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We study local and global properties of positive solutions of -∆u = u p +M |∇u| q in a domain Ω of R N , in the range min{p, q} > 1 and M ∈ R. We prove a priori estimates and existence or non-existence of ground states for the same equation.

Introduction

This article is concerned with local and global properties of positive solutions of the following type of equations

-∆u = M |u| p-1 u + M |∇u| q , (1.1) 
in Ω \ {0} where Ω is an open subset of R N containing 0, p and q are exponents larger than 1 and M, M are real parameters. If M ≤ 0 the equation satisfies a comparison principle and a big part of the study can be carried via radial local supersolutions. This no longer the case when M > 0 which will be assumed in all the article, and by homothety (1.1) becomes

-∆u = |u| p-1 u + M |∇u| q . ( 1.2) 
If M = 0 (1.2) is called Lane-Emden equation

-∆u = |u| p-1 u. (1.3) 
It turns out that it plays an important role in modelling meteorological or astrophysical phenomena [15], [START_REF] Chandrasekar | An introduction to the Study of Steller Structure[END_REF], this is the reason for which the first study, in the radial case, goes back to the end of nineteenth century and the beginning of the twentieth. A fairly complete presentation can be found in [START_REF] Fowler | Further studies and similar differential equations[END_REF]. If N ≥ 3, This equations exhibits two main critical exponents p = N N -2 and p = N +2 N -2 which play a key role in the description of the set of positive solutions which can be summarized by the following overview:

1-If 1 < p ≤ N N -2 , there exists no positive solution if Ω is the complement of a compact set. Even in that case solution can be replaced by supersolution. This is easy to prove by studying the inequality satisfied by the spherical average of a solution of the equation.

2-If 1 < p < N +2

N -2 , there exists no ground state, i.e. positive solution in R N . Furthermore any positive solution u in a ball B R = B R (a) satisfies u(x) ≤ c(R -|x -a|)

-2 p-1 , (1.4) 
where c = c(N, p) > 0, see [START_REF] Gidas | Global and local behaviour of positive solutions of nonlinear elliptic equations[END_REF].

3-If p = N +2 N -2 all the positive solutions in R N are radial with respect to some point a and endow the following form u(x) := u λ (x) = (N (N -2)λ)

N -2 4 (λ + |x -a| 2 ) N -2 2 
.

(1.5)

All the positive solutions in R N \ {0} are radial, see [START_REF] Caffarelli | Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth[END_REF]. 4-If p > N +2 N -2 there exist infinitely many positive ground states radial with respect to some points. They are obtained from one say v, radial for example with respect to 0 by the scaling transformation T k where k > 0 with

T k [v](x) = k 2 p-1 v(kx).
(1.6) Indeed, the first significant non-radial results deals with the case 1 < p ≤ N N -2 . They are based upon the Brezis-Lions lemma [START_REF] Brezis | A note on isolated singularities for linear elliptc equations[END_REF] which yields an estimate of solutions in the Lorentz space L N N -2 ,∞ , implying in turn the local integrability of u q . Then a bootstrapping method as in [START_REF] Lions | Isolated singularities in semilinear problems[END_REF] leads easily to some a priori estimate. Note that this subcritical case can be interpreted using the famous Serrin's results on quasilinear equations [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF]. The first breakthrough in the study of Lane-Emden equation came in the treatment of the case 1 < p < N +2 N -2 ; it is due to Gidas and Spruck [START_REF] Gidas | Global and local behaviour of positive solutions of nonlinear elliptic equations[END_REF]. Their analysis is based upon differentiating the equation and then obtaining sharp enough local integral estimates on the term u q-1 making possible the utilization of Harnack inequality as in [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF]. The treatment of the critical case p = N +2 N -2 , due to Caffarelli, Gidas and Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth[END_REF], was made possible thanks to a completely new approach based upon a combination of moving plane analysis and geometric measure theory. As for the supercritical case, not much is known and the existence of radial ground states is a consequence of Pohozaev's identity [START_REF] Pohozaev | On the eigenfunctions of the equation ∆u = λf (u)[END_REF], using a shooting method.

The study of (1.2) when M = 0 presents some similarities with the one of Lane-Emden equation in the cases 1 and 2, except that the proof are much more involved. Actually the approach we develop in this article is much indebted to our recent paper [START_REF] Bidaut-Véron | Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient[END_REF] where we study local and global aspects of positive solutions of

-∆u = u p |∇u| q , (1.7) 
where p ≥ 0, 0 ≤ q < 2, mostly in the superlinear case p + q -1 > 0. Therein we prove the existence of a critical line of exponents (L) := {(p, q) ∈ R + × [0, 2) : (N -2)p + (N -1)q = N }.

(1.8)

The subcritical range corresponds to the fact that (p, q) is below (L). In this region Serrin's celebrated results [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF] can be applied and we prove [6, Theorem A] that positive solutions of (1.7) in the punctured ball B 2 \ {0} satisfy, for some constant c > 0 depending on the solution, u(x) + |x| |∇u(x)| ≤ c |x| 2-N for all x ∈ B 1 \ {0}.

(1.9)

When (p, q) is above (L), i.e. in the supercritical range, we introduced two methods for obtaining a priori estimate of solutions: The pointwise Bernstein method and the integral Bernstein method. The first one is based upon the change of unknown u = v -β , and then to show that |∇v| satisfies an inequality of Keller-Osserman type. When (p, q) lies above (L) and verifies (i) either 1 ≤ p < N +3 N -1 and p + q -1 < 4 N -1 , (ii) or 0 ≤ p < 1 and p + q -1 < (p+1) 2 p(N -1) , we prove that any positive solution of (1.7) in a domain Ω ⊂ R N satisfies |∇u a (x)| ≤ c * (dist (x, ∂Ω))

-1-a 2-q p+q-1 for all x ∈ Ω, (1.10) for some positive c * and a depending on N , p and q [6, Theorem B]. As a consequence we prove that any positive solution of (1.7) in R N is constant. With the second method we combine the change of unknown u = v -β with integration and cut-off functions. We show the existence of a quadratic polynomial G in two variables such that for any (p,

q) ∈ R + × [0, 2) satisfying G(p, q) < 0 any positive solution of (1.7) in R N is constant [6, Theorem C]. The polynomial G is not simple but it is worth noting that if 0 ≤ p < N +2 N -2
, there holds G(p, 0) < 0, which recovers Gidas and Spruck result [START_REF] Gidas | Global and local behaviour of positive solutions of nonlinear elliptic equations[END_REF].

For equation (1.2) we first observe that the equation is invariant under the scaling transformation (1.6) for any k > 0 if and only if q is critical with respect to p, i.e.

q = 2p p + 1 .
In general the transformation T k exchanges (1.2) with

-∆v = v p + M k 2p-q(p+1) p-1 |∇v| q , (1.11) 
hence if q < 2p p+1 , the limit equation when k → 0 is (1.3). We say that the exponent p is dominant. We can also consider the transformation

S k [v](x) = k 2-q q-1 v(kx), (1.12) 
when q = 2, which is the same as T k if q = 2p p+1 , and more generally transforms (1.2) into

-∆v = k q-p(2-q) q-1 v p + M |∇v| q . (1.13)
Hence if q > 2p p+1 , the limit equation when k → 0 is the Riccati equation

-∆v = M |∇v| q . (1.14)
It is also important to notice that the value of the coefficient M (and not only its sign) plays a fundamental role, only if q = 2p p+1 . If q = 2p p+1 the transformation

u(x) = av(y) with a = |M | - 2 (p+1)q-2p and y = a p-1 2 x (1.15) allows to transform (1.2) into -∆v = |v| p-1 v ± |∇v| q .
(1.16)

The equation (1.2) has been essentially studied in the radial case when M < 0 in connection with the parabolic equation

∂ t u -∆u + M |∇u| q = |u| p-1 u, (1.17) 
see [START_REF] Chipot | Some blow-up results for a nonlinear parabolic equation with a gradient term[END_REF], [START_REF] Fila | Remarks on blow-up for a nonlinear parabolic equation with a gradient term[END_REF], [START_REF] Fila | Radial positive solutions for a semilinear elliptic equation with a gradient term[END_REF], [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF], [START_REF] Ph | Recent results and open problems on parabolic equations with gradient nonlinearities[END_REF], [START_REF] Voirol | [END_REF], [START_REF] Voirol | Coexistence of singular and regular solutions for the equation of Chipot and Weissler[END_REF]. The studies mainly deal with the case q = 2p p+1 , although not complete when q > 2p p+1 . When q = 2p p+1 the existence of a ground state is proved in dimension 1. Some partial results that we will improve, already exist in higher dimension. The case M > 0 attracted less attention.

In the nonradial case, any nonnegative nontrivial solution is positive since p, q > 1. We first observe, using a standard averaging method applied to positive supersolutions of (1.3), that if

M ≥ 0, 1 < p ≤ N N -2 when N ≥ 3, any p > 1 if N = 1, 2
, then for any q > 0 there exists no positive solution in an exterior domain. When 0 < q < 2p p+1 the equation endows some character of the pure Emden-Fowler equation (1.3) by the transformation T k . In [START_REF] Polacik | Singularity and decay estimates in superlinear problems via Liouville-type theorems[END_REF] it is proved that if 0 < q < 2p p+1 , 1 < p < N +2 N -2 and M ∈ R, any positive solution of (1.3) in an open domain satisfies

u(x) + |∇u(x)| 2 p+1 ≤ c N,p,q,M 1 + (dist (x, ∂Ω)) -2 p-1 for all x ∈ Ω. (1.18) 
Note that this does not imply the non-existence of ground state. In [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF] Alarcón, García-Melián and Quass study the equation -∆u = |∇u| q + f (u), (1.19) in an exterior domain of R N emphasizing the fact that positive solutions are super harmonic functions. They prove that if 1 < q ≤ N N -1 and if f is positive on (0, ∞) and satisfies lim sup s→0 s -p f (s) > 0, (1.20) for some p > N N -2 , then (1.19) admits no positive supersolution. The same authors also study in [START_REF] Alarcón | Existence and non-existence of solutions to elliptic equations with a general convection term[END_REF] existence and non-existence of positive solutions of (1.19) in a bounded domain with Dirichlet condition.

