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Abstract:  To study the thermal effect in nano-transistors, a simulator based on the self-consistent 

solution of the Boltzmann transport equations (BTEs) for both electrons and phonons has been 

developed. It has been used here to investigate the self-heating effect in a 20-nm long double gate 

MOSFET. In this model, a Monte Carlo (MC) solver for electrons has been coupled with a direct 

solver for the phonon transport. This method is particularly efficient to provide a deep insight on the 

out-of-equilibrium thermal dissipation occurring at the manometer scale when the length of the 

devices is smaller than the mean free path of both charge and thermal carriers. This approach allows 

us to evaluate accurately the phonon emission and absorption spectra in both real and energy spaces. 

Keywords: phonon, electron, Boltzmann, Transport Equation, Silicon, MOS, 

DGMOS, transistors, self-heating. 

1. Introduction 

Heat conduction/dissipation and self-heating effects are taking an increasing place 

in the design of solid-state devices and circuits. At the simulation level, different 

methods have now reached a high degree of maturity to describe accurately the 

electronic transport under uniform lattice temperature. They include in particular 

the Monte Carlo (MC) method to solve the Boltzmann or Wigner transport equation 

and the non-equilibrium Green's function (NEGF) formalism. With different levels 

of approximation, these techniques are now able all derails of the material band 

structure [1] [2] [3], multisubband transport  [4] [5] [6], quantum transport [7] [8] 

and scattering effects  [9] [10] [11] [12]. However, introducing accurate description 
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of heat conduction and its coupling with charge transport in device simulators able 

to consider devices of realistic size is still an issue, in spite of recent efforts.  

In crystalline materials heat is mainly carried by phonons, the pseudo-particle 

associated with the lattice vibrations. The phonon mean free path (MFP) is usually 

limited by interaction with other phonons, impurities and interfaces [13]. In silicon, 

the mean value is estimated to be typically 300 nm at room temperature [14]. On 

distance scales larger than the MFP, the phonon system remains close to thermal 

equilibrium and may be well described by the classical Fourier heat equation.  

However, in modern electronic devices the length of the active region is in the order 

of a few tens of nanometers and in the presence of a perturbation, phonon scattering 

events are too rare for the system to recover local thermodynamic equilibrium. 

Thus, in such devices the use of a macroscopic description of thermal transport as 

the Fourier heat equation is questionable. In this case, the phonon Boltzmann 

transport equation (pBTE), which has the ability to correctly describe both 

equilibrium and non-equilibrium phenomena, is much more relevant. Simplified 

equations have been derived from the pBTE and different methods for solving them 

have been developed with different levels of approximation. It is worth mentioning 

the phonon radiative transfer equation, the ballistic-diffusive equation [15, 16], the 

discrete ordinate method (DOM) [17, 18] and the lattice Boltzmann method [19-

21]. However, to accurately solve the pBTE, the stochastic Monte Carlo approach 

has been shown to be a powerful technique that can manage the details of the 

collision processes at the microscopic scale [13, 22-26] [27]. Additionally, it can be 

used in complex geometry devices. To solve the coupled electron and phonon 

transport equations on an equal footing within the Boltzmann approach suitable for 

full device simulation, it is very tempting to connect a thermal solver with an 

electron MC (eMC) code and to introduce a local dependence of the electron 

transport (scattering rates) on the state of phonon system. Different methods have 

been developed. In a simple approach, the eMC simulation has been coupled with 

a solver of the Fourier heat equation to study the size effect on the thermoelectric 

properties of III-V heterostructures [28]. Then a split-flux model of phonon 

transport has been self-consistently coupled with eMC simulation of Si FETs [29]. 

In 2010, Sadi anf Kelsall proposed to couple the 2D heat equation with 2D eMC 

simulation to describe self-heating effects in SOI transistors thanks to the position-

dependence of the temperature and thermal conductivity [30]. A similar model has 
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been developed to analyse the thermal effects in quantum cascade lasers [31]. To 

make it possible to capture out-of-equilibrium thermal phenomena, the Vasileska 

and Goodnick group solved the energy balance equations of thermal transport. By 

coupling this approach with eMC simulation, it has been possible to describe the 

optical phonon bottleneck in ultra-short transistors and the resulting current 

degradation through an analytic formulation of thermal conductivity in thin Si films 

[32] [33]. Kamakura et al. have implemented a MC method to solve the BTE for 

both electrons and phonons for 1D Si diodes with simplified phonon scattering rates 

but this approach has not been extended to transistors yet [34]. Recently, Ni et al. 

have used the phonon generation spectrum extracted from eMC simulation as input 

for a pBTE solver with anisotropic relaxation times and Brillouin zone to evaluate 

the hotspot temperature in a MOSFET [35]. This detailed description requires large 

computational resources [36]. 

