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GLOBAL NULL-CONTROLLABILITY AND

NONNEGATIVE-CONTROLLABILITY OF SLIGHTLY

SUPERLINEAR HEAT EQUATIONS

KÉVIN LE BALC’H

Abstract. We consider the semilinear heat equation posed on a smooth bounded
domain Ω of R

N with Dirichlet or Neumann boundary conditions. The con-
trol input is a source term localized in some arbitrary nonempty open subset
ω of Ω. The goal of this paper is to prove the uniform large time global null-
controllability for semilinearities f(s) = ±|s| logα(2 + |s|) where α ∈ [3/2, 2)
which is the case left open by Enrique Fernandez-Cara and Enrique Zuazua in
2000. It is worth mentioning that the free solution (without control) can blow-up.
First, we establish the small-time global nonnegative-controllability (respectively
nonpositive-controllability) of the system, i.e., one can steer any initial data to
a nonnegative (respectively nonpositive) state in arbitrary time. In particular,
one can act locally thanks to the control term in order to prevent the blow-up
from happening. The proof relies on precise observability estimates for the linear
heat equation with a bounded potential a(t, x). More precisely, we show that

observability holds with a sharp constant of the order exp
(

C ‖a‖1/2
∞

)

for nonneg-

ative initial data. This inequality comes from a new L1 Carleman estimate. A
Kakutani-Leray-Schauder’s fixed point argument enables to go back to the semi-
linear heat equation. Secondly, the uniform large time null-controllability result
comes from three ingredients: the global nonnegative-controllability, a compari-
son principle between the free solution and the solution to the underlying ordinary
differential equation which provides the convergence of the free solution toward 0
in L∞(Ω)-norm, and the local null-controllability of the semilinear heat equation.
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1. Introduction

Let T > 0, N ∈ N
∗, Ω be a bounded, connected, open subset of RN of class C2 and

n be the outer unit normal vector to ∂Ω. We consider the semilinear heat equation
with Neumann boundary conditions:

(1)





∂ty −∆y + f(y) = h1ω in (0, T ) × Ω,
∂y
∂n = 0 on (0, T ) × ∂Ω,
y(0, .) = y0 in Ω,

where f ∈ C1(R;R).

Remark 1.1. All our results stay valid for Dirichlet boundary conditions (see Sec-
tion 7).

In (1), y = y(t, .) : Ω→ R is the state to be controlled and h = h(t, .) : Ω → R is
the control input supported in ω, a nonempty open subset of Ω.

We assume that f satisfies

(2) f(0) = 0.

In this case, y = 0 solves (1) with y0 = 0 and h = 0.
In the following, we will also assume that f satisfies the restrictive growth condition

(3) ∃α > 0,
f(s)

|s| logα(1 + |s|)
→ 0 as |s| → +∞.

Under the hypothesis (3), blow-up may occur if h = 0 in (1). Take for example
f(s) = −|s| logα(1 + |s|) with α > 1. The mathematical theory of blow-up for

(4)





∂ty −∆y = |y| logα(1 + |y|) in (0, T ) × Ω,
y = 0 on (0, T ) × ∂Ω,
y(0, .) = y0 in Ω,

was established in [24] and [25]. It was shown that blow-up

• occurs globally in the whole domain Ω if α < 2,
• is of pointwise nature if α > 2,
• is ‘regional ’, i.e., it occurs in an open subset of Ω if α = 2.

See [26, Section 2 and Section 5] for a survey on this problem.
The goal of this paper is to analyze the null-controllability properties of (1).
Let us define QT := (0, T ) × Ω. We recall two classical definitions of null-

controllability.

Definition 1.2. Let T > 0. The system (1) is

• globally null-controllable in time T if for every y0 ∈ L∞(Ω), there exists
h ∈ L∞(QT ) such that the solution y of (1) satisfies y(T, .) = 0.
• locally null-controllable in time T if there exists δT > 0 such that for every
y0 ∈ L

∞(Ω) verifying ‖y0‖L∞(Ω) ≤ δT , there exists h ∈ L∞(QT ) such that

the solution y of (1) satisfies y(T, .) = 0.

We have the following well-known local null-controllability result.

Theorem 1.3. For every T > 0, (1) is locally null-controllable in time T .
2



The proof of Theorem 1.3 is a consequence of the (global) null-controllability of
the linear heat equation with a bounded potential (due to Andrei Fursikov and Oleg
Imanuvilov, see [23] or [21, Theorem 1.5]) and the small L∞ perturbations method
(see [3, Lemma 6] and [1], [5], [30], [33], [40] for other results in this direction).

The following global null-controllability (positive) result has been proved inde-
pendently by Enrique Fernandez-Cara, Enrique Zuazua (see [22, Theorem 1.2]) and
Viorel Barbu under a sign condition (see [4, Theorem 2] or [6, Theorem 3.6]) for
Dirichlet boundary conditions. It has been extended to semilinearities which can
depend on the gradient of the state and to Robin boundary conditions (then to Neu-
mann boundary conditions) by Enrique Fernandez-Cara, Manuel Gonzalez-Burgos,
Sergio Guerrero and Jean-Pierre Puel in [19] (see also [13] for the Dirichlet case).

Theorem 1.4. [19, Theorem 1]
We assume that (3) holds for α ≤ 3/2. Then, for every T > 0, (1) is globally
null-controllable in time T .

Remark 1.5. Historically, the first global null-controllability (positive) result for
(1) with f satisfying (3) was proved by Enrique Fernandez-Cara in [17] for α ≤ 1
and for Dirichlet boundary conditions.

The following global null-controllability (negative) result has been proved by En-
rique Fernandez-Cara, Enrique Zuazua (see [22]).

Theorem 1.6. [22, Theorem 1.1]

We set f(s) :=
∫ |s|
0 logp(1 + σ)dσ with p > 2 and we assume that Ω \ ω 6= ∅. Then,

for every T > 0, there exists an initial datum y0 ∈ L∞(Ω) such that for every
h ∈ L∞(QT ), the maximal solution y of (1) blows-up in time T ∗ < T .

Remark 1.7. Such a function f does satisfy (3) for any α > p because |f(s)| ∼
|s| logp(1 + |s|) as |s| → +∞. Then, Theorem 1.6 shows that (1) can fail to be null-
controllable for every T > 0 under the hypothesis (3) with α > 2. Theorem 1.6 comes
from a localized estimate in Ω \ ω that shows that the control cannot compensate
the blow-up phenomena occurring in Ω \ ω (see [22, Section 2]).

When the nonlinear term f is dissipative, i.e., sf(s) ≥ 0 for every s ∈ R, then
blow-up cannot occur. Furthermore, such a nonlinearity produces energy decay for
the uncontrolled equation, therefore naively one may be led to believe that it can
help in steering the solution to zero in arbitrary short time. The results of Sebastian
Anita and Daniel Tataru show that this is false, more precisely that for ‘strongly’
superlinear f one needs a sufficiently large time in order to bring the solution to
zero. An intuitive explanation for this is that the nonlinearity is also damping the
effect of the control as it expands from the controlled region into the uncontrolled
region (see [3]).

Theorem 1.8. [3, Theorem 3]
We set f(s) := s logp(1 + |s|) with p > 2 and we assume that Ω \ω 6= ∅. Then, there
exist x0 ∈ Ω \ ω, T0 ∈ (0, 1) such that for every T ∈ (0, T0), h ∈ L∞(QT ), there
exists y0 ∈ L

∞(Ω) such that the solution y to (1) satisfies y(T, x0) < 0.

Remark 1.9. In particular, for such a f as in Theorem 1.8, (1) is not globally null-
controllable in small time T . Theorem 1.8 is due to pointwise upper bounds on the
solution y of (1) which are independent of the control h (see [3, Section 3]).

2. Main results

2.1. Small-time global nonnegative-controllability. We introduce a new con-
cept of controllability.
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Definition 2.1. Let T > 0. The system (1) is globally nonnegative-controllable
(respectively globally nonpositive-controllable) in time T if for every y0 ∈ L∞(Ω),
there exists h ∈ L∞(QT ) such that the solution y of (1) satisfies

(5) y(T, .) ≥ 0 (respectively y(T, .) ≤ 0).

The first main result of this paper is a small-time global nonnegative-controllability
result for (1).

Theorem 2.2. We assume that (3) holds for α ≤ 2 and f(s) ≥ 0 for s ≥ 0 (re-
spectively f(s) ≤ 0 for s ≤ 0). Then, for every T > 0, (1) is globally nonnegative-
controllable (respectively globally nonpositive-controllable) in time T .

Remark 2.3. Theorem 2.2 is almost sharp because it does not hold for α > 2
according to Theorem 1.8. The case where |f(s)| ∼ |s| log2(1 + |s|) as |s| → +∞ is
open.

Remark 2.4. Theorem 2.2 does not treat the case f(s) = −s logp(1+ |s|) with p < 2
because of the sign condition.

2.2. Large time global null-controllability. The second main result of this paper
is the following one.

Theorem 2.5. We assume that (3) holds for α ≤ 2, f(s) > 0 for s > 0 or f(s) < 0
for s < 0 and 1/f ∈ L1([1,+∞)). Then, there exists T sufficiently large such that
(1) is globally null-controllable in time T .

Remark 2.6. Theorem 2.5 proves that Theorem 1.6 is almost sharp. Indeed, let

us take f(s) =
∫ |s|
0 logp(1 + σ)dσ with p < 2, then by Theorem 2.5, there exists T

sufficiently large such that (1) is globally null-controllable in time T . In particular,
one can find a localized control which prevents the blow-up from happening. The

case f(s) =
∫ |s|
0 log2(1 + σ)dσ is open.

Remark 2.7. Theorem 2.5 does not treat the case f(s) = −s logp(1+ |s|) with p < 2
because of the sign condition.

Remark 2.8. The small-time global null-controllability of (1) remains open when
(3) holds for 3/2 < α ≤ 2.

2.3. Proof strategy of the small-time global nonnegative-controllability.
We will only prove the global nonnegative-controllability result. The nonpositive-
controllability result is an easy adaptation.

The proof strategy of Theorem 2.2 will follow Enrique Fernandez-Cara and Enrique
Zuazua’s proof of Theorem 1.4 (see [22]).