The techniques we developed in this paper are based upon a delicate extension of the ones already introduced in [START_REF] Bidaut-Véron | Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient[END_REF]. Our first nonradial result dealing with the case q > 2p p+1 is the following:

Theorem A Let N ≥ 1, p > 1 and q > 2p p+1 . Then for any M > 0, any solution of (1.2) in a domain Ω ⊂ R N satisfies |∇u(x)| ≤ c N,p,q M - p+1 (p+1)q-2p + (M dist (x, ∂Ω)) -1 q-1 for all x ∈ Ω. (1.21)
As a consequence, any ground state has at most a linear growth at infinity:

|∇u(x)| ≤ c N,p,q M - p+1 (p+1)q-2p
for all x ∈ R N .

(1.22)

Our proof relies on a direct Bernstein method combined with Keller-Osserman's estimate applied to |∇u| 2 . It is important to notice that the result holds for any p > 1, showing that, in some sense, the presence of the gradient term has a regularizing effect. In the case q < 2p p+1 we prove a non-existence result

Theorem A' Let N ≥ 1, p > 1, 1 < q < 2p
p+1 and M > 0. Then there exists a constant c N,p,q > 0 such that there is no positive solution of

(1.2) in R N satisfying u(x) ≤ c N,p,q M 2 2p-(p+1)q for all x ∈ R N .
(1.23)

When q is critical with respect to p the situation is more delicate since the value of M plays a fundamental role. Our first statement is a particular case of a more general result in [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF], but with a simpler proof which allows us to introduce techniques that we use later on.

Theorem B Let N ≥ 2, p > 1 if N = 2 or 1 < p ≤ N N -2 if N = 3, q = 2p p+1 and M > -µ * where µ * := µ * (N ) = (p + 1) N -(N -2)p 2p p p+1
.

(

Then there exists no nontrivial nonnegative supersolution of (1.2) in an exterior domain.

In this range of values of p this result is optimal since for M ≤ -µ * there exists positive singular solutions. The constant µ * will play an important role in the description developed in [START_REF] Bidaut-Véron | Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms[END_REF] of radial solutions of (1.2). Using a variant of the method used in the proof of Theorem B we obtain results of existence and nonexistence of large solutions.

Theorem B' Let N ≥ 1, p > 1 and q = 2p p+1 . 1-If Ω is a domain with a compact boundary satisfying the Wiener criterion and M ≥ -µ * (2) there exists no positive supersolution of (1.2) in Ω satisfying

lim dist (x,∂Ω)→0 u(x) = ∞. (1.25) 2-If G is a bounded convex domain, Ω = G c and M < -µ * (1)
there exists a positive solution of

(1.2) in Ω satisfying (1.25).
We show in [START_REF] Bidaut-Véron | Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms[END_REF] that the inequality M < -µ * (1) is the necessary and sufficient condition for the existence of a radial large solution in the exterior of a ball.

Concerning ground states, we prove their nonexistence for any p > 1 provided M > 0 is large enough: indeed

Theorem C Let Ω ⊂ R N , N ≥ 1, be a domain, p > 1, q = 2p p+1 . For any M > M † := p -1 p + 1 p-1 p+1 N (p + 1) 2 4p p p+1 , (1.26) 
and any ν > 0 such that (1 -ν)M > M † , there exists a positive constant c N,p,ν such that any solution u in Ω satisfies

|∇u(x)| ≤ c N,p,ν ((1 -ν)M -M † ) -p+1
p-1 (dist (x, ∂Ω))

-p+1 p-1
for all x ∈ Ω.

(1.27)

Consequently there exists no nontrivial solution of (1.2) in R N .

The next result, based upon an elaborate Bernstein method, complements Theorem C under a less restrictive assumption on M but a more restrictive assumption on p.

Theorem D Let 1 < p < N +3 N -1 , N ≥ 2, 1 < q < N +2
N and Ω ⊂ R N be a domain. Then there exist a > 0 and c N,p,q > 0 such that for any M > 0, any positive solution u in Ω satisfies

|∇u a (x)| ≤ c N,p,q (dist (x, ∂Ω)) -2a p-1 -1
for all x ∈ Ω.

(1.28)

Hence there exists no nontrivial nonnegative solution of (1.2) in R N .

It is remarkable that the constants a and c N,p,q do not depend on M > 0, a fact which is clear when q = 2p p+1 by using the transformation T k , but much more delicate to highlight when q = 2p p+1 since (1.2) is invariant. When |M | is small, we use an integral method to obtain the following result which contains, as a particular case, the estimates in [START_REF] Gidas | Global and local behaviour of positive solutions of nonlinear elliptic equations[END_REF] and [START_REF] Bidaut-Véron | Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms[END_REF]. The key point of this method is to prove that the solutions in a punctured domain satisfy a local Harnack inequality.

Theorem E Let N ≥ 3, 1 < p < N +2
N -2 , q = 2p p+1 . Then there exists 0 > 0 depending on N and p such that for any M satisfying |M | ≤ 0 , any positive solution u in B R \ {0} satisfies

u(x) ≤ c N,p |x| -2 p-1 for all x ∈ B R 2 \ {0}.
(1.29)

As a consequence there exists no positive solution of (1.2) in R N , and any positive solution u in a domain Ω satisfies

u(x) + |∇u(x)| 2 p+1 ≤ c N,p (dist (x, ∂Ω)) -2 p-1
for all x ∈ Ω.

(1.30)

Note that under the assumptions of Theorem E, there exist ground states for |M | large enough when 1 < p < N N -2 , or any p >

1 if N = 1, 2. If u is a radial solutions of (1.2) in R N it satisfies -u - N -1 r u = |u| p-1 u + M u q , (1.31) 
on (0, ∞). Using several type of Lyapounov type functions introduced by Leighton [START_REF]On the construction of Liapunov functions for certain autonomous nonlinear differential equations[END_REF] and Anderson and Leighton [START_REF] Anderson | Lyapounov functions for autonomous systems of second order[END_REF], we prove some results dealing with the case M > 0 which complement the ones of [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF] relative to the case M < 0.

Theorem F 1-Let p > 1 and q > 2p p+1 . Then there exists no radial ground state u satisfying u(0) = 1 when M > 0 is too large.

2-Let 1 < p < N +2

N -2 . If 1 < q ≤ p there exists no radial ground state for any M > 0. If q > p there exists no radial ground state for M > 0 small enough. 3-Let N ≥ 3, p > N +2

N -2 and q ≥ 2p p+1 . Then there exist radial ground states for M > 0 small enough.

We end the article in proving the existence of non-radial positive singular solutions of (1.2) in R N \ {0} in the case q = 2p p+1 obtained by bifurcation from radial explicit positive singular solutions. Our result shows that the situation is very contrasted according M > 0 where a bifurcation from (M, X M ) occurs only if p ≥ N +1 N -3 and M ≥ 0 and M < 0 where there exists a countable set of bifurcations from (M k , X M k ), k ≥ 1, when 1 < p < N +1 N -3 . In a subsequent article [START_REF] Bidaut-Véron | Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms[END_REF] we present a fairly complete description of the positive radial solutions of (1.2) in R N \ {0} in the scaling invariant case q = 2p p+1 . Acknowledgements This article has been prepared with the support of the collaboration programs ECOS C14E08 and FONDECYT grant 1160540 for the three authors.

The direct Bernstein method

We begin with a simple property in the case M ≥ 0 which is a consequence of the fact that the positive solutions of (1.2) are superharmonic.

Proposition 2.1 1-There exists no positive solution of (1.2) in R N \ B R , R ≥ 0 if one of the two conditions is satisfied: (i) M ≥ 0, q ≥ 0 and either N = 1, 2 and p > 1 or N ≥ 3 and

1 < p ≤ N N -2 . (ii) M > 0, N ≥ 3, p ≥ 1 and 1 < q ≤ N N -1 . 2-If N ≥ 3, q ≥ 1, p > N N -2 and u(x) = u(r, σ) is a positive solution of (1.2) in R N \ B R , R ≥ 0. Then there exists ρ ≥ R such that 1 N ω N S N -1 u(r, σ)dS := u(r) ≤ c 0 r -2 p-1 for all r > ρ, (2.1 
)

with c 0 := 2N p-1 1 p-1 and 1 N ω N S N -1 u r (r, σ)dS := |u r (r)| ≤ (N -2)c 0 r -p+1 p-1
for all r > ρ.

(2.2)

3-If M > 0, p ≥ 0, and q > N N -1 there holds for

|u r (r)| ≤ (q -1)(N -1) -1 (q -1)M 1 q-1 r -1 q-1 for all r > ρ, (2.3) 
and

u(r) ≤ q -1 2 -q (q -1)(N -1) -1 (q -1)M 1 q-1 r q-2 q-1 for all r > ρ, (2.4) 
Furthermore, if R = 0, inequalities (2.1), (2.2) and (2.3) hold with ρ = 0.

Proof. Assertion 1-(i) is not difficult to obtain by integrating the inequality satisfied by the spherical average of the solution and using Jensen's inequality. For the sake of completeness, we give a simple proof although the result is actually valid for much more general equations (see e.g. [START_REF] Bidaut-Véron | Local and global behavior of solutions of quasilinear equations of Emden-Fowler type[END_REF] and references therein). In this statement we denote by (r, σ) ∈ R + × S N -1 the spherical coordinates in R N , by ω N the volume of the unit N-ball and thus N ω N is the (N-1)-volume of the unit sphere S N -1 . Writing (1.2) in spherical coordinates and using Jensen formula, we get

-r 1-N r N -1 u r r ≥ u p + M |u r | q . (2.5) It implies that r → w(r) := -r N -1 u r is increasing on (R, ∞), thus it admits a limit ∈ (-∞, ∞]. If ≤ 0, then u r (r) > 0 on (R, ∞). Hence u(r) ≥ u(ρ) := c > 0 for r ≥ ρ > R. then r N -1 u r r ≤ -c p r N -1 =⇒ u r (r) ≤ ρ N -1 r N -1 u r (ρ) - c p N r - ρ N r N -1 , which implies u r (r) → -∞, thus u(r) → -∞ as r → -∞, contradiction. Therefore ∈ (0, ∞] and either u r (r) < 0 on (R, ∞) or there exists r > R such that u r (r ) = 0, u is increasing on (R, r , ) and decreasing on (r , ∞). If u r (r) < 0 on (R, ∞), then we have for r > 2R -r N -1 u r (r) ≥ r r 2 t N -1 u p (t)dt ≥ r N u p (r) 2N =⇒ u 1-p r ≥ (p -1)r 2N =⇒ u(r) ≤ 2N (p -1)r 2 1 p-1
, which yields (2.1). If we are in the second case with r > R, we apply the same inequality with r > 2r and again (2.1) for r > 2r . Since u is superharmonic, the function v(s) = u(r) with s = r 2-N is concave on (0, R 2-N ) and it tends to 0 when s → 0. Thus

v s (s) ≤ v s =⇒ |u r (r)| ≤ (N -2) u(r) r ≤ (N -2)c 0 r -p+1 p-1 .
This implies (2.1) and (2.2). Note that the case r > R cannot happen if R = 0, so in any case, if R = 0 then ρ = 0. If M > 0, we have with w

(r) = -r N -1 u r w r ≥ M r (1-q)(N -1) |w| q .
We have seen that w(r) > 0 at infinity with limit ∈ (0, ∞], hence, on the maximal interval containing ∞ where w > 0, we have (w

1-q ) r ≤ (1 -q)M r (N -1)(1-q) . We have for r > s > R w 1-q (r) -w 1-q (s) ≤ M ln r s , if q = N N -1 and w 1-q (r) -w 1-q (s) ≤ M (q -1) (q -1)(N -1) -1 r 1-(q-1)(N -1) -s 1-(q-1)(N -1)
if q < N N -1 , and both expressions which tend to -∞ when r → ∞, a contradiction. This proves 1-(ii). If q > N N -1 , the above expression yields, when r → ∞,

1-q -w 1-q (s) ≤ - (q -1)M (q -1)(N -1) -1 s 1-(q-1)(N -1) .
This implies

w(s) ≤ (q -1)(N -1) -1 (q -1)M 1 q-1 s N -1-1 q-1 ,

and (2.3).

