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Abstract: A fundamental feature of the quasi-normal modes (QNMs), which describe light
interaction with open (leaky) systems like nanoparticles, lies in the question of the completeness
of the QNMs representation and in the divergence of their field profile due to their leaky behavior
and complex eigenfrequency. In this article, the QNMs expansion is obtained by taking into
consideration the frequency dispersion and the causality principle. The derivation based on
the complex analysis ensures the completeness of the QNMs expansion and prevents from any
divergence of the field profile. The general derivation is tested in the case of a one-dimensional
open resonator made of a homogeneous absorptive medium with frequency dispersion given
by the Lorentz model. For a harmonic excitation, the result of the QNMs expansion perfectly
matches the exact formula for the field distribution outside as well as inside the resonator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Light interaction with nanoparticles enables a wide range of unprecedented applications such as
high-resolution spectroscopy, photothermal cancer therapy, optical tweezers, and light steering
using metasurfaces [1–4]. The nanoparticles can be viewed as open resonators that are able
to confine light down to subwavelength dimensions. Since the energy can escape towards the
surroundings, such open systems are nonconservative and their behavior can be described by
quasi-normal modes (QNMs) characterized by complex eigenvalues [5–7].
The QNMs expansion provides direct physical description and interpretation of the light-

particle interaction through the investigation of the resonant modes of the system. In addition,
the QNMs expansion may lead to reduced computational efforts since the resonant modes of
the system have to be calculated only once and then used to solve the excitation problem by
evaluating the contribution of the resonances modes near the excitation frequency. The QNMs
approach has shown its relevance in many situations such as the calculation of the effective
mode volume for leaky cavities [8] and of the Purcell factor [9], the modeling of light behavior
in plasmonic nanoparticles [10, 11], the design of angle-independent spectral filters [12], the
scattering matrix calculations [13], the local density of states calculations [14], the modeling
of the perturbations of black holes [15], and the list goes on. Moreover, it has been recently
demonstrated that the peaks of the extinction spectrum of a scattering particle are associated
with its QNMs [16], which cannot be elucidated by the multipolar expansion.

The QNMs expansion suffers however from a longstanding limitation: the complex nature of
the eigenvalues zq of open systems results in the divergence of the field outside the resonator, i.e.
eizq |r | →∞ when |r | → ∞. This divergence complicates the normalization of the QNMs since
the energy of the modes is unbounded and, more importantly, the QNMs expansion appears to
fail in describing the radiation outside the open resonator. Several solutions have been proposed
to explicitly mitigate the normalization difficulty for leaky resonators [8,9,17]. Other approaches
based on the Dyson equation formalism [10] lead to the definition of regularized QNMs from the
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knowledge of standard QNM inside the resonator, which are then propagated in the background
using the Green’s function of the background [18]. The theoretical question of the validity
of the QNMs expansion outside the resonator still remains an open problem that doubts the
completeness of the QNMs, i.e., the ability of the QNMs to form a complete set of modes to
represent the field in the whole space, especially in the case of absorptive and dispersive systems.
In Ref. [19], it was suggested that the exponential divergence outside the resonator is attributed
to a noncausal flaw in the definition of the QNMs. A recent review could be consulted for an
exhaustive discussion on the recent advances in the topic of QNMs expansion [20].

In this article, the QNMs expansion is derived taking into consideration the frequency dispersion
and the causality principle. This approach has recently demonstrated the validity of the modal
expansion to represent the transient fields produced by a one-dimensional resonator [21]. Herein,
it is shown that an additional causality-related phase factor cancels the exponential divergence of
the “conventional” QNMs of open systems. Arguments are proposed to support the validity of
the expansion on the QNMs of the Green’s function in the whole space. A simple example is
presented for a one-dimensional resonator made of a homogeneous absorptive dispersive medium,
where the Green’s function of the resonator is expanded using QNMs and then the obtained
results are compared to the exact formulation.

