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ABSTRACT: The D-Ala:D-Lac ligase, VanA, plays a critical
role in the resistance of vancomycin. Indeed, it is involved in
the synthesis of a peptidoglycan precursor, to which
vancomycin cannot bind. The reaction catalyzed by VanA
requires the opening of the so-called “ω-loop”, so that the
substrates can enter the active site. Here, the conformational
landscape of VanA is explored by an enhanced sampling
approach: the temperature-accelerated molecular dynamics
(TAMD). Analysis of the molecular dynamics (MD) and
TAMD trajectories recorded on VanA permits a graphical
description of the structural and kinetics aspects of the conformational space of VanA, where the internal mobility and various
opening modes of the ω-loop play a major role. The other important feature is the correlation of the ω-loop motion with the
movements of the opposite domain, defined as containing the residues A149−Q208. Conformational and kinetic clusters have
been determined and a path describing the ω-loop opening was extracted from these clusters. The determination of this opening
path, as well as the relative importance of hydrogen bonds along the path, permit one to propose some key residue interactions
for the kinetics of the ω-loop opening.

1. INTRODUCTION

The development of bioinformatics has been initially driven not
only by the enormous quantity of data that the biologist
community was able to produce during the last decades, but
also by the necessity of finding approaches to organize and
better analyze these huge datasets. Although the protein
structures constitute small datasets with respect to many other
data encountered in biology, they nevertheless represent a
challenge for the data analysis, as the relative positions of
atomic coordinates in a protein structure take values in the
continuous three-dimensional (3D) space. The large variability
of protein features is obvious from the variety of physicochem-
ical properties among a given family of proteins.1 Furthermore,
the full understanding of a protein function requires, in addition
of the knowledge of its structure, the knowledge of the internal
dynamics and thus of the conformational landscape of the
protein, which correspond to large datasets.
Graphs are traditionally used for modeling biological

datasets, as for the analysis of protein−protein and molecular
interaction networks,2−9 for description of drug function,10−16

for the description of interactions within a protein,17−19 for the
description of the hierarchy of local minima in the conforma-
tional space.20−22 In the description of protein conformational
space, the determination of such a graph is hampered by the
need to (i) simplify the protein local geometry without loss of
information and (ii) find a generic approach for graph
determination, while preserving the specificity of each protein.
In contrast, the description of protein structure and dynamics

through graphs would allow one to (i) relate structure
description, conformational variability, and protein function;
(ii) unify the structural and dynamical representations; and (iii)
obtain, for a given protein, a model that could be interfaced
with the graphs described at the cellular level, as the
interactome network.23

In order to investigate the points quoted above, we have
been using several processing tools to describe the graphs
underlying the structural and dynamical features of the D-Ala:D-
Lac (VanA) ligase:

(i) the self-organizing maps,24 to convert the conformational
space in a two-dimensional (2D) map;

(ii) the Louvain greedy algorithm,25 to determine kinetic
clusters in the conformational space;

(iii) the Girvan−Newmann algorithm, to determine contact
communities within the protein structure, which was
already used in other structural objects;26,27 and

(iv) the analysis of hydrogen bonds within the protein
structure, using a machine-learning approach (Random
Forest28).

The conformational space has been explored using an enhanced
sampling approach: the temperature-accelerated molecular
dynamics (TAMD).29−41

The D-Ala:D-Lac ligase (VanA) is present in cases of
resistance to the glycopeptide antibiotic vancomycin in
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Enterococcus faetium and Staphylococcus aureus.42,43 VanA
synthesizes a modified precursor D-Ala-D-Lac instead of the
usual D-Ala-D-Ala, synthesized by using a D-Ala:D-Ala ligase.44

This depsipeptide is then fixed at the end of the N-acetyl-
muramyl-L-Ala-D-Glu-L-Lys-D-Ala-D-Lac monomers involved in
the building of the peptidoglycan, giving rise to a fully efficient
cell wall while preventing the binding of vancomycin.
The X-ray crystallographic structure of VanA45 (Figure 1a)

includes the domains N-terminal (residues A2−G121 shown in
blue), central (residues C122−S211 shown in red and yellow),
and C-terminal (residues G212−A342 shown in black and
green). The ω-loop (shown in green in Figure 1a, residues
L236−A256) is part of the C-terminal domain and closes the
binding site where the ligase enzymatic reaction occurs. The
two-layer β-sandwich (residues A149−Q208) is a region
opposite to the ω-loop in the structure and colored yellow in
Figure 1a. It was called “opposite domain” in a previous work.46

The binding site is located at the interface between N-terminal,
central, and C-terminal domains. Concerted motions of the
opposite domain and of the ω-loop allow the opening of the
binding cavity to release the product of the catalytic reaction
and accept new ligands.46

The bioinformatics approaches described above have been
applied to MD and TAMD trajectories recorded on VanA.
Several graph models describing the structural architecture,
internal dynamics, and the opening of the ω-loop, have been
established. These models give an extended view of the
structural and dynamical features of VanA and agree with the
experimental knowledge available for the protein function.

2. MATERIALS AND METHODS

2.1. Molecular Dynamics Simulation. The starting point
of the simulations was the X-ray crystallographic structure of
the D-Ala:D-Lac ligase (VanA) from Enterococcus faecium
BM4147 VanA (PDB ID: 1E4E).45 The co-crystallized ligands,
ADP and phosphinate (1(S)-aminoethyl-(2-carboxypropyl)-

phosphoryl-phosphinic acid), located in the active site were
removed. The C52−C64 disulfide bridge, observed in the
crystal was disrupted to be as close as possible to the
physiological state of the D-Ala:D-Ala ligase.47

The force field CHARMM22 including the correction map
(CMAP)48,49 was used. The system was neutralized with five
Na+ counterions. Explicit TIP3P50 solvent water molecules
were added to the systems using a cutoff of 10 Å. The solvated
system includes 13585 water molecules. The molecular
dynamics (MD) and the temperature-accelerated molecular
dynamics (TAMD) trajectories were recorded using NAMD
2.7b2.51 A cutoff of 12 Å and a switching distance of 10 Å were
defined for nonbonded interactions. Long-range electrostatic
interactions were calculated with the Particule Mesh Ewald
(PME) protocol.52

Before starting the initial MD trajectories, the system was
initialized in the following way. It was first minimized using
1000 steps, then thermalized by heating the system from 0 to
300 K over 30 ps, with a time step of 1 fs. The system then is
equilibrated in the NPT ensemble for 100 ps with a time step of
2 fs before a 40 ns MD simulation.
The analyzed trajectories were recorded in the NPT

ensemble with periodic boundary conditions. The temperature
was maintained at 300 K using a Langevin thermostat,53 and
the 1 atm pressure was regulated using the Langevin piston
Nose−Hoover method.54,55 The SHAKE algorithm56 kept all
covalent bonds involving hydrogens rigid, so an integration
time step of 2 fs was used for all MD simulations. Atomic
coordinates were saved every picosecond.