In this paper, we introduce a computationally efficient approach to solving 

deterministically the steady-state 1D pBTE within the relaxation time 

approximation (RTA). This phonon transport solver has been self-consistently 

coupled to an eMC device simulation to study the electro-thermal effects in 

nanoelectronic devices. This model provides deep insight into the out-of-

equilibrium phonon effects in small devices. 

This paper is organized as follows. Sections 2 and 3 are dedicated to the 

presentation of the main features of the thermal simulator based on the direct 

solution of the pBTE, and on the phonon scattering mechanisms included in the 

model for silicon, respectively. In Section 4 this model is used to explore the 

different regimes of phonon transport in silicon bars of different lengths, from 

diffusive to ballistic limits. Next, in Section 5 we explain how this thermal transport 

model has been coupled to an electron Monte Carlo simulation code  to build an 

electro-thermal device simulator. This simulator has been used to investigate the 

self-heating effects in an ultra-short Double Gate MOS field effect transistor (DG-

MOSFET). The results presented in section 6 put forward the effect of out-of-

equilibrium phonon distribution resulting from high phonon generation rate at the 

drain-end of the channel. 



4 

2. Thermal simulator 

2.1. Phonon dispersion 

The phonon dispersion in silicon is composed of six phonon modes, i.e. two 

transverse acoustic (TA), one longitudinal acoustic (LA) acoustic, two transverse 

optical (TO) and one longitudinal optical (LO) modes. In this work, the TA modes 

on one side and the TO modes on the other side have been considered to be 

degenerate, which is exact along the main crystallographic directions. For each 

mode s the dispersion relation has been assumed to follow an analytic and quadratic 

expression of the form  

   2
0, , s s g s sq v q a q     (1) 

where q is the modulus of the phonon wave vector. The parameters 0,s , ,g sv  and 

sa  are taken from Ref. [37] where they have been optimized to fit the actual 

dispersions along the direction [100]. Accordingly, the Brillouin zone was assumed 

to be isotropic in this model, i.e with a spherical symmetry. The maximum value of 

the wave vector norm maxq a  is the radius of the Brillouin zone where a is the 

lattice parameter.  

2.2. Thermal transport equation 

Since the out-of-equilibrium character of phonon transport may be significant in 

nano-devices, the use of the Boltzmann transport formalism to study the heat 

diffusion is particularly relevant. In contrast to the case of charged particles, the 

trajectories of phonons are not modified by any external driving forces. Hence, the 

corresponding drift term is absent in the Boltzmann transport equation for phonons 

(pBTE), the steady-state form of which can be written for each mode s as 

      , s  s. . ,    ,   g r

col

s

l

N
v q N r q G r q

t


   


,  (2) 

where q  is the phonon wave vector, r is the position vector, ,g sv  is the group 

velocity,  ,sN r q  is the phonon distribution (i.e. the number of phonons with a 

wave vector 𝑞⃗ in the range / 2q dq ), 
coll

N

t




 is the scattering term and  ,sG r q  

is the generation term. 
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In contrast to that of electrons, the distribution of phonons, which are bosons, can 

be higher than one and the equilibrium phonon distribution   0 ,sN T r q  at a 

temperature  T r  follows the Bose-Einstein statistics 

   
 
 

0 1
,

exp

s

s

B

N T r q
q

k T r




 
 
 

 . (3) 

where ħ and kB are the Planck and Boltzmann constants, respectively. 

2.3. Heat generation 

The generation term  ,sG r q  in Eq. 2 derives from either an internal source, i.e. 

from the phonon bath itself, or from an external one.  

The internal source only affects the acoustic modes. Its origin is the anharmonic 

decay of optical phonons in excess into acoustic phonons of lower energy. This 

phenomenon gives rise to a significant energy transfer from optical to acoustic 

modes and has to be taken into account to ensure the energy conservation of the 

system.  

The external heat generation is related to the energy exchange between phonons 

and electrons. A difference between the phonon and electron temperatures induces 

a net increase of the emitted (or absorbed) phonons. In the self-consistent electro-

thermal loop of our model, these specific generation terms are extracted from the 

previous solution of electronic transport. More details about these generation terms 

can be found in Ref. [38], in particular about the computation of the anharmonic 

decay. 