The starting point is to get some precise observability estimates for the linear heat
equation with a bounded potential a(t, x) for nonnegative initial data. More precisely,

we show that observability holds with a sharp constant of the order exp
(
C ‖a‖1/2∞

)

for nonnegative initial data (see Theorem 4.4 below). This is done thanks to a new
Carleman estimate in L1 (see Theorem 4.9 below). This leads to a nonnegative-
controllability result in L∞ in the linear case with an estimate of the control cost

of the order exp
(
C ‖a‖1/2∞

)
which is the key point of the proof (see Theorem 4.1

below).
We end the proof of Theorem 2.2 by a Kakutani-Leray-Schauder’s fixed-point

strategy. The idea of taking short control times to avoid blow-up phenomena is
the same as in [22] and references therein. More precisely, the construction of the
control follows two steps. The first step consists in steering the solution y of (1) to
y(T ∗, .) ≥ 0 in time T ∗ ≤ T with an appropriate choice of the control. Then, the two
conditions: f(0) = 0 and the dissipativity of f in R

+ imply that the free solution
y of (1) (with h = 0) defined in (T ∗, T ) stays nonnegative and bounded by using a
comparison principle (see Section 5).

4



2.4. Proof strategy of the large time global null-controllability. We will only
treat the case where f(s) > 0 for s > 0. The other case, i.e., f(s) < 0 for s < 0 is
an easy adaptation.

The proof strategy of Theorem 2.5 is divided into three steps.
First, for every initial data y0 ∈ L

∞(Ω), one can steer the solution y of (1) in time
T1 := 1 (for instance) to a nonnegative state by using Theorem 2.2.

Secondly, we let evolve the system without control and we remark that

∀(t, x) ∈ [T1,+∞)× Ω, 0 ≤ y(t, x) ≤ G(t),

with G independent of ‖y(T1, .)‖L∞(Ω) and G(t) → 0 when t → +∞. This kind of

argument has already been used by Jean-Michel Coron in the context of the Burgers
equation (see [10, Theorem 8]).

Finally, by using the second step, for T2 sufficiently large, y(T2, .) belongs to a
small ball of L∞(Ω) centered at 0, where the local null-controllability holds (see
Theorem 1.3). Then, one can steer y(T2, .) to 0 with an appropriate choice of the
control.

3. Parabolic equations: Well-posedness and regularity

The goal of this section is to state well-posedness results, dissipativity in time
in Lp-norm, maximum principle and Lp-Lq estimates for linear parabolic equations.
We also give the definition of a solution to the semilinear heat equation (1). The
references of these results only treat the case of Dirichlet boundary conditions but
the proofs can be easily adapted to Neumann boundary conditions.

3.1. Well-posedness. We introduce the functional space

(6) WT := L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

which satisfies the following embedding (see [15, Section 5.9.2, Theorem 3])

(7) WT →֒ C([0, T ];L2(Ω)).

3.1.1. Linear parabolic equations.

Definition 3.1. Let a ∈ L∞(QT ), F ∈ L
2(QT ) and y0 ∈ L

2(Ω). A function y ∈WT

is a solution to

(8)





∂ty −∆y + a(t, x)y = F in (0, T ) × Ω,
∂y
∂n = 0 on (0, T ) × ∂Ω,
y(0, .) = y0 in Ω,

if for every w ∈ L2(0, T ;H1(Ω)),

(9)

∫ T

0
(∂ty,w)((H1(Ω))′,H1(Ω)) +

∫

QT

∇y.∇w +

∫

QT

ayw =

∫

QT

Fw,

and

(10) y(0, .) = y0 in L2(Ω).

The following well-posedness result in L2 holds for linear parabolic equations.

Proposition 3.2. Let a ∈ L∞(QT ), F ∈ L2(QT ) and y0 ∈ L2(Ω). The Cauchy
problem (8) admits a unique weak solution y ∈WT . Moreover, there
exists C = C(Ω) > 0 such that

(11) ‖y‖WT
≤ C exp

(
CT ‖a‖L∞(QT )

)(
‖y0‖L2(Ω) + ‖F‖L2(QT )

)
.

The proof of Proposition 3.2 is based on Galerkin approximations, energy estimates
and Gronwall’s argument (see [15, Section 7.1.2]).

We also have the following classical L∞-estimate for (8).
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Proposition 3.3. Let a ∈ L∞(QT ), F ∈ L∞(QT ) and y0 ∈ L∞(Ω). Then the
solution y of (8) belongs to L∞(QT ) and there exists C = C(Ω) > 0 such that

(12) ‖y‖L∞(QT ) ≤ C exp
(
CT ‖a‖L∞(QT )

)(
‖y0‖L∞(Ω) + ‖F‖L∞(QT )

)
.

The proof of Proposition 3.3 is based on Stampacchia’s method (see the proof of
[28, Chapter 3, Paragraph 7, Theorem 7.1]).

Let us also mention the dissipativity in time of the Lp-norm of the heat equation
with a bounded potential.

Proposition 3.4. Let a ∈ L∞(QT ), y0 ∈ L
2(Ω) and t1 < t2 ∈ [0, T ]. Then, there

exists C = C(Ω) > 0 such that the solution y ∈ WT of (8) with F = 0, satisfies for
every p ∈ [1, 2],

(13) ‖y(t2, .)‖Lp(Ω) ≤ C exp
(
CT ‖a‖L∞(QT )

)
‖y(t1, .)‖Lp(Ω) .

The proof of Proposition 3.4 is based on the application of the variational formu-
lation (9) with a cut-off of w = |y|p−2y and a Gronwall’s argument.

3.1.2. Nonlinear parabolic equations. We give the definition of a solution of (1).

Definition 3.5. Let y0 ∈ L
∞(Ω), h ∈ L∞(QT ). A function y ∈ WT ∩ L

∞(QT ) is
the solution of (1) if for every w ∈ L2(0, T ;H1(Ω)),

∫ T

0
(∂ty,w)((H1(Ω))′,H1(Ω)) +

∫

QT

∇y.∇w +

∫

QT

ayw =

∫

QT

(f(y) + h1ω)w,(14)

and

(15) y(0, .) = y0 in L∞(Ω).

The uniqueness of a solution to (1) is an easy consequence of the fact that f is
locally Lipschitz because f ∈ C1(R;R).

3.2. Maximum principle. We state the maximum principle for the heat equation.

Proposition 3.6. Let a ∈ L∞(QT ), F ≤ G ∈ L2(QT ) and y0 ≤ z0 ∈ L
2(Ω). Let y

and z be the solutions to

(16)





∂ty −∆y + a(t, x)y = F,
∂y
∂n

= 0,
y(0, .) = y0,





∂tz −∆z + a(t, x)z = G in (0, T )× Ω,
∂z
∂n

= 0 on (0, T )× ∂Ω,
z(0, .) = z0 in Ω.

Then, we have the comparison principle

(17) ∀t ∈ [0, T ], a.e. x ∈ Ω, y(t, x) ≤ z(t, x).

The proof of Proposition 3.6 is based on the comparison principle for smooth
solutions of (16) (see [41, Theorem 8.1.6]) and a regularization argument.

We state a comparison principle for the semilinear heat equation (1) without
control h.

Proposition 3.7. Let y0 ∈ L
∞(Ω), h = 0. We assume that there exist a subsolution

y and a supersolution y in L∞(QT ) of (1), i.e., y (respectively y) satisfies (14),
(15) replacing the equality = by the inequality ≤ (respectively by the inequality ≥).
Moreover, we suppose that y and y are ordered in the following sense

∀t ∈ [0, T ], a.e. x ∈ Ω, y(t, x) ≤ y(t, x).

Then, there exists a (unique) solution y of (1). Moreover, y satisfies the comparison
principle

(18) ∀t ∈ [0, T ], a.e. x ∈ Ω, y(t, x) ≤ y(t, x) ≤ y(t, x).

For the proof of Proposition 3.7, see [41, Corollary 12.1.1].
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3.3. Lp-Lq estimates. We have the well-known regularizing effect of the heat semi-
group.

Proposition 3.8. [8, Proposition 3.5.7]
Let 1 ≤ q ≤ p ≤ +∞, y0 ∈ L

2(Ω) and y be the solution to (8) with (a, F ) = (0, 0).
Then, there exists C = C(Ω, p, q) > 0 such that for every t1 < t2 ∈ (0, T ), we have

(19) ‖y(t2, .)‖Lp(Ω) ≤ C(t2 − t1)
−N

2

(
1
q
− 1

p

)

‖y(t1, .)‖Lq(Ω)

4. Global nonnegative-controllability of the linear heat equation

with a bounded potential

4.1. Statement of the result. Let a ∈ L∞(QT ). We consider the heat equation
with a bounded potential

(20)





∂ty −∆y + a(t, x)y = h1ω in (0, T )× Ω,
∂y
∂n = 0 on (0, T )× ∂Ω,
y(0, .) = y0 in Ω,

and the following adjoint equation

(21)




−∂tq −∆q + a(t, x)q = 0 in (0, T )× Ω,
∂q
∂n = 0 on (0, T )× ∂Ω,
q(T, .) = qT in Ω.

The goal of this section is to prove the following theorem.

Theorem 4.1. For every T > 0, (20) is globally nonnegative-controllable in time T .
More precisely, for every T > 0, there exists C = C(Ω, ω, T, a) > 0, with

C(Ω, ω, T, a) = exp

(
C(Ω, ω)

(
1 +

1

T
+ T ‖a‖L∞(QT ) + ‖a‖

1/2
L∞(QT )

))
(22)

such that for every y0 ∈ L
2(Ω), there exists h ∈ L∞(QT ) such that

(23) ‖h‖L∞(QT ) ≤ C(Ω, ω, T, a) ‖y0‖L2(Ω) ,

and

(24) y(T, .) ≥ 0.

Remark 4.2. Actually, by looking carefully at the proof of Theorem 4.1 (see Sec-
tion 4.5 below), we can see that the control h in Theorem 4.1 can be chosen constant
in the time and the space variables.

Remark 4.3. It is well-known that (20) is globally nonnegative-controllable in time
T because it is globally null-controllable in time T (see [20, Theorem 2]) but the most
interesting point is the cost of nonnegative-controllability given in Theorem 4.1. In

particular, the exponent 1/2 of the term ‖a‖
1/2
L∞(QT ) will be the key point to prove

Theorem 2.2 (see Section 5).

4.2. A precise L2-L1 observability inequality for the linear heat equation
with bounded potential and nonnegative initial data. The proof of Theo-
rem 4.1 is a consequence of this kind of observability inequality.

Theorem 4.4. For every T > 0, there exists C = C(Ω, ω, T, a) > 0 of the form (22)
such that for every qT ∈ L

2(Ω;R+), the solution q to (21) satisfies

(25) ‖q(0, .)‖2L2(Ω) ≤ C

(∫ T

0

∫

ω
qdxdt

)2

.

An immediate corollary of Theorem 4.4 is this observability inequality L2-L2 that
we state to discuss it below, but that will not be used in the present article.

7



Corollary 4.5. For every T > 0, there exists C = C(Ω, ω, T, a) > 0 of the form
(22) such that for every qT ∈ L

2(Ω;R+) the solution q to (21) satisfies

(26) ‖q(0, .)‖2L2(Ω) ≤ C

(∫ T

0

∫

ω
q2dxdt

)
.