2.2. TAMD Simulations. At the end of the first 10 ns of the
MD trajectory, five independent 30-ns temperature-accelerated
molecular dynamics (TAMD) simulations were launched
(Table S2 in the Supporting Information). The TAMD
approach is an enhanced sampling approach, based on the
parallel evolution of the protein coordinates x in a classical MD
simulation and of the target values z for the collective variables
θα(x):

Figure 1. (a) Three-dimensional (3D) view of the X-ray crystallographic structure of VanA, colored according to its domains: the N-terminal [A2−
G121] shown in blue, the C-terminal [G212−A342] shown in black, which includes the ω-loop [L236−A256] shown in green, and the central
domain [C122−S211] shown in red, which includes the opposite domain [A149−Q208] shown in yellow. The disulfide bridge C52−C64, located in
the N-terminal domain, is shown with magenta labels (bottom right). (b) Localization of the collective variables (CV) used for the different TAMD
calculations on a cartoon view of VanA extracted at the end of a 10 ns MD trajectory. The three structural CV are shown in orange and the five CV
obtained from contact communities calculations are shown in cyan.
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where x are the physical variables (atomic coordinates) of the
system, θ(x) are the collective variables, and z the
instantaneous target values of the collective variables. M is
the mass matrix, V(x) is the empirical classical potential of the
system, ηx,z(t) denotes white noise (i.e., Gaussian processes
with mean 0 and covariance of ⟨ηα

p(t)ηα′
p (t′)⟩ = δαα′δ(t − t′),

with p = x,z), κ > 0 is the so-called spring force constant, γ and
γ ̅ > 0 are friction coefficients of the Langevin thermostats, β−1 =
kBT, and β̅−1 = kBT̅, where kB is the Boltzmann constant and T
and T̅ represent the temperatures.
Equation 1 describes the motion of x and z under the

extended potential

κ θ= + −κU x z V x x z( , ) ( )
1
2

( ) 2
(2)

It was shown in ref 29 that, by adjusting the parameter κ, so
that z(t) ≈ θ(x(t)), and the friction coefficient γ ̅ so that the
value of z moves slower than that of x, one can generate a
trajectory z(t) in z-space that effectively moves at the artificial
temperature T̅ on the free-energy hyper-surface F(z), which is
defined at the physical temperature T. Hence, by construction,
the limiting equation for z(t) in eq 1 samples the distribution
e−β̅F(z). Then, using T̅ > T in eq 1) accelerates the exploration
of the free-energy landscape by the z(t) trajectory, as energy
barriers can be crossed more easily.
The value for the artificial friction γ ̅ on the z variables can be

determined following the principle that the separation of time
scales between x and z must be such that the x have time to
equilibrate before the z values move substantially. In practice,
we proceeded as suggested in ref 57, i.e., we ran short standard
MD trajectories with the collective variables restrained at θ(x)
= z fixed, and monitored the mean force estimators Gj(N)
defined for each collective variable j as

∑κ θ= −
=

G N
N

x t z( ) [ ( ( )) ]j
i

N

j i j
1 (3)

where θj(x(ti)) is the instantaneous value at time ti of the
collective variable. The time required for Gj(N) to reach a
plateau (see Figure S1 in the Supporting Information) allows
one to extract the characteristic time of relaxation of the
Cartesian variables to a fixed value of the variables z, and hence
an estimate of γ ̅ to ensure the time-scales separation γ/̅γ. As the
estimator (described in eq 3) converges in 5000 simulation
time steps (0.002 ps), a friction γ of 50 ps−1, corresponding to a
characteristic time of 0.02 ps, is sufficient to allow system
relaxation.
The TAMD approach was implemented in NAMD using a

tcl script.39,57 In TAMD, the evolution of the usual MD
equation, at 300 K, was coupled to the evolution of collective
variables at a much higher temperature. Several sets of
collective variables were used, which were all geometric centers
located in different protein regions.
The friction coefficient, γ = 0.5 ps−1, and the physical thermal

energy, β−1 = 0.6 kcal/mol, are the parameters of the
conventional Langevin thermostat, which allow one to obtain

a simulation temperature of 300 K. The restraint force constant
is set to κ = 100 kcal/(mol Å2).
TAMD trajectories were run using a value of 20 kcal mol−1

for the artificial thermal energy β̅−1 of the Langevin thermostat
attached to the collective variables. This thermal energy
corresponds to an artificial temperature T̅ of 10 060 K. Despite
the high temperature values used for the Langevin thermostat
attached to the collective variables, it is not expected that the
folded structure of VanA would be destabilized, as a large
friction (γ ̅ = 50 ps−1) is used for this thermostat, along with the
high force constant (κ = 100 kcal/(mol Å2) to restraint the
collective variable coordinates to the collective variables. In that
way, we reduce the risk of system instability due to large
deviation of the collective variables θ(x) from their target values
z.

2.3. Determination of Contact Communities. The
following method has been used to determine the contact
communities of VanA along each recorded trajectory. At each
trajectory frame, a contact is set up for all α-carbon pairs closer
than 12 Å,58 and the frequency of contacts is calculated along
the trajectory. The protein structure is then considered as a
graph, where the residues Cα constitute the vertices and the
edges are weighted by the frequency of contacts between Cα

atoms along the trajectories. An absence of contact is modeled
as a nonexisting edge. The Girvan−Newman algorithm,59 as
implemented in the program Python, allows one to divide, in an
iterative way, the graph into contact communities. First, all
possible shortest paths are calculated between the Cα and the
betweenness of each edge, which is defined as the number of
shortest paths crossing this edge, is computed. The algorithm
then removes the edge exhibiting the most important
betweenness and includes the two edge vertices into the
same community. The betweenness of all edges affected by the
removal is recalculated. Several runs of the algorithm are
performed to remove the edge of highest betweenness until no
edges remain. At the end of the process, the initial dynamic
map of frequency of contacts has been split into contact
communities of amino acids that are strongly connected.

2.4. Conformational Analysis of the Simulations
Using SOM. The Self-Organizing Maps (SOM) ap-
proach24,60,61 was used to cluster the conformations generated
along MD and TAMD trajectories. The SOM algorithm allows
the mapping of the conformational space on a periodic
subspace of reduced dimensions: a 50 × 50 map. 341 × 341
pairwise square Euclidean distance matrices D were calculated
for the 341 Cα atoms of VanA, for each frame of the trajectory.
To compress the data, a covariance matrix C was computed
from each D. Its four eigenvectors, corresponding to the first
four significant eigenvalues Ni were kept. For each trajectory
frame t, the resulting compressed 4 × 341 matrix D · Vi=1,...,4,
stored as a vector Vt, contains the conformational descriptors
and is used to cluster the protein conformations.61

The SOM was trained in two phases with the following
parameters: (i) a map size of 50 × 50 with periodic boundaries,
initialized randomly with a constant learning rate of 0.5 and a
radius of 6.250 for the first phase (180 000 iterations), and (ii)
an exponential decrease of learning rate (starting at 0.25) and
radius (starting at 3.125) for the second phase (360 000
iterations). After the random initialization of the map, vectors
of conformational descriptors Vt described above, were
presented to the map in random order,46 and the neuron
closest to the presented Vt was updated, as well as the neighbor
neurons to preserve the coherence of the clustering. At the end
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of the calculation, each neuron of the SOM contains a average
vector ⟨Vt⟩ corresponding to a mixture of clustered protein
conformations.
The Unified distance matrix (U-matrix) representation was

computed to display the SOM topology on a bidimensional
matrix. In the U-matrix, each node shows the local similarity
between the corresponding neighboring SOM neurons, i.e., the
mean distance between the node and its eight neighbors. A
flooding algorithm was then used to aggregate the U-matrix
basins, and to reject outside the regions corresponding to
nonsimilar neurones, leading to a continuous map representa-
tion while preserving the inherent SOM topology.61