2. Causality of the Green’s function

The electromagnetic Green’s function G(r, r ′; z) of a system of permittivity ε(r, z) is defined as
the solution of the Helmholtz equation for a point Dirac current source δ(r − r ′) located at r ′:

∇ × ∇ × G(r, r ′; z) − z2µ0 ε(r, z)G(r, r ′; z) = izµ0 U δ(r − r ′) . (1)

Here the following notations have been adopted: r (and r ′) is the position vector of space,
∇× is the curl operator, z is the complex frequency, µ0 is the vacuum permeability, and U is
the unit dyadic tensor. The reference system is defined as the infinite media surrounding the
resonator and is characterized by the permittivity εref(r, z) and the Green’s function Gref(r, r ′; z).
The difference ∆ε(r, z) = ε(r, z) − εref(r, z) corresponding to the resonator must be restricted
to a bounded domain. Let Gd(r, r ′; z) be the “diffracted” (or “difference”) Green’s function,
corresponding to the field diffracted by the resonator, defined as the difference

Gd(r, r ′; z) = G(r, r ′; z) − Gref(r, r ′; z) . (2)

For dispersive media, the permittivities ε(r, z) and εref(r, z) tend to the vacuum one ε0 when the
frequency z →∞, which in turn suggests when z →∞ that

G(r, r ′; z) → Gref(r, r ′; z) → G0(r − r ′; z) =⇒ Gd(r, r ′; z) → 0 , (3)

where G0(r − r ′; z) is the free Green’s function in vacuum.
The Fourier transform with respect to the time variable t of the diffracted Green’s function can

be defined as
Ĝd(r, r ′; t) =

∫
Γη

dz e−iztGd(r, r ′; z) , (4)

where Γη is the line parallel to the real axis of complex frequencies z = ω + iη, with real part ω
describing R and imaginary part set to the positive number η. It is stressed that the integral (4)
is well-defined for all t, which results from the following property of the permittivity [22]:∫
R

dω
��ε(ω + iη) − ε0

�� < ∞. The resulting time-dependent function (4) is the Green’s function
generated by the spatio-temporal Dirac source δ(r − r ′)δ(t).
The evaluation of the integral expression (4) is based on the remark [Eq. (3)] stating that the

Green’s functions G(r, r ′; z) and Gref(r, r ′; z) tend to the free one G0(r, r ′; z) when z →∞, so
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that the exponential behavior of the Green’s functions G(r, r ′; z) and Gref(r, r ′; z) at high
frequencies is governed by eiz |r−r

′ |/c , where c = 1/√ε0µ0 is the light velocity in vacuum. Hence
it appears reasonable to make this first assumption (I):

Gd(r, r ′; z) × e−izτ e−iz |r−r
′ |/c −→

z→∞
0 . (5)

When the complex frequency z has a positive imaginary part, this assumption is always true
for τ = 0, while when z has negative imaginary part, it could be necessary to consider the
arbitrary small time τ > 0, to ensure the vanishing behavior at the limit z → ∞. A second
assumption (II) is based on the bound nature of the resonator and of the difference of permittivities
∆ε(r, z) = ε(r, z) − εref(r, z). Under this condition, it can be assumed that the diffracted Green’s
function Gd(r, r ′; z), which corresponds to the scattering operator [23], has only a discrete set of
resonances {zq} located in the lower half plane of complex frequencies (arguments based on the
analytic Fredholm theorem [24] or a boundary integral expression of the scattering operator [23]
can be used to support this assumption).

The time-dependent Green’s function (4) is evaluated considering the two following cases. For
t < |r − r ′ |/c, the line Γη is deformed in the upper half plane of complex frequencies, i.e. with
positive imaginary part, leading to Ĝd(r, r ′, t) = 0, since all the Green’s functions are analytic
in this domain. For t > τ + |r − r ′ |/c, the line Γη is deformed in the lower half plane and the
Green’s function is given by the contributions of the set of poles {zq}:

Ĝd(r, r ′, t) = −2iπ
∑

{poles zq }
e−izq t Gq

d
(r, r ′, zq) , (6)

where Gq
d
(r, r ′, zq) is the residue of the function Gd(r, r ′, z) at its pole zq . The application of

the residue theorem is justified by the assumption (I) that ensures the vanishing value of the
integral (4) on an infinite semi-circle in the lower half plane.