It is well-known that null-controllability in L2 is equivalent to an observability
inequality in L2 for every qT ∈ L

2(Ω;R) (see [9, Theorem 2.44]). The main idea be-
hind Corollary 4.5 is the fact that nonnegative-controllability in L2 is a consequence
of an observability inequality in L2 for every qT ∈ L

2(Ω;R+) (see Section 4.5).

Remark 4.6. It is interesting to mention that (26) holds with C of the form

C(Ω, ω, T, a) = exp

(
C(Ω, ω)

(
1 +

1

T
+ T ‖a‖L∞(QT ) + ‖a‖

2/3
L∞(QT )

))
(27)

for every qT ∈ L2(Ω;R) (see [20, Theorem 2]). The exponent 2/3 of the term

‖a‖
2/3
L∞(QT ) is the key point to prove Theorem 1.4. Note that the optimality of

the exponent 2/3 has been proved by Thomas Duyckaerts, Xu Zhang and Enrique
Zuazua in the context of parabolic systems in even space dimensions N ≥ 2 and
with Dirichlet boundary conditions (see [14, Theorem 1.1] and also [44, Theorem
5.2] for the main arguments of the proof). Corollary 4.5 shows that we can actually
decrease the exponent 2/3 to the exponent 1/2 for nonnegative initial data. In some
sense, we can make the connection between the recent preprint of Camille Laurent
and Matthieu Léautaud who disprove the Miller’s conjecture about the short-time
observability constant of the heat equation in the general case and show that the
conjecture holds true for nonnegative initial data by using Li-Yau estimates (see [29]
and [32]).

Remark 4.7. In the context of the wave equation in one space dimension, the
(optimal) constant of observability inequality for the linear wave equation with a

bounded potential is actually exp
(
C
(
1 + ‖a‖

1/2
L∞(QT )

))
(see [42, Theorem 4]) which

leads to the exact controllability of the semilinear wave equation in large time for
semilinearities satisfying (3) with α < 2 (see [42, Theorem 1] and also [7, Problem
5.5] for the presentation of the related open problem in the multidimensional case).
Roughly speaking, as an ordinary differential argument would indicate, this constant
of observability inequality is very natural because the wave operator is of order two in
the time and the space variables. Then, by analogy and by taking into account that
the heat operator is of order one in the time variable and of order two in the space
variable, one could rather expect a constant of obervability inequality of the order

exp
(
C ‖a‖L∞(QT )

)
or exp

(
C ‖a‖

1/2
L∞(QT )

)
which seem to be more intuitive than the

term exp
(
C ‖a‖

2/3
L∞(QT )

)
.

4.3. A new L1 Carleman estimate. The goal of this section is to establish a L1

Carleman estimate for nonnegative initial data (see Theorem 4.9 below). First, we
introduce some classical weight functions for proving Carleman inequalities.

Lemma 4.8. Let ω0 ⊂⊂ ω be a nonempty open subset. Then there exists η0 ∈ C2(Ω)

such that η0 > 0 in Ω, η0 = 0 in ∂Ω, and |∇η0| > 0 in Ω \ ω0.

A proof of this lemma can be found in [9, Lemma 2.68].
Let ω0 be a nonempty open set satisfying ω0 ⊂⊂ ω and let us set

(28) α(t, x) :=
e2λ‖η

0‖
∞ − eλη

0(x)

t(T − t)
,

(29) ξ(t, x) :=
eλη

0(x)

t(T − t)
,
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for (t, x) ∈ QT , where η0 is the function provided by Lemma 4.8 for this ω0 and
λ ≥ 1 is a parameter.

We have the following new L1 Carleman estimate.

Theorem 4.9. There exist two constants C := C(Ω, ω) > 0 and C1 := C1(Ω, ω) > 0,
such that,

(30) ∀λ ≥ 1, ∀s ≥ s1(λ) := C(Ω, ω)e4λ‖η
0‖

∞

(
T + T 2 + T 2 ‖a‖

1/2
L∞(QT )

)
,

for every qT ∈ L
2(Ω;R+), the nonnegative solution q of (21) satisfies
∫

QT

e−sαξ2qdxdt ≤ C1

∫

(0,T )×ω
e−sαξ2qdxdt.(31)

Proof. Unless otherwise specified, we denote by C various positive constants varying
from line to line which may depend on Ω, ω but independent of the parameters λ
and s.

We introduce other weights which are similar to α and ξ

(32) α̃(t, x) :=
e2λ‖η

0‖
∞ − e−λη0(x)

t(T − t)
,

(33) ξ̃(t, x) :=
e−λη0(x)

t(T − t)
.

The following estimates

(34)

|∂iα| = | − ∂iξ| ≤ Cλξ, |∂iα̃| = | − ∂iξ̃| ≤ Cλξ̃,

|∂tα| ≤ 2Tξ2e2λ‖η
0‖

∞ , |∂tα̃| ≤ 2T ξ̃2e4λ‖η
0‖

∞ ,

ξ(T/2)2 ≥ 1, ξ̃(T/2)2 ≥ e−λ‖η0‖
∞ ,

will be very useful for the proof.
Let qT ∈ C

∞
0 (Ω;R+). The general case comes from an easy density argument by

using the fact that C∞
c (Ω;R+) is dense in L2(Ω;R+) for the L2(Ω;R) topology.

The solution q of (21) is nonnegative by applying the maximum principle given in
Proposition 3.6 with y = 0 and z(t, x) = q(t− T, x).

We define
ψ := e−sαq and ψ̃ := e−sα̃q.

The proof is divided into five steps:

• Step 1: We integrate over (0, T )× Ω an identity satisfied by ψ.
• Step 2: We get an estimate which looks like to (31) up to some boundary

terms.
• Step 3: We repeat the step 1 for ψ̃.

• Step 4: We repeat the step 2 for ψ̃.
• Step 5: We sum the estimates of the step 2 and the step 4 to get rid of the

boundary terms.

Remark 4.10. The ‘trick’ of the proof to get rid of the boundary terms is inspired by
the proof of the usual L2 Carleman estimate for Neumann boundary conditions due to
Andrei Fursikov and Oleg Imanuvilov (see [23, Chapter 1] and also [20, Appendix]).

Step 1: An identity satisfied by ψ. We readily obtain that

(35) Mψ = 0,

where

Mψ = −sλ2|∇η0|2ξψ − 2sλξ∇η0.∇ψ + ∂tψ(36)

+ s2λ2|∇η0|2ξ2ψ +∆ψ + sαtψ − a(t, x)ψ

− sλ∆η0ξψ.
9



Remark 4.11. The starting point, i.e., the identity (35) is the same as in the
classical proof developed by Andrei Fursikov and Oleg Imanuvilov in [23] (see also
[21, Proof of Lemma 1.3] or [31, Section 7]). But, from now, the proof strategy of
the L1-Carleman estimate is very different from the usual one of the L2-Carleman
estimate. Indeed, we will focus on the fourth right hand side term of (36)

s2λ2|∇η0|2ξ2ψ.

It is nonnegative because ψ is nonnegative and it is of order two in the parameter s
whereas the seventh right hand side term of (36)

a(t, x)ψ,

is of order 0 in the parameter s. This comparison suggests to integrate the identity
(35) in order to obtain (31) for λ ≥ 1 and s ≥ s1(λ) as defined in (30).

We integrate (35) over (0, T ) × Ω

(37)

∫

QT

s2λ2|∇η0|2ξ2ψ −

∫

QT

2sλξ∇η0.∇ψ +

∫

QT

∂tψ +

∫

QT

∆ψ

=

∫

QT

sλ2|∇η0|2ξψ −

∫

QT

sαtψ +

∫

QT

a(t, x)ψ

+

∫

QT

sλ∆η0ξψ.

Note that all the terms in (37) are well-defined. Indeed, by using qT ∈ C∞
c (Ω)

and the parabolic regularity in L2 to (21) (see [12, Theorem 2.1]), we deduce that
q ∈ X2 := L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) then ψ ∈ X2.

Step 2: Estimates for ψ. As a consequence of the properties of η0 (see
Lemma 4.8), we have

(38) m := min
{
|∇η0(x)|2 ; x ∈ Ω \ ω0

}
> 0,

which yields
∫

QT

s2λ2|∇η0|2ξ2ψ(39)

≥

∫

(0,T )×(Ω\ω)
s2λ2|∇η0|2ξ2ψ ≥ m

∫

QT

s2λ2ξ2ψ −m

∫

(0,T )×ω
s2λ2ξ2ψ.

By combining (37) and (39), we have

(40)

m

∫

QT

s2λ2ξ2ψ −

∫

QT

2sλξ∇η0.∇ψ +

∫

QT

∂tψ +

∫

QT

∆ψ

≤

∫

QT

sλ2|∇η0|2ξψ +

∫

QT

s|αt|ψ +

∫

QT

|a(t, x)|ψ

+

∫

QT

sλ|∆η0|ξψ +m

∫

(0,T )×ω
s2λ2ξ2ψ.

We have the following integration by parts

−

∫

QT

2sλξ∇η0.∇ψ =

∫

QT

2sλ
(
∇ξ.∇η0ψ + ξ∆η0ψ

)
−

∫

ΣT

2sλξ
∂η0

∂n
ψdσdt,(41)

(42)

∫

QT

∂tψ =

∫

Ω
(ψ(T, .) − ψ(0, .)) = 0,

(43)

∫

QT

∆ψ =

∫

ΣT

∂ψ

∂n
,
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where ΣT := (0, T ) × ∂Ω.
From (40), (41), (42), (43), we have

(44)

m

∫

QT

s2λ2ξ2ψ −

∫

ΣT

2sλξ
∂η0

∂n
ψ +

∫

ΣT

∂ψ

∂n

≤

∫

QT

sλ2|∇η0|2ξψ +

∫

QT

s|αt|ψ +

∫

QT

|a(t, x)|ψ

+

∫

QT

3sλ|∆η0|ξψ +

∫

QT

2sλ|∇ξ||∇η0|ψ +m

∫

(0,T )×ω
s2λ2ξ2ψ.

By using the first two lines of (34) and λ ≥ 1, we have
∫

QT

sλ2|∇η0|2ξψ +

∫

QT

s|αt|ψ +

∫

QT

|a(t, x)|ψ

+

∫

QT

3sλ|∆η0|ξψ +

∫

QT

2sλ|∇ξ||∇η0|ψ

≤ C

(∫

QT

sλ2ξψ +

∫

QT

se2λ‖η
0‖

∞Tξ2ψ +

∫

QT

|a(t, x)|ψ +

∫

QT

sλξψ

)

≤ C

(∫

QT

sλ2ξψ +

∫

QT

se2λ‖η
0‖

∞Tξ2ψ +

∫

QT

|a(t, x)|ψ

)
.