2.5. Graph Processing of the Self-Organizing Maps.
The SOM were additionally processed in two ways in order to
determine graphs describing (i) the kinetics of the conforma-
tional space sampled and (ii) the opening path between the
closed and open conformations of VanA.
The graph related to the kinetics of the conformational space

sampled was determined in the following way. A transition
matrix is built from the SOM map. The SOM neurons define
the microstates, and each structure along a given MD or
TAMD trajectory is assigned to a given neuron. The element
Tij of the transition matrix, depicting the transition between
neurons i and j, is defined as the number of i→ j transitions
divided by the number of starts from neuron i. The transition
matrix can be represented as a weighted graph, with the weight
of the vertex ij being given by Tij.
The obtained graph is then partitioned using the greedy

algorithm of Louvain,25 in order to maximize the graph
modularity. The modularity is a value between −1 and +1,
measuring the density of edges inside the partitions, compared
to the density of edges outside the partitions. The greedy
algorithm of Louvain optimizes the modularity in two phases.
In the first phase, each SOM neuron is assigned to distinct

kinetic clusters. Then, for each SOM neuron u, the variation of
modularity is evaluated when u is removed from its cluster and
placed to the cluster of each of its neighbors. If no gain of
modularity is possible, u remains in its cluster. In the second
phase, a new graph is built by merging the SOM neurons
belonging to the same cluster. The weights of the resulting
graph are computed by summing the weights of the links
between nodes in the corresponding two clusters.
The opening path between the VanA states displaying open

and closed ω-loops was determined in the following way. Edges
between SOM neurons were weighted by the value of the
corresponding element of the U-matrix, which measures the
local similarity between protein conformations. The starting
point was the SOM node u corresponding to the starting point
of all trajectories, with closed ω-loop. The final point of the
path was chosen as the medoid of the SOM kinetic cluster 15
which will be described in section 3.3. The medoid is the
neuron whose average distance to all the neurons in the cluster
is minimal.
The shortest path is computed using the Dijkstra

algorithm,62 using the similarity between neurons as a distance.
Finally, the path defined from SOM neurons was converted to a
series of VanA conformations by replacing each neuron by the
VanA conformation exhibiting the smallest Euclidean distance
between its vector of conformational descriptors Vt and the
average of the neuron vector ⟨Vt⟩.
2.6. Analysis of Hydrogen Bonds within VanA. The

path describing the ω opening has been analyzed to detect the
most critical hydrogen bonds for the conformational change.

For that purpose, along the opening path, a representative
conformation was extracted from each kinetic cluster obtained
above using the Louvain greedy algorithm.25 This representa-
tive conformation was chosen as the medoid of the path
conformations belonging to this kinetic cluster.
On each of these VanA conformations, hydrogen bonds have

been detected using criteria based on a survey of small-
molecule crystal structures.63 This analysis was performed using
the UCSF Chimera package,64 producing 1623 hydrogen
bonds. A hydrogen bond is supposed to be established if the
donor−acceptor and the hydrogen−acceptor distances are
respectively smaller than 4.0 and 3.0 Å.
A Random Forest (RF)28 machine learning approach was

used to calculate the importance of each hydrogen bond for
predicting to which kinetic cluster the representative
conformation belongs. The information on established and
disrupted hydrogen bonds was encoded as a Boolean vector for
each conformation populating the path. The hydrogen bonds
were indexed by protein residue numbers. The Boolean vectors
were used as descriptors to train the RF. The predicted value
for each vector was the identifier of the kinetic cluster.
The RF calculation was performed using the Python package

scikit-learn (scikit-learn.org). The number of trees in the forest
was set to 10, with a Gini criterion28 to measure the quality of a
split. The number of features used when searching for the best
split was set to 40, which is approximately the square root of
the length of the Boolean vectors ( 1623 ≈ 40). The trees are
expanded until all leaves are pure. Once the training done, the
importance of each hydrogen bond to define a kinetic cluster
has been computed.

2.7. Ligand Docking Procedure and GBSA Scoring.
The substrates, ATP, D-Ala, D-Lac, D-alanyl-phosphate (D-
Ala(P)), the transition-state analogue phosphinate or PHY, the
product of the reaction, D-Ala-D-Lac, and the allosteric binder,65

were formatted in mol2 with Chimera 1.464 and MarvinSketch
5.1 (www.chemaxon.com/products/marvin/marvinsketch) for
docking.
UCSF DOCK 6.566−68 was used to perform ligand docking

VanA conformations along the opening path obtained as
described at the end of the section 2.5.
Chimera64 was used to add hydrogens, check atom

assignment, and assign partial charges consistent with the
AMBER-ff99SB force field.69 Chimera was also used to produce
mol2 format files for the ligands and the selected conformations
of the receptor. The DMS software program70,71 generated the
molecular surface of the receptor, using a radius probe of 1.4 Å.
Spheres then were calculated around the receptor with the
DOCK 6.5 command “sphgen” with radius probe values
varying between 1.4 Å and 4 Å.72 Spheres were selected within
a radius of 10 Å around the geometric center defined by the
residues E15, K170, R289, N303, E304, N306, which are close
to positions observed for the ligands (ADP, phosphinate) in
1E4E. The grid encoding van der Waals and electrostatic
interactions was precalculated with the “grid” tool72 in a box
containing the selected spheres. The DOCK program builds up
to 500 flexible ligand docking orientations, on the precalculated
“grid” interaction map. The ligand poses were then re-scored
with the implementation of the Hawkins Molecular Mechanics
Generalized Born Surface Area (MM-GBSA) score,73−77

implemented in UCSF DOCK 6.5. The best scoring solution
was kept for each protein−ligand pair.
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3. RESULTS

3.1. Choice of Collective Variables from the Structural
and Community Domains of VanA. The use of the
enhanced sampling approach TAMD requires the definition

of collective variables. In the present work, these variables were

chosen as geometric centers of α-carbons located in various

VanA regions. These regions were detected (Table 1) from an

analysis of the X-ray crystallographic structure of VanA (PDB

Table 1. Definition of the Different Domains of Protein VanAa

domain residues determination method

N-terminal-Xr 2−121 structural
C-terminal-Xr 212−342 structural
Central-Xr 122−211 structural
Opposite-Xr 149−208 structural
Omega-Xr 236−256 structural
Ends_0-Com 2−7, 30−39, 69−78, 88−95, 108−120, 330−342 communities
Ends_1-Com 8−29, 40−68, 79−87, 96−103, 310−313 communities
Middle-Com 104−107, 121−147, 220−226, 277−289, 303−309 communities
Opposite-Com 148−210 communities
ω-Com 211−219, 227−276, 290−302, 314−329 communities

aThe first five domain definitions are derived from the analysis of the X-ray (Xr) crystallographic structure45 1E4E. The last five domain definitions
are the communities obtained using the Girvan−Newman algorithm on the 30-ns MD trajectory.

Figure 2. Communities determined by the Girvan−Newman algorithm59 along the MD and TAMD trajectories recorded on VanA. The same color
code was kept for the communities both on the 3D structures and on the graphs: the communities mainly located in the N-terminal region (numbers
0 and 1) are shown in blue and red; the Middle (number 2) community is shown in magenta, if it exists; the Opposite region is shown in yellow
(number 3); the ω-loop and the main part of the C-terminal are shown in green (number 4). Projection of the communities calculated on a 30-ns
trajectory of VanA for (a) MD, (c) TAMD_ON, (e) TAMD_ωN, (g) TAMD_OωN, (i) TAMD_MD, and (k) TAMD_5CV. Also shown is a graph
of the interconnectivity calculated between the different communities for (b) MD, (d) TAMD_ON, (f) TAMD_ωN, (h) TAMD_OωN, (j)
TAMD_MD, and (l) TAMD_5CV. The collective variables (CV) used for TAMD trajectories are represented by orange balls when they were
derived from structural calculations and cyan balls if they were obtained from the communities calculations.
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ID: 1E4E) or from the contact communities determined by the
Girvan−Newman algorithm, as described in section 2. Starting
from these regions, two sets of geometric centers were
determined (see Table S1 in the Supporting Information):
structural collective variables (CVN-Xr, CVO-Xr, and CVω-Xr)
and dynamical collective variables (CVω-Com, CVE0-Com,
CVE1-Com, CVM-Com, and CVO-Com). Five independent
30-ns temperature-accelerated molecular dynamics (TAMD)
simulations were launched using various combinations of both
sets of collective variables (see Table S2 in the Supporting
Information).
The structural collective variables CVN-Xr, CVO-Xr, and

CVω-Xr (Table S1 and Figure 1) were respectively defined on
the N-terminal domain, opposite domain, and ω-loop, chosen
from a direct observation of the PDB structure 1E4E. This
choice is supported by several observations on X-ray crystallo-
graphic structures and MD trajectories.45−47 First, the ω-loop,
containing CVω-Xr, displays diverse orientations in X-ray
crystallographic structures of D-Ala:D-Ala ligases.45 Second, the
opposite region (residues 149−208) was chosen to define
CVO-Xr, as this region moves apart from the protein core, as
published in a previous work.46

The dynamical collectives variables were derived from the
contact communities calculated using the Girvan−Newman
algorithm along a 30-ns MD trajectory: these communities are
described in more detail below. The corresponding geometric
centers are located in the ω-loop (CVω-Com), in the N-
terminal and C-terminal domains (CVE0-Com, CVE1-Com),
and in the middle (CVM-Com) and opposite (CVO-Com)
domains (see Table S1 and Figure 1).