2.4. Scattering term 

The scattering term has been implemented within the relaxation time approximation 

(RTA), i.e. in the form 

 
    

  

0
 s s  ,  

,

,  

 

Fourier

col sl Fourier

N q N T r qN

t T r q

r




 


, (4) 

where τs refers to the total relaxation time at the temperature TFourier. This approach 

of the scattering term provides a tractable linear expression. Its main issue is the 

determination of TFourier for an appropriate description of the temperature-

dependence of the relaxation time. This temperature is basically an unknown 
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variable that could be rigorously quantified via a self-consistent solution. However 

to simplify the iterative process, in our model this temperature is directly estimated 

from a preliminary solution of a simple 1D Fourier heat equation, i.e. 

  Fourier
T Fourier

T
T

t



   


, (5) 

where T  is the thermal conductivity that may depend on temperature, as will be 

discussed below. The input parameter TFourier, which is the solution of Eq. (5), is 

inserted in the scattering term (Eq. 4) and then Eq. (2) can be solved. The boundary 

conditions used to solve Eq. (5) and Eq. (2) are the same and as described below. 

2.5. Boundary conditions 

We consider the thermal transport to one-dimensional (1D). It means that for 2D or 

3D devices the spatial phonon distribution is assumed to be uniform and the thermal 

fluxes to be zero along the transverse direction(s) perpendicular to the transport. It 

is relevant in the case of quasi-infinite transverse dimensions or in the presence of 

quasi thermal insulator such as SiO2 surrounding the active region, like in FD-SOI 

transistors. Along the transport direction, the two thermal contacts are assumed to 

be in equilibrium with two ideal reservoirs at temperatures T1 and T2, respectively. 

Thus, the phonon distributions of the entering phonons follow the corresponding 

Bose-Einstein distribution. Phonons hitting the contact interfaces are free to leave 

the device and their related energy disappear [19]. 

2.6. Discretization scheme 

According to the previous parts, the unknown phonon distribution  ,N z q  in Eq. 

(2) depends on one real-space coordinate and three reciprocal-space coordinates, 

and the Boltzmann equation for each mode s (LA,TA, LO and TO) may be rewritten 

in the form 

        

    

, ,, 1 , ,

, ,

Fourier

z
s Fourier g s s s T

s Fourier

T z q v q N z q N z q
z

G z q T z q





 
    

 

 

 (6) 

where ,
z
g sv is the projection of the group velocity along the z axis, the transport 

direction. Due to the isotropic character of the scattering terms used in this work 
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(see next section), the solution of Eq. (6) remains straightforward since it can be 

decoupled along the directions of the reciprocal space that are independent.  

The real space is discretized with a non-uniform grid and the maximum mesh size 

(Δz) must be smaller than the MFP. In the reciprocal space, a Cartesian grid is 

applied along the three directions with wave vector components qx, qy and qz. The 

number of q-steps maxqN q q   is fixed to 100, which ensures an accuracy of the 

order of one percent in the computation of the conductivity. Hence, the Brillouin 

zone, assumed to be spherical, is divided into about 5×105 cubic cells.  

The derivative operator is approximated within the finite difference method, using 

either the forward 
1i i i

s s s

i i

N N N

z z

  
    

 or backward 
1i i i

s s s

i i

N N N

z z

  
    

Euler’s 

approximation depending on whether ,
z
g sv  is positive or negative, respectively. 

By fixing the temperature at the two contacts, the final linear matrix equation is 

solved using a standard LU decomposition. 

2.7. Effective temperature 

In the context of non-equilibrium phonon distributions which is often encountered 

at the nanoscale, the concept of (standard) temperature is meaningless and 

considering a “phonon distribution” field is more relevant. Nevertheless, the use of 

an “equivalent temperature” field, called effective temperature Teff, and defined 

from the total energy of the local phonon bath resulting from the actual phonon 

distribution (which may be out-of-equilibrium) naturally extends the common 

temperature concept [39]. According to this definition, an effective temperature for 

each mode can be defined. It should be noted that, in contrast to what is observed 

in out-of-equilibrium conditions, once the equilibrium is recovered the temperature 

of the four modes is equal to Teff and corresponds to the standard temperature T. 

