set

i =~ * n ~ 1 N\
Cy, == Chyrp1drndgn — Y(A — BL v — )\)C,\yy,lanLB% + §(u —1)Cy,
n—1

il .
CY, " = —Crrp—1dpndint o — (A —

We note that there exist isolated parameters (A, v) for which Cifu =0or CZ)\”V_ =0

For instance, Cg:?, = %1/@,\7,,, and thus Cg:?, = 0 if v = 0. To be precise, we have the
following;:

(Cf\’fy:Oifandonlyif)\:V:iorV:z':O;
(Cf\’fy_l:Oifandonlyif)\:V:n—iorl/:n—i:O.

We renormalize these operators by

Rest. _o ifA=u Rest, oot o if A=,
ITn 0 ) .jL‘n
~ .7 . ~ . . -~ '7 _1 . .
Ci=qCw  ifi=0, and Gt ={Cyore  ifi=n,
o . n
0,0 : 1 .
C N otherwise, (Cf\zy otherwise.

Then (C” (0<i<n-—1)and (CZ 1 (1 <i < n) are nonzero differential operators
oforder V—)\forany)\ VE(CWlthV—)\GN

for0<i<n-1.

- 1 -
v — A)Chi1dgn + 5()\ +1— ”)C/\,Vbai for1 <i<n.
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The differential operators @)\Z;r ' and @)\ZV_ % are defined only for special parameters
(A, v) as follows.

Cintl . Resty, g o dpn for1 <i<n—2,XA=1i
Ai+1 e an—l O (C)\70 fOr 7/ e 0’ )\ € _N’
T2 . Restxn:()ol/%dﬁ%n for2<i<n,A=n—1,
M a0 Cy Tt fori=nAe N,

Then we give a complete solution to Problem [B| for the model space (X,Y) =
(5™, S"~1) in terms of the flat picture of principal series representations as follows:

Theorem 4.1. Suppose a 6-tuple (i, j, A\, v, 9, 5) satisfies one of the equivalent condi-
tions in Theoremﬂ Then the operators (C L CPRY) @ N(CH) — C®(R*™ ) ®
N (C*1) extend to differential SBOs I(i, /\)5 — J(j,v)e, to be denoted by the same
letters. Conversely, any differential SBO from I(i, A)s to J(j,v). is proportional to
the following diﬁerentml operators: @”V in Case 1, C 1 in Case 2, Cz zﬂ in Case

Co! tyi— n,n—2 ’
3, Cy; in Case 3, (C Cin_in1 in Case 4, and (C/\1 in Case 4.

5. MATRIX-VALUED FACTORIZATION IDENTITIES

Suppose that Tx : I(i,\)s — 1(i,\)s or Ty : J(j,v). — J(j,V'). are G- or G'-
intertwining operators, respectively. Then the composition Ty o Dx_,y or Dx_,yoTx
of a symmetry breaking operator Dy .y : I(i, A)s — J(j, V). gives another symmetry
breaking operator:

(i, \)s — 22~ J(j,v).

\\ /7
-
Tx PR Ty
-

—~ ~

AL

I(i,/\/)é J(]) Vl)a

The multiplicity-free property (see Theorem 3.1 - (ii)) assures the existence of
matrix-valued factorlzatlon identities for differential SBOS namely, Dy .y oTX must
be a scalar multiple of C% , and Ty o Dx_,y must be a scalar multiple of (C’ . We
shall determine these constants explicitly when T'x or Ty are Branson’s conformally
covariant operators [1] defined below. Let 0 < i < n. For ¢ € N, we set

T = (5 =) (5 i+ i )AG! = (=20 i —(5 —i+0) A )AL

Then the differential operator 753 : £(R") —s £(R™) induces a nonzero O(n +
1, 1)-intertwining operator, to be denoted by the same letter T% , from [ (2’, 5 — 6)6
to I (i,% + () 5 for 6 € Z/2Z. Similarly, we define a G'-intertwining operator 7" gf,} :
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J(j,”T’l—ﬁ)E — J(j}”T’l—i—ﬁ)E for 0 < j<n-—1ande € Z/27Z as the lift of the
differential operator 77 : £1(R~1) —s £3(R"~!) which is given by

/G n—1
T = (5~

Consider the following diagrams for j =¢ and j =7 — 1:

. . n—1 | . _
-] E)anflan—l + (T -7+ g)an_1an—1)A%nl,1.

v
Cn—l

- n C 70,74,"717Z .
1005 -0); i ](Z7Tl_a_£)5;>=](]>71—5)6
I(i.8+0),—= J (5,2 +a+0)_, 73,4 0)

G+, 5 +ate

where parameters § and € € Z/2Z are chosen according to Theorem 3.1 (iii). In what
follows, we put

i+ 0—"1 ifi£0,a#0 i— 0 =" ifiLna#0
iEl—2 ifa#0 ; M7 07  Higmaed
Py = . , g=1<K -2 ifi#£0,a=0, r=4(2 ifi#n,a=0,
+2 ifa=0 1 o 1 o
—(+21) ifi=0 —(+2) ifi=n

= T1([3]+4).

Then the factorization identities for differential SBOs (Ef\jy for j € {i — 1,i} and
Branson’s conformally covariant operators ’7‘2(5) or T’ gf} are given as follows.
Theorem 5.1. Suppose 0 <i<n—1,a € Nand ¢ € N.. Then

i (i) _ i i

(1) 2 fatetn © Tor' =p-Kia 2 fatetn:

(2) Ty oCily. = K ClLy
2 2
Theorem 5.2. Suppose 1 <1< n,a €N and{ € N,. Then
i1 (i) _ i1

(1) Cg+e,a+z+g 0Ty = p+K€7an4,a+e+g'
@ T4 e T,

a—tmt a—t,25 140

—¢ n—1

~ii—1
= 7,,]/-(E,aﬂcn—l _
72 ¢ 2

a—0,2> 140

In the case where i = 0, (N:f\zy is a scalar-valued operator, and the corresponding
factorization identities in Theorem were studied in [4, [8 9.

The main results are proved by using the F-method [5], [0, [0]. Details will appear
elsewhere.
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