The contact community analysis based on the Girvan−
Newman algorithm allowed one to divide VanA in five
communities either in MD or in TAMD simulations, except
in TAMD_ON, where four communities were observed (see
Figure 2). These communities are variable from one simulation
to another, but involve similar protein regions for all trajectories
(see Table S3 in the Supporting Information), even though
different sets of collective variables were used during each
TAMD trajectory. The two Ends_0-Com and Ends_1-Com
communities are interlaced in the protein sequence, and
contain residues from the structural definition of the N- and C-
terminal regions. The Opposite-Com community is located in
the opposite domain, while the ω-Com community corre-
sponds to the ω-loop and part of the C-terminal. The last
community, Middle-Com (see Table S3), located in the middle
of the protein and partially superimposed with the central
structural domain Central-Xr (Table 1), is detected in all
trajectories except TAMD_ON. The definition of contact
communities are slightly different from the definitions of
structural domains, except Opposite-Com, almost super-
imposed to the domain Opposite-Xr (Table 1). The good fit
of Opposite-Com to Opposite-Xr is expected as the opposite
domain was previously detected from an analysis of MD
trajectories.46

The contact communities graph is connected by edges
(Figure 2), which depict the frequency of contact between α-
carbons belonging to two different communities. The larger the
frequency, the thicker the edge.26,27 Thus, the edge thickness
gives a qualitative indication of the relative influences that the
communities have on each other. Overall, the same pattern of

Figure 3. Definition of collective variables (CV) and of contact communities displayed on the VanA sequence. The first line contains the definition
of structural collective variables (CVN-Xr, CVO-Xr, CVω-Xr: see Table S1) determined from an analysis of the structure 1E4E. The second line
contains the definition of dynamical collective variables (CVE0-Com, CVE1-Com, CVM-Com, CVO-Com, CVω-Com: Table S1) determined from
a community analysis using the Girvan−Newman algorithm over the 30-ns MD trajectory. The third line contains the definition of communities
(Ends_Oc, Ends_1c, Middle_c, Opposite_c, ω_c: see Table S3) determined by the Girvan−Newman algorithm on the trajectory TAMD_ωN. The
following color code is used. For the structural CV: CVN-Xr (blue), CVO-Xr (yellow), and CVω-Xr (green). For the dynamical CV: CVE0-Com
(blue), CVE1-Com (red), CVM-Com (magenta), CVO-Com (yellow), and CVω-Com (green). For the TAMD_ωN communities: Ends_Oc
(blue), Ends_1c (red), Middle_c (magenta), Opposite_c (yellow), and ω_c (green).
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influences between communities is observed in all trajectories
(Figure 2). The community corresponding to the ω-loop is
always strongly linked with the opposite community, as
reflected by the high betweenness. This communication is
mostly mediated by the middle community (in purple). The
opposite domain is itself connected to the Ends communities
detected into the N- and C-terminal domains (shown in red
and blue in Figure 2).
The definitions of structural, dynamical collective variables

and of contact communities determined on the trajectory
TAMD_ωN are depicted (Figure 3) using a color code. The
definitions corresponding to the opposite domain (yellow) and
to the ω-loop (green) are similar for the three sets of definition.
Also, similar middle or central domains (magenta) are detected
between dynamical collective variables and contact commun-
ities.
3.2. Conformational Clustering of the Conformational

Landscape. The existence of α helices and β strands has been
monitored along the MD and TAMD trajectories (see Table S4
in the Supporting Information). Most of the secondary
structure elements are present more than 80% of the time, at
the exception of 5 β-strands, which are destabilized in the MD
as well as in the TAMD trajectories. Thus, the folded structure
of VanA is not specifically altered by the use of the TAMD, as
has been already noticed in section section 2.2.
The 180 000 frames of VanA generated either along the MD

or TAMD trajectories were subjected to a SOM clustering.46,61

The analysis of SOM permits one to determine six clusters of
conformations (see Figure 4). For each cluster, the average
VanA conformation has been drawn in tube representation,
where the tube width and color depend on the conformational
local variability (root-mean-square fluctuation (RMSF), Å)
within the cluster. The color varies from blue (RMSF close to 1
Å) to red, corresponding to the maximal fluctuation in a given
cluster (e.g., cluster 1, 13 Å; cluster 2, 13.3 Å; cluster 3, 15.7 Å;
cluster 4, 7.9 Å; cluster 5, 8.0 Å; cluster 6, 8.4 Å). A permanent
feature of the entire conformational landscape of VanA is the
large internal mobility of the ω-loop. This agrees with the apo
form of VanA simulated: the ω-loop tendency to open is
expected to play an important role in the substrate processing.
Cluster 4 contains the starting point of MD and TAMD

trajectories. The average conformation of this cluster is
characterized by three regions displaying large local RMSF:
the ω-loop, the opposite domain, and three loops [residues
I43−V48], [residues P71−H76], [residues N83−H84].
A first series of clusters, represented by clusters 1, 2, and 3,

displays significant opening of the ω-loop, with the loop being
the most open in clusters 1 and 3. In all of these clusters, the
protein internal mobility remains concentrated on the ω-loop
(with maximal RMSF values of 13 Å in cluster 1 and 15.7 Å in
cluster 3) and the other regions are much less mobile, except
the opposite domain (maximal RMSF value of 8.0 Å), the other
maxima remaining ∼4−5 Å. Thus, after only 30 ns of
simulation, the TAMD trajectories have been able to reach
conformations displaying a wide opening of the ω-loop. These
conformations are similar to the X-ray crystallographic
structures published on the TtDdl D-Ala:D-Ala ligase (PDB
ID: 2YZG).47

The second series of clusters, which is represented by clusters
5 and 6, displays conformations with semiopen or semiclosed
ω-loop, similar to the X-ray crystallographic structure of the D-
Ala:D-Ala ligase in ref 47 (PDB ID: 2ZDG). The averaged
conformations of clusters 5 and 6 display large mobility of the

ω-loop, as well as that of a few regions of the protein: the
opposite domain and the three loops previously detected in
cluster 4: [residues I43−V48], [residues P71−H76], [residues
N83−H84].
The various trajectories explored the U-matrix differently

(see Figure 5). The larger cluster, cluster 4, was sampled by the
different trajectories, but each one sampled distinct areas. The
MD trajectory explored mainly cluster 4, keeping the
coordinate RMSD value as low as 2.5 Å, with respect to the
starting point (Figure 4), and performing few incursions into
cluster 6. This result agrees with the previously recorded MD
trajectories in the absence of the disulfide bridge C52−C64.46
Although all TAMD trajectories started from the same

conformation, the different choices for the collective variables,
as well as the random evolution of MD simulations, induced
distinct explorations of the conformational space. In that
respect, three main behaviors were observed. The trajectories
TAMD_ON and TAMD_5CV visited mainly cluster 4,
containing the starting conformation. The trajectories TAM-
D_ωN and TAMD_OωN explored clusters 1, 2, and 3,
corresponding to the opening of the ω-loop. The trajectory
TAMD_MN explored regions 5 and 6. Therefore, it seems that
the geometric center of the ω-loop is a required collective
variable to obtain the loop opening. Frames extracted from