3. Scattering and thermal conductivity 

In the case of low temperature gradient within the RTA and assuming the isotropic 

dispersion of Eq. 1, an analytical expression of the thermal conductivity 

(considering only low temperature gradients) can be derived from Eq. (2), as 

follows [40]: 
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 

   
 

 

max 2
2 2

,2 2 2
, 0

exp1

3 2exp 1

q

ss
s g s s

Bs LA TA s

Xq dq
v q q q

k T X


 





  

 
h

, (9) 

where  s s BX q k T . 

In this approach, the contribution of optical modes, that exhibit weak average group 

velocities with respect to acoustic modes, is neglected. The total relaxation time τs 

in Eq. (9) is computed according to the Mathiessen’s rule i.e. by summing up the 

contributions of all relevant scattering mechanisms. In the case of silicon, the total 

relaxation time includes phonon-impurity, phonon-phonon and phonon-rough 

interface scattering mechanisms. The modelling of these mechanisms and the 

resulting thermal conductivity are presented in this section. 

3.1. Phonon-Impurity relaxation time 

The relaxation time related to the Phonon-Impurity scattering mechanism used in 

this work follows the well-established Holland’s model which results from an 

analysis of thermal conductivity based on a linear dispersion and fitted scattering 

parameters [17]. It is given by 

  
1 4

I q A 

  . (10) 

where A = 1.3210-45 s3 and  is the phonon angular frequency. 

3.2. Phonon-Phonon relaxation time 

The implementation of the phonon-phonon scattering in Si is also based on the 

Holland’s model [41]. In this model, in the case of longitudinal acoustic phonons 

only one kind of scattering is considered, while for transverse acoustic phonons, 

normal and Umklapp mechanisms are considered separately. The corresponding 

expressions of these relaxation times are reminded in Table 1. 

 

Scattering mechanisms  Relaxation Time 

TA Normal scattering    
1 3 4,TA TNq T B q T 

    

TA Umklapp scattering       
1 2

, sinhTA TU Bq T B q q k T  

  h  

LA scattering    
1 2 3,LA Lq T B q T 

    

Optical phonon  1 3.5psO
    
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Table 1. Expressions of relaxation times for phonon-phonon interactions in Bulk Si. The values of 

parameters BTN, BTU and BL are discussed in the text and given in Table 2 

 

Figure 1.  Thermal conductivities in bulk Si as a function of the temperature: experimental data 

[42] (triangles), model of Holland [41] (solid line), scattering parameters from [41] with the 

dispersion of Eq. 1 (dashed line) and our work (red crosses). 

In Figure 1, the symbols represent experimental measurements of the thermal 

conductivity in bulk Si. The conductivities related to phonon-phonon interactions 

in the acoustic branches and computed via Eq. 6 are represented by lines. 

Obviously, the original Holland’s model (blue solid line) based on a linear 

dispersion for acoustic phonons fits the experiments. Nevertheless, the results 

obtained with the original parameters BTN, BTU and BL (black dashed line) and a 

quadratic dispersion relation (Eq. 1) are disappointing, especially at high 

temperature.  

13 310.5 10 KTNB     

 

 

18

max

if : 0

else : 2.89 10 s

where 2

cut TU

TU

cut

B

B

q

 

 



 

 



  

24 31.18 10 sKLB      

 

Table 2. Set of parameters used for phonon-phonon interactions in Bulk Si when considering a 

quadratic dispersion. 

However, if these parameters are tuned to the values given in Table 2, the computed 

conductivities (red dashed line and red crosses) perfectly reproduce the 

experimental data and even better that those of the original model for a temperature 

ranging from 2 K to 1000 K.  

From 150 to 600 K, the evolution of the experimental conductivities is proportional 

to Tα and is well fitted by  

 
5

1.34

3.09 10
T

T



 . (11) 
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Optical phonon modes are often neglected in investigations of thermal conductivity. 

However, in the presence of excited optical phonon populations, their anharmonic 

decay into lower energy phonons is a fundamental phenomenon which governs the 

energy relaxation and thus the evolution of the non-equilibrium (hot) phonon 

populations [43]. In our electro-thermal simulation the optical phonon modes (LO 

and TO) can be included and a constant relaxation time is used. This time is chosen 

according to the measurement of Ref. [44] and is given in Table 1. 

3.3. Phonon-boundary relaxation time 

At the boundaries, phonons can undergo either a specular or a diffusive reflection. 

The specular reflections have no impact on the phonon conductivity, in contrast to 

the diffusive ones that are caused by the defects at the reflecting interfaces. These 

defects randomize the velocity of the involved phonons along the interface. 

