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Abstract

Nuclear Magnetic Resonance (NMR) experiments provide distances between

close atoms of a protein molecule and the problem is how to determine the 3D

protein structure by exploiting such distances. We present a new hand-crafted

order on the atoms of the protein that uses information from the chemistry

of proteins and NMR experiments and allows us to formulate the problem as a

combinatorial search. Additionally, this order tell us what kind of NMR distance

information is crucial to understand the cardinality of the solution set of the

problem and its computational complexity.
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1. Protein Structure and Distance Geometry

The 3D protein structure determination is of fundamental importance for

studying the protein function [18]. Indeed, biochemical mechanisms taking place

in protein structure are the basic steps hidden behind all biological processes,

as cell division, protein translation, invasion of host cells by pathogens, and5

∗Corresponding author
Email addresses: clavor@ime.unicamp.br (Carlile Lavor),

liberti@lix.polytechnique.fr (Leo Liberti), brd@cs.duke.edu (Bruce Donald),
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communication between cells. In that way, the determination of protein struc-

tures can be considered as the building of a bridge between the description of

biological cellular processes and the world of physico-chemistry.

At the first days of structural biology, in the fifties, the X-ray crystallography

was the first method allowing the determination of protein structure. There-10

fore, the crystallized proteins were perceived as rigid objects, displaying mostly

a unique conformation, with more of less large harmonic vibrations around this

conformation. The development of Nuclear Magnetic Resonance (NMR) per-

mitted, starting from the nineties, to study proteins structure in solution. The

development of NMR relaxation methods put in evidence the internal dynamics15

in the protein structures and gave a more flexible vision of them [26].

The protein internal flexibility was then recognized as playing a very impor-

tant role into many biological processes. The intrinsically disordered proteins

are thought to be functional important proteins, even if they lack a precisely de-

fined 3D structure. The misfolded proteins, undergoing a conversion from their20

native structure into amyloid, induce the development of neurodegenerative dis-

eases. The allostery phenomenon, allowing long-range communication through

the protein structure, is thought to be involved into any activity mechanism of

proteins.

The NMR structure determination is mainly based on the measurement of25

inter-atomic distances, determined through the observation of the Nuclear Over-

hauser Effect (NOE), which is induced by the transfer of magnetization through

dipolar coupling between the observed hydrogens. The obtained distance values

are quite qualitative, due to the numerous paths for the magnetization transfer

and to the molecular internal dynamics. The corresponding distance restraints30

are thus usually applied as interval restraints.

NMR experiments can be used to determine some (short) Euclidean dis-

tances between hydrogen atoms in a protein and the problem is to determine

its 3D structure based on this partial distance information.

We can use two types of sets (the entities V and their relationships E) and35

a real function d on E to model this problem: V represents the set of atoms, E
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represents the set of atom pairs for which a distance is available, and the function

d : E → [0,∞) assigns nonnegative real numbers to each pair {u, v} ∈ E (the

fact that we allow a distance to be zero will be explained in Section 5).

When we consider V,E, d together, we have a graph, denoted by G =40

(V,E, d). We say that G is a weighted simple undirected graph because we

associate values (distances) to the elements of E, if {u, v} ∈ E then u 6= v, and

{u, v} = {v, u}.

The way to represent a molecule consisting of a set of atomic symbols linked

by segments was originally described in [17] and, in fact, the origin of the word45

graph is due to the representation of molecules [60]. This relationship between

molecules and graphs is probably the deepest existing between chemistry and

discrete mathematics.

A graph G = (V,E, d) is just a mathematical abstraction to represent the

problem data. The problem itself is to find a function x : V → R3 that associates50

each element of V with a point in R3 in such a way that the Euclidean distances

between the points correspond to the values given by d. This is a Distance

Geometry Problem (DGP) in R3, formally described as follows.

Definition 1. Given an integer K > 0 and a simple undirected graph G =

(V,E, d) whose edges are weighted by a function d : E → [0,∞), find a function55

x : V → RK such that

∀{u, v} ∈ E, ||xu − xv|| = duv, (1)

where xu = x(u), xv = x(v), duv = d({u, v}), and ||xu − xv|| is the Euclidean

distance between xu and xv.

From now on, we will fix K = 3, since we are interested in the application of

the DGP to protein conformation [16]. Recent surveys on Distance Geometry60

(DG) are given in [7, 45], an edited book with different applications can be

found in [50], and some DG historical notes are presented in [46].

In 1983, the first distance geometry-based method for molecular conforma-

tion was proposed [27] and, in 1984, the first protein structure was determined
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in its native solution state from NMR data [28].65

The simplest approach to the problem is to directly try to solve the set

of equations (1). However, there is evidence that a closed-form solution is not

possible [5]. Since those equations also pose difficulties to be solved numerically,

a common approach is to formulate the DGP as a nonlinear global minimization

problem,

min
x1,...,xn∈R3

∑
{u,v}∈E

(||xu − xv||2 − d2uv)2,

where |V | = n. However, solving such a problem is hard from a computational

complexity point of view, as well as from a practical one [45, 58, 59]. In [36],

some global optimization algorithms have been tested but none of them scale

well to medium or large instances. A survey on different methods to the DGP

is given in [43].70

Assuming the input data are correct and precise (see Section 5 for other

cases), the set X of solutions of a DGP will yield all the 3D structures of

the protein that are compatible with the given distances. Any x ∈ X can be

translated and rotated in R3 implying that the solution set is not only infinite,

but uncountable. However, if we do not consider the effect of translations and75

rotations, the cardinality of X depends on the structure of the associated graph

G = (V,E, d). If the set of edges E contains all possible pairs from V , there is

only one solution which can be found in linear time [19]. In general, the problem

is NP-hard [55].