Finally, the harmonic Green’s function is retrieved by applying the inverse Laplace transform
to the expression (6). For an arbitrary small τ and for a frequency z with positive imaginary part,
the following function is defined:

G̃τ,d(r, r ′; z) = 1
2π

∫ ∞

τ+ |r−r ′ |/c
dt eizt Ĝd(r, r ′, t) . (7)

Notice that the arbitrary small time τ, introduced to ensure the vanishing limit (5), leads to avoid
the time τ at the start of the time-dependent Green’s function in the Laplace transform (7). It
can be shown that the resulting function G̃τ,d(r, r ′; z) tends to the required Green’s function
Gd(r, r ′; z) when τ tends to zero since the time-dependent function Ĝd(r, r ′; t) is bounded with
respect to time t. Hence the diffracted Green’s function can be expressed as an expansion of the
complex resonances (or QNMs):

Gd(r, r ′; z) = lim
τ→0

∑
{poles zq }

Gq
d
(r, r ′, zq)
z − zq

ei(z−zq ) (τ+ |r−r
′ |/c) . (8)

This QNMs expansion is derived using complex analysis while taking into consideration the
causality principle that appears in the lower limit of the integral in Eq. (7), which ensures that
this QNMs expansion cannot lead to an exponential increasing behavior. This can be checked
remarking that each residue Gq

d
(r, r ′, zq) is damped by the factor ei(z−zq ) |r−r

′ |/c , which allows
the representation of the diffracted field in the whole space, inside and outside the resonator.
Furthermore, the set of QNMs of the scattering operator forms a complete set for the diffracted
field since the Green’s function has been expanded using solely these modes and without the
continuum associated to the infinite reference system. However, as it will be observed afterwards,
the convergence of the QNMs expansion above may appear slow for τ → 0. This may require a
special attention to use a reasonable number of QNMs in practice.
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3. Test case: 1D dispersive resonator

Fig. 1. A one-dimensional resonator made of a homogeneous dispersive material is excited
by a harmonic source located at x0. This interaction results in diffracted fields both in the
forward (transmission) and backward (reflection) directions.

To test the validity of the derived QNMs expansion a simple one-dimensional example is shown
in Fig. 1 for a homogeneous medium of thickness L centered at the origin x = 0, with a relative
permittivity given by the Lorentz model ε(z) = 1−Ω2/(z2 −ω2

0 + izγ), where ω0 is the medium
resonance frequency, γ is the absorption parameter, and Ω is related to the electron density. This
medium is surrounded by vacuum and hence acts as a Fabry-Pérot resonator.

The resonator is excited by a harmonic source of frequency z located at x0 which generates the
incident electric field Es(x, z) = eiz |x−x0 |/ceiz(x0+L/2)/c , normalized to unity at the input interface
x = −L/2 of the resonator. The total electric field in the whole space is given by the exact
formulation [25]:

ER(x, z) = Es(x, z) + R(z) e−iz(x+L/2)/c x ≤ −L/2 ,

Ein(x, z) = A(z) eiz
√
ε(z)x/c + B(z) e−iz

√
ε(z)x/c |x | ≤ L/2 ,

ET (x, z) = T(z) eiz(x−L/2)/c x ≥ L/2 ,
(9)

where T(z) and R(z) are the transmission and the reflection coefficients of the dispersive resonator,
and A(z) and B(z) can be uniquely determined by matching the fields at the two resonator
interfaces. The Green’s function of the resonator can hence be analytically obtained for the case
presented in Fig. 1. To begin with, the transmission function is given as [25]