(45)

By combining (44) and (45), we get

(46)

m

∫

QT

s2λ2ξ2ψ −

∫

ΣT

2sλξ
∂η0

∂n
ψ +

∫

ΣT

∂ψ

∂n

≤ ≤ C

(∫

QT

sλ2ξψ +

∫

QT

se2λ‖η
0‖

∞Tξ2ψ +

∫

QT

|a(t, x)|ψ

)
.

Absorption. The goal of this intermediate step is to absorb the right hand side
of (46) by the first left hand side term of (46) by taking s sufficiently large. In order
to do this, it is useful to keep in mind the fact that λ ≥ 1 and the third line of (34)
for the next estimates.

By taking s ≥ (T/2)2(4C/m), we have Csξ ≤ (m/4)(sξ)2 and consequently

(47) C

∫

QT

sλ2ξψ ≤
m

4

∫

QT

s2λ2ξ2ψ.

By taking s ≥ Te2λ‖η
0‖

∞(4C/m), we have Cse2λ‖η
0‖

∞Tξ2 ≤ (m/4)(λsξ)2 and con-
sequently

(48) C

∫

QT

se2λ‖η
0‖

∞Tξ2ψ ≤
m

4

∫

QT

s2λ2ξ2ψ.

By taking s ≥ (T/2)2 ‖a‖
1/2
L∞(QT ) (4C/m)1/2, we have C ‖a‖L∞(QT ) ≤ (m/4)(λsξ)2

and consequently

(49) C

∫

QT

|a(t, x)|ψ ≤
m

4

∫

QT

s2λ2ξ2ψ.

Therefore, by taking s ≥ s1(λ) as defined in (30), we have from (47), (48) and (49)
that

(50) C

(∫

QT

sλ2ξψ +

∫

QT

se2λ‖η
0‖

∞Tξ2ψ +

∫

QT

|a(t, x)|ψ

)
≤

3m

4

∫

QT

s2λ2ξ2ψ.

Then, from (46) and (50), for s ≥ s1(λ), we get

(51)
m

4

∫

QT

s2λ2ξ2ψ −

∫

ΣT

2sλξ
∂η0

∂n
ψ +

∫

ΣT

∂ψ

∂n
≤ m

∫

(0,T )×ω
s2λ2ξ2ψ.

Step 3: An identity satisfied by ψ̃. We readily obtain that

(52) M̃ψ̃ = 0,
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where

M̃ψ̃ = −sλ2|∇η0|2ξ̃ψ̃ + 2sλξ̃∇η0.∇ψ̃ + ∂tψ̃(53)

+ s2λ2|∇η0|2ξ̃2ψ̃ +∆ψ̃ + sα̃tψ̃ − a(t, x)ψ̃

+ sλ∆η0ξ̃ψ̃.

We integrate (35) over (0, T ) × Ω

(54)

∫

QT

s2λ2|∇η0|2ξ̃2ψ̃ +

∫

QT

2sλξ̃∇η0.∇ψ̃ +

∫

QT

∂tψ̃ +

∫

QT

∆ψ̃

=

∫

QT

sλ2|∇η0|2ξ̃ψ̃ −

∫

QT

sα̃tψ̃ +

∫

QT

a(t, x)ψ̃

−

∫

QT

sλ∆η0ξ̃ψ̃.

Step 4: Estimates for ψ̃. By using (38), we have

∫

QT

s2λ2|∇η0|2ξ̃2ψ̃(55)

≥

∫

(0,T )×(Ω\ω)
s2λ2|∇η0|2ξ̃2ψ̃ ≥ m

∫

QT

s2λ2ξ̃2ψ̃ −m

∫

(0,T )×ω
s2λ2ξ̃2ψ̃.

By combining (54) and (55), we have

(56)

m

∫

QT

s2λ2ξ̃2ψ̃ +

∫

QT

2sλξ̃∇η0.∇ψ̃ +

∫

QT

∂tψ̃ +

∫

QT

∆ψ̃

≤

∫

QT

sλ2|∇η0|2ξ̃ψ̃ +

∫

QT

s|α̃t|ψ̃ +

∫

QT

|a(t, x)|ψ̃

+

∫

QT

sλ|∆η0|ξ̃ψ̃ +m

∫

(0,T )×ω
s2λ2ξ̃2ψ̃.

We have the following integration by parts

∫

QT

2sλξ̃∇η0.∇ψ̃ = −

∫

QT

2sλ
(
∇ξ̃.∇η0ψ̃ + ξ̃∆η0ψ̃

)
+

∫

ΣT

2sλξ̃
∂η0

∂n
ψ̃,(57)

(58)

∫

QT

∂tψ̃ =

∫

Ω
(ψ̃(T, .)− ψ̃(0, .)) = 0,

(59)

∫

QT

∆ψ̃ =

∫

ΣT

∂ψ̃

∂n
.

From (56), (57), (58), (59), we have

(60)

m

∫

QT

s2λ2ξ̃2ψ̃ +

∫

ΣT

2sλξ̃
∂η0

∂n
ψ̃ +

∫

ΣT

∂ψ̃

∂n

≤

∫

QT

sλ2|∇η0|2ξ̃ψ̃ +

∫

QT

s|α̃t|ψ̃ +

∫

QT

|a(t, x)|ψ̃

+

∫

QT

3sλ|∆η0|ξ̃ψ̃ +

∫

QT

2sλ|∇ξ̃||∇η0|ψ̃ +m

∫

(0,T )×ω
s2λ2ξ̃2ψ̃.
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By using the first two lines of (34) and the fact that λ ≥ 1, we have∫

QT

sλ2|∇η0|2ξ̃ψ̃ +

∫

QT

s|α̃t|ψ̃ +

∫

QT

|a(t, x)|ψ̃

+

∫

QT

3sλ|∆η0|ξ̃ψ̃ +

∫

QT

2sλ|∇ξ̃||∇η0|ψ̃

≤ C

(∫

QT

sλ2ξ̃ψ̃ +

∫

QT

se4λ‖η
0‖

∞T ξ̃2ψ̃ +

∫

QT

|a(t, x)|ψ̃ +

∫

QT

sλξ̃ψ̃

)

≤ C

(∫

QT

sλ2ξ̃ψ̃ +

∫

QT

se4λ‖η
0‖

∞T ξ̃2ψ̃ +

∫

QT

|a(t, x)|ψ̃

)

(61)

By combining (60) and (61), we get

(62)
m

∫

QT

s2λ2ξ̃2ψ̃ +

∫

ΣT

2sλξ̃
∂η0

∂n
ψ̃ +

∫

ΣT

∂ψ̃

∂n

≤ C

(∫

QT

sλ2ξ̃ψ̃ +

∫

QT

se4λ‖η
0‖

∞T ξ̃2ψ̃ +

∫

QT

|a(t, x)|ψ̃

)

Absorption. Note that we will use the third line of (34) in the next four esti-
mates.

By taking s ≥ eλ‖η
0‖

∞(T/2)2(4C/m), we have Csξ̃ ≤ (m/4)(sξ̃)2 and conse-
quently

(63) C

∫

QT

sλ2ξ̃ψ̃ ≤
m

4

∫

QT

s2λ2ξ̃2ψ̃.

By taking s ≥ Te4λ‖η
0‖

∞(4C/m), we have Cse2λ‖η
0‖

∞T ξ̃2 ≤ (m/4)(λsξ̃)2 and con-
sequently

(64) C

∫

QT

se2λ‖η
0‖

∞T ξ̃2ψ̃ ≤
m

4

∫

QT

s2λ2ξ̃2ψ̃.

By taking s ≥ eλ‖η
0‖

∞(T/2)2 ‖a‖
1/2
L∞(QT ) (4C/m)1/2, we have

C ‖a‖L∞(QT ) ≤ (m/4)(λsξ̃)2 and consequently

(65) C

∫

QT

|a(t, x)|ψ̃ ≤
m

4

∫

QT

s2λ2ξ̃2ψ̃.

Therefore, by taking s ≥ s1(λ) as defined in (30), we have from (47), (48) and (65)
that

(66) C

(∫

QT

sλ2ξ̃ψ̃ +

∫

QT

se4λ‖η
0‖

∞T ξ̃2ψ̃ +

∫

QT

|a(t, x)|ψ̃

)
≤

3m

4

∫

QT

s2λ2ξ̃2ψ̃.

Then, from (62) and (66), for s ≥ s1(λ), we get

(67)
m

4

∫

QT

s2λ2ξ̃2ψ̃ +

∫

ΣT

2sλξ̃
∂η0

∂n
ψ̃ +

∫

ΣT

∂ψ̃

∂n
≤ m

∫

(0,T )×ω
s2λ2ξ̃2ψ̃.

Step 5: Elimination of the boundary terms. From now, we take s ≥ s1(λ).
By summing (51) and (67), we get

m

4

∫

QT

s2λ2ξ2ψ −

∫

ΣT

2sλξ
∂η0

∂n
ψ +

∫

ΣT

∂ψ

∂n

+
m

4

∫

QT

s2λ2ξ̃2ψ̃ +

∫

ΣT

2sλξ̃
∂η0

∂n
ψ̃ +

∫

ΣT

∂ψ̃

∂n

≤ m

(∫

(0,T )×ω
s2λ2ξ2ψ +

∫

(0,T )×ω
s2λ2ξ̃2ψ̃

)
.

(68)

Since η0 = 0 on ∂Ω, we have

ξ = ξ̃, α = α̃ and ψ = ψ̃ on ΣT ,
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which leads to

(69) −

∫

ΣT

2sλξ
∂η0

∂n
ψ +

∫

ΣT

2sλξ̃
∂η0

∂n
ψ̃ = 0.

Moreover, we have

∂iψ = e−sα(∂iq + sλ∂iη
0ξq), ∂iψ̃ = e−sα̃(∂iq − sλ∂iη

0ξ̃q),

whence by using ∂q
∂n = 0 on ΣT , we get

∂ψ

∂n
= sλ

∂η0

∂n
ξe−sαq,

∂ψ̃

∂n
= −sλ

∂η0

∂n
ξ̃e−sα̃q on ΣT .

This leads to

(70)

∫

ΣT

∂ψ

∂n
+

∫

ΣT

∂ψ̃

∂n
= 0.

We get from (68), (69) and (70)

m

4

(∫

QT

s2λ2ξ2ψ +

∫

QT

s2λ2ξ̃2ψ̃

)

≤ C

(∫

(0,T )×ω
s2λ2ξ2ψ +

∫

(0,T )×ω
s2λ2ξ̃2ψ̃

)
.