From algebraic geometry, it is possible to prove that there are just two80

possibilities regarding the cardinality of the solution set X: it is either finite or

uncountable, supposing that X 6= ∅ [6]. This result is strongly related to graph

rigidity: almost all nonrigid graphs yield uncountable cardinalities for X [25].

If the graph is rigid, the solution set is finite (up to translations and rota-

tions). In this case, a combinatorial search is better suited than a continuous85

one, because in addition to the accuracy and efficiency of combinatorial meth-

ods, the graph rigidity allows us to get more information about the cardinality

and the structure of the solution set X [40, 47].
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The original contribution of this paper is theoretical, presenting a new hand-

crafted order on the vertices of the protein DGP graph G that uses information90

from the chemistry of proteins and NMR experiments. This order guarantees

the rigidity of G and, most importantly, “organizes the search space” in such a

way that it can be searched efficiently for all the mathematical solutions of the

problem. Also, it tell us what kind of information from the NMR experiments is

crucial to understand the cardinality of the solution set and the computational95

complexity of the problem.

To explain the properties of the proposed order, important connections

among NMR protein structure, distance geometry, graph rigidity, and graph

vertex orders are established. We tried to do that without excessive formalism,

although all the important concepts and results from those research areas are100

presented.

In the next section, the main results from graph rigidity necessary here

are given. Section 3 shows the importance of vertex orders in DGP graphs.

Section 4 presents the discrete version of the DGP. In Section 5, the new hand-

crafted order is defined with its most important properties. Finally, we end with105

conclusions and some new research directions in Section 6.

2. Graph Rigidity and Distance Geometry

Given a graph G = (V,E, d) of a DGP, a function x : V → R3 is called a

realization of the graph in R3. If x satisfies all the equations (1), it is a valid

realization. The pair G with a valid realization x is a framework (G, x).110

In order to use frameworks to model protein structures and to have precisely

the notion of rigidity of a framework [31], we need to define two relations:

isometry and congruency.

Two frameworks (G, x) and (G, y) are isometric, denoted by (G, x) ∼ (G, y),

if

∀{u, v} ∈ E, ||xu − xv|| = ||yu − yv||,
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and congruent, denoted by (G, x) ≡ (G, y), if

∀u, v ∈ V , ||xu − xv|| = ||yu − yv||.

Thus, two frameworks are congruent only if all pairs of vertices from V115

have the same related distances, not only the pairs in E. Trivially, congruency

implies isometry, but the converse is not true in general. We remark that any

congruence is a composition of translations, rotations, and reflections [8].

(G, x) is a rigid framework if there exists a real number ε > 0 such that

(G, y) ∼ (G, x) and ‖ xv − yv ‖< ε, ∀v ∈ V ⇒ (G, y) ≡ (G, x).

Geometrically, this means that a framework is rigid if it has no continuous

deformations aside from composition of translations, rotations and reflections.120

That is, the only way to continuously move a point in a rigid framework is mov-

ing all points such that all pairwise distances are preserved, and not only those

given by the edges. Using the concept of infinitesimal rigidity of a framework

[61], we can define graph rigidity.

Let (G, x) be a framework in R3, where |V | = n and |E| = m. Consider the

linear system Rλ = 0, where λ ∈ R3n and R is the m×3n matrix, each {u, v}th

row of which has exactly 6 nonzero entries given by

xi(u)− xi(v) and xi(v)− xi(u), {u, v} ∈ E and i = 1, 2, 3,

where x1(u), x2(u), x3(u) are the Cartesian coordinates of xu in R3.125

The framework is infinitesimally rigid if the only solutions of Rλ = 0 are

translations or rotations. Infinitesimal rigidity implies rigidity [22], and if a

graph has a unique infinitesimally rigid framework, then almost all its frame-

works are rigid [29].

It makes sense then to define a rigid graph as a graph having an infinitesi-130

mally rigid framework. There is also a notion of a graph being rigid indepen-

dently of the framework assigned to it, known as generic rigidity [14], that will

not be used here.
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A characterization of all rigid graphs in R2 was described by Laman [34],

but no such complete characterization is known in R3. A heuristic method was135

introduced in [57] and current conjectures can be found in [32].

If a DGP graph has a unique valid realization, up to congruences, it is called

globally rigid. In [14], necessary and sufficient conditions for global rigidity

in R2 were presented. Hendrickson [29] conjectured that the same conditions

would be sufficient for R3, but this was disproved by Connelly [14]. Some graph140

properties ensuring global rigidity in R2 and R3 are given in [4].

3. Vertex Orders and Distance Geometry

The idea of exploiting vertex order to investigate graph rigidity first appeared

in [30]. In fact, vertex orders are important to solve many problems modeled

by graphs [9, 51].145

If there is a trilateration order in a DGP graph (every vertex beyond the

first 4 is adjacent to at least 4 predecessors), it is globally rigid and such order

makes it possible to triangulate the position of each next vertex. This implies

a linear time algorithm to find the unique incongruent solution [20].

Adjacent predecessors in a vertex order are critical: any fewer, and the num-150

ber of DGP solutions might be uncountable; any more, and the corresponding

DGP can be solved uniquely in linear time [45]. So, the number of adjacent

predecessors, in a given order, is related to the cardinality of the DGP solution

set and also to the required computational effort to find a solution.