T(z) =
[1 − r2

0 (z)] e
iz
√
ε(z)L/c

1 − r2
0 (z) e

2iz
√
ε(z)L/c

, r0(z) =
1 −

√
ε(z)

1 +
√
ε(z)

. (10)

It has been proven that T(z) is an even function of the square root of the permittivity [21], hence
it contains no branch-cut. Then, in order to use the QNMs expansion (8), the conditions (3) and
(5) have to be satisfied. For the transmitted part of the field, the general derivation is applied to
the function

GT (x, z) =
T(z)

z
eiz(x−L/2)/c x ≥ L/2 . (11)

It can be checked that the expression (11) satisfies Eqs. (3) and (5) and thus the validity of
Eq. (8) is guaranteed. The set of poles {0, zq : T−1(z = zq) = 0} and the corresponding residues
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Tq(zq) have been estimated and computed in Ref. [21]. The transmitted field expansion is then

ET (x, z) = z
∑
zq

Tq(zq) eizq (x−L/2)/c

zq (z − zq)
ei(z−zq )(x+L/2)/c

+ T0 eiz(x+L/2)/c ,

(12)

where T0 = T(z = 0) = 1. Hence it is found that the series above equals the difference
ET (x, z) − eiz(x+L/2)/c which is precisely the diffracted field in the half-space x > L/2. It can be
noticed that the additional causality-related factor cancels the exponential growing term in the
residue expression which ensures the absence of exponential growing: the terms that describe
the transmitted field outside the resonator (of x-dependency) appear as a function oscillating at
the excitation frequency z only, as in [18]:

ET (x, z) − eiz(x+L/2)/c = z
∑
zq

Tq(zq) e−izqL/c

zq (z − zq)
eiz(x+L/2)/c . (13)

Similarly, the reflection coefficient is given by [25]

R(z) = r0(z)
1 − e2iz

√
ε(z) L/c

1 − r2
0 (z) e

2iz
√
ε(z) L/c

. (14)

The reflection coefficient R(z) is also an even function of
√
ε(z) and hence its spectrum is

restricted to a discrete set of resonances. For the reflected part of the field, the following function
is considered

GR(x, z) =
R(z)

z
e−iz (x+L/2)/c e−izτ x ≤ −L/2 . (15)

The infinitesimal time τ > 0 is introduced to ensure that the conditions (3) and (5) are satisfied.
Therefore, the QNMs expansion (8) is valid and the reflected field expansion is

ER(x, z) = Es(x, z) + z
∑
zq

Rq(zq)
zq (z − zq)

e−iz(x+L/2)/c ei(z−zq )τ , (16)

where the poles zq of the function R(z) are the same asT(z), since they share the same denominator,
and Rq(zq) are the residues of the function R(z) at its poles. Notice that the pole at z = 0 has no
contribution since R(0) = 0. The expression (16) shows no exponential growth for the reflected
fields.
Figure 2 shows the transmission function T(z) and the reflection function R(z) both using

the exact expression (9) and the QNMs expansion (12) at x = L/2 for T(z), and Eq. (16) at
x = −L/2 for R(z) while subtracting the incident field term. The given test case is for a Lorentz
medium of parameters ω0L/c = 10, γL/c = 0.2, and ΩL/c = 20, and for below-resonance
excitation with unity amplitude |Es | = 1. The parameter τc/L is set to 0.1 for the presented
simulation.
The convergence analysis is also presented while the results of the exact formulation and

the QNMs expansions calculations show an excellent agreement, if enough summation terms
are included. As mention earlier, this parameter τ ensure the condition (5) at the expense of
introducing a small error. It is possible to decrease the value of τ, however, the number of modes
needed to ensure the convergence is increased accordingly.