Remark. The previous is a particular case of a much more general one dealing with quasilinear operators proved in [8, Theorem 3.1].

Proof of Theorems A, A' and C

The function u is at least C 3+α for some α ∈ (0, 1) since p, q > 1. Hence z = |∇u| 2 is C 2+α . Since there holds by Bochner's identity and Schwarz's inequality

- 1 2 ∆z + 1 N (∆u) 2 + ∇∆u, ∇u ≤ 0, (2.6) 
we obtain from (1.2),

- 1 2 ∆z + |u| 2p N + 2M N |u| p-1 uz q 2 + M 2 N z q -p|u| p-1 z - M q 2 z q 2 -1 ∇z, ∇u ≤ 0.
Since for δ > 0,

z q 2 -1 | ∇z, ∇u | ≤ z -1 2 ∇z z q-1 2 |∇u| = z -1 2 ∇z z q 2 ≤ δz q + 1 4δ |∇z| 2 z ,
we obtain for any ν ∈ (0, 1), provided δ is small enough,

- 1 2 ∆z + |u| 2p N + 2M N |u| p-1 uz q 2 + M 2 (1 -ν) 2 N z q -p|u| p-1 z ≤ c 1 |∇z| 2 z , (2.7) 
where c 1 = c 1 (M, N, ν) > 0.

Proof of Theorem A

We recall the following technical result proved in [6, Lemma 2.2] which will be used several times in the course of this article.

Lemma 2.2 Let S > 1, R > 0 and v be continuous and nonnegative in B R and C 1 on the set

U + = {x ∈ B R : v(x) > 0}. If v satisfies, for some real number a, -∆v + v S ≤ a |∇v| 2 v (2.8) on each connected component of U + , then v(0) ≤ c N,S,a R -2 S-1 .
(2.9)

Abridged proof. Assuming a > 0, we set W = v α for 0 < α ≤ 1 a+1 , this transforms (2.8) into

-∆W + 1 α W α(S-1)+1 ≤ 0, (2.10) 
and then we apply Keller-Osserman inequality.

Proof of Theorem A. Suppose 2p p+1 < q. We set r = 2p p-1 , r = r r-1 , then, for any > 0

p|u| p-1 z ≤ r |u| (p-1)r r + z r r r = (p -1) r |u| 2p 2 + (p + 1) z 2p p+1 2 r .
We fix η ∈ (0, 1) and so that r = 2(1-η) N (p-1) and get

p|u| p-1 z ≤ (1 -η) |u| 2p N + c 2 z 2p p+1 ,
where

c 2 = p+1 2 N (p-1) 2(1-η) p+1 p-1 .
We perform the change of scale (1.6) in order to reduce (1.2) to

the case M = 1 by setting u(x) = α 2 p-1 v(αx) with α = M - p-1 (p+1)q-2p . Then the equation for z = |∇v| 2 is considered in Ω α = αΩ. Choosing now η = 1 2 we obtain c 2 z 2p p+1 ≤ 1 4N z q + c 3 ,
where c 3 = c 3 (N, p, q) > 0, hence

- 1 2 ∆z + v 2p 2N + 1 4N z q ≤ c 3 + c 1 |∇z| 2 z . Put z = z -(4N c 3 ) 1 q + , then - 1 2 ∆z + 1 4N zq ≤ c 1 |∇z| 2 z , hence, from Lemma 2.2, we derive z(y) ≤ c 4 (dist (y, ∂Ω α )) 2 q-1 where c 4 = c 4 (N, q, c 1 ) > 0 which implies |∇v(y)| ≤ c 4 1 + (dist (y, ∂Ω α )) -1 q-1 ∀ y ∈ Ω α .
(2.11)

Then (1.21) and (1.22) follow.

Assume now that there exists a ground state u. Fix y ∈ R N and consider {y n } ⊂ R N such that |y n | = 2n > |y|. We apply (2.11) with

Ω α = B n (y n ). Then |∇v(y)| ≤ c 4 1 + |2n -|y|| -1 q-1 , and letting n → ∞ we infer |∇v(y)| ≤ c 4 ∀ y ∈ R N . (2.12)
Hence, by the definition of v and y we see that

|∇u(x)| ≤ c 4 M - p+1 (p+1)q-2p ∀ x ∈ R N which is exactly (1.22 ).

Proof of Theorem A'

Suppose 1 < q < 2p p+1 . By scaling we reduce to the case M = 1 and we replace u by v defined by (1.6) as in the proof of Theorem A with

α = M p-1 2p-(p+1)q . From (2.7) with ν = 1 4 the function z = |∇v| 2 satisfies - 1 2 ∆z + v 2p N + 1 2N z q -pv p-1 z ≤ c 1 |∇z| 2 z .
(2.13) By Hölder's inequality,

pv p-1 z ≤ 1 4N z q + p(4N p) q -1 v (p-1)q .
Since (p -1)q = 2p + 2p-(p+1)q q-1 we derive

- 1 2 ∆z + v 2p N 1 -4 q -1 p q N q v 2p-(p+1)q q-1 + 1 4N z q ≤ c 1 |∇z| 2 z .
If max v ≤ c N,p,q := (4 q -1 p q N q ) -q-1 2p-(p+1)q , we obtain

- 1 2 ∆z + 1 4N z q ≤ c 1 |∇z| 2 z ,
which implies that z = 0 by Lemma 2.2, hence v is constant and thus v = 0 from the equation.

Remark. If u is a positive ground state of (1.2) radial with respect to 0, it satisfies u r (0) = 0 and it is a decreasing function of r. The previous theorem asserts that it must satisfy

u(0) > c N,p,q M 2 2p-(p+1)q .
(2.14)

Proof of Theorem C

Suppose 2p p+1 = q. For A > 0 we consider the expression

(u p + A |∇u| q ) 2 -N pu p-1 |∇u| 2 = u p + A |∇u| q - √ N p u p-1 2 |∇u| u p + A |∇u| q + √ N p u p-1 2 |∇u| . Now the function Z → Φ A (Z) = u p + AZ q - √ N p u p-1 2 Z achieves its minimum at Z 0 = √ N p qA p+1 p-1 u p+1 2 and Φ A (Z 0 ) = 1 - p -1 p + 1 N (p + 1) 2 4p p p-1 A -p+1 p-1 u p .

Thus setting

M † = p -1 p + 1 p-1 p+1 N (p + 1) 2 4p p p+1 , (2.15) 
we obtain that if

A ≥ M † , then Φ A (Z) ≥ 0 for all Z. Put M ν = (1 -ν)M for ν ∈ (0, 1) such that M † < M ν , we derive from (2.7) - 1 2 ∆z + (u p + M † z q 2 ) 2 N -pu p-1 z + M 2 ν -M 2 † N z q ≤ c 1 |∇z| 2 z , (2.16) 
which yields

- 1 2 ∆z + M 2 ν -M 2 † N z q ≤ c 1 |∇z| 2 z .
Using again Lemma 2.2 we obtain

|∇u(x)| ≤ c 1 ((1 -ν)M -M † ) -1
q-1 (dist (x, ∂Ω))

-1 q-1 , (2.17) 
which is equivalent to (1.27).

Proof of Theorems B and B'

Proof of Theorem B

Since the result is known when M ≥ 0 from Proposition 2.1, we can assume that M = -m < 0 and

N = 1, 2 or N ≥ 3 with p < N N -2 , u is a nonnegative supersolution of (1.2) in B c R and we set u = v b with b > 1. Then -∆v ≥ (b -1) |∇v| 2 v + 1 b v 1+b(p-1) -mb q-1 v (b-1)(q-1) |∇v| q .
(2.18)

Here again q = 2p p+1 , setting z = |∇v| 2 we obtain 1) .

-∆v ≥ Φ(z) bv where Φ(z) = b(b -1)z -mb 2p p+1 v 2+b(p-1) p+1 z p p+1 + v 2+b(p-
Thus Φ achieves it minimum for

z 0 = mpb q-1 (b -1)(p + 1) p+1 b p-1 v 2+b(p-1) and Φ(z 0 ) = v 2+b(p-1) 1 - p p (p + 1) p+1 b b -1 p m p+1 .
(2. [START_REF] Gidas | Global and local behaviour of positive solutions of nonlinear elliptic equations[END_REF] In order to ensure the optimal choice, when N ≥ 3 we take 1

+ b(p -1) = N N -2 , hence b = 2 (N -2)(p-1) which is larger than 1 because p < N N -2 . Finally Φ(z 0 ) = v N N -2 +1 1 - 1 (p + 1) p+1 2p N -p(N -2) p m p+1 . Hence, if m < (p + 1) N -p(N -2) 2p p p+1 = µ * (N ), (2.20) 
we have for some δ > 0,

-∆v ≥ δv N N -2 , (2.21) 
and by Proposition 2.1 that is no positive solution in an exterior domain of R N .

If N = 2 for a given b > 1 we have from (2.19) that if m < (p + 1) b -1 bp p p+1
, then, for some δ > 0, -∆v ≥ δv 1+b(p-1) .

(2.22)

The result follows from Proposition 2.1 by choosing b large enough.