In general, we do not have trilateration orders in protein graphsG = (V,E, d)155

[39], but using the information provided by NMR experiments and chemistry of

proteins, we can try to find vertex orders v1, ..., vn ∈ V such that:

• The first 3 vertices form a clique:

{v1, v2}, {v1, v3}, {v2, v3} ∈ E;

• Each vertex with rank greater than 3 is adjacent to at least 3 predecessors:

∀i > 3,∃ j, k, l with j < i, k < i, l < i : {vj , vi}, {vk, vi}, {vl, vi} ∈ E.
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The class of DGP instances possessing these orders, where the initial clique

has a valid realization and the strict triangular inequalities related to the adja-

cent predecessors vj , vk, vl to vi, i > 3, are satisfied (i.e. dvjvk + dvkvl > dvjvl),160

is called the Discretizable Distance Geometry Problem (DDGP), and the orders

themselves DDGP orders [23, 48].

The initial clique guarantees that the solution set X will contain just in-

congruent solutions and strictness of the triangular inequality prevents an un-

countable quantity of solutions [48]. In the same paper, it was proved that165

the graph of any DDGP instance is rigid and an exact solution method, called

Branch-and-Prune (BP), was presented for finding all incongruent solutions. BP

can be exponential in the worst case, since the DDGP is an NP-hard problem

[10, 42, 48].

In a DDGP order, the fourth vertex v4 can be realized solving the quadratic170

system (to simplify the notation, we will use xi instead of xvi and di,j instead

of dvivj )

||x4 − x1||2 = d21,4

||x4 − x2||2 = d22,4

||x4 − x3||2 = d23,4,

which can result in up to two possible positions for v4. Using the same strategy,

for each position already determined for v4, we obtain other two for v5, and

so on. Because of the rigidity of the DDGP graph, the search space is finite,175

having 2n−3 possible solutions.

If we have an “extra” distance information, {vr, vi} ∈ E with r < i, we can

add more one equation to the system related to vi, i > 3, resulting in

||xi − xj || = dj,i

||xi − xk|| = dk,i

||xi − xl|| = dl,i

||xi − xr|| = dr,i.
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Squaring both sides of these equations, we get (xTi is the transpose of xi)

||xi||2 − 2(xTi xj) + ||xj ||2 = d2j,i

||xi||2 − 2(xTi xk) + ||xk||2 = d2k,i

||xi||2 − 2(xTi xl) + ||xl||2 = d2l,i

||xi||2 − 2(xTi xr) + ||xr||2 = d2r,i.

Now, subtracting one of these equations from the others, we eliminate the term180

||xi||2 and obtain a linear system in the variable xi. If the points xj , xk, xl, xr are

not in the same plane, we have a unique solution x∗i for vi, supposing ||x∗i−xr|| =

dr,i. When there are other adjacent predecessors of vi beside vj , vk, vl, one or

both possible positions for vi may be infeasible with respect to those additional

distances. If both are infeasible, it is necessary to backtrack and repeat the185

methodology [48].

The DDGP order “organizes” the search space in a binary tree and the ad-

ditional distance information can be used to reduce the search space by pruning

infeasible positions in the tree.

The tree begins with the three fixed positions for the initial clique, x1, x2, x3,190

and at level i > 3, the tree contains all (2i−3) possible positions for vertex vi.

The search ends when a path from the root (i = 1) of the tree to a leaf node

(i = n) is found by BP algorithm, in such a way that the related positions in

R3 for all the vertices in the order satisfy the DGP equations (1), encoding a

valid realization of G. Considering precise input data, the BP performance is195

impressive from the points of view of both efficiency and reliability [36, 39].

Although the DDGP is NP-hard, a DDGP order can be found in polynomial-

time [38].

In the definition of the DDGP, the only requirement on the adjacent prede-

cessors vj , vk, vl to vi, i > 3, is that the associated strict triangular inequality200

must be satisfied, making the DDGP very general. However, depending on the

instance, the distances dj,i, dk,i, dl,i cannot be well-scaled, increasing the inci-

dence of numerical floating point error in solving the related quadratic system
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and, in some cases, making its solution impossible [48]. Additionally, when the

vertices {vj , vk, vl} do not form a clique, the related quadratic system may not205

have a solution.

Protein graphs provided by NMR experiments have enough information to

allow definition of vertex orders involving immediately contiguous adjacent pre-

decessors that can avoid those kinds of problems in DDGP instances.

4. The Discretizable Molecular Distance Geometry Problem (DMDGP)210

The class of DGP instances that replaces a DDGP order by one with contigu-

ous adjacent predecessors is called the Discretizable Molecular Distance Geom-

etry Problem (DMDGP) and the order itself is a DMDGP order [39]. Formally,

the DMDGP is defined as follows.

Definition 2. Given a DGP graph G = (V,E, d) and a vertex order v1, ..., vn215

such that

• there exists a valid realization for v1, v2, v3 and

• ∀i > 3, the set {vi−3, vi−2, vi−1, vi} is a clique with

di−3,i−2 + di−2,i−1 > di−3,i−1,

find a function x : V → R3 such that

∀{u, v} ∈ E, ||xu − xv|| = duv .

The fact that the set {vi−3, vi−2, vi−1, vi} is a clique, ∀i > 3, eliminates

bad distance scaling and guarantees a non-empty solution set for the quadratic220

system related to the two possible positions for vi in terms of the positions

already determined for vi−3, vi−2, vi−1.