Figure 4. Clustering of VanA conformations sampled along MD and
TAMD trajectories, using SOM. The root mean square deviation
(RMSD) from the starting conformation of the trajectories is shown in
a prune-green heat map (in Å). The conformation sets associated with
the medoid of each cluster are depicted in putty cartoons. On the
cartoons, the root-mean-square fluctuation (RMSF) of the backbone is
represented by the width of the main chain and by a blue−green−red
color scale corresponding to the RMSF values within the
corresponding SOM cluster.
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TAMD_ΩN are plotted in Figure S2 in the Supporting
Information, and reveals that, before the full opening, the ω-
loop undergoes a sideways movement.
Overall, the cluster analysis of MD and TAMD trajectories

provides an exploration of several possible models for ω-loop
mobility. Indeed, protein conformations with fully open loop
are obtained along with conformations displaying mobile closed
ω-loop, corresponding to several conformational states ex-
plored by apo VanA.
3.3. Kinetic Clustering of the VanA Conformational

Space. The opening of the VanA binding cavity was monitored
by following the values of the angles ω ̂CN and ̂CNO between
the centers of mass of the entire protein VanA (C), of the
opposite domain (O), of the N-terminal (N), and of ω-loop
(ω) (Figure 6a). The values of ω ̂CN and ̂CNO angles were
projected on the U-matrix (see Figures 6b and 6c). An
increased value for ω ̂CN corresponds to an opening of the ω-

loop, while an increased value for ̂CNO corresponds to a
displacement of the opposite domain apart from the VanA
structure core.
Some of the structural clusters previously determined from

the SOM analysis (Figure 4) display homogeneous angle values
while other clusters show much more heterogeneous values
(see Figures 6b and 6c).
Cluster 3, which contains some of the most open

conformations of VanA (Figure 4) is very homogeneous. It
exhibits the widest opening (∼55°) for the angle ̂CNO (Figure
6c), while ω ̂CN (Figure 6b) is shrunk with a value of ∼52°,
showing the opposite domain moving apart, with respect to the
protein core, while the ω-loop is still closed. Unlike cluster 3,
clusters 1 and 2, containing open ω-loops, display quite
heterogeneous angle values. The ̂CNO and ω ̂CN are mostly
mirrored, with large ̂CNO values (green regions in Figure 6c)
corresponding to small ω ̂CN values (violet regions in Figure

Figure 5. Detailed exploration of the SOM map by each trajectory. The starting points are shown in pink and the ending ones are shown in magenta.
The blue−green−red color scale represents the local root-mean-square deviation (RMSD), from the starting structure for each structure (values
shown are given in Å).

Figure 6. (a) Tube representation of VanA with the ω-loop in green and the opposite domain in yellow. Their own centers of mass is marked with a
ball of the same color and respectively called ω and O. The center of mass of the entire protein VanA is called C (shown in red) and the center of
mass of the N-terminal region, called N (shown in blue). (b, c) Projections of the angles on the SOM using a prune-green heat map: ω ̂CN (panel
(b)) and ̂CNO (panel (c)). The angles are expressed in degrees.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00211
J. Chem. Inf. Model. 2016, 56, 1762−1775

1769

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00211/suppl_file/ci6b00211_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.6b00211


6b) and vice versa. This is the sign of an anticorrelation
between the ω-loop and opposite domain displacements.
Nevertheless, some regions of Figures 6b and 6c in clusters 1
and 2 display the same color, corresponding to simultaneous
shrinkage or expansion of the two protein domains. For the
conformations displaying the most closed ω-loop, sampled in
clusters 4, 5, and 6, there is mainly little opening of the angles
̂CNO and ω ̂CN .

To analyze the kinetics of the conformational exchange in
VanA, the protein conformations were clustered by the Louvain
greedy algorithm, taking into account the time order of the
dynamic simulations, as described in section 2. In that way, 15

individual kinetic clusters were determined (see Figure 7). The
conformations populating each kinetic cluster were sampled
along the same trajectory, which is a sign that the different
TAMD trajectories explored various aspects of the conforma-
tional kinetics. The division of SOM according to the kinetic
clusters (Figure 7) display patterns quite similar to the ones
observed for the projection of the angle ω ̂CN or ̂CNO on the
SOM (see Figures 6b and 6c), which proves that the overall
system kinetics is mainly determined by these angle variations.
However, the kinetics clustering brings additional information,
with respect to the conformational clustering performed by
SOM. Indeed, three clusters (1, 5, and 7) display nonconnected

Figure 7. Kinetic clustering of the VanA conformation using the Louvain greedy algorithm on the SOM neurones. A given color is associated with
each of the 15 obtained clusters. For the three clusters, including nonconnected regions (1, 5, and 7), the disconnected regions are labeled,
respectively, as 1 and 1′, 5 to 5″, and 7 to 7′′. The representative conformations corresponding to each disconnected region are drawn superimposed
in cartoons.

Figure 8. (a) Opening path traced on the U-matrix. The medoids of each clusters, labeled from A to F, are shown in red and their minimum
spanning link is shown in red. (b) GBSA score (in kcal/mol) for the molecules involved in the enzymatic reaction: the substrates D-Ala, D-Ala-(P), D-
Lac; the reaction intermediate homologous, PHY; the product of the enzymatic reaction D-Ala-D-Lac; and an allosteric inhibitor.65 The GBSA score
is plotted along the conformations labeled from 0 to 60, extracted from the opening path.
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regions on the SOM, respectively labeled 1 and 1′, 5, 5′, and 5″,
and 7, 7′, and 7″ on Figure 7, putting in evidence fast
conformational equilibrium between distinct conformational
regions. The representative conformations extracted from the
nonconnected regions of each of three clusters, display
conformational variability in precise regions of VanA, as the
L and ω loops and the opposite domain (O). Different types of
movements for these regions are observed within the three
clusters, as shown by the superimposed representative
conformations (Figure 7).
3.4. A Path Describing the ω-Loop Opening. Starting

from the kinetic clustering of SOM map and using a procedure
described in section 2, a path relating the conformations of
VanA with closed and open ω-loop has been traced on the U-
matrix (see Figure 8a). The opening path starts from the kinetic
cluster 5′ (Figure 7), passes through clusters 7′, 2, and 3, and
ends up in cluster 15. The conformations sampled along this
path correspond to a slight translational move of the ω-loop
(conformational cluster 2 in Figure 4) and then to a rotation of
the loop on the side (conformational cluster 1 in Figure 4).
Note that the path through conformational clusters 2 and 1
presents the advantage of permitting a large opening, which
allows the substrates to easily enter into the active site.
Since the opening of the VanA binding site is directly related

to the protein function, we analyzed the path with respect to
the interaction of VanA with the substrates, inhibitors, and
reaction intermediate. The relative importance of hydrogen
bonds within VanA along the path then was statistically
evaluated, and connected to experimental observations.
Several ligands (D-Ala, D-Ala(P)), D-Lac, PHY, D-Ala-D-Lac,

and an allosteric inhibitor65) were docked into the VanA
conformations extracted from the path and the poses scored
using the GBSA interaction energy (Figure 8b),75,76 according
to the procedure described in section 2. The score profile
displayed by the allosteric inhibitor (green curve in Figure 8b)
is quite negative and constant. Similarly, the score profile of D-
Ala (red curve in Figure 8b) is also negative and does not
display much variation along the path, which is in agreement
with the fact that D-Ala is not specific of VanA, but rather binds

to all proteins of the D-Ala:D-Lac ligase family. In contrast, the
other ligandsD-Ala(P), D-Lac, PHY, and D-Ala-D-Lacall
display profiles, becoming mostly negative in cluster E of the
path, after the ω-loop opening (see Figure 8b). Before this
opening, the reaction product D-Ala-D-Lac (orange curve in
Figure 8b) displays repulsion for VanA, which agrees with the
release of the product after reaction. The intermediate of
reaction, PHY, displays a behavior similar to that of the other
compounds.
Six conformations, labeled A to F, were picked up in each of