Proof of Theorem B'

1-We assume that such a supersolution u exists and we denote u = e v , then

-∆v ≥ F (|∇v| 2 ), (2.23) 
where

F (X) = X + e (p-1)v + M e p-1 p+1 v X p p+1 .
Clearly, if M ≥ 0, then F (X) ≥ 0 for any X ≥ 0. Next we assume M < 0, then 2-Let R > 0 such that Ω c ⊂ B R and let w be the solution of Therefore v = e w is nonnegative and satisfies

F (X) ≥ F (X 0 ) = e (p-1)v 1 -p p |M | p + 1 p+1 = e (p-1)v 1 - |M | µ * (2) p+1 . Hence, if |M | ≤ µ * (2), v
-∆w -ae (p-1)w = 0 in B R ∩ Ω lim dist (x,∂B R )→0 w(x) = -∞ lim dist (x,∂Ω)→0 w(x) = ∞, (2.24 
-∆v -v p + |M | |∇v| 2p p+1 ≤ 0 in B R ∩ Ω v = 0 on ∂B R lim dist (x,∂Ω)→0 v(x) = ∞. (2.25) 
Next we extend v by zero in B c R and denote by ṽ the new function. It is a nonnegative subsolution of (1.2) which tends to ∞ on ∂Ω. For constructing a supersolution we recall that if M ≤ -µ * (1) there exist two types of explicit solutions of

-u = u p + M |u | 2p p+1 (2.26) defined on R by U j,M (t) = ∞ for t ≤ 0 and U j,M (t) = X j,M t -2
p-1 , j=1,2, for t > 0 where X 1,M and X 2,M are respectively the smaller and the larger positive root of

X p-1 -|M | 2 p -1 2 p+1 X p-1 p+1 + 2(p + 1) (p -1) 2 = 0. (2.27)
Since Ω c is convex it is the intersection of all the closed half-spaces which contain it and we denote by H Ω the family of such hyperplanes which are touching ∂Ω. If H ∈ H Ω let n H be the normal direction to H, inward with respect to Ω,

H + = {x ∈ R N : n H , x -n H > 0} and we define U H in the direction n H by putting U H (x) = U 2,M ( n H , x -n H ) = X 2,M ( n H , x -n H ) -2 p-1 for all x ∈ H + .
Hence and set, for

x ∈ Ω := ∩ H∈H Ω H + , u Ω (x) = inf H∈H Ω U H (x).
(2.28)

Then u Ω is a nonnegative supersolution of (1.2) in Ω and

u Ω (x) ≥ X 2,M (dist x, Ω)) -2 p-1 ∀x ∈ Ω.
Next v Ω = ln u Ω blows up on ∂Ω, is finite on ∂B R and satisfies

-∆v Ω -ae (p-1)v Ω ≥ 0 in B R ∩ Ω. (2.29)
By comparison with w since a < 0, v Ω ≥ w. Hence u Ω ≥ v in B R \ Ω c . Extending v by zero as ṽ we obtain u Ω ≥ ṽ in Ω c . Hence u Ω is a supersolution in Ω c where it dominates the subsolution ṽ. It follows by [START_REF] Véron | Local and global aspects of quasilinear degenerate elliptic equations. Quasilinear elliptic singular problems[END_REF] that there exists a solution u of (1.2) satisfying ṽ ≤ u ≤ u Ω , which ends the proof.

The refined Bernstein method

The method is a combination of the one used in the previous proofs. It is based upon the replacement of the unknown by setting first u = v -β as in [START_REF] Gidas | Global and local behaviour of positive solutions of nonlinear elliptic equations[END_REF] and [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] and the study of the equation satisfied by |∇v|. However we do not use integral techniques. Since u is a positive solution of (1.2) in B R , the function v is well defined and satisfies

-∆v + (1 + β) |∇v| 2 v + 1 β v 1-β(p-1) + M |β| q-2 βv (β+1)(1-q) |∇v| q = 0 (3.1) in B R . We set z = |∇v| 2 , s = 1 -q -β(q -1) = (1 -q)(β + 1) , σ = 1 -β(p -1),
and

derive ∆v = (1 + β) z v + 1 β v σ + M |β| q-2 βv s z q 2 . (3.2)
Combining Bochner's formula and Schwarz identity we have classically

1 2 ∆z ≥ 1 N (∆v) 2 + ∇∆v, ∇v .
We explicit the different terms

(∆v) 2 = (1 + β) 2 z 2 v 2 + M 2 β 2(q-1) v 2s z q + v 2σ β 2 + 2M (1 + β) |β| q-2 βv s-1 z 1+ q 2 + 2(1 + β) β v σ-1 z + 2M |β| q-2 v s+σ z q 2 , ∇∆v = (1 + β) ∇z v - (1 + β)z v 2 ∇v + σ β v σ-1 ∇v + M s |β| q-2 βv s-1 z q 2 ∇v + M q 2 |β| q-2 βv s z q 2 -1 ∇z, ∇∆v, ∇v = 1 + β v + M q 2 |β| q-2 βv s z q 2 -1 ∇z, ∇v - (1 + β)z 2 v 2 + σ β v σ-1 z + M s |β| q-2 βv s-1 z q 2 +1 . Hence - 1 2 ∆z + 1 N (∆v) 2 + 1 + β v + M q 2 |β| q-2 βv s z q 2 -1 ∇z, ∇v - (1 + β)z 2 v 2 + σ β v σ-1 z + M s |β| q-2 βv s-1 z q 2 +1 ≤ 0.
(3.3)

Proof of Theorem D

We develop the term (∆v) 2 in (3.3) and get

- 1 2 ∆z + (1 + β) 2 N -(1 + β) z 2 v 2 + M 2 β 2(q-1) N v 2s z q + M s + 2(1 + β) N |β| q-2 βv s-1 z 1+ q 2 + v 2σ N β 2 + 1 + β v + M q 2 |β| q-2 βv s z q 2 -1 ∇z, ∇v + N σ + 2(1 + β) N β v σ-1 z + 2M |β| q-2 N v s+σ z q 2 ≤ 0. (3.4) Next we set z = v -k Y where k is a real parameter. Then ∇z = -kv -k-1 Y ∇v + v -k ∇Y , ∇z, ∇v = -kv -k-1 Y z + v -k ∇Y, ∇v = -kv -2k-1 Y 2 + v -k ∇Y, ∇v , ∇z, ∇v v = -kv -2k-2 Y 2 + v -k-1 ∇Y, ∇v , M v s z q 2 -1 ∇z, ∇v = -kM v s-qk 2 -k-1 Y q 2 +1 + M v s-qk 2 Y q 2 -1 ∇Y, ∇v , -∆z = div kv -k-1 Y ∇v -v -k ∇Y = kv -k-1 Y ∆v -k(k + 1)v -k-2 Y z + 2kv -k-1 ∇Y, ∇v -v -k ∆Y = kv -k-1 Y ∆v -k(k + 1)v -2k-2 Y 2 + 2kv -k-1 ∇Y, ∇v -v -k ∆Y. From (3.2) ∆v = (1 + β)v -k-1 Y + 1 β v σ + M |β| q-2 βv s-k q 2 Y q 2 , therefore -∆z = k(β -k)v -2k-2 Y 2 + k β v σ-k-1 Y + kM |β| q-2 βv s-k q 2 -k-1 Y q 2 +1 + 2kv -k-1 ∇Y, ∇v -v -k ∆Y.
Replacing ∇z, ∇v and ∆z given by the above expressions in (3.4) and z by v -k Y , leads to

-∆Y + k(β -k) 2 + (1 + β) 2 N -(k + 1)(β + 1) v -k-2 Y 2 + v 2σ+k N β 2 + M 2 β 2(q-1) N v 2s+k-kq Y q + k + β + 1 v + M q |β| q-2 β 2 v s+k-k q 2 Y q 2 -1 ∇Y, ∇v + 2M |β| q-2 N v s+σ+k-k q 2 Y q 2 + s + 2(1 + β) N - k(q -1) 2 M |β| q-2 βv s-k q 2 -1 Y 1+ q 2 + 1 β k 2 + σ + 2(1 + β) N v σ-1 Y ≤ 0. For 1 , 2 > 0, 1 v | ∇Y, ∇v | ≤ 1 v -k-2 Y 2 + 1 4 1 |∇Y | 2 Y , v s+k-k q 2 Y q 2 -1 | ∇Y, ∇v | ≤ 2 v 2s-kq+k Y q + 1 4 2 |∇Y | 2 Y .
Hence

-∆Y + v 2σ+k N β 2 + 2M |β| q-2 N v s+σ+k-k q 2 Y q 2 + M 2 β 2(q-1) N - M q 2 |β| q-1 2 v 2s+k-kq Y q + k(β -k) 2 + (1 + β) 2 N -(k + 1)(β + 1) -|k + β + 1| 1 v -k-2 Y 2 + 1 β k 2 + σ + 2(1 + β) N v σ-1 Y + s + 2(1 + β) N - k(q -1) 2 M |β| q-2 βv s-k q 2 -1 Y 1+ q 2 ≤ |k + β + 1| 1 + M q |β| q-1 2 2 |∇Y | 2 4Y . (3.5) 
We first choose 2 = M |β| q-1 qN , then

-∆Y + v 2σ+k N β 2 + k(β -k) 2 + (1 + β) 2 N -(k + 1)(β + 1) -|k + β + 1| 1 v -k-2 Y 2 + 1 β k 2 + σ + 2(1 + β) N v σ-1 Y + M 2 β 2(q-1) 2N v 2s+k-kq Y q + 2M |β| q-2 N v s+σ+k-k q 2 Y q 2 + s + 2(1 + β) N - k(q -1) 2 M |β| q-2 βv s-k q 2 -1 Y 1+ q 2 ≤ |k + β + 1| 1 + N q 2 2 |∇Y | 2 4Y .
(3.6) In order to show the sign of the terms on the left in (3.5), we separate the terms containing the coefficient M from the ones which do not contain it. Indeed these last terms are associated to the mere Lane-Emden equation (1.3) which is treated, as a particular case, in [START_REF] Bidaut-Véron | Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient[END_REF]Theorem B] where the exponents therein are q = 0, and p ∈ 1, N +3 N -1 . We set

H 1 ,1 = v 2σ+k N β 2 + k(β -k) 2 + (1 + β) 2 N -(k + 1)(β + 1) -|k + β + 1| 1 v -k-2 Y 2 + 1 β k 2 + σ + 2(1 + β) N v σ-1 Y = v 2σ+k H 1 ,1 (v -1-k-σ Y ), (3.7) 
where

H 1 ,1 (t) = k(β -k) 2 + (1 + β) 2 N -(k + 1)(β + 1) -|k + β + 1| 1 t 2 + 1 β k 2 + σ + 2(1 + β) N t + 1 N β 2 , (3.8) 
and

H M,2 = M 2 β 2(q-1) 2N v 2s+k-kq Y q + 2M |β| q-2 N v s+σ+k-k q 2 Y q 2 + s + 2(1 + β) N - k(q -1) 2 M |β| q-2 βv s-k q 2 -1 Y 1+ q 2 .
(3.9)

Then

-∆Y + v 2σ+k H 1 ,1 (v -1-k-σ Y ) + H M,2 ≤ |k + β + 1| 1 + N q 2 2 |∇Y | 2 4Y .
The sign of H 1 ,1 depends on its discriminant D 1 which is a polynomial in its coefficients. Then if for 1 = 0 this discriminant is negative D 0 is negative, the discriminant D 1 of H 1 ,1 shares this property for 1 > 0 small enough and therefore H 1 ,1 is positive. The proof is similar as the one of [6, Theorem B] in case (i) but for the sake of completeness we recall the main steps. Firstly

D 0 := N 2 β 2 D 0 = N k 2 + σN + 2(1 + β) 2 -4 N k(β -k) 2 + (1 + β) 2 -N (k + 1)(β + 1)
.