(71)

By using the fact that ξ̃ ≤ ξ, e−sα̃ ≤ e−sα in QT , we get from (71) the Carleman
estimate (31). This concludes the proof of Theorem 4.9. �

4.4. Proof of the L2-L1 observability inequality: Theorem 4.4. The goal of
this subsection is to prove Theorem 4.4, which is a consequence of Theorem 4.9,
Lp-Lq estimates and the dissipativity in time of the Lp norm of (21).

Proof. Step 1: L1-L1 observability inequality. We fix λ = 1 and s = s1 in
Theorem 4.9 to get

(72)

∫

QT

t−2(T − t)−2e−sαqdxdt ≤ C1(Ω, ω)

∫

(0,T )×ω
t−2(T − t)−2e−sαqdxdt.

First, we observe that in (T/4, 3T/4) × Ω,

t−2(T − t)−2e−sα ≥
C

T 4
exp


−

C(Ω, ω)
(
T + T 2 + T 2 ‖a‖

1/2
L∞(QT )

)

T 2




≥
C

T 4
e
−C(Ω,ω)

(
1+ 1

T
+‖a‖

1/2
L∞(QT )

)

.

(73)

Secondly, from the fact that x2e−Mx ≤ C/M2 for every x,M ≥ 0 used with x =

t−1(T−t)−1 and M = C(Ω, ω)
(
T + T 2 + T 2 ‖a‖

1/2
L∞(QT )

)
, we remark that in (0, T )×

ω,

t−2(T − t)−2e−sα

≤ t−2(T − t)−2 exp
(
−C(Ω, ω)

(
T + T 2 + T 2 ‖a‖

1/2
L∞(QT )

)
t−1(T − t)−1

)

≤
C

(
C(Ω, ω)

(
T + T 2 + T 2 ‖a‖

1/2
L∞(QT )

))2

≤
C(Ω, ω)

T 4
.

(74)

Then, we get from (72), (73) and (74)

(75)

∫

(T/4,3T/4)×Ω
qdxdt ≤ e

C(Ω,ω)
(
1+ 1

T
+‖a‖

1/2
L∞(QT )

) ∫

(0,T )×ω
qdxdt.
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On the other hand, we obtain by the dissipativity in time of the L1-norm (see Propo-
sition 3.4 with p = 1)

(76) ‖q(T/4, .)‖L1(Ω) ≤
2C exp

(
CT ‖a‖L∞(QT )

)

T

∫ 3T/4

T/4
‖q(t, .)‖L1(Ω) dt.

By using (75) and (76), we get

(77) ‖q(T/4, .)‖L1(Ω) ≤ C(Ω, ω, T, a)

∫

(0,T )×ω
qdxdt,

where C(Ω, ω, T, a) is defined in (22).
From now, we denote by C(Ω, ω, T, a) various positive constants varying from line

to line which are of the form (22).
Step 2: Global L2-L1 estimate. The goal of this step is to prove that

(78) ‖q(0, .)‖L2(Ω) ≤ C(Ω, ω, T, a) ‖q(T/4, .)‖L1(Ω) .

To simplify the notations, we set q̂(t) := q(T − t) for t ∈ [0, T ]. Then, (78) rewrites
as follows

(79)
∥∥∥q̂(T̂2, .)

∥∥∥
L2(Ω)

≤ C(Ω, ω, T, a)
∥∥∥q̂(T̂1, .)

∥∥∥
L1(Ω)

.

with T̂2 := T > T̂1 := 3T/4.
We introduce the following sequence

(80) r0 := 1, ∀k ≥ 0, rk+1 :=

{ Nrk
N−rk

if rk < N,

2rk if rk ≥ N.

We readily have from the definition (80) that

(81) ∀k ≥ 0, βk :=
N

2

(
1

rk
−

1

rk+1

)
≤

1

2
< 1,

and

(82) ∃l ≥ 1, rl ≥ 2.

We also introduce a sequence of times

(83) ∀k ∈ {0, . . . , l}, τk := T̂1 +
k

l
(T̂2 − T̂1).

Let us remark that

(84) ∀k ∈ {0, . . . , l}, τk+1 − τk =
T̂2 − T̂1

l
=
T

2l
.

By induction, we will show that

(85) ∀k ∈ {0, . . . , l}, ‖q̂(τk, .)‖Lrk (Ω) ≤ C(Ω, ω, T, a) ‖q̂(τ0, .)‖L1(Ω) .

The case k = 0 is obvious (take C0 = 1). Then, by denoting by S(t) = et∆ the
heat-semigroup with Neumann boundary conditions, we have for every k ≥ 0,

(86) q̂(τk+1) = S(τk+1 − τk)q̂(τk) +

∫ τk+1

τk

S(τk+1 − s)(−a(s, .)q̂(s))ds,

from the equation satisfied by q̂ (see (21)).
We assume that (85) holds for k ∈ {0, . . . , l}. From (86), (81) and the regularizing

effect Lrk -Lrk+1 of the heat-semigroup (see Proposition 3.8), we have

‖q̂(τk+1)‖Lrk+1 (Ω) ≤ (τk+1 − τk)
−βk ‖q̂(τk)‖Lrk (Ω)

+

∫ τk+1

τk

(τk+1 − s)
−βk ‖a‖L∞(QT ) ‖q̂(s)‖Lrk (Ω) ds

≤ A1,k +A2,k,

(87)
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where

(88) A1,k := (τk+1 − τk)
−βk ‖q̂(τk)‖Lrk (Ω) ,

and

(89) A2,k :=

∫ τk+1

τk

(τk+1 − s)
−βk ‖a‖L∞(QT ) ‖q̂(s)‖Lrk (Ω) ds.

From (88), (84), (81) and (85), we have

(90) A1,k ≤ CT
−βkC(Ω, ω, T, a) ‖q̂(τ0, .)‖L1(Ω) ≤ C(Ω, ω, T, a) ‖q̂(τ0, .)‖L1(Ω) .

From (89), the dissipativity in time of the Lrk -norm (see Proposition 3.4), the in-
duction assumption (85), (81) and (84), we have

(91)

A2,k ≤ ‖a‖∞

∫ τk+1

τk

(τk+1 − s)
−βkCeCT‖a‖

∞ ‖q̂(τk)‖Lrk (Ω) ds

≤ C ‖a‖∞ eCT‖a‖
∞C(Ω, ω, T, a) ‖q̂(τ0, .)‖L1(Ω) (τk+1 − τk)

−βk+1

≤ C(Ω, ω, T, a) ‖a‖∞ T−βk+1 ‖q̂(τ0, .)‖L1(Ω)

≤ C(Ω, ω, T, a) ‖a‖∞ (T + 1) ‖q̂(τ0, .)‖L1(Ω)

≤ C(Ω, ω, T, a)
(
eT‖a‖

∞ + 2e‖a‖
1/2
∞

)
‖q̂(τ0, .)‖L1(Ω)

≤ C(Ω, ω, T, a) ‖q̂(τ0, .)‖L1(Ω) .

The estimates (87), (90) and (91) prove (85) for (k+1) and concludes the induction.
Thus, (85) holds for k = l, which combined with (82) and (83), yields (79).

Step 3: By using (77) and (78), we prove (25) and consequently Theorem 4.4. �

4.5. Proof of the linear global nonnegative-controllability: Theorem 4.1.
The goal of this section is to prove Theorem 4.1. The following proof is inspired
by the so-called Hilbert Uniqueness method due to Jacques-Louis Lions (see [34] and
more precisely [43, Section 2.1]).

Proof. The proof is divided into two steps. First, we build a sequence of controls
hε ∈ L∞((0, T ) × ω) with ε > 0 which provide the approximate nonnegative-
controllability of (20). Secondly, we pass to the limit when ε tends to 0.

Step 1. Let us fix T > 0, a ∈ L∞(QT ) and y0 ∈ L
2(Ω). For any ε ∈ (0, 1), we

consider the following functional: for every qT ∈ L
2(Ω;R+),

(92) Jε(qT ) =
1

2

(∫

(0,T )×ω
qdxdt

)2

+ ε ‖qT‖L2(Ω) +

∫

Ω
q(0, x)y0(x)dx,

where q is the solution to (21).
The functional Jε is continuous, convex and coercive on the unbounded closed

convex set L2(Ω;R+). More precisely, we will show that

(93) lim inf
‖qT ‖L2(Ω)→+∞

Jε(qT )

‖qT‖L2(Ω)

≥ ε.

Indeed, given a sequence (qT,k)k≥0 ∈ L
2(Ω) with ‖qT,k‖L2(Ω) → +∞, we normalize

it:

q̃T,k :=
qT,k

‖qT,k‖L2(Ω)

,

and we denote by q̃k the solution to (21) associated to the initial data q̃T,k. We have

(94)
Jε(qT,k)

‖qT,k‖L2(Ω)

=
‖qT,k‖L2(Ω)

2

(∫

(0,T )×ω
q̃kdxdt

)2

+ ε+

∫

Ω
q̃k(0, x)y0(x)dx.
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We distinguish the following two cases.
Case 1:

(95) lim inf
k→+∞

∫

(0,T )×ω
q̃kdxdt > 0.

When (95) holds, we clearly have

lim inf
k→+∞

Jε(qT,k)

‖qT,k‖L2(Ω)

= +∞≥ ε

Case 2:

(96) lim inf
k→+∞

∫

(0,T )×ω
q̃kdxdt = 0.

In this case, by using the estimate (11) of Proposition 3.2, the embedding (7) and
(96), extracting subsequences (that we denote by the index k to simplify the nota-
tion), we deduce that there exists q̃ ∈WT such that

(97) q̃k ⇀ q̃ in WT ,

(98) q̃k(0, .) ⇀ q̃(0, .) in L2(Ω),

(99)

∫

(0,T )×ω
q̃kdxdt→ 0.

By using Aubin Lions’ lemma (see [38, Section 8, Corollary 4]) and (97), (q̃k)k∈N is
relatively compact in L2(QT ), then up to a subsequence we have

(100) q̃k → q̃ in L2(QT ;R
+).

In view of (99) and (100), we have

(101) q̃ = 0 in (0, T ) × ω.

Then, by using (101) and the observability inequality (25), we have

(102) q̃(0, .) = 0.

Consequently, by combining (98) and (102), we have
∫

Ω
q̃k(0, x)y0(x)dx→ 0,

which yields (93) thanks to (94).
We deduce that Jε admits a minimum qε,T ∈ L

2(Ω;R+). We take

(103) hε :=

(∫

(0,T )×ω
qε

)
1ω,

and we denote by yε ∈WT ∩ L
∞(QT ) the solution to

(104)





∂tyε −∆yε + a(t, x)yε = hε1ω in (0, T ) × Ω,
∂yε
∂n = 0 on (0, T ) × ∂Ω,
yε(0, .) = y0 in Ω.

We use the fact that Jε(qT,ε) ≤ Jε(0) = 0 to get

(105)
1

2

(∫

(0,T )×ω
qε

)2

+ ε ‖qε,T‖L2(Ω) ≤ −

∫

Ω
qε(0, x)y0(x)dx.