the kinetic clusters crossed by the path (Figure 8a). On these
conformations, a Random Forest approach, described in section
2, was used to determine the relative importance of hydrogen
bonds for the kinetic cluster prediction (Figure 9). The most
important hydrogen bonds are mainly located in the N-terminal
domain, in the opposite domain, and in the ω-loop, which
reflects the displacements of these domains described above. In
addition, some important hydrogen bonds are observed in the
C-terminal region.
The hydrogen bonds connecting residues from different

regions have been colored red in Figure 9. From this outline,
the breaking of interactions between protein domains can be
followed along the opening path in order to give a description
of the kinetic events. The two interactions E250−K22
(between ω-loop and N-terminal region) and E207-Y137
(between the opposite domain and the N-terminal region) are
broken in the protein conformation labeled C (Figure 9). On
the other hand, hydrogen bonds E207−Y137, K203−D132,
R174−D105, and, to a lesser extent, R174−E104 are formed in
the two conformations E and F at the end of the path. The
change from the first set of hydrogen bonds to the second set
gives a description of the opening, involving only few residues,
and can be compared to the patterns of experimental mutations
observed for VanA.
The E250A mutation induces a slight decrease in

experimental catalytic efficiency,78 which would agree with
the importance of the E250−K22 interaction along the opening
of the ω-loop. The only limited decrease experimentally
observed could arise from a possible reorganization of the VanA

Figure 9.Most important hydrogen bonds for the prediction of the kinetic cluster along the opening path. The protein structure is displayed in trace,
with the Opposite domain (residues [149−208]) colored orange and the ω-loop (residues [236−256]) colored green. The hydrogen bonds within
the ω-loop and the opposite domain are colored cyan, and the hydrogen bonds between these protein domains and other protein regions are colored
red. The other hydrogen bonds are gray.
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structure, which would be due to the presence of residues
compensating for the mutation effect. Besides, in the X-ray
crystallographic structure of VanA,45 it was observed that the
residues E15, S177, and H244 are involved in a network of
hydrogen bonds preventing the entrance of water molecules
that could impair the catalytic reaction by hydrolyzing the
ligands. The residues K22 and E250 detected in the present
analysis, are located, respectively, in the vicinity of E15 and
H244, and could play a similar role.
The analysis of the trajectories in the frame of graph theory

has permitted the determination of an opening path of VanA,
allowing the entrance of substrates in the binding site. The path
found agrees with the interaction energy profiles observed for
various VanA ligands. The relative importance of hydrogen
bonds is supported by some experimental observations.

4. DISCUSSION

The D-Ala:D-Lac ligase VanA was analyzed by molecular
modeling and various algorithmic tools, in order to obtain a
phenomenological description of the protein internal dynamics
and conformational landscape, based on graph models.
The comparison of MD and TAMD trajectories reveals the

efficiency of TAMD to perform enhanced sampling of the
protein conformational space. As expected, the regions of
conformational space explored during TAMD trajectories are
closely dependent on the collective variables used. In particular,
the opening of the ω-loop seems to be favored if a geometric
center of the ω-loop is included into the collective variables.
The exploration of the conformational landscape has permitted
us to describe two different modes of ω-loop opening: in one
mode, ω opens through a translation, whereas in the other, a
translation of ω is followed by a rotation.
The partial opening of the ω-loop has been previously46

observed spontaneously in MD trajectories in the presence of
the crystallographic disulfide bridge C52−C64.45 The moving
of the opposite domain, closely related to the opening of the
active site, was also observed in these MD trajectories. One
should notice that Roper et al.45 mentioned that this disulfide
bridge was unexpected, because VanA is a bacterial intracellular
enzyme that should behave in a reducing environment
incompatible with the formation of the bridge. The enhanced
sampling approach taken here made it possible to observe the
opening in the absence of disulfide bridge. The dynamics
features observed along the opening path, as the mobility of the
opposite domain, are similar to the observations previously
made46 in the presence of the disulfide bridge.
The protein internal dynamics along the opening of the

active site seems to be closely related to the relative mobility of
the ω-loop and of the opposite domain, as shown by the
conformational clustering (Figure 4), by the importance of the
angles ω ̂CN and ̂CNO (Figure 6), to describe the protein
kinetics (Figure 7), and by the analysis of hydrogen bonds
along the opening path (Figures 8 and 9).
MD and TAMD trajectories of D-Ala:D-Lac ligase VanA have

been analyzed using various algorithms. Graph models describe
the protein architecture and behavior in the conformational
landscape, as well as along the conformational change related to
the opening of the ω-loop.
The contact communities detected by analysis of the contacts

along the trajectories display a pattern of connections relating
the ω-loop to the middle domain, which acts as a hub to
establish connection to the opposite and the N- and C-terminal

domains. This pattern is conserved in most of the trajectories,
whereas contrasted internal dynamics are observed in these
protein regions over the conformational space (Figure 4).
Indeed, the ω-loop is always quite mobile whereas other
protein regions display large (clusters 5 and 6) to small
(clusters 1, 2 and 3) internal mobility (Figure 4).
The various graphs obtained on the contact communities, or

on the SOM, display characteristics similar to those observed in
other bioinformatics graphs obtained in different contexts, for
example, in hub, Middle-Com, observed in the graph of contact
communities (Figure 2). Such hubs have been also observed in
protein−protein interaction networks.79 The graph of hydrogen
bonds along the opening path reveals that all residues
establishing discriminating hydrogen bonds are connected to
<4 other residues (Figure 9), a property of ”small world” also
encountered in chemo-informatics networks based on the
ligand-set similarities.80

Several approaches have been proposed in the literature to
describe the conformational space of proteins as graph of local
minima. The analysis performed in ref 22 is based on Principal
Component Analysis (PCA) of protein motion. However, the
PCA-based analysis detects only linear correlation, whereas
SOM can capture nonlinear correlations. The method proposed
here is related to the Conformational Space Network (CSN),
which was proposed by Yin et al.21 However, these authors
used discrete structural class to cluster conformations. Similarly,
in ref 20, the structures were clustered using an all-atom RMSD
cutoff of 2.0 Å. In the present paper, we defined the so-called
microstates as the elements of the SOM grid. This avoids
having to define arbitrary structural classes to cluster the
conformations. In addition, from an analysis of conformational
transitions between SOM neurons, a method to detect the
kinetics cluster is proposed, and put in evidence fast
conformational exchange.
The graphs proposed here could be used in a systematic way

in proteins for which structural information can be obtained, in
order to insert these protein structural graphs into larger graphs
as the ones observed in protein−protein interaction networks.
Such model stacking would permit to relate directly phenotypic
information to physicochemical interactions at the atomic level.
In the case of VanA, the graphs provide a model of the open/

closed motion of the ω-loop, allowing one to perform the
synthesis between various information. The influence of specific
residues and/or conformations in such graphs provides
candidates for directed mutagenesis studies.
The MD and TAMD trajectories allows an exploration of the