Then D 0 = N (p -1) 4 -1 (2σ + k) 2 + 2(p -1)(2σ + k) + L where L = (p -1)k 2 + p(λ + 2) 2 > 0. Put S = 2σ + k k + 2 = 1 - 2β(p -1) k + 2 and T (S) = (N -1)(p -1) 4 -1 S 2 + (p -1)S + p.
After some computations we get, if k = -2,

D 1 := (p -1)D 0 (k + 2) 2 = (p -1) k k + 2 - S 2 2 + T (S). (3.10)
We choose S > 2 such that k k+2 -S 2 = 0, hence β = 2-k 2(p-1) . If p < N +3 N -1 the coefficient of S 2 in T (S) is negative. Hence T (S) < 0 provided S is large enough which is satisfied if k < -2 with |k + 2| small enough. We infer from this that β > 0, D 0 < 0 and H 1 ,1 > 0 if 1 is small enough. In particular H 1 ,1 (t) ≥ c 6 (t 2 + 1) for some c 6 = c 6 (N, p, q) > 0, which means

v 2σ+k H 1 ,1 (v -1-k-σ Y ) ≥ c 6 v -k-2 Y 2 + v 2σ+k . (3.11)
Secondly the positivity of H M,2 is ensured, as β and M are positive, by the positivity of

A := s + 2(1 + β) N - k(q -1) 2 .
Replacing s by its value, we obtain, since 1 < q < N +2 N and β + 2+k 2 > 0, which can be assume by taking |k + 2| small enough,

A = 2 1 + β N -(q -1) β + 1 + k 2 > - k N
Then we deduce that

-∆Y + c 6 v -k-2 Y 2 + v 2σ+k ≤ c 7 |∇Y | 2 Y , (3.12) 
and c 7 = c 7 (N, p, q) > 0 is independent of M . Since S = 1 -2β(p-1)

k+2 = 1 -2-k k+2 = 2k k+2 > 0, we have 2Y 2S S+1 = 2 Y 2 v k+2 S S+1 v (k+2)S S+1 ≤ Y 2 v k+2 + v (k+2)S = Y 2 v k+2 + v 2σ+k . (3.13) 
From this we infer the inequality

-∆Y + 2c 6 Y 2S S+1 ≤ c 7 |∇Y | 2 Y . (3.14) 
Then we derive from Lemma 2.2 that in the ball B R there holds

Y (0) ≤ c 8 R -2(S+1) S-1 = c 8 R -2+ 2(k+2) β(p-1) . (3.15)
From this it follows ∇u

-2+k 2β (0) ≤ |k + 2| 2 √ c 8 R -1+ k+2 β(p-1) . (3.16) 
Setting a = -k+2 2β > 0 we get that for any domain Ω ⊂ R N any positive solution in Ω satisfies

|∇u a (x)| ≤ |k + 2| 2 √ c 8 (dist (x, ∂Ω)) -1-2a p-1 for all x ∈ Ω. (3.17) 
The non existence of any positive of (1.2) solution in R N follows classically.

Corollary 3.1 Let Ω be a smooth domain in R N , N ≥ 2 with a bounded boundary, 1 < p < N +3 N -1 , 1 < q < N +2
N and M > 0. If u is a positive solution of (1.2) in Ω there exists d 0 depending on Ω and c 9 = c 9 (N, p, q) > 0 such that u(x) ≤ c 9 (dist (x, ∂Ω)) 

-2 p-1 + max dist (z,∂Ω)=d 0 u(z) for all x ∈ Ω. ( 3 
A Ω ηu m-2 |∇u| 4 dx - N -1 N Ω ηu m (∆u) 2 dx -B Ω ηu m-1 |∇u| 2 ∆udx ≤ R, (4.1) 
where

A = 1 4N 2(N -m)d -(N -1)(m 2 + d 2 ) , B = 1 2N (2(N -1)m + (N + 2)d) ,
and

R = m + d 2 Ω u m-1 |∇u| 2 ∇u, ∇η dx + Ω u m ∆u ∇u, ∇η dx + 1 2 Ω u m |∇u| 2 ∆ηdx.
It is noticeable that d is a free parameter which plays a role only in the coefficients of the integral terms. The following technical result is useful to deal with the multi-parameter constraints problems which occur in our construction. It was first used in [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] under a simpler form and extended in [START_REF] Bidaut-Véron | Asymptotic of solutions of some nonlinear elliptic systems[END_REF]Lemma 3.4].

Lemma 4.2 For any N ∈ N, N ≥ 3 and 1 < p < N +2 N -2 there exist real numbers m and d verifying

(i) d = m + 2, (ii) 2(N -1)p N + 2 < d, (iii) max -2, 1 -p, (N -4)p -N 2 < m ≤ 0, (iv) 2(N -m)d -(N -1)(m 2 + d 2 ) > 0. (4.2)

Proof of Theorem E

Step 1: The integral estimates. Let η ∈ C ∞ 0 (Ω), η ≥ 0. We apply Lemma 4.1 to a positive solution u ∈ C 2 (Ω) of (1.2), firstly with q > 1 and then with q = 2p p+1 .

A

Ω ηu m-2 |∇u| 4 dx - N -1 N Ω η u m+2p + 2M u m+p |∇u| q + M 2 u m |∇u| 2q dx -B Ω ηu m-1 |∇u| 2 ∆udx ≤ R. (4.3)
We multiply (1.2) by ηu m+p and integrate over Ω. Then

Ω η u m+2p + M u m+p |∇u| q dx = - Ω ηu m+p ∆udx = Ω u m+p ∇u, ∇η dx + (m + p) Ω ηu m+p-1 |∇u| 2 dx.
We set

F = Ω ηu m-2 |∇u| 4 dx , P = Ω ηu m-1 |∇u| q+2 dx , V = Ω ηu m+2p dx, T = Ω ηu m+p-1 |∇u| 2 dx , W = Ω ηu m+p |∇u| q dx , U = Ω ηu m |∇u| 2q dx, S = Ω u m+p ∇u, ∇η dx,
so that there holds

AF - N -1 N V + 2M W + M 2 U + BT + BM P ≤ R, (4.4) 
and

V + M W = (m + p)T + S. (4.5)
Eliminating V between (4.4) and (4.5), we get

AF + B 0 T + M BP - N -1 N W - N -1 N M U ≤ R - N -1 N S, (4.6) 
where

B 0 = B - N -1 N (m + p) = N + 2 2N d - N -1 N p. Also 2P = 2 Ω ηu m |∇u| 2 u |∇u| q dx ≤ Ω ηu m |∇u| 4 u 2 + |∇u| 2q dx = F + U.
We fix now q = 2p p+1 , then

U = Ω ηu m |∇u| 2q dx = Ω ηu m |∇u| √ u 4(q-1) u 2(q-1) |∇u| 4-2q dx ≤ p -1 p + 1 Ω ηu m-2 |∇u| 4 dx + 2 p + 1 Ω ηu m+p-1 |∇u| 2 dx ≤ p -1 p + 1 F + 2 p + 1 T, (4.7) 
hence 

P ≤ 1 2 F + 1 2 U ≤ p p + 1 F + 1 p + 1 T (4.8) and 2W = 2 Ω ηu m+p |∇u| q dx ≤ Ω ηu m+2p dx + Ω ηu m |∇u| 2q dx = V + U ≤ U + (m + p)T + S -M W.
BP - N -1 N W - N -1 N M U ≤ B (F + T ) + F + (p + 1)T + S + F + T, ≤ (B + 2) F + (B + p + 2) T + S.
Plugging these estimates into (4.6) we infer

AF + B 0 T -|M | (B + 2) F + (B + p + 2) T + S ≤ R - N -1 N S. ( 4 

.11)

Since A and B 0 are positive, there exists µ 1 ∈ (0, 1) such that for any |M | < µ 1 ,

A 1 := A -|M | (B + 2) > A 2 and B 1 := B 0 -|M | (B + p + 2) > B 0 2 .
Set A 2 = min{A 1 , B 1 }, then, and whatever is the sign of S,

A 2 (F + T ) ≤ |R| + |S| .
Using (4.7) and (4.8) we have

A 2 (U + P ) ≤ 2A 2 (F + T ) ≤ 2(|R| + |S|). (4.12)
In the sequel we denote by c j some positive constants depending on N and p. Then

U + P + F + T + W ≤ c 1 (|R| + |S|). (4.13)
On the other hand, we have

|R| ≤ c 2 Ω u m-1 |∇u| 3 |∇η| + u m+p |∇u| |∇η| + u m |∇u| q+1 |∇η| + u |∇u| 2 |∆η| dx.
Since

|∇u| q = |∇u| √ u q u q 2 ≤ |∇u| 2 u + u q 2-q = |∇u| 2 u + u p , we deduce Ω u m |∇u| q+1 |∇η|dx ≤ Ω u m-1 |∇u| 3 |∇η|dx + Ω u m+p |∇u||∇η|dx.
Thus we derive from (4.13)