In addition to these properties, the distance information in the clique {vi−3, vi−2, vi−1, vi}

also allows us to get the following values:

• d1,2, . . . , dn−1,n (distances associated to consecutive vertices),225
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• θ1,3, . . . , θn−2,n (angles in (0, π) defined by three consecutive vertices),

• cos(ω1,4), . . . , cos(ωn−3,n) (cosines of torsion angles in [0, 2π] defined by

four consecutive vertices), given by [35]:

cos(ωi−3,i) =
2d2i−2,i−1(d2i−3,i−2 + d2i−2,i − d2i−3,i)− (di−3,i−2,i−1)(di−2,i−1,i)√
4d2i−3,i−2d

2
i−2,i−1 − (d2i−3,i−2,i−1)

√
4d2i−2,i−1d

2
i−2,i − (d2i−2,i−1,i)

,

(2)

where

di−3,i−2,i−1 = d2i−3,i−2 + d2i−2,i−1 − d2i−3,i−1

di−2,i−1,i = d2i−2,i−1 + d2i−2,i − d2i−1,i.

Using cos(ωi−3,i), for i = 4, ..., n, we obtain two possible values for each

torsion angle, implying that we do not need to solve anymore quadratic systems.

Computational results presented in [39] demonstrate that avoiding resolution of230

quadratic systems guarantees more stability in the branching phase of BP.

Another advantage of the DMDGP order is that it is enough to apply the BP

(or other algorithm) to find only one solution, since all the others can be easily

obtained using symmetric properties defined in the BP tree [47, 49]. These

properties are also related to the cardinality of the DMDGP solution set, that235

can be previously calculated based on the DMDGP graph [44].

Considering that the vertex order v1, ..., vn represents bonded atoms of a

molecule, the values di−1,i, θi−2,i, ωi−3,i are exactly the internal coordinates of

the molecule that can also be used to describe its 3D structure [39] (Figure 1).

There is a “price” for all these results: in contrast to DDGP orders, finding a240

DMDGP order is an NP-complete problem [11], even considering that the initial

clique is given. However, exploiting the chemistry of proteins and NMR data,

it is possible to design a hand-crafted DMDGP order for any protein graph.

We will see that this order can also be used to solve DMDGP instances that

incorporate uncertainties from NMR data.245
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Figure 1: Cartesian and internal coordinates.

5. A New DMDGP Order for Protein Graphs

In order to reduce the number of variables and also the computational effort

to solve problems related to protein structure, it is common to assume that

all bond lengths and bond angles are fixed at their equilibrium values, which

is known as the Rigid Geometry Hypothesis [21]. This means that, in terms250

of internal coordinates, all the values di−1,i, for i = 2, . . . , n, and θi−2,i, for

i = 3, . . . , n, are given a priori, and that the 3D protein structure can be

determined by the values ωi−3,i, for i = 4, . . . , n. Because of the properties

of DMDGP orders, we can also know a priori all the values cos(ωi−3,i), for

i = 4, . . . , n, implying that the protein structure is defined by choosing + or −255

from sin(ωi−3,i) = ±
√

1− cos2(ωi−3,i), for i = 4, . . . , n. These signs (+ or −)

are obviously related to the branches of the BP tree.

We will consider protein graphs related to the backbone of a protein, the

“skeleton” of the molecule, from which its general 3D structure is determined.

The protein backbone is a chain of smaller molecules, called amino acids, which260

are chemically bound to each other. The backbone is defined by a sequence of

three atoms, N,Cα, C, where Cα is bound to other group of atoms (the side

chains of the protein) that distinguishes one amino acid from another. The
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attached atoms to N,Cα, C, respectively H,Hα, O, will be very important to

establish our results (Figure 2 presents a backbone with three amino acids).265

More details about protein graphs including side chains are given in [15, 53, 54].

Figure 2: Protein backbone.

5.1. Re-orders

Since we are interested in determining the 3D structure of the backbone of

a protein, the sequence of atoms N i, Ciα, C
i, for i = 1, ..., p (p is the number of

amino acids), would be the first candidate for defining the DMDGP order we270

are looking for. However, for this kind of order, we do not have all the distances

di−3,i necessary to define a DMDGP instance. By the other hand, since NMR

experiments provide distances between hydrogens atoms that are close enough,

another order involving only hydrogens could be defined, but this does not work

well, mainly because of uncertainty in NMR data [37]. These limitations have275

been partially addressed by using, at the same time, hydrogens atoms bonded

to the backbone and the backbone itself [41].

As done in [41], the idea is to allow the repetition of some vertices in the

associated graph, so that at least 3 adjacent predecessors can always be chosen to

be contiguous. Such orders are called re-orders, defined below. First, the set of280
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edges E of the protein graph G = (V,E, d) will be partitioned into E = E′∪E′′,

where {u, v} ∈ E′ if duv ∈ (0,∞), and {u, v} ∈ E′′ if duv = [duv, duv], with

0 < duv < duv. Note that the function d is now more general, since some of

its values can be intervals that will represent the uncertainties in NMR data.

As we will see, E′ represents pairs of atoms separated by one and two covalent285

bonds and E′′ represents pairs of hydrogen atoms whose distances are provided

by NMR.

Definition 3. A re-order is a sequence r : N→V ∪{0}, with length |r| ∈ N (for

which ri = r(i) = 0 for all i > |r|), such that

• {r1, r2}, {r1, r3}, {r2, r3} ∈ E′;290

• ∀i ∈ {4, ..., |r|}, {ri−1, ri}, {ri−2, ri} ∈ E′;

• ∀i ∈ {4, ..., |r|}, {ri−3, ri} ∈ E′ ∪ E′′ or ri−3 = ri.