VanA conformational space, which induces the observation of
the ω-loop opening. As the closed loop blocks the entrance of
the active site, understanding the way the loop is opening gives
a qualitative view of the kinetics of the VanA enzymatic
function. In the enhanced sampling approach, the time scale of
opening events observed along TAMD trajectories is biased and
cannot be used to give quantitative information on the opening
kinetics. However, on the other hand, the conformations
extracted along the opening path of the ω-loop, can be used for
docking purposes. Indeed, during the ω-loop opening, the
entire architecture of the VanA structure, as well as the active
site geometry change. Docking ligands on the active site pocket
modified by the ω-loop opening would block this site into an
inactive conformation and would orient the docking prediction
toward effective inhibitors of the VanA function. The protein
conformations sampled during the opening path are available
from the authors upon request.
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5. CONCLUSION
The D-Ala:D-Lac ligase VanA have been exhaustively inves-
tigated by molecular dynamics and enhanced sampling
simulations, in order to propose outlines of (i) protein
architecture and (ii) protein conformational landscape. These
two types of analyses have been conducted in parallel and give
consistent results. The conformational landscape of VanA is
characterized by a large mobility of the ω-loop, which displays
different translational and rotational motions, with respect to
the remaining part of the protein. This conformational view of
the landscape is completed by a slightly different kinetic view,
which fully agrees with an angular description of the relative
mobility of the opposite domain and ω-loop. The importance
of the relative motions of the opposite domain and ω-loop is
further enforced by the contact communities analysis of the
protein structure, showing a large influence between these two
regions. Overall, the numerical and statistical tools used here
provide parallel descriptions of the protein structure and of the
protein conformational landscape, which are in global agree-
ment.
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(1) Tot́h-Petroćzy, Á; Tawfik, D. S. The Robustness and Innovability
of Protein Folds. Curr. Opin. Struct. Biol. 2014, 26, 131−138.
(2) Winterbach, W.; Van Mieghem, P.; Reinders, M.; Wang, H.; de
Ridder, D. Topology of Molecular Interaction Networks. BMC Syst.
Biol. 2013, 7, 90.
(3) Zhang, Y.; Gao, P.; Yuan, J. S. Plant Protein−Protein Interaction
Network and Interactome. Curr. Genomics 2010, 11, 40.

(4) Rual, J.-F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.;
Dricot, A.; Li, N.; Berriz, G. F.; Gibbons, F. D.; Dreze, M.; Ayivi-
Guedehoussou, N.; Klitgord, N.; Simon, C.; Boxem, M.; Milstein, S.;
Rosenberg, J.; Goldberg, D. S.; Zhang, L. V.; Wong, S. L.; Franklin, G.;
Li, S.; Albala, J. S.; Lim, J.; Fraughton, C.; Llamosas, E.; Cevik, S.; Bex,
C.; Lamesch, P.; Sikorski, R. S.; Vandenhaute, J.; Zoghbi, H. Y.;
Smolyar, A.; Bosak, S.; Sequerra, R.; Doucette-Stamm, L.; Cusick, M.
E.; Hill, D. E.; Roth, F. P.; Vidal, M. Towards a Proteome-Scale Map
of the Human Protein−Protein Interaction Network. Nature 2005,
437, 1173−1178.
(5) Li, S.; Armstrong, C. M.; Bertin, N.; Ge, H.; Milstein, S.; Boxem,
M.; Vidalain, P.-O.; Han, J.-D. J.; Chesneau, A.; Hao, T.; Goldberg, D.
S.; Li, N.; Martinez, M.; Rual, J.-F.; Lamesch, P.; Xu, L.; Tewari, M.;
Wong, S. L.; Zhang, L. V.; Berriz, G. F.; Jacotot, L.; Vaglio, P.; Reboul,
J.; Hirozane-Kishikawa, T.; Li, Q.; Gabel, H. W.; Elewa, A.;
Baumgartner, B.; Rose, D. J.; Yu, H.; Bosak, S.; Sequerra, R.; Fraser,
A.; Mango, S. E.; Saxton, W. M.; Strome, S.; van den Heuvel, S.; Piano,
F.; Vandenhaute, J.; Sardet, C.; Gerstein, M.; Doucette-Stamm, L.;
Gunsalus, K. C.; Harper, J. W.; Cusick, M. E.; Roth, F. P.; Hill, D. E.;
Vidal, M. A Map of the Interactome Network of the Metazoan C.
Elegans. Science 2004, 303, 540−543.
(6) Ho, Y.; Gruhler, A.; Heilbut, A.; Bader, G. D.; Moore, L.; Adams,
S.-L.; Millar, A.; Taylor, P.; Bennett, K.; Boutilier, K.; Yang, L.;
Wolting, C.; Donaldson, I.; Schandorff, S.; Shewnarane, J.; Vo, M.;
Taggart, J.; Goudreault, M.; Muskat, B.; Alfarano, C.; Dewar, D.; Lin,
Z.; Michalickova, K.; Willems, A. R.; Sassi, H.; Nielsen, P. A.;
Rasmussen, K. J.; Andersen, J. R.; Johansen, L. E.; Hansen, L. H.;
Jespersen, H.; Podtelejnikov, A.; Nielsen, E.; Crawford, J.; Poulsen, V.;
Sørensen, B. D.; Matthiesen, J.; Hendrickson, R. C.; Gleeson, F.;
Pawson, T.; Moran, M. F.; Durocher, D.; Mann, M.; Hogue, C. W. V.;
Figeys, D.; Tyers, M. Systematic Identification of Protein Complexes
in Saccharomyces Cerevisiae by Mass Spectrometry. Nature 2002, 415,
180−183.
(7) Rain, J.-C.; Selig, L.; De Reuse, H.; Battaglia, V.; Reverdy, C.;
Simon, S.; Lenzen, G.; Petel, F.; Wojcik, J.; Schac̈hter, V.; Chemama,
Y.; Labigne, A.; Legrain, P. The Protein−Protein Interaction Map of
Helicobacter Pylori. Nature 2001, 409, 211−215.
(8) Shen, R.; Guda, C. Applied Graph-Mining Algorithms to study
Biomolecular Interaction Networks. BioMed Res. Int. 2014, 2014, 1.
(9) Han, J.-D. J.; Bertin, N.; Hao, T.; Goldberg, D. S.; Berriz, G. F.;
Zhang, L. V.; Dupuy, D.; Walhout, A. J.; Cusick, M. E.; Roth, F. P.;
Vidal, M. Evidence for Dynamically Organized Modularity in the Yeast
Protein-Protein Interaction Network. Nature 2004, 430, 88−93.
(10) Fliri, A. F.; Loging, W. T.; Volkmann, R. A. Cause-Effect
Relationships in Medicine: A Protein Network Perspective. Trends
Pharmacol. Sci. 2010, 31, 547−555.
(11) Ma, X.; Gao, L. Biological Network Analysis: Insights into
Structure and Functions. Briefings Funct. Genomics 2012, 11, 434−442.
(12) Zhou, T.-T. Network Systems Biology for Targeted Cancer
Therapies. Aizheng 2012, 31, 134.
(13) Sukumar, N.; Krein, M. P. Graphs and Networks in Chemical
and Biological Informatics: Past, Present and Future. Future Med.
Chem. 2012, 4, 2039−2047.
(14) Yim, K.; Cunningham, D. Targeted Drug Therapies and Cancer.
Recent Results Cancer Res. 2011, 185, 159−171.
(15) Lee, S.; Park, K.; Kim, D. Building a Drug-Target Network and
its Applications. Expert Opin. Drug Discovery 2009, 4, 1177−1189.
(16) Riccione, K. A.; Smith, R. P.; Lee, A. J.; You, L. A Synthetic
Biology Approach to Understanding Cellular Information Processing.
ACS Synth. Biol. 2012, 1, 389−402.
(17) Das, A.; Gur, M.; Cheng, M. H.; Jo, S.; Bahar, I.; Roux, B.
Exploring the Conformational Transitions of Biomolecular Systems
using a Simple Two-State Anisotropic Network Model. PLoS Comput.
Biol. 2014, 10, e1003521.
(18) Chennubhotla, C.; Bahar, I. Signal Propagation in Proteins and
Relation to Equilibrium Fluctuations. PLoS Comput. Biol. 2007, 3,
1716−1726.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00211
J. Chem. Inf. Model. 2016, 56, 1762−1775

1773

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.6b00211
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00211/suppl_file/ci6b00211_si_001.pdf
mailto:terez@pasteur.fr
http://dx.doi.org/10.1021/acs.jcim.6b00211