U + P + F + T + W ≤ 2c 3 Ω u m-1 |∇u| 3 |∇η|dx + Ω u m+p |∇u||∇η|dx + Ω u m |∇u| 2 |∆η| dx . (4.14)
From this point we can use the method developed in [10, p 599] for proving the Harnack inequality satisfied by positive solutions of (1.3) in Ω. We set η = ξ λ with ξ ∈ C ∞ 0 (Ω) with value in [0, 1] and λ > 4. For ∈ (0, 1) we have by the Hölder-Young inequality

Ω u m-1 |∇u| 3 |∇ξ λ |dx ≤ 4c 3 Ω u m-2 |∇u| 4 ξ λ dx + C( , c 3 ) Ω u m+2 |∇ξ| 4 ξ λ-4 dx, (4.15) Ω u m+p |∇u||∇ξ p |dx ≤ 4c 3 Ω u m+p-1 |∇u| 2 ξ p dx + C( , c 3 ) Ω u m+p+1 |∇ξ| 2 ξ λ-2 dx, (4.16) 
and

Ω u m |∇u| 2 |∆ξ p |dx ≤ 4c 3 Ω u m-2 |∇u| 4 ξ p dx + C( , c 3 ) Ω u m+2 |∇ξ| 4 + |∆ξ| 2 ξ λ-4 dx. (4.17) 
Hence

U + P + F + T + W ≤ c 4 Ω u m+2 |∇ξ| 4 + |∆ξ| 2 ξ 2 ξ λ-4 dx + Ω u m+p+1 |∇ξ| 2 ξ λ-2 dx .
(4.18) Let us denote by c 4 X the right-hand side of (4.18). Combining (4.5), (4.16) and (4.18) we also get

S := Ω u m+p |∇u||∇ξ p |dx ≤ c 5 X =⇒ V := Ω u m+2p ξ p dx ≤ c 6 X, (4.19) 
and we finally obtain

U + V + P + F + S + T + W ≤ c 7 X. (4.20) 
Finally we estimate the different terms in X, using that m + p > 0 from (4.2)-(iii). For > 0

Ω u m+2 |∇ξ| 4 + |∆ξ| 2 ξ 2 ξ λ-4 dx ≤ Ω u m+2p ξ λ dx + C( , c 7 ) Ω ξ λ-2 m+2p p-1 |∇ξ| 4 + |∆ξ| 2 m+2p 2(p-1) dx, (4.21) 
and

Ω u m+p+1 |∇ξ| 2 ξ λ-2 dx ≤ Ω u m+2p ξ λ dx + C( , c 7 ) Ω ξ λ-2 m+2p p-1 |∇ξ| 2 (m+2p) p-1 dx. (4.22) 
At end we obtain

U + V + P + F + S + T + W ≤ c 8 Ω ξ λ-2 m+2p p-1 |∇ξ| 4 + |∆ξ| 2 m+2p 2(p-1) dx. (4.23) 
Step 2: The Harnack inequality. We suppose that Ω

= B R \ {0} := B * R , fix y ∈ B * R 2 , set r = |y|, then B r (y) ⊂ B * R . Let ξ ∈ C ∞ 0 (B r (y)) such that 0 ≤ ξ ≤ 1, ξ = 1 in B r 2 (y), |∇ξ| ≤ cr -1 and |∆ξ| ≤ cr -2 . We choose λ > max 4, m+2p p+1 , then Br(y) ξ λ-2 m+2p p-1 |∇ξ| 4 + |∆ξ| 2 m+2p 2(p-1) dx ≤ c 9 r N - 2(m+2p) p-1
, and hence

B r 2 (y) u m+2p dx ≤ V ≤ c 10 r N - 2(m+2p) p-1 . (4.24) 
We write (1.2) under the form ∆u + D(x)u + M G(x).∇u = 0, (

with

D(x) = u p-1 and G(x) = |∇u| -2 p+1 ∇u. Set σ = m+2p p-1 , then σ > N 2 by (4.2)-(iii) and B r 2 (y) D σ (x)dx ≤ V ≤ c 10 r N - 2(m+2p) p-1 = c 10 r N -2σ . (4.26) 
Next we estimate G. For τ, ω, γ > 0 and θ > 1, we have with θ = θ θ-1 ,

|∇u| (q-1)τ = u ω |∇u| γ u -ω |∇u| (q-1)τ -γ ≤ u ωθ |∇u| γθ + u -ωθ |∇u| ((q-1)τ -γ)θ .
We fix

τ = 2 2p + m p -1 = 2σ , ω = (2 -m)(p + m -1) p + 1 and θ = p + 1 2 -m .
Then ω > 0 and θ > 1 from (4.2)-(iii), ω > 0. Then u ωθ |∇u| γθ = u p+m-1 |∇u| 2 and u -ωθ |∇u| ((q-1)τ -γ)θ = u m-2 |∇u| 4 , thus

B r 2 (y) |∇u| (q-1)τ dx ≤ F + T ≤ c 11 Ω ξ λ-2 m+2p p-1 |∇ξ| 4 + |∆ξ| 2 ξ 2 m+2p 2(p-1) dx.
This implies

B r 2 (y) G τ (x)dx ≤ c 12 r N -τ , (4.27) 
with τ > N . Using the results of [28, Section 5], we infer that a Harnack inequality, uniform with respect to r, is satisfied. Hence there exists c 13 > 0 depending on N, p such that for any r ∈ (0, R 2 ] and y such that |y| = r there holds max

z∈B r 2 (y) u(z) ≤ c 13 min z∈B r 2 (y) u(z) ∀0 < r ≤ R 2 ∀y s.t. |y| = r, (4.28) 
which implies

u(x) ≤ c 14 u(x ) ∀x, x ∈ R N s.t. |x| = |x | ≤ R 2 , (4.29) 
and actually c 14 = c 7 13 by a simple geometric construction. By (4.24)

r N ω N r N min z∈B r 2 (y) u(z) m+2p ≤ 4 N c 10 r N - 2(m+2p) p-1
, where ω N is the volume of the unit N-ball. This implies

u(x) ≤ c 14 |x| -2 p-1 ∀x ∈ B * R 2 . ( 4.30) 
The proof follows.

Remark. Using standard rescaling techniques (see e. 

-p+1 p-1 ∀x ∈ B * R 3 . (4.31) 
And the next estimate for a solution u in a domain Ω satisfying the interior sphere condition with radius R is valid

u(x) ≤ c 14 (dist (x, ∂Ω)) -2 p-1 ∀x ∈ Ω s.t. dist (x, ∂Ω) ≤ R 2 . (4.32)
5 Radial ground states

We recall that if q = 2p p+1 and M = 0, (1.2) can be reduced to the case M = ±1 by using the transformation (1.15). Since any ground state u of (1.2) radial with respect to 0 is decreasing (this is classical and straightforward), it achieves its maximum at 0 and the following equivalence holds if v is defined by (1.15)

-u - N -1 r u = |u| p-1 u + M |u r | q s.t. max u = u(0) = 1 ⇐⇒ -v - N -1 r v = |v| p-1 v ± |v r | q s.t. max v = v(0) = |M | 2 (p+1)q-2p .
(

Hence large or small values of M for u are exchanged into large or small values of v(0) for v and in the sequel we will essentially express our results using the function u.

Energy functions

We consider first the energy function

r → H(r) = u p+1 p + 1 + u 2 2 . (5.2) 
Then

H (r) = M u q+1 - N -1 r u 2 .
Hence, if M ≤ 0, H is decreasing, a property often used in [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF]. This implies in particular that a radial ground state satisfies

u (r) ≤ 2 p + 1 (u(0)) p+1 2 . (5.3) 
A similar estimate holds in all the cases.

Proposition 5.1 Let M > 0, p, q > 1. If u is a radial ground state solution of (1.2), then the function H defined in (5.2) is decreasing and in particular (5.3) holds.

Proof. Let u be such a radial ground state. By Proposition 2.1 we must have q > N N -1 and

r u 2 H = M r u q-1 + 1 -N ≤ (N -1)q -N q -1 + 1 -N = - 1 q -1 ,
this implies the claim.

Exponential perturbations

As we have seen it in the introduction, if q < 2p p+1 equation (1.2) can be seen as a perturbation of the Lane-Emden equation (1.3) while if q > 2p p+1 it can be seen as a perturbation of the Ricatti equation (1.14). Two types of transformations can emphasize these aspects.

1) For p > 1 set

u(r) = r -2 p-1 x(t), u (r) = -r -p+1
p-1 y(t), t = ln r, (5.4)

then x t = 2 p -1
x -y y t = -Ky + x p + M e -ωt y q

(5.5)

with

K = (N -2)p -N p -1 , (5.6) 
and ω = (p + 1)q -2p p + 1 .

(5.7)

If q > 2p p+1 (resp. q < 2p p+1 ), then ω > 0 (resp. ω < 0) system (5.7) is a perturbation of the Lane-Emden system

x t = 2 p -1 x -y y t = -Ky + x p , (5.8) 
at ∞ (resp. -∞). The following energy type function introduced in [START_REF]On the construction of Liapunov functions for certain autonomous nonlinear differential equations[END_REF] is natural with (5.8)

N (t) = L(x(t), y(t)) = K p -1 x 2 - x p+1 p + 1 - 2 p -1 q M e -ωt x q+1 q + 1 - 1 2 2x p -1 -y 2 , (5.9) 
and it satisfies

N (t) = 2x p -1 -y L 2x p -1 -y -M e -ωt 2x p -1 q -y q + ω 2 p -1 q M e -ωt x q+1 q + 1 , (5.10) 
where

L = N -2 - 4 p -1 = K - 2 p -1
. Relation (5.10) will be used later on.

2) For p, q > 1 set

u(r) = r -2-q q-1 ξ(t), u (r) = -r -1
q-1 η(t), t = ln r, (5.11)

then ξ t = 2 -q q -1 ξ -η η t = - (N -1)q -N q -1 η + e ωt ξ p + M η q
(5.12)

where ω = p -1 q -1 ω.

(5.13)

Note that if q < 2p p+1 this system at ∞ endows the form

ξ t = 2 -q q -1 ξ -η η t = - (N -1)q -N q -1 η + M η q .
(5.14)

It is therefore autonomous and much easier to study.