By using the observability inequality (25), (103), (105) and Young’s inequality, we
obtain the following bound on the sequence of controls

(106) ‖hε‖
2
L∞(QT ) ≤ C(Ω, ω, T, a) ‖y0‖

2
L2(Ω) ,

17



where C(Ω, ω, T, a) is of the form (22).
For λ > 0 and pT ∈ L

2(Ω;R+), we have

(107) Jε(qε,T ) ≤ Jε(qε,T + λpT ).

Dividing the inequality (107) by λ and letting λ→ 0+, we easily obtain from (103),

−(y0, p(0, .))L2(Ω) ≤

∫

(0,T )×ω
hεp+ ε lim inf

λ→0+

‖qε,T + λpT ‖L2(Ω) − ‖qε,T‖L2(Ω)

λ
(108)

≤

∫

(0,T )×ω
hεp+ ε ‖pT ‖L2(Ω) ,

where p is the solution to (21) with initial data pT . Since systems (20) and (21) are
in duality, we have

(109)

∫

(0,T )×ω
hεp = (yε(T, .), pT )L2(Ω) − (y0, p(0, .))L2(Ω),

which, combined with (108), yields

(110) (yε(T, .), pT )L2(Ω) ≥ −ε ‖pT ‖L2(Ω) , ∀pT ∈ L
2(Ω;R+).

Step 2. By using (106), (104), Proposition 3.2, Proposition 3.3 and the embedding
(7), up to a subsequence, we get that there exist h ∈ L∞(QT ) and y ∈WT ∩L

∞(QT )
such that

(111) hε⇀
∗ h in L∞(QT ) as ε→ 0,

(112) yε⇀ y in WT ⇒ yε(0, .)⇀ y(0, .), yε(T, .)⇀ y(T, .) in L2(Ω) as ε→ 0.

Then, by using (104), (111) and (112), we obtain that y is the solution of (20)
associated to the control h satisfying (23) (by letting ε goes to 0 in (106)) and

(113) (y(T, .), pT )L2(Ω) ≥ 0, ∀pT ∈ L
2(Ω;R+).

Then, we deduce from (113) that y satisfies (24), which concludes the proof of The-
orem 4.1. �

5. A fixed-point argument to prove the small-time nonlinear global

nonnegative controllability

The goal of this section is to prove Theorem 2.2. We assume that (3) holds for
α ≤ 2 and f(s) ≥ 0 for s ≥ 0.

5.1. A comparison principle. First, we begin with this lemma, which is a conse-
quence of the comparison principle for subsolutions and supersolutions of (1) with
control h = 0 stated in Proposition 3.7.

Lemma 5.1. Let T > 0, y0 ∈ L∞(Ω). Assume that there exists T ∗ ∈ (0, T ] and
a control h∗ ∈ L∞(QT ∗) such that the solution y ∈ L∞(QT ∗) to (1) satisfies (5)
(replacing T ← T ∗). Then, if we set

h(t, .) :=

{
h∗(t, .) for t ∈ (0, T ∗),
0 for t ∈ (T ∗, T ),

the solution y of (1) belongs to L∞(QT ) and satisfies (5). Moreover, there exists
C := C(Ω) > 0 such that

(114) ‖y‖L∞(QT ) ≤ C ‖y‖L∞(QT∗) .
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Proof. By using the fact that f(0) = 0, f(s) ≥ 0 for s ≥ 0 and the comparison
principle (see Proposition 3.7), we have

(115) ∀t ∈ [T ∗, T ], a.e. x ∈ Ω, 0 ≤ y(t, x) ≤ ỹ(t, x),

where ỹ is the nonnegative solution to

(116)





∂tỹ −∆ỹ = 0 in (T ∗, T )× Ω,
∂ỹ
∂n = 0 on (T ∗, T )× ∂Ω,
ỹ(T ∗, .) = y(T ∗, .) in Ω.

Therefore, by using Proposition 3.3 for (116), we get that there exists C := C(Ω) > 0
such that

(117) ‖ỹ‖L∞((T ∗,T )×Ω) ≤ C ‖y(T
∗, .)‖L∞(Ω) ≤ C ‖y‖L∞(QT∗ ) .

By using (115) and (117), we obtain that y ∈ L∞(QT ), (5) and (114) hold. �

5.2. The fixed-point: definition of the application. We begin with some nota-
tions. Let us set

(118) g(s) =

{
f(s)

s
if s 6= 0,

f ′(0) if s=0.

The function g is continuous and by using the fact that f satisfies (3) with α ≤ 2,
we deduce that for every ε > 0, there exists Cε > 0 such that

(119) ∀s ∈ R, |g(s)|1/2 ≤ ε log(2 + |s|) + Cε.

The end of the section is devoted to the proof of Theorem 2.2.

Proof. Let T > 0, y0 ∈ L
∞(Ω).

Unless otherwise specified, we denote by C various positive constants varying from
line to line which may depend on Ω, ω, T .

We will perform a Kakutani-Leray-Schauder’s fixed-point argument in L∞(QT ).
For each z ∈ L∞(QT ), we consider the linear system

(120)





∂ty −∆y + g(z)y = h1ω in (0, T ) × Ω,
∂y
∂n = 0 on (0, T )× ∂Ω,
y(0, .) = y0 in Ω.

We set

(121) T ∗
z := min

(
T, ‖g(z)‖

−1/2
L∞(QT )

)
.

According to Theorem 4.1, there exists a control hz ∈ L
∞(QT ∗

z
) satisfying

(122)

‖hz‖L∞(QT∗
z
)

≤ exp

(
C

(
1 +

1

T ∗
z

+ T ∗
z ‖g(z)‖L∞(QT ) + ‖g(z)‖

1/2
L∞(QT )

))
‖y0‖L2(Ω)

≤ exp
(
C
(
1 + ‖g(z)‖

1/2
L∞(QT )

))
‖y0‖L2(Ω) ,

such that the solution y of (120) in (0, T ∗
z )× Ω with h = hz satisfies

(123) y(T ∗
z , .) ≥ 0.

By extending by 0 the control hz in (T ∗
z , T ), we get from (122)

(124) ‖hz‖L∞(QT ) ≤ exp
(
C
(
1 + ‖g(z)‖

1/2
L∞(QT )

))
‖y0‖L2(Ω) .

For each z ∈ L∞(QT ), we introduce the set of controls

(125) H(z) := {hz ∈ L
∞(QT ) ; hz fulfills (124) and hz ≡ 0 in (T ∗

z , T )× Ω}.

We have the following facts.
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Fact 5.2. For every z ∈ L∞(QT ), H(z) is compact for the weak-star topology of
L∞(QT ).

Fact 5.3. Assume that zk → z in L∞(QT ) and hk ∈ H(zk)⇀
∗ h in L∞(QT ) as k →

+∞. Then, we have h ∈ H(z).

We define the set-valued mapping Φ : L∞(QT ) → P(L
∞(QT )) in the following

way. For every z ∈ L∞(QT ), Φ(z) is the set of y ∈ L∞(QT ) such that for some
hz ∈ H(z), y is the solution of (120) and this solution satisfies (123).

We recall the Kakutani-Leray-Schauder’s fixed point theorem (see [27, Theorem
2.2, Theorem 2.4]).

Theorem 5.4 (Kakutani-Leray-Schauder’s fixed point theorem). If
(1) Φ is a Kakutani map, that is to say for every z ∈ L∞(QT ), Φ(z) is a

nonempty convex and closed subset of L∞(QT ),
(2) Φ is compact, that is to say for every bounded set B ⊂ L∞(QT ), there exists

a compact set K ⊂ L∞(QT ) such that for every z ∈ B, Φ(z) ⊂ K,
(3) Φ is upper semicontinuous in L∞(QT ), that is to say for all closed subset
A ⊂ L∞(QT ), Φ

−1(A) = {z ∈ L∞(QT ) ; Φ(z) ∩ A 6= ∅} is closed,
(4) F := {y ∈ L∞(QT ) ; ∃λ ∈ (0, 1), y ∈ λΦ(y)} is bounded in L∞(QT ),

hold.
Then Φ has a fixed point, i.e, there exists y ∈ L∞(QT ) such that y ∈ Φ(y).

5.3. Hypotheses of Kakutani-Leray-Schauder’s fixed point theorem. We
will check that the four hypotheses of Theorem 5.4 hold.

The point (1) holds. Indeed, for every z ∈ L∞(QT ), we have seen that Φ(z) is
nonempty. The convexity of Φ(z) comes from the fact that the inequality (123) is
stable by convex combinations. Let us show that Φ(z) is closed. Let (yk)k∈N be a
sequence of elements in L∞(QT ), such that for every k ∈ N, yk ∈ Φ(z) and yk → y
in L∞(QT ). Then, for every k ∈ N, there exists a control hk ∈ H(z) such that yk is
the solution to

(126)





∂tyk −∆yk + g(z)yk = hk1ω in (0, T )× Ω,
∂yk
∂n = 0 on (0, T ) × ∂Ω,
yk(0, .) = y0 in Ω,

and this solution satisfies

(127) yk(T
∗
z , .) ≥ 0.

By using Fact 5.2, Proposition 3.2 and the embedding (7), we get that there exist a
strictly increasing sequence (kl)l∈N of integers and h ∈ H(z) such that

(128) hkl⇀
∗ h in L∞(QT ) as l → +∞,

(129) ykl ⇀ y in WT ⇒ ykl(0, .) ⇀ y0, ykl(T
∗
z , .)⇀ y(T ∗

z , .) in L2(Ω) as l→ +∞.

By passing to the limit as l→ +∞ in (126), (127) and by using (128) and (129), we
get that y ∈ Φ(z). This concludes the proof of the point (1).

The point (2) holds. Let B be a bounded set of L∞(QT ). By using (124) and
Proposition 3.3 applied to (120), we deduce that there exists R > 0 such that for
every z ∈ B, for every y ∈ Φ(z) associated to a control hz ∈ H(z), we have

(130) z, y, hz ∈ BR := {ζ ∈ L∞(QT ) ; ‖ζ‖L∞(QT ) ≤ R}.

Let Y ∈ L∞(QT ) be the solution to the Cauchy problem

(131)





∂tY −∆Y = 0 in (0, T )× Ω,
∂Y
∂n = 0 on (0, T ) × ∂Ω,
Y (0, .) = y0 in Ω.
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Let y∗ = y − Y , where y ∈ Φ(z), with z ∈ B, associated to a control hz ∈ H(z).
Then, y∗ is the solution to

(132)





∂ty
∗ −∆y∗ + g(z)y = hz1ω in (0, T )× Ω,

∂y∗

∂n = 0 on (0, T ) × ∂Ω,
y∗(0, .) = 0 in Ω.