The first property says that dr1r2 , dr1r3 , dr2r3 ∈ (0,∞) and the second one

says that dri−1ri , dri−2ri ∈ (0,∞), for i = 4, ..., |r|. That is, all of them must be

precise distances and greater than zero.295

In the third property, there are 3 possibilities for dri−3ri , i = 4, ..., |r|:

1. dri−3ri = 0, meaning that there is a vertex repetition (ri−3 = ri);

2. dri−3ri ∈ (0,∞), when ri−3,ri are related to atoms separated by one of

two covalent bonds;

3. dri−3ri = [dri−3ri , dri−3ri ], with 0 < dri−3ri < dri−3ri (these distances are300

called interval distances).

Requiring ri = rj , for some i 6= j (ri−3 = ri is a particular case), implies

drirj = 0. However, if vertex repetition is used inappropriately, we might end

up with a triangle with a side of zero length, which might in turn imply an

infinity of possible positions for the next atom (we emphasize the importance of305

strict triangular inequalities in the definition of the DMDGP). Thus, to preserve

discretization, vertex repetition can occur only between pairs {ri, rj} with |i−

j| ≥ 3. In this case, there is no branching at level max{i, j}.

14



A repetition of a vertex only increases the length of the sequence without

affecting the search, since its position in R3 is already known. However, it can310

be recomputed in order to control possible numerical instabilities and to check

if there are some inconsistencies in the distance information.

To understand what happens when {ri−3, ri} ∈ E′′, let us rewrite expression

(2) as

cos(ωi−3,i) =
a+ bd2i−3,i

c
,

where a, b, c ∈ R and di−3,i ∈ [dri−3ri
, dri−3ri ]. The fact that a, b, c are precise315

numbers is a consequence of {ri−1, ri}, {ri−2, ri} ∈ E′.

Considering ωi−3,i = 0 and ωi−3,i = 2π, we get the minimum value for

dri−3ri
, denoted by dmin

ri−3ri , and the maximum value for dri−3ri , denoted by

dmax
ri−3ri , respectively. Thus, [dri−3ri

, dri−3ri ] ⊂ [dmin
ri−3ri , d

max
ri−3ri ]. When di−3,i is

a precise number (di−3,i ∈ R), with dmin
ri−3ri < di−3,i < dmax

ri−3ri , we obtain two320

possible values for ωi−3,i, associated to two positions in R3 for ri. However, when

di−3,i = [dri−3ri
, dri−3ri ], with dmin

ri−3ri < dri−3ri
< dri−3ri < dmax

ri−3ri , we have now

two possible intervals for ωi−3,i, associated to two arcs in R3 for ri. In Figure 3,

we illustrate these two arcs given as the intersection of two spheres (centered at

xi−1, xi−2 with radius di−1,i, di−2,i, respectively) and a spherical shell, defined325

by other two spheres with the same center xi−3 but with radius given by dri−3ri

and dri−3ri . This is the geometrical interpretation of the branching phase of BP.

Thus, any re-order corresponds to a DMDGP order, where some of the pairs

{ri, rj}, with |i− j| ≥ 3, may not correspond to precise distances, but rather to

intervals.330

The concept of a re-order was an important step to apply all the properties

of the DMDGP as a mathematical model for problems related to 3D protein

structure determination using NMR data. In the same paper that appeared the

first re-order for such kind of problems [41], an extension of the BP algorithm,

called iBP, was developed. The basic idea is to sample values from the intervals335

[dri−3ri
, dri−3ri ], implying that the search space will not be anymore a binary
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Figure 3: Geometric interpretation of branching in BP.

tree. Computational results presented in [12, 24] reveal the main difficult of the

iBP: even for large samples, there is no guarantee that a solution will be found.

Essentially, there are two reasons for this difficulty:

1. The re-orders presented in [41, 24] have some pairs of vertices {ri−3, ri}

whose interval distances may not be associated to NMR data, implying

no branches in the search tree, i.e.

[dri−3ri
, dri−3ri ] = [dmin

ri−3ri , d
max
ri−3ri ]; (3)

2. The sampling process “transforms” the iBP into a heuristic.340

Very recent results [2, 3], using Clifford algebra, propose an alternative to

avoid sampling process that allows iBP to explore the search space without

“losing” solutions. However, in order to apply these new results to protein

structure calculations, a new re-order must be defined to avoid the situation

(3). The most important property of the re-order we will describe now is that345

it allows branches (in the iBP search) only at hydrogen atoms that are bonded

to the protein backbone.

5.2. The Hand-Crafted (hc) Vertex Order

Let us define a protein graph G = (V,E, d) associated to the backbone of a

protein ({Nk, Ckα, C
k}, for k = 1, ..., p), including oxygen atoms Ok, bonded to350
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Ck, and hydrogen atoms Hk
α and Hk, bonded to Ckα and Ck, respectively (see

Figure 2, for p = 3).

The hand-crafted vertex order (hc order) we propose is the following:

hc = {N1, H1, H1′ , C1
α, N

1, H1
α, C

1, C1
α, ..., (4)

Hi, Ciα, O
i−1, N i, Hi, Ciα, N

i, Hi
α, C

i, Ciα, ...,

Hp, Cpα, O
p−1, Np, Hp, Cpα, N

p, Hp
α, C

p, Cpα, O
p, Cp, Op

′
},

where i = 2, ..., p− 1, H1′ is the second hydrogen bonded to N1 and Op
′

is the

second oxygen bonded to Cp (Figure 4 illustrates this order for p = 3).355

Figure 4: hc order.