Pohozaev-Pucci-Serrin type functions

Let α, γ, θ, κ be real parameters with α, κ > 0. Set

Z(r) = r κ u 2 2 + u p+1 p + 1 + α uu r -γu u q .
(5.15)

This type of function has been introduced in [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF] in their study of equation (1.2) with M = 1 with specific parameters. We use it here to embrace all the values of M . We define U by the identity

Z + θ u q-1 Z = r κ-1 U. (5.16) 
Then

U = κ 2 + α + 1 -N u 2 + κ p + 1 -α u p+1 + α(κ -N ) uu r + θ p + 1 -γq ru p+1 u q-1 + M + γ + θ 2 r u q+1 + ((N -1)q -κ) γ -α(θ + M ) u u q -γ(θ + qM )ru u 2q-1 .
(5.17)

5.2 Some known results in the case M < 0

We recall the results of [START_REF] Chipot | Some blow-up results for a nonlinear parabolic equation with a gradient term[END_REF], [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF] and [START_REF] Polacik | Singularity and decay estimates in superlinear problems via Liouville-type theorems[END_REF] relative to the case M < 0.

Theorem 5.2 1-Let N ≥ 3 and 1 < p ≤ N N -2 . 1-(i) If q > 2p
p+1 , there is no ground state for any

M < 0 ([25, Theorem C]). 1-(ii) If 1 < q < 2p
p+1 there exists a ground state when |M | is large [14, Proposition 5.7] and there exists no ground state when |M | is small ([23]).

2-Assume

N N -2 < p < N +2
N -2 and let q be the unique root in ( 2p p+1 , p) of the quadratic equation

(N -1)(X -p) 2 -(N + 2 -(N -2)p)((p + 1)X -2p)X = 0.
2-(i) If q ≤ q < p there exists no ground state for any M < 0 ([25, Theorem C]).

2-(ii) If 2p p+1 < q < q, there exists no ground state for |M |.

It is an open question whether there could exist a finite number of M for which there exists a ground state [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF]Theorem 4]). 2-(iii) If 1 < q < 2p p+1 , there exists a ground state for large |M | ([14, Proposition 5.7]) and no ground state when |M | is small ( [START_REF] Polacik | Singularity and decay estimates in superlinear problems via Liouville-type theorems[END_REF]).

3-Assume p > N +2

N -2 and q > 1 and let Q N,p = 2(N -1)p 2N +p+1 ∈ ( 2p p+1 , p). 3-(i) If Q N,p < q < p there exists a ground state for |M | small. 3-(ii) If 1 < q ≤ Q N,p there exists a ground state for any M < 0 ([25, Theorem A]).

4-Assume p = N +2

N -2 . There exists at least one M < 0 such that there exists a ground state if and only if 1 < q < p. More precisely: 4-(i) If 2p p+1 < q < p there exists ground state if |M | is small ([25, Theorem B]). 4-(ii) If q ≥ 2p p+1 there exists a ground state for any M < 0 ([25, Theorem A]).

Remark. It is interesting to quote that when M < 0 and q ≥ 2p p+1 , there holds [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF]Theorem 3],

u(r) = O(r - 2 
p-1 ) and u (r) = O(r

-p+1
p-1 ) when r → ∞.

The case M > 0

The next result is a consequence of Theorem A.

Theorem 5.3 Let M > 0, p > 1 and q > 2p p+1 then there exists no radial ground state satisfying u(0) = 1 when M is large.

Proof. Suppose that such a solution u exists. From Theorem A and Proposition 2. (5.18)

As a consequence, if r > R > 0,

1 -u(r) = u(0) -u(r) = u(0) -u(R) + u(R) -u(r) ≤ c N,p,q |M | - p+1 (p+1)q-2p R + ∞ R |u (s)| ds ≤ c N,p,q |M | - p+1 (p+1)q-2p R + c N,p R -2 p-1 ,
with c N,p = p-1 2 c N,p . Since u(r) → 0 when r → ∞, we take R = |M | p-1 (p+1)q-2p and derive

1 ≤ c N,p,q + c N,p |M | - 2 (p+1)q-2p , (5.19) 
and the conclusion follows.

Remark. If we use Proposition 5.1 we can make estimate (5.19) more precise.

The case

M > 0, 1 < p ≤ N +2 N -2
It is a consequence of our general results that there is no radial ground state for large M or for small M when 1 < q ≤ 2p p+1 and 1 < p < N +2 N -2 . Indeed, if 1 < q < 2p p+1 is a consequence of the equivalence statement between a priori estimate and non-existence of ground state proved in [START_REF] Polacik | Singularity and decay estimates in superlinear problems via Liouville-type theorems[END_REF], and if q = 2p p+1 it follows from Theorems C and E. Actually in the radial case, the result is more general. Theorem 5.4 Let M > 0 and 1 < p < N +2 N -2 . If 1 < q ≤ p, there exists no radial ground state for any M . If q > p there exists no radial ground state for M small enough.

Proof. By Proposition 2.1, we may assume N ≥ 3 and

N N -2 < p ≤ N + 2 N -2 and q > N N -1 . (5.20) 
(i) Assume first q < 2p p+1 . We use the system (5.5). Then ω, defined by (5.7) is negative. Hence the Leighton function N defined by (5.9) is nonincreasing since L ≤ 0 when p ≤ N +2 N -2 . Furthermore since (x(t), y(t)) → (0, 0) when t → -∞ and e -ωt → 0, we get N (-∞) = 0 it follows that N (t) < 0 for t ∈ R. Moreover, by Proposition 2.1,

u(r) = O(r -2-q q-1 ) as r → ∞ ⇐⇒ x(t) = O(e q(p+1)-2p (p-1)(q-1) t ) = o(1) as t → ∞ This implies e -ωt x q+1 (t) = O(e 2 q(p+1)-2p (p-1)(q-1) t ) = o(1) as t → ∞ and N (∞) = 0, contradiction. (ii) Assume next 2p
p+1 ≤ q ≤ p. We consider the function (5.15) with the parameters

κ = 2(p + 1)(N -1) p + 3 = (p + 1)α and γ = - 2M q(p + 1) + 2 = θ q(p + 1)
, already used by [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF] when M = -1, and we get with U defined by (5.16),

U = 2 (p + 3) 2 u |u | r A + BM χ + CM χ 2 with χ = p + 3 2 + q(p + 1) r u q-1 ,
where

A = (N -1)(N + 2 -(N -2)p) , B = 2(N -1)(p -q) , C = q(q(p + 1) -2p). (5.21) 
By our assumptions A ≥ 0, B ≥ 0 and C > 0. Hence U > 0. This implies

Z(r) = e -r 0 θ|u | q-1 ds Z(0) + r 0 e -θ r s |u | q-1 dσ s κ-1 U(s)ds = r 0 e -θ r s |u | q-1 dσ s κ-1 U(s)ds, since Z(0) = 0. If u is a ground state, then u (r) → 0 as r → ∞, thus u |u | q ≤ u |u | 2p p+1 . Hence, from Proposition 2.1, u 2 (r) = O(r -2 p+1
p-1 ) as r → ∞. The other terms u p+1 (r), r -1 u(r)u (r) and u |u | 2p p+1 satisfy the same bound, hence

Z(r) = O(r κ- 2(p+1) p-1 ) = O(r 2(p+3)(N -1) p+3 - 2(p+1) p-1 ) = O(r 2(p+1)((N -2)p-(N +2)) (p+3)(p-1)
).

Then Z(r) → 0 when r → ∞, contradiction.

(iii) Suppose q > p and u is a ground state. By Proposition 5.1 and (5.18), there holds

r u q-1 = r u p-1 p+1 u q-2p p+1 ≤ c N,p .
Then χ = p+3 2+q(p+1) r |u | q-1 ≤ c N,p . Hence, if M ≤ M N,p for some M N,p > 0, U is positive as A is. We conclude as above.

If q = 2, then U ≤ -(u 2 + u p+1 ) + M αu 2 since u ≤ 1 on [0, r 0 ]. We still infer that U ≤ 0 if we choose M ≤ α .

Finally, if q > 2, we have from Theorem A, u ≤ C N,p,q M -p+1 (p+1)q-2p . Therefore, using again the decay of u from u(0) = 1,

M αu u q ≤ M αu u q-2 u 2 ≤ M αC q-2 N,p,q M - (p+1)(q-2) (p+1)q-2p u 2 = αC q-2 N,p,q M 2 (p+1)q-2p u 2 . Hence U ≤ --αC q-2 N,p,q M 2 (p+1)q-2p u 2 . Taking M 2 (p+1)q-2p ≤ C 2-q N,p,q (N -2)p -N -2 (N -2)p + 3N -2
we conclude that U < 0 which ends the proof as in the previous cases.

Theorem F is the combination of Theorem 5.3, Theorem 5.4 and Theorem 5.5.

Separable solutions

We denote by (r, σ) ∈ R + × S N -1 the spherical coordinates in R N . Then equation (1.2) takes the form

-u rr - N -1 r u r - 1 r 2 ∆ u = |u| p-1 + M u 2 r + 1 r 2 |∇ u| 2 q 2 , ( 6.1) 
where ∆ is the Laplace-Beltrami operator on S N -1 and ∇ the tangential gradient. If we look for separable nonnegative solutions of (1.2) i.e. solutions under the form u(r, σ) = ψ(r)ω(σ), then q = 2p p+1 , ψ(r) = r -2

p-1 , and ω is a solution of

-∆ ω + 2K p -1 ω = ω p + M 2 p -1 2 ω 2 + |∇ ω| 2 p p+1 , (6.2) 
where K is defined in (5.6). Throughout this section we assume p > 1 and q = 2p p + 1 . (6.3)

Constant solutions

The constant function ω = X is a solution of (6.2 ) if

X p-1 + M 2 p -1 2p p+1 X p-1 p+1 - 2K p -1 = 0. ( 6.4) 
For N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N N -2 , we recall that µ * = µ * (N ) has been defined in (1.24). The following result is easy to prove Proposition 6.1 1-Let M ≥ 0 then there exists a unique positive root X M to (6.4) if and only if p > N N -2 . Moreover the mapping M → X M is continuous and decreasing from [0, ∞) onto (0, 2K p-1

1 p-1 ].
2-Let M < 0, N ≥ 3 and p ≥ N N -2 then there exists a unique positive root X M to (6.4) and the mapping M → X M is continuous and decreasing from (-∞, 0] onto