From (130), we have

(133) ‖−g(z)y + hz1ω‖L∞(QT ) ≤ CR.

From (133), a maximal parabolic regularity theorem in Lp (see [12, Theorem 2.1]),
with p = N + 2, applied to y∗, solution of (132), we deduce that

(134) y∗ ∈ Xp := W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) and ‖y∗‖Xp
≤ CR.

By the Sobolev embedding theorem Xp →֒ Cβ/2,β(QT ) with β > 0 (see [41, Theorem

1.4.1]), we deduce that y∗ ∈ C0(QT ) and

(135) ∀(t, x) ∈ QT , ∀(t
′, x′) ∈ QT , |y

∗(t, x)−y∗(t′, x′)| ≤ CR(|t− t
′|β/2+ |x−x′|β).

Let K∗ be the set of y∗ such that (135) holds. Then, we have K := (Y +K∗) ∩BR

is a compact convex subset of L∞(QT ) by Ascoli’s theorem and

∀z ∈ B, Φ(z) ⊂ K.

This concludes the proof of the point (2).
The point (3) holds. Let A be a closed subset of L∞(QT ). Let (zk)k∈N be a

sequence of elements in L∞(QT ), (yk)k∈N be a sequence of elements in L∞(QT ), and
z ∈ L∞(QT ) be such that

(136) zk → z in L∞(QT ) as k → +∞,

(137) ∀k ∈ N, yk ∈ A,

(138) ∀k ∈ N, yk ∈ Φ(zk).

By (138) and (124), for every k ∈ N, there exists a control hk ∈ H(zk) such that yk
is the solution to

(139)





∂tyk −∆yk + g(zk)yk = hk1ω in (0, T ) × Ω,
∂yk
∂n = 0 on (0, T ) × ∂Ω,
yk(0, .) = y0 in Ω,

and this solution satisfies

(140) yk(T
∗
zk
, .) ≥ 0.

By (136), Fact 5.3 and the point (2) of Theorem 5.4, we get that there exist a strictly
increasing sequence (kl)l∈N of integers, h ∈ H(z) and y ∈ L∞(QT ) such that

(141) hkl⇀
∗ h in L∞(QT ) as l → +∞,

(142) ykl → y in L∞(QT ) as l→ +∞.

Since A is closed, (137) and (142) imply that y ∈ A. Hence, it suffices to check that

(143) y ∈ Φ(z).

Letting l → +∞ in (139) and (140) and using (136), (141) and (142), we get that y
satisfies (120) and (123). Hence, (143) holds. This concludes the proof of the point
(3).

The point (4) holds. Let y ∈ F . Then, for some λ ∈ (0, 1) and hy ∈ H(y), we
have 




∂ty −∆y + f(y) = λhy1ω in (0, T ) × Ω,
∂y
∂n = 0 on (0, T )× ∂Ω,
y(0, .) = λy0 in Ω.
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and

y(T ∗
y , .) ≥ 0.

Therefore, by using Lemma 5.1 and Proposition 3.3, we have

(144)
‖y‖L∞(QT ) ≤ C ‖y‖L∞(QT∗

y
)

≤ C exp
(
CT ∗

y ‖g(y)‖L∞(QT )

)(
‖y0‖L∞(Ω) + ‖hy‖L∞(QT )

)
.

Consequently, by taking into account the definition of T ∗
y , i.e., (121) and using (124),

(144), (119), we deduce that

(145)

‖y‖L∞(QT ) ≤ exp
(
C
(
1 + ‖g(y)‖

1/2
L∞(QT )

))
‖y0‖L∞(Ω)

≤ exp
(
C
(
1 + ε log

(
2 + ‖y‖L∞(QT )

)
+ Cε

))
‖y0‖L∞(Ω)

≤ exp (Cε)
(
2 + ‖y‖L∞(QT )

)εC
‖y0‖L∞(Ω) .

Therefore, by taking ε sufficiently small such that εC = 1/2, we deduce from (145)
that F is bounded in L∞(QT ). This concludes the proof of the point (4).

By Theorem 5.4, Φ has a fixed point y. We denote by hy the associated control.
Then, by using Lemma 5.1, y is the solution to (1) with control hy such that (5)
holds. This concludes the proof of Theorem 2.2. �

6. Application of the global nonnegative-controllability to the

large time global null-controllability

In this section, we prove Theorem 2.5. We assume that (3) holds for α ∈ [3/2, 2],
f(s) > 0 for s > 0 and 1/f ∈ L1([1,+∞)).

Proof. Let y0 ∈ L
∞(Ω). The proof is divided into three steps.

Step 1: Steer the solution to a nonnegative state in time T1 := 1. By using
Theorem 2.2, there exists h1 ∈ L

∞(QT1) such that the solution y to (1) replacing
T ← T1 satisfies

yT1 := y(T1, .) ≥ 0.

Step 2: Dissipation of f on R
+ and comparison to an ordinary differen-

tial equation. We set

h2(t, .) := 0, for t ∈ [T1, T2],

with T2 which will be determined later.
Then, by using the comparison principle given in Proposition 3.7, we deduce that

the solution y to




∂ty −∆y = −f(y) in (T1, T2)× Ω,
∂y
∂n = 0 on (T1, T2)× ∂Ω,
y(T1, .) = yT1 in Ω,

satisfies

(146) ∀t ∈ [T1, T2], a.e. x ∈ Ω, 0 ≤ y(t, x) ≤ v(t),

where v is the (global) nonnegative solution to the ordinary differential equation

(147)

{
v̇(t) = −f(v(t)) in (T1,+∞),
v(T1) = ‖yT1‖L∞(Ω) + 1 .

A straightforward calculation leads to

(148) ∀t ∈ [T1,+∞), v(t) > 0 and F (v(t))− F (v(T1)) = t− T1,

where F is defined as follows

(149) ∀s > 0, F (s) =

∫ s

+∞

−1

f(σ)
dσ =

∫ +∞

s

1

f(σ)
dσ.
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Note that F is well-defined because f(σ) > 0 for every σ > 0 and 1/f ∈ L1([1,+∞))
by hypothesis. We check that F is a C1 strictly decreasing function. Moreover, we
have 1/f /∈ L1((0, 1]) because f ∈ C1(R;R) and f(0) = 0. Hence, we have by (149)

(150) lim
s→0+

F (s) = +∞ and lim
s→+∞

F (s) = 0.

Therefore, we deduce that F : (0,+∞) → (0,+∞) is a C1-diffeomorphism. We
denote by F−1 : (0,+∞) → (0,+∞) its inverse, which is strictly decreasing. Then,
by (148), we have

(151) ∀t ∈ [T1,+∞), v(t) = F−1(t− T1 + F (v(T1)) ≤ F
−1(t− T1).

The estimate (151) is the key point because it states that we can upperbound v by
a function independent of the size of v(T1) and we also have

(152) F−1(t− T1)→ 0 as t→ +∞,

by using (150).
Let δ > 0 be such that the null-controllability of (1) holds in BL∞(Ω)(0, δ) in time

T = 1. The existence of δ is given by Theorem 1.3.
By (152), we deduce that there exists T2 sufficiently large such that

(153) F−1(T2 − T1) ≤ δ.

Consequently, by using (146), (151), (153), we have

(154) a.e. x ∈ Ω, 0 ≤ y(T2, x) ≤ δ.

Step 3: Local null-controllability. By using Theorem 1.3 with T = 1, we
deduce from (154) that there exists a control h3 ∈ L

∞((T2, T3)×Ω) with T3 := T2+1
such that the solution y of (1) replacing (0, T )← (T2, T3) satisfies y(T3, .) = 0.

To sum up, the control

h(t, .) :=





h1(t, .) for t ∈ (0, T1),
h2(t, .) for t ∈ (T1, T2),
h3(t, .) for t ∈ (T2, T3),

steers the initial data y0 ∈ L
∞(Ω) to 0. It is worth mentioning that the final time of

control T3 does not depend on y0. This concludes the proof of Theorem 2.5. �

7. Dirichlet boundary conditions

Theorem 2.2 and Theorem 2.5 remain valid for Dirichlet boundary conditions, as
to say for

(155)





∂ty −∆y + f(y) = h1ω in (0, T ) × Ω,
y = 0 on (0, T ) × ∂Ω,
y(0, .) = y0 in Ω.

The main point is to establish a L1-Carleman estimate similar to Theorem 4.9 for

(156)




−∂tq −∆q + a(t, x)q = 0 in (0, T )× Ω,
q = 0 on (0, T )× ∂Ω,
q(T, .) = qT in Ω.

We keep the notations of Section 4.3.

Theorem 7.1. There exists two constants C = C(Ω, ω) > 0 and C1 := C1(Ω, ω) > 0,
such that,

(157) ∀λ ≥ 1, ∀s ≥ s1(λ) := C(Ω, ω)
(
e2λ‖η

0‖
∞T + T 2 + T 2 ‖a‖

1/2
L∞(QT )

)
,

for every qT ∈ L
2(Ω;R+), the nonnegative solution q of (156) satisfies

λ

∫

QT

e−sαsξ2η0q +

∫

QT

e−sαξq ≤ C1λ

∫

(0,T )×ω
e−sαsξ2qdxdt.(158)
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Proof. The proof follows the one of Theorem 4.9. This is why we omit some details.
We multiply the identity (35) by η0 and we integrate over (0, T )× Ω

(159)

∫

QT

s2λ2|∇η0|2ξ2ψη0 −

∫

QT

2sλξ(∇η0.∇ψ)η0 +

∫

QT

(∂tψ)η
0 +

∫

QT

(∆ψ)η0

=

∫

QT

sλ2|∇η0|2ξψη0 −

∫

QT

sαtψη
0 +

∫

QT

a(t, x)ψη0

+

∫

QT

sλ∆η0ξψη0.

By the properties of η0, we have

(160)

∫

QT

s2λ2|∇η0|2ξ2ψη0 ≥ m

∫

QT

s2λ2ξ2ψη0 −m

∫

(0,T )×ω
s2λ2ξ2ψη0,

where m is defined in (38).
By combining (159) and (160), we have

(161)

m

∫

QT

s2λ2ξ2ψη0 −

∫

QT

2sλξ(∇η0.∇ψ)η0 +

∫

QT

(∂tψ)η
0 +

∫

QT

(∆ψ)η0

≤

∫

QT

sλ2|∇η0|2ξψη0 +

∫

QT

s|αt|ψη
0 +

∫

QT

|a(t, x)|ψη0

+

∫

QT

sλ|∆η0|ξψη0 +m

∫

(0,T )×ω

s2λ2ξ2ψη0.