We will prove now that hc is a re-order. We assigned the following order to

the atoms of the first amino acid of a protein:

{N1, H1, H1′ , C1
α, N

1, H1
α, C

1, C1
α}. (5)

Since we are assuming that all bond lengths and bond angles are fixed at

their equilibrium values (the Rigid Geometry Hypothesis mentioned in the be-

ginning of Section 5), the first and the second requirements of a re-order are

satisfied. The third requirement is also satisfied, with the following distances
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for {ri−3, ri} (we will denote by I(H
i
,Hj) the interval distance related to the360

pair of hydrogens {Hi, Hj}):

• d(N1, C1
α) ∈ (0,∞),

• d(H1, N1) ∈ (0,∞),

• d(H1′ , H1
α) = I(H

1′
,H1

α),

• d(C1
α, C

1) ∈ (0,∞),365

• d(N1, C1
α) ∈ (0,∞).

The nitrogen N1 and the carbon C1
α appear twice in the sequence, but they

are related to the pairs {r1, r5} and {r4, r8}.

To prove that hc is a re-order, we have to check the connection between the

order (5) and the order for the second amino acid, given by the last three atoms

of (5) and the six first atoms of the second amino acid:

{H1
α, C

1, C1
α, H

2, C2
α, O

1, N2, H2, C2
α}. (6)

Here, in addition to the Rigid Geometry Hypothesis, we also have to use

the properties of the so-called Peptide Plane [18], that says that the atoms370

{C1
α, C

1, O1, N2, H2, C2
α} are in the same plane (Figure 5). This implies that

d(C1
α, H

2) (related to the pair {r8, r9}), d(C1
α, C

2
α) (related to the pair {r8, r10}),

d(H2, O1) (related to the pair {r9, r11}), d(C2
α, O

1) (related to the pair {r10, r11}),

and d(O1, H2) (related to the pair {r11, r13}) are all precise distances, satisfying

the second requirement for a re-order. The third requirement is also satisfied,375

with the following distances for {ri−3, ri}:

• d(H1
α, H

2) = I(H
1
α,H

2),

• d(C1, C2
α) ∈ (0,∞),

• d(C1
α, O

1) ∈ (0,∞),

• d(H2, N2) ∈ (0,∞),380
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• d(C2
α, H

2) ∈ (0,∞),

• d(O1, C2
α) ∈ (0,∞).

H2 and C2
α are repeated, but they are related to the pairs {r9, r13} and

{r10, r14}, respectively.

Figure 5: Peptide plane.

We assigned the following order to the atoms of a generic amino acid of a385

protein:

{Hi, Ciα, O
i−1, N i, Hi, Ciα, N

i, Hi
α, C

i, Ciα}. (7)

By the same arguments used for the orders (5) and (6), the second and the third

re-order requirements are satisfied, with the following distances for {ri−3, ri}:

• d(Hi, N i) ∈ (0,∞),

• d(Ciα, H
i) ∈ (0,∞),390

• d(Oi−1, Ciα) ∈ (0,∞),

• d(N i, N i) = 0,

• d(Hi, Hi
α) = I(Hi,Hi

α),
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• d(Ciα, C
i) ∈ (0,∞),

• d(N i, Ciα) ∈ (0,∞).395

In the order (7), Hi, Ciα, and N i are repeated, where Hi and Ciα are related

to pairs {ri, rj}, with i − 3 < j, and N i is related to a pair {ri−3, ri}, which

explains d(N i, N i) = 0 above.

The connection between two generic amino acids, given by

{Hi
α, C

i, Ciα, H
i+1, Ci+1

α , Oi, N i+1, Hi+1, Ci+1
α },

and the one between a generic amino acid and the last one, given by

{Hp−1
α , Cp−1, Cp−1α , Hp, Cpα, O

p−1, Np, Hp, Cpα},

have both the same order given in (6).

The result above implies the following distances for {ri−3, ri}, related to the400

connection between two generic amino acids,

• d(Hi
α, H

i+1) = I(H
i
α,H

i+1),

• d(Ci, Ci+1
α ) ∈ (0,∞),

• d(Ciα, O
i) ∈ (0,∞),

• d(Hi+1, N i+1) ∈ (0,∞),405

• d(Ci+1
α , Hi+1) ∈ (0,∞),

• d(Oi, Ci+1
α ) ∈ (0,∞),

and related to the connection between a generic amino acid and the last one:

• d(Hp−1
α , Hp) = I(H

p−1
α ,Hp),

• d(Cp−1, Cpα) ∈ (0,∞),410

• d(Cp−1α , Op−1) ∈ (0,∞),

• d(Hp, Np) ∈ (0,∞),
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• d(Cpα, H
p) ∈ (0,∞),

• d(Op−1, Cpα) ∈ (0,∞).

Finally, we assigned the following order to the atoms of the last amino acid

of a protein:

{Hp, Cpα, O
p−1, Np, Hp, Cpα, N

p, Hp
α, C

p, Cpα, O
p, Cp, Op

′
}. (8)

Using once more the Rigid Geometry Hypothesis and the Peptide Plane415

Properties, the second and the third requirements of a re-order are satisfied,

with the following distances related to {ri−3, ri}:

• d(Hp, Np) ∈ (0,∞),

• d(Cpα, H
p) ∈ (0,∞),

• d(Op−1, Cpα) ∈ (0,∞),420

• d(Np, Np) = 0,

• d(Hp, Hp
α) = I(H

p
α,H

p),

• d(Cpα, C
p) ∈ (0,∞),

• d(Np, Cpα) ∈ (0,∞),

• d(Hp
α, O

p) = I(H
p
α,O

p),425

• d(Cp, Cp) = 0,

• d(Cpα, O
p′) ∈ (0,∞).