[ 2K p-1 1 p-1 , ∞).
3-Let M < 0, N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N N -2 then there exists no positive root to (6.4) 

if -µ * < M ≤ 0. If M = M * := -µ * there exists a unique positive root X M * = 2|K| p(p-1) 1 p-1 . If M < -µ * there exist two positive roots X 1,M < X 2,M . The mapping M → X 1,M is continuous and increasing from (-∞, µ * ] onto (0, X M * ]. The mapping M → X 2,M is continuous and decreasing from (-∞, µ * ] onto [X M * , ∞). Abridged proof. Set f M (X) = X p-1 + M 2 p -1 2p p+1 X p-1 p+1 - 2K p -1 , (6.5 
)

then f M (X) = (p -1)X p-2 + M p-1 p+1 2 p -1 2p p+1 X -2 p+1 . 1-If M is nonnegative, f M is increasing from -2K p-1 = -2[(N -2)p-N ] (p-1) 2 to ∞; hence, if p > N N -2
there exists a unique X M > 0 such that f M (X M ) = 0, while if 1 < p < N N -2 , f M admits no zero on [0, ∞). Since f M > f M for M > M > 0, there holds X M > X M , By the implicit function theorem the mapping M → X M is C 1 and decreasing from [0, ∞) onto (0, 2K p-1 Since K > 0, there exists a unique X M > 0 such that f M (X M ) = 0 and X M > X 0 . The mapping M → X M is C 1 and decreasing from (-∞, 0] onto [ 2K p-1 f M (X) < 0, or equivalently, if M < -µ * , the equation f M (X) = 0 admits two positive roots X 1,M < X 0 < X 2,M . The monotonicity of the X j,M , j=1,2, and their range follows easily from the monotonicity of M → f M (X) for M < 0. Actually the following asymptotics hold when M → -∞, (6.8)

Bifurcations

We set

A(ω) = -∆ ω + 2K p -1 ω -ω p -M 2 p -1 2 ω 2 + |∇ ω| 2 p p+1 , (6.9) 
If η ∈ C ∞ (S N -1 ) and if there exists a constant positive solution X to A(X) = 0 we have

d dτ A(X + τ η) τ =0 = -∆ η + 2K p -1 -pX p-1 -M 2p p + 1 2 p -1 2p p+1 X p-1 p+1 η.
Hence the problem is singular if

- 2K p -1 + pX p-1 + M 2p p + 1 2 p -1 2p p+1 X p-1 p+1 = λ k , (6.10) 
where λ k = k(k + N -2) is the k-th nonzero eigenvalue of -∆ in H 1 (S N -1 ). The following result follows classically from the standard bifurcation theorem from a simple eigenvalue (which can always be assumed if we consider functions depending only on the azimuthal angle on S N -1 reducing the eigenvalue problem to a simple Legendre type ordinary differential equation) see e.g. [START_REF] Smoller | Schock Waves and Reaction-Diffusion Equations[END_REF]Chapter 13] and identity (6.4). we get an impossibility since K < 0. Hence there exists no M 0 < 0 such that (M 0 , X 1,M 0 ) is a bifurcation point. We have also R[Φ 2 ] = (-∞, 2K p-1 ] for M ≤ -µ * . Now the condition for the existence of a bifurcation branch issued from (M 0 , X 2,M 0 ) for some M 0 ≤ -µ * is 

p + 1 p(p -1) (2K -λ k ) ≤ 2K p -1 ⇐⇒ λ k ≥ 2K p + 1 ,

  is a positive superharmonic function in Ω which tends to infinity on the boundary. Such a function is larger than the harmonic function with boundary value k > 0 for any k (and taking the value min |x|=R v(x) for R large enough if Ω is an exterior domain). Letting k → ∞ we derive a contradiction.

) with a = 1 -

 1 |M | µ * (2) p+1 < 0, obtained by approximations. By the argument used in 1, ae (p-1)w ≤ |∇w| 2 + e (p-1)w -|M | e |∇w| 2 + e (p-1)w -|M | e

. 18 )4 The integral method 4 . 1 Lemma 4 . 1

 184141 Proof. It is similar to the one of [6, Corollary B-2]. Preliminary inequalities We recall the next inequality [9, Lemma 3.1]. Let Ω ⊂ R N be a domain. Then for any positive u ∈ C 2 (Ω), any nonnegative η ∈ C ∞ 0 (Ω) and any real numbers m and d such that d = m + 2, the following inequality holds

(4. 9 )

 9 Next we assume that |M | ≤ 1. From (4.7), (4.9), it follows thatW ≤ U + (m + p)T + S ≤ F + (m + p + 1)T + S.(4.10) From now we fix m and d according Lemma 4.2. Therefore A > 0 by (4.2)-(iv) and B > 0 by combining (4.2)-(ii) and (4.2)-(iii). Furthermore B 0 > 0 by (4.2)-(ii). Hence, from (4.7), (4.8) and (4.10) we derive, since N -1 N < 1 and m ≤ 0 from (4.2)-(ii)

  g. [29, Lemma 3.3.2]) the gradient estimate holds |∇u(x)| ≤ c 15 |x|

  u (r) ≤ c N,p .

1 p- 1 1 ( 1 +

 1111 ]. Actually it can be proved that (see[7, Proposition 2.2]) o(1)) as M → ∞. (6.6) 2-If M is negative, f M achieves it minimum on [0, ∞) at X 0 = -M

1 p- 1 ,

 11 N = 1, 2 and p > 1 or N ≥ 3 and 1< p < N N -2 , then f M (0) > 0. Hence, if f M (X 0 ) > 0 there exists no positive root to f M (X) = 0. Equivalently, if -µ * < M < 0. If f M (X 0 ) = 0, X 0 is a double root and this is possible only if M = -µ * , hence X -µ * = 2|K| p(p-1) 1 p-1 . If

X 1

 1 

Proof. Assertion 1 . 1 1p- 1 .

 111 Since from Lemma 6.3, R[Φ] = [0, 2K p-1 ) for M ≥ 0, we have to see under what condition on p ≥ N N -2 one can find k ≥ 1 such that 0≤ p + 1 p(p -1) (2K -λ k ) < 2K p -1 ⇐⇒ 2K p + 1 < λ k ≤ 2K.Since K < N and λ k ≥ 2N for k ≥ 2, the only possibility for this last inequality to hold is k = 1. The inequality 2K p+1 < N -1 always holds since p > 1, while the inequalityN -1 = λ 1 ≤ 2K is equivalent to p ≥ N +1 N -3 . Therefore M 0 = 0 and X M 0 = 2Kp-If we consider only functions on the sphere S N -1 which depend uniquely on the azimuthal angle θ = tan -1 (x N S N -1 ), the functionψ 1 (σ) = x N S N -1 is a eigenfunction of -∆ in H 1 (S N -1) with multiplicity one. Hence the bifurcation branch is locally a regular curve s → (M (s), ω M (s) ) with 0 ≤ s < 0 and we construct the bifurcating solution on S N -1 using the classical tangency condition [26, Theorem 13.5],ω M (s) = X M 0 + s(ψ 1 + ζ s ) (6.12)whereζ s ∈ H 1 (S N -1 ), is orthogonal to ψ 1 in H 1 (S N -1 ) and satisfies ζ s C 1 = o(1) when s → 0. This implies the claim. Assertion 2. Since R[Φ] = (-∞, 0) for M < 0, we have to find k ≥ 1 such that p + 1 p(p -1) (2K -λ k ) < 0 ⇐⇒ 2K < λ k .As in Case 1, K < 2N , then inequality 2K ≤ λ k holds for all k ≥ 2, and if k = 1 this is possible only if p < N +1 N -3 . The construction of the bifurcating curve is the same as in Case 1. Assertion 3. We have R[Φ 1 ] = [ 2K p-1 , 0) for M ≤ -µ * . If we look for the existence of some k ≥ 1 such that 2K p -1 ≤ p + 1 p(p -1) (2K -λ k ) < 0 ⇐⇒ 2K ≤ λ k < 2K p + 1 ;

  which is always true for any k ≥ 1 and 1 < p < N N -2 . Remark. The exponent p = N +1 N -3 is the Sobolev critical exponent on S N -1 . If one consider the Lane-Emden equation with a Leray potential-∆u + λ|x| -2 u = u N +1 N -3 ,(6.13)with λ ∈ R, then the separable solutions u(r, σ) = r -N -3 2 ω(σ) verify-∆ ω + (N -1)(N -3) 4 -λ ω -ω N+1N -3 = 0 on S N -1 . (6.14)

The case

We recall that in Theorem C if q = 2p p+1 and p > 1 there is no ground state whenever M > M N,p , see (1.26). In Theorem A' if 1 < q < 2p p+1 and p > 1 there is no ground state u such that u(0) = 1 if M is too large. In the next result we complement Theorem 5.3 for small value of M in assuming q > 2p p+1 .

Theorem 5.5 If p > N +2 N -2 and q ≥ 2p p+1 then there exist radial ground states for M > 0 small enough.

Proof. First we consider the function Z with k = N and obtain

The function vanishes at the origin. We compute U from the identity Z + θ |u | q-1 Z = r N -1 U and get

If γ = 0 and θ = -2M , then

If u is a regular solution which vanishes at some r 0 > 0, then

Assume first q < 2, we have from Hölder's inequality and 0 < r ≤ r 0 where u is positive

there exists a continuous branch of nonconstant positive solutions (M, ω M ) of (6.2) bifurcating from the (M 0 , X M 0 ).

M by (6.4) the following statements follow immediately from Proposition 6.1.

M when X M is uniquely determined, and

If we analyse the range R[Φ] of Φ or R[Φ j ] of Φ j , we prove the following result.

Theorem 6.4 1-Let N ≥ 3 and p ≥ N N -2 . 1-(i) There exists a continuous curve of bifurcation (M, ω M ) issued from (M 0 , X M 0 ) for some

3-(ii) There exist a countable branches of bifurcation of solutions

It was observed in [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] that there exists a branch of bifurcation (λ, ω λ ) with λ > 0 issued from (0, ω 0 ), where ω 0 is the constant explicit solution of (6.14).

Remark. In Theorem 6.4-1-and the above remark, we conjectured that on the bifurcating curve there holds locally M (s) < M 0 , and that for any p ≥ N +1 N -3 there exists M 0 := M 0 (p) such that for M > M 0 all the positive solutions to (6.2) are constant, furthermore M 0 is defined by (6.11). When p = N +1 N -3 , then M = 0 and there exists infinitely many positive solutions to (6.2) [10, Proposition 5.1]. When N N -2 < p < N +1 N -3 , it is unclear if the branches of bifurcation (M (s), ω M (s) ) issued from (M 0 , ω M 0 ) with M 0 < 0 are such that M (s) keeps a constant sign. If it is the case one could expect that if M ≥ 0 and N N -2 < p < N +1 N -3 , all the positive solutions to (6.2) are constant.

The following statement is an immediate consequence of Theorem 6.4. Corollary 6.5 1-If p > 1 and q = 2p p+1 there always exist nonradial positive singular solutions of (1.2) in R N \ {0} under the form u(r, σ) = r