The field distribution, outside as well as inside the resonator, of the given test case is presented
in Fig. 3 for a near-resonance excitation at ωsL/c = 8. The results are shown for both the
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Fig. 2. A comparison between the results of the exact formulas (solid lines) of T(z) and R(z)
and their corresponding QNMs expansion (dashed lines) for below-resonance excitation
ωs < ω0. The results are shown for different numbers of summation terms of the expansion.

Fig. 3. Top) The field distribution of a Lorentz-dispersive resonator of parameters ω0L/c =
10, γL/c = 0.2, ΩL/c = 20, and for a near-resonance harmonic excitation at frequency
ωsL/c = 8. The result of the QNMs expansion using 31 modes perfectly matches the exact
formula. Bottom) The field distribution of the five nearest QNMs to the excitation frequency.
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exact formulation (9) and the QNMs expansion [Eqs. (13, 16)]. The field inside the cavity is
determined by the field continuity at the two interfaces of the resonator, i.e., the residues Aq(zq)
and Bq(zq) are derived from Tq(zq) and Rq(zq) by continuity, provided that each “conventional”
QNM—before the regularization factor ei(z−zq ) |x+L/2 |/c is introduced by Eq. (8)— is a mode
of the Helmholtz equation. The results of the QNMs expansion perfectly match the exact
formulation, with a less than 2% error using 31 QNMs, and show no divergence outside the
resonator and therefore validate the proposed approach. Figure 3 also shows the field distribution
of the five nearest QNMs to the excitation frequency where the mode 0 is the central mode (the
dominant mode) with the closest real frequency part to ωs .
Figure 4 explicitly identifies the crucial result of this article. The conventional QNMs

formulation is compared to the QNMs derived taken into account the causality [Eq. (8)]. The
field distribution of two QNMs from the previous example is plotted up to a large distance
from the resonator. The QNMs derived using causal Green’s function show no divergence
behavior, as predicted by the calculations, on the contrary to the “conventional” QNMs without
the causality-related regularization factor. That finally proves that taking into account the
causality principle enables the construction of well-behaved QNMs that can accurately describe
the behavior of open systems.

Fig. 4. A comparison between the field distribution of QNMs formulation with the additional
causality-related factor (solid lines) that shows no divergence outside the resonator, and the
conventional QNMs formulation (dashed lines) that exhibits a divergence behavior. The
results are shown for the two nearest QNMs to the excitation frequency of the example in
Fig. 3.

Fig. 5. The exact formula for T(z) and its corresponding QNMs expansion for different
excitation regions. The results are shown for different numbers of summation terms in
dashed lines.
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It is worthy to note that the convergence is even slower for the excitation around the resonance
frequency ω0 and above, as it can be observed for the transmission coefficient on Fig. 5. That
is due to the infinite number of modes around the resonance ω0 [21] and to the divergence of
the residues Tq and Rq as ε(z)→1. This divergence is then compensated by the 1/zq factor in
Eq. (12), but in this case it is needed to include many summation terms to ensure convergence.

4. Conclusion

The quasi-normal modes (QNMs) expansion of the Green’s function is derived using complex
analysis and taking into consideration the frequency dispersion, the causality principle and thus
the finite velocity of electromagnetic waves. The resulting formulation of the QNMs expansion
shows no divergence of the fields when |r | → ∞, leading to the construction of well-behaved
modes of the open system that are able to accurately describe the fields distribution inside and
outside the open resonator. In this approach, the regularization process (the additional factor) is
intrinsic and appears when the QNMs are redefined using the causal Green’s function formulation.
A simple one-dimensional homogeneous absorptive medium with a Lorentz frequency dispersion
is considered to validate the general derivation and the arguments on which it is based. The fields
evaluated using the QNMs expansion, inside and outside the resonator, perfectly match the exact
expressions if enough summation terms are considered. These results bring new elements to
show that the QNMs can form a complete set to express in the whole space the electromagnetic
fields diffracted by dispersive and absorptive materials. The general derivation is applicable to
systems with a discrete set of resonances like bounded scatterers in two and three dimensions.
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