The distance d(Hp
α, O

p) is an interval, but the last level of the search tree

can be related to the position of Cp, already determined using d(Cpα, C
p).

The presented analysis can be summarized in the following theorem:430

Theorem 1. The hc order is a re-order.
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5.3. Minimal NMR Distance Information

In NMR experiments, the protein is submitted to a magnetic field, inducing

the alignment of the magnetic moment of the observed nuclei. A resonance

frequency characterizes the return of each perturbed magnetic moment, and the435

transmission of the perturbation is called Nuclear Overhauser Effect (NOE),

which is proportional to d−6, where d is the distance between two protons

belonging to different atoms [13]. In general, if two protons are more than

5 Å apart, there is no NOE signal that can be measured for estimating their

relative distance.440

The measured signal recorded during NOE measurement may be distorted,

due to dynamics of the sample protein, experimental noise, and the influence of

neighboring atoms [52]. The NOE measurements are then converted into upper

bounds and the corresponding lower bounds are given by the sum of the van der

Waals radii of the involved atoms [33]. Thus, interval distances can be defined445

for hydrogen pairs that are close enough, implying the following result.

Theorem 2. Using the hc order, the Rigid Geometry Hypothesis, and the Pep-

tide Plane Properties, the set of distances between the pairs of hydrogen atoms

{H1′, H1
α}, ..., {Hi−1

α , Hi}, {Hi, Hi
α}, {Hi

α, H
i+1}, ..., {Hp, Hp

α}, (9)

where i = 2, ..., p − 1 and p is the number of amino acids of a protein, are

sufficient conditions to represent the solution space of the associated DGP as a

search tree.

Let us consider this search tree more carefully. Since the hc order is a re-450

order, all distances di−1,i and di−2,i are precise values, greater than zero. Thus,

concerning the size of the search space, we have to analyze all distances di−3,i

(remember that the branching of the search tree is the result of intersection

between two spheres, with precise radius di−1,i, di−2,i, and another one with

radius di−3,i, possibly given by an interval distance (Figure 3)).455

In addition to the Rigid Geometry Hypothesis and the Peptide Plane Prop-

erties, we also need the Chirality Property [18], that defines the orientation of
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the tetrahedrons formed by {N1, H1, H1′ , C1
α} and {Ciα, N i, Hi

α, C
i}, implying

only one possible position for C1
α and Ci, i = 1, ..., p (Figure 6).

Figure 6: Chirality property.

Considering the first amino acid (with the links to the second one), we have:460

• d(N1, C1
α) > 0 ⇒ 2 possible positions in R3 for C1

α, but we can fix one

of them because of chirality defined on {N1, H1, H1′ , C1
α}.

• d(H1, N1) > 0⇒ 2 possible positions in R3 for N1, but we can fix one

of them, since N1 is repeated.

• d(H1′ , H1
α) = I(H

1′
,H1

α)⇒ 2 possible arcs in R3 for H1
α.465

• d(C1
α, C

1) > 0 ⇒ 2 possible positions in R3 for C1, but we can fix one

of them because of chirality defined on {C1
α, N

1, H1
α, C

1}.

• d(N1, C1
α) > 0 ⇒ 2 possible positions in R3 for C1

α, but we can fix one

of them, since C1
α is repeated.

• d(H1
α, H

2) = I(H
1
α,H

2)⇒ 2 possible arcs in R3 for H2.470

• d(C1, C2
α) > 0 ⇒ 2 possible positions in R3 for C2

α, but we can fix one

of them because of the peptide plane already defined by {C1, C1
α, H

2
α}.

• d(C1
α, O

1) > 0 ⇒ 2 possible positions in R3 for O1, but we can fix one

of them because of the peptide plane already defined by {C1, C1
α, H

2
α}.
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These are the distances di−3,i in the generic amino acid (with the links to475

the next one):

• d(Hi, N i) > 0⇒ 2 possible positions in R3 for N i, but we can fix one of

them because of the peptide plane already defined by {Ci−1, Ci−1α , Hi}.

• d(Ciα, H
i) > 0 ⇒ 2 possible positions in R3 for Hi, but we can fix one

of them, since Hi is repeated.480

• d(Oi−1, Ciα) > 0⇒ 2 possible positions in R3 for Ciα, but we can fix one

of them, since Ciα is repeated.

• d(N i, N i) = 0 ⇒ 1 possible position in R3 for N i (the related torsion

angle is 0).

• d(Hi, Hi
α) = I(H

i
,Hi

α)⇒ 2 possible arcs in R3 for Hi
α.485

• d(Ciα, C
i) > 0 ⇒ 2 possible positions in R3 for Ci, but we can fix one

of them because of chirality defined on {Ciα, N i, Hi
α, C

i}.

• d(N i, Ciα) > 0 ⇒ 2 possible positions in R3 for Ciα, but we can fix one

of them, since Ciα is repeated.

• d(Hi
α, H

i+1) = I(H
i
α,H

i+1)⇒ 2 possible arcs in R3 for Hi+1.490

• d(Ci, Ci+1
α ) > 0⇒ 2 possible positions in R3 for Ci+1

α , but we can fix one

of them because of the peptide plane already defined by {Ci, Ciα, Hi+1
α }.

• d(Ciα, O
i) > 0 ⇒ 2 possible positions in R3 for Oi, but we can fix one

of them because of the peptide plane already defined by {Ci, Ciα, Hi+1
α }.