We have the following integration by parts

−

∫

QT

2sλξ(∇η0.∇ψ)η0 =

∫

QT

2sλ


(∇ξ.∇η0)η0ψ + ξ(∆η0)η0ψ + ξ|∇η0|2ψ︸ ︷︷ ︸

≥0


 .(162)

(163)

∫

QT

(∂tψ)η
0 =

∫

Ω

η0(.)(ψ(T, .)− ψ(0, .)) = 0,

(164)

∫

QT

(∆ψ)η0 =

∫

QT

ψ∆η0.

From (161), (162), (163), (164) and the properties of η0, we have

(165)

m

∫

QT

s2λ2ξ2ψη0 + 2m

∫

QT

sλξψ

≤

∫

QT

sλ2|∇η0|2ξψη0 +

∫

QT

s|αt|ψη
0 +

∫

QT

|a(t, x)|ψη0

+3

∫

QT

sλ|∆η0|ξψη0 + 2

∫

QT

sλ|∇ξ||∇η0|ψη0 +

∫

QT

ψ|∆η0|

+m

∫

(0,T )×ω

s2λ2ξ2ψη0 + 2m

∫

(0,T )×ω

sλξψ.

The first five right hand side terms of (165) can be absorbed by the first left hand
side term provided s ≥ s1(λ) as defined in (157) (see ‘Step 2, Absorption’ of the
proof of Theorem 4.9 for details: it is exactly the same mechanism as in the proof
for the Neumann case). The sixth right hand side term of (165) can be absorbed
by the second left hand side term provided s ≥ C(Ω, ω)T 2. The two last right hand
side terms of (165) are smaller than

∫
(0,T )×ω s

2λ2ξ2ψ provided s ≥ C(Ω, ω)T 2. This

leads to ∫

QT

s2λ2ξ2ψη0 +

∫

QT

sλξψ ≤ C

∫

(0,T )×ω
s2λ2ξ2ψ,

which yields (158) by dividing by sλ. �

From Theorem 7.1, we deduce a precise L2-L1 observability inequality as in The-
orem 4.4 by using the second left hand side term of (158). It is an easy adaptation
of Section 4.4.

The proof of the linear global nonnegative-controllability result as Theorem 4.1
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and the fixed-point argument (see Section 5) remain unchanged. This leads to the
small-time global nonnegative controllability for (155).

The proof of the large time global null-controllability result for (155) follows the
same lines as Section 6. In particular, the comparison principle between the free
solution and the solution to the ordinary differential equation, i.e., (146) stays valid
because v(t) > 0 on (T1, T2)× ∂Ω.

8. Comments

8.1. Nonlinearities depending on the gradient of the state. We do not treat
semilinearties F (y,∇y) as considered in [19] (see also [13]) because the left hand
side of the L1-Carleman estimate (31) established in Theorem 4.9 does not provide
estimates on the gradient of the state.

8.2. Nonlinear reaction-diffusion systems. We may wonder to what extent our
main results, i.e., Theorem 2.2 and Theorem 2.5 for (1), can be adapted to the m×m
semilinear reaction-diffusion system

(166) ∀1 ≤ i ≤ m,





∂tui − di∆ui = fi(u1, . . . , um) + hi1ω in (0, T )× Ω,
∂ui
∂n = 0 on (0, T )× ∂Ω,
ui(0, .) = ui,0 in Ω,

with (d1, . . . , dm) ∈ (0,+∞)m and (f1, . . . , fm) ∈ C1(Rm;R)m satisfying

(167) ∀i ∈ {1, . . . ,m}, fi(0, . . . , 0) = 0.

We assume that the nonlinearity is strongly quasi-positive, i.e.,

(168) ∀u ∈ R
m, ∀i 6= j ∈ {1, . . . ,m},

∂fi
∂uj

(u1, . . . , um) ≥ 0.

and satisfies a ‘mass-control structure’

(169) ∀u ∈ [0,+∞)m,

m∑

i=1

fi(u) ≤ C

(
1 +

m∑

i=1

ui

)
.

Lots of systems come naturally with the two properties (168) and (169) in applica-
tions (see [36, Section 2]).

We have the following global-nonnegative controllability result in small time.

Theorem 8.1. For each fi, we assume that (3) holds for α ≤ 2. For every T > 0,
the system (166) is globally nonnegative-controllable in time T .

Application 8.2. Let α ∈ (0, 2). The system

(170)





∂tu−∆u = −u logα(2 + |u|) + h11ω in (0, T ) ×Ω,
∂tv −∆v = u logα(2 + |u|) + h21ω in (0, T ) ×Ω,
∂u
∂n = ∂v

∂n = 0 on (0, T ) × ∂Ω,
(u, v)(0, .) = (u0, v0) in Ω,

is globally nonnegative-controllable for every time T > 0.

Proof. As the proof is very similar to that of Theorem 2.2, we limit ourselves to
pointing out only the differences.

Difference 1: A L1-Carleman estimate for a linear parabolic system. Let
A ∈ L∞(QT ;R

m×m) be such that

(171) ∀i 6= j ∈ {1, . . . ,m}, a.e. (t, x) ∈ QT , Ai,j(t, x) ≥ 0.

Remark 8.3. The condition (171) is satisfied by the linearized system of (166)
around (0, 0) thanks to (168).
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We consider the adjoint system

(172)




−∂tζ −∆ζ = A(t, x)ζ in (0, T ) × Ω,
∂ζ
∂n = 0 on (0, T )× ∂Ω,
ζ(T, .) = ζT in Ω.

Our goal is to establish this L1-Carleman inequality: for every ζT ∈ L2(Ω;R+)m,
the nonnegative solution ζ of (172) satisfies

m∑

i=1

∫

QT

e−sαξ2ζidxdt ≤ C(Ω, ω)

(
m∑

i=1

∫

(0,T )×ω
e−sαξ2ζidxdt

)
,(173)

for any λ ≥ 1, s ≥ s1(λ) := C(Ω, ω)e4λ‖η
0‖

∞

(
T + T 2 + T 2 ‖A‖

1/2
L∞(QT ;Rm×m)

)
.

In order to prove (173), we first remark that the nonnegativity of ζ comes from
(171) (see [37, Chapter 3, Theorem 13]). Then, by applying the same proof strategy
to each line of (172) as performed in Theorem 4.9 and by forgetting for the moment
the terms involving Ai,j(t, x)ζj , we get

m∑

i=1

∫

QT

e−sαλ2(sξ)2ζidxdt ≤ C(Ω, ω)

(
‖A‖L∞(QT )

∫

QT

e−sα|ζ|dxdt(174)

+

m∑

i=1

∫

(0,T )×ω
e−sαλ2(sξ)2ζidxdt

)
,

for λ ≥ 1, s ≥ C(Ω, ω)e4λ‖η
0‖

∞

(
T + T 2

)
. We conclude the proof of (173) by ab-

sorbing the first right hand side term of (174) provided s ≥ C(Ω, ω)T 2 ‖A‖
1/2
L∞(QT ).

Difference 2: Without control, the free solution associated to a non-
negative initial data of (166) stays nonnegative and remains bounded. An
adaptation of Lemma 5.1 to the system (166) holds true. But, the reason is different.
It comes from [16, Theorem 1.1] which ensures global existence of classical solutions
associated to nonnegative initial data for nonlinear reaction-diffusion systems with
semilinearities satisfying (168), (169) and a (super)-quadratic growth (see also [39]
under an additional structure assumption, the so-called dissipation of entropy).

Remark 8.4. It is worth mentioning that if the nonlinearities of (166) are bounded
in L1(QT ) for all T > 0 (which is the case of (170) for instance), then the solutions

exist globally because the growth of the semilinearity (fi)1≤i≤m is less than |u|
N+2
N

(see [36, Section 1]).

This concludes the proof of Theorem 8.1. �

In the following result, we give a sufficient condition to ensure the global null-
controllability of (166).

Theorem 8.5. Let α ∈ (1, 2). For each fi, we assume that (3) holds with α and

(175) ∃C > 0, ∀r ∈ [0,+∞)m,

m∑

i=1

fi(r) ≤ −C

(
m∑

i=1

ri

)
logα

(
2 +

(
m∑

i=1

ri

))
.

Then, there exists T sufficiently large such that (166) is globally null-controllable in
time T .

Application 8.6. Let α ∈ (1, 2). There exists T > 0 such that the system



∂tu−∆u = −u logα(2 + |u|+ |v|) + h11ω in (0, T ) × Ω,
∂tv −∆v = −v logα(2 + |u|+ |v|) + h21ω in (0, T ) × Ω,
∂u
∂n = ∂v

∂n = 0 on (0, T )× ∂Ω,
(u, v)(0, .) = (u0, v0) in Ω,

is globally null-controllable in time T > 0.
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Proof. As the proof is very similar to that of Theorem 2.2, we omit the details.
The first step consists in steering the initial data to a nonnegative state in time

T1 := 1. This is possible thanks to Theorem 8.1. After that, we use the following
comparison principle between u, the solution to

∀1 ≤ i ≤ m,





∂tui − di∆ui = fi(u1, . . . , um) in (T1, T2)× Ω,
∂ui
∂n = 0 on (T1, T2)× ∂Ω,
ui(T1, .) = ui,T1 in Ω,

and v, the nonnegative (global) solution to the ordinary differential system

(176) ∀1 ≤ i ≤ m,

{
v̇i(t) = −fi(v(t)) in (T1,+∞),
vi(T1) = ‖ui,T1‖L∞(Ω) + 1 ,

that is to say

(177) ∀i ∈ {1, . . . ,m}, ∀t ∈ [T1, T2], a.e. x ∈ Ω, 0 ≤ ui(t, x) ≤ vi(t).

This comes from the quasi-monotone nondecreasing of (fi)1≤i≤m which is a conse-
quence of (168) (see [41, Theorem 12.2.1] or also [35, Chapter 8, Theorem 3.1]).

Then, by using (175), (176), (177) and the arguments of the step 2 of the proof of
Theorem 2.5, we readily get

∀i ∈ {1, . . . ,m}, a.e. x ∈ Ω, 0 ≤ ui(T2, x) ≤ δ,

where T2 is chosen sufficiently large and δ > 0 is the radius of the ball of L∞(Ω)m

centered at 0 where the local null-controllability of (166) holds in time T = 1 (see
for instance [18, Theorem 1.1] and the small L∞ perturbations method).

Then, one can steer u(T2, .) to 0 with an appropriate choice of the control. �

Another interesting problem could be to determine if Theorem 8.1 and Theo-
rem 8.5 can be generalized with fewer controls than equations in (166). The usual
strategy of Luz de Teresa to ‘eliminate controls’ in a linear parabolic system (see
[11] or [2, Theorem 4.1]) seems to be difficult to implement because the Carleman
inequality in L1 (see Theorem 4.9) only provide estimates on the function (and not
on its partial derivatives in time and space).
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