(19) Maragakis, P.; Karplus, M. Large Amplitude Conformational
Change in Proteins Explored with a Plastic Network Model: Adenylate
Kinase. J. Mol. Biol. 2005, 352, 807−822.
(20) Krivov, S. V.; Karplus, M. Hidden Complexity of Free Energy
Surfaces for Peptide (Protein) Folding. Proc. Natl. Acad. Sci. U. S. A.
2004, 101, 14766−14770.
(21) Yin, Y.; Maisuradze, G.; Liwo, A.; Scheraga, H. Hidden Protein
Folding Pathways in Free-Energy Landscapes Uncovered by Network
Analysis. J. Chem. Theory Comput. 2012, 8, 1176−1189.
(22) Golas, E.; Czaplewski, C.; Scheraga, H.; Liwo, A. Common
functionally Important Motions of the Nucleotide-binding Domain of
Hsp70. Proteins: Struct., Funct., Genet. 2015, 83, 282−299.
(23) Porras, P.; Duesbury, M.; Fabregat, A.; Ueffing, M.; Orchard, S.;
Gloeckner, C. J.; Hermjakob, H. A Visual Review of the Interactome of
LRRK2: Using Deep-Curated Molecular Interaction Data to Represent
Biology. Proteomics 2015, 15, 1390−1404.
(24) Kohonen, T. Self-Organized Formation of Topologically
Correct Feature Maps. Biol. Cybern. 1982, 43, 59−69.
(25) Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast
Unfolding of Communities in Large Networks. J. Stat. Mech.: Theory
Exp. 2008, 2008, P10008.
(26) Sethi, A.; Eargle, J.; Black, A. A.; Luthey-Schulten, Z. Dynamical
Networks in tRNA: Protein Complexes. Proc. Natl. Acad. Sci. U. S. A.
2009, 106, 6620−6625.
(27) Fuglestad, B.; Gasper, P. M.; McCammon, J. A.; Markwick, P.
R.; Komives, E. A. Correlated Motions and Residual Frustration in
Thrombin. J. Phys. Chem. B 2013, 117, 12857−12863.
(28) Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5−32.
(29) Maragliano, L.; Vanden-Eijnden, E. A Temperature Accelerated
Method for sampling Free Energy and determining Reaction Pathways
in Rare Events Simulations. Chem. Phys. Lett. 2006, 426, 168−175.
(30) Maragliano, L.; Cottone, G.; Ciccotti, G.; Vanden-Eijnden, E.
Mapping the Network of Pathways of CO Diffusion in Myoglobin. J.
Am. Chem. Soc. 2010, 132, 1010−1017.
(31) Abrams, C.; Vanden-Eijnden, E. Large-scale conformational
sampling of proteins using temperature-accelerated molecular
dynamics. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4961−4966.
(32) Vashisth, H.; Maragliano, L.; Abrams, C. ”DFG-flip” in the
Insulin Receptor Kinase is facilitated by a Helical Intermediate State of
the Activation Loop. Biophys. J. 2012, 102, 1979−1987.
(33) Vashisth, H.; Brooks, C. Conformational Sampling of Maltose-
transporter Components in Cartesian Collective Variables is governed
by the Low-frequency Normal Modes. J. Phys. Chem. Lett. 2012, 3,
3379−3384.
(34) Nygaard, R.; Zou, Y.; Dror, R.; Mildorf, T.; Arlow, D.; Manglik,
A.; Pan, A.; Liu, C.; Fung, J.; Bokoch, M.; Thian, F.; Kobilka, T.; Shaw,
D.; Mueller, L.; Prosser, R.; Kobilka, B. The Dynamic Process of β(2)-
adrenergic Receptor Activation. Cell 2013, 152, 532−542.
(35) Lapelosa, M.; Abrams, C. A Computational Study of Water and
CO Migration Sites and Channels Inside Myoglobin. J. Chem. Theory
Comput. 2013, 9, 1265−1271.
(36) Vashisth, H.; Abrams, C. All-atom Structural Models of Insulin
Binding to the Insulin Receptor in the presence of a Tandem
Hormone-binding Element. Proteins: Struct., Funct., Genet. 2013, 81,
1017−1030.
(37) Scarpazza, D.; Ierardi, D.; Lerer, A.; Mackenzie, K.; Pan, A.;
Bank, J. A.; Chow, E.; Dror, R.; Grossman, J.; Killebrew, D.; Moraes,
M.; Predescu, C.; Salmon, J.; Shaw, D. Extending the Generality of
Molecular Dynamics Simulations on a Special-Purpose Machine. In
Proceedings of the 27th IEEE International Parallel and Distributed
Processing Symposium, 2013; pp 933−94510.1109/IPDPS.2013.93.
(38) Vashisth, H.; Storaska, A.; Neubig, R.; Brooks, C. Conforma-
tional Dynamics of a Regulator of G-protein Signaling Protein reveals a
Mechanism of Allosteric Inhibition by a small Molecule. ACS Chem.
Biol. 2013, 8, 2778−2784.
(39) Selwa, E.; Huynh, T.; Ciccotti, G.; Maragliano, L.; Malliavin, T.
Temperature-accelerated Molecular Dynamics gives Insights into
Globular Conformations Sampled in the Free State of the AC
Catalytic Domain. Proteins: Struct., Funct., Genet. 2014, 82, 2483−2496.

(40) Hosseini-Naveh, Z. M.; Malliavin, T.; Maragliano, L.; Cottone,
G.; Ciccotti, G. Conformational changes in Acetylcholine binding
protein Investigated by Temperature accelerated Molecular Dynamics.
PLoS One 2014, 9, e88555.
(41) Cortes-Ciriano, I.; Bouvier, G.; Nilges, M.; Maragliano, L.;
Malliavin, T. Temperature Accelerated Molecular Dynamics with Soft-
ratcheting Criterion orients Enhanced Sampling by Low-resolution
Information. J. Chem. Theory Comput. 2015, 11, 3446−3454.
(42) Arthur, M.; Reynolds, P.; Courvalin, P. Glycopeptide Resistance
in Enterococci. Trends Microbiol. 1996, 4, 401−407.
(43) Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci.
Clin. Infect. Dis. 2006, 42, 25−34.
(44) Arthur, M.; Molinas, C.; Bugg, T.; Wright, G.; Walsh, C.;
Courvalin, P. Evidence for in vivo Incorporation of D-lactate into
Peptidoglycan Precursors of Vancomycin-Resistant Enterococci. Anti-
microb. Agents Chemother. 1992, 36, 867−869.
(45) Roper, D.; Huyton, T.; Vagin, A.; Dodson, G. The Molecular
Basis of Vancomycin Resistance in clinically relevant Enterococci:
Crystal Structure of D-alanyl−D-lactate Ligase (VanA). Proc. Natl.
Acad. Sci. U. S. A. 2000, 97, 8921−8925.
(46) Bouvier, G.; Duclert-Savatier, N.; Desdouits, N.; Meziane-
Cherif, D.; Blondel, A.; Courvalin, P.; Nilges, M.; Malliavin, T. E.
Functional Motions Modulating VanA Ligand Binding unraveled by
Self-organizing maps. J. Chem. Inf. Model. 2014, 54, 289−301.
(47) Kitamura, Y.; Ebihara, A.; Agari, Y.; Shinkai, A.; Hirotsu, K.;
Kuramitsu, S. Structure of D-alanine−D-alanine Ligase from Thermus
Thermophilus HB8: Cumulative Conformational Change and
Enzyme-ligand Interactions. Acta Crystallogr., Sect. D: Biol. Crystallogr.
2009, 65, 1098−1106.
(48) MacKerell, A.; Bashford, D.; Bellott, M.; Dunbrack, R.;
Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-
McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.; Mattos, C.; Michnick,
S.; Ngo, T.; Nguyen, D.; Prodhom, B.; Reiher, W.; Roux, B.;
Schlenkrich, M.; Smith, J.; Stote, R.; Straub, J.; Watanabe, M.;
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