Now, let us analyze the distances di−3,i in the last amino acid (as we already495

mentioned, we are considering that the last level of the search tree is being

related to the position of Cp):

• d(Hp, Np) > 0⇒ 2 possible positions in R3 for Np, but we can fix one of

them because of the peptide plane already defined by {Cp−1, Cp−1α , Hp}.
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• d(Cpα, H
p) > 0⇒ 2 possible positions in R3 for Hp, but we can fix one500

of them, since Hp is repeated.

• d(Op−1, Cpα) > 0⇒ 2 possible positions in R3 for Cpα, but we can fix one

of them, since Cpα is repeated.

• d(Np, Np) = 0 ⇒ 1 possible position in R3 for Np (the related torsion

angle is 0).505

• d(Hp, Hp
α) = I(H

p
,Hp

α)⇒ 2 possible arcs in R3 for Hp
α.

• d(Cpα, C
p) > 0 ⇒ 2 possible positions in R3 for Cp, but we can fix one

of them because of chirality defined on {Cpα, Np, Hp
α, C

p}.

The discussion above implies the following result.

Theorem 3. Using the hc order, the Rigid Geometry Hypothesis, the Peptide

Plane Properties, the Chirality Property, and the set of distances between the

pairs of hydrogen atoms

{H1′, H1
α}, ..., {Hi−1

α , Hi}, {Hi, Hi
α}, {Hi

α, H
i+1}, ..., {Hp, Hp

α}, (10)

where i = 2, ..., p − 1 and p is the number of amino acids of a protein, the

branches in the search tree occur only at hydrogen atoms given by

{H1
α, ...,H

i, Hi
α, ...,H

p, Hp
α}. (11)

There are two main consequences of this theorem:510

1. If the distances related to the pairs (10) are precise values, the search

space of the associated DGP is finite, represented as a binary tree;

2. If the distances related to the pairs (10) are precise values and there is at

least one additional distance (from NMR data) for each hydrogen in the

list (11), there is only one DGP solution that can be found in linear time.515

Although they are very strong hypothesis (precise and additional distances),

this kind of information emphasizes its relationship and importance with the
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cardinality of the DGP solution set and the computational complexity of the

problem. Clearly, inaccuracy and lack of such information increase the size of

the search space.520

From the definition of the hc order (4) and from Theorem 6, we can note

that the position of atom N i depends on the position of atom Hi and that

the position of atom Ci depends on the position of atom Hi
α. Since the protein

backbone is determined by the torsion angles defined by {N i−1, Ci−1α , Ci−1, N i}

and {Ci−1, N i−1, Ci−1α , Ci} (the so-called (φ, ψ) angles), the term minimal NMR525

distance information is justified by the fact that we are requiring only NMR

distances related to d(Hi, Hi
α) and d(Hi−1

α , Hi).

Since atoms Hi, Hi
α are in the same amino acid, the associated distance

d(Hi, Hi
α) should not pose difficulty to be detected by NMR. Although atoms

Hi−1
α , Hi are in consecutive amino acids, there is just one torsion angle (the one530

defined by {N i−1, Ci−1α , Ci−1, N i}) related to the position of Hi, because the

Peptide Plane “forces” the torsion angle defined by {Ci−1α , Ci−1, N i−1, Ciα} to

be π radians. In the worst case, supposing that the distance d(Hi−1
α , Hi) is not

available, we can use the “implicit” information associated to the fact that the

distance was not detected [1], i.e. d(Hi−1
α , Hi) ∈ [tol, dmax], where tol = 5 Å535

(or other value related to the NMR precision) and dmax is the value associated

to the torsion angle defined by {N i−1, Ci−1α , Ci−1, N i} fixed to π radians.

6. New Research Directions

The contribution of this paper is related to how to combine information from

protein geometry (Rigid Geometry Hypothesis, Peptide Plane, and Chirality)540

and NMR experiments in order to model the problem of 3D protein calculation

using NMR data as a DMDGP that also considers interval distances.

From the results of this work, we select four new research directions:

1. Exploit the hc order to design pruning devices for the iBP;

2. Apply the hc order, with these developed pruning devices, to the Clifford545

algebra approach recently proposed in the literature;
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3. Investigate the possibility to design new NMR experiments that focus on

the accuracy of distances between hydrogen atoms used in the hc order;

4. Develop robust algorithms that can integrate all of the items above.

Regarding item 1, we have already some results as consequences of this550

paper, the information on lower and upper bounds to the backbone torsion

angles provided by NMR chemical shifts [56], and information on hydrogen

bonds defined between a hydrogen (the one bound to N) of one amino acid and

the oxygen (bound to C) of another one:

• Since the position of atom Oi−1 is determined by the position of atom Hi,555

hydrogen bond distances can be used to prune unfeasible positions of Hi;

• Since the position of atom N i is also determined by the position of atom

Hi, NMR chemical shift information on the torsion angle defined by

{N i−1, Ci−1α , Ci−1, N i} can be used to prune unfeasible positions of Hi;

• Since the position of atom Ci is determined by the position of atom560

Hi
α, NMR chemical shift information on the torsion angle defined by

{Ci−1, N i−1, Ci−1α , Ci} can be used to prune unfeasible positions of Hi
α.

Of course, all the information related to the NMR distances

d(Hj , Hi), d(Hj−1
α , Hi) and d(Hj−1, Hi

α), d(Hj
α, H

i
α),

where j < i, can also be used to prune unfeasible positions of Hi and Hi
α.
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