Moreover, these boundary scatterings become predominant below 50 K in silicon 

[36] due to the “freezing out” of phonon-phonon interactions. Additionally, these 

interface effects are size-dependent, so that we have to consider separately the bulk 

and the thin film boundary scattering mechanisms. 

In bulk Silicon, the Holland’s model is once again considered. The related 

relaxation time has the form [17] 

  
 ,1

,
g s

B bulk

v q
q

L F
  


  (12) 

where L = 7.1610-3 m is the equivalent sample size and F = 0.68 is a geometric 

factor. 

In the case of thin films where the characteristic time between two collisions at 

interfaces is in the same order of magnitude as the total relaxation time, the 

relaxation time associated with interface diffusion is expressed as [18] 

  
 

 
 

1

,

1
min

1

i
B i

g s

p qL
q

v q p q


   
  

  

r
r

r r , (13) 

where    2 2 2exp 4 cos Bp q q   
r r

 , i stands for the direction x, y or z, Li is the 

length of the device along the direction i. The coefficient of specular reflections

 p q  varies from 0 to 1 depending on both the interface roughness parameter  , 

i.e. the standard deviation of interface fluctuations, and the incident angle of the 

phonon B.  
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In Figure 2, the evolution of the in-plane conductivity as a function the roughness 

is plotted for several film widths at ambient temperature. While the roughness 

parameter is not relevant in the case of thick films, to validate the model it is 

mandatory to reproduce the experimental data for films thinner than 100 nm. 

  

Figure 2.  Thermal conductivity as a 

function of the roughness parameter  for 

20, 50, 100 nm and 1.6 μm film thickness. 

Symbols are the experimental data for 

TSi = 20 nm (triangle)[45], 50 nm 

(square)[45], 100 nm (diamond)[46] and 

1.6 μm (circle) [47]. 

Figure 3.  In-plane Thermal conductivities in 

silicon thin-films at 300 K as a function of the film 

width. Continuous lines: our analytical RTA 

model, symbols: experimental data [47] 

(squares), [14] (blue triangle),[45] (red 

triangles), [46] (red circles), [48] (blue 

quadrangle). 

However, as shown in Figure 2, the value of the roughness parameter needed to 

reproduce the experimental conductivity is relatively high and it is reasonable to 

assume fully diffusive interfaces, i.e.   0p q  . In an “in-plane” model for films 

with a Silicon thickness SiT  and a transverse group velocity ,
T
g sv , the simple form 

of the phonon-boundary relaxation time is 

  1
, , /T

B film g s Siv q T     (14) 

As illustrated in Figure 3, this simple model matches accurately the experimental 

conductivities for film thicknesses ranging from 20 nm to 10 μm.  

4. From diffusive to ballistic heat transport 

This section is dedicated to the study of heat transport regimes. The pBTE (Eq. 2) 

was numerically solved as described in section 2, including the relaxation times of 

section 3. Several temperature gradients were applied on Silicon bars of different 

lengths. Only the acoustic (LA and TA) modes were considered as the average 

group velocities of optical modes are weak compared to acoustic ones.  
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4.1. Temperature profiles and non-linear effects 

Temperature profiles in a 5 μm–long Si bar under a high temperature difference (T1 

= 500 K and T2 = 250 K) are displayed in Figure 4.  

In this device much longer than the MFP, the heat transport is diffusive. However, 

the evolution of the temperature along the bar is obviously non–linear. Actually, for 

such a high temperature gradient, this non-linear behaviour is due to the 

temperature-dependence of the thermal conductivity, described by Eq. 7. It is worth 

noting that in this case our numerical pBTE results are in accordance with an 

analytical solution of the diffusive Fourier heat equation (derived in the Appendix).  

In the case of smaller temperature gradient (T1 = 310 K and T2 = 290 K), the 

temperature profiles for several bar lengths are plotted in Figure 5. In a long bar 

where the transport is diffusive; the profile is linear in accordance with the Fourier’s 

law with a constant conductivity. In contrast, in very short bars much smaller than 

the MFP, the transport tends to its ballistic limit and thus the temperature profile 

tends to a step function. The temperature in the ultra-short device is very close to 

the ballistic temperature limit TBal = (T1
4/2+T2

4/2)1/4 
= 300.5 K derived from the 

Stefan-Boltzmann law [49]. 

The temperature evolution between these two limit cases shows a smooth change 

from a quasi-diffusive transport regime occurring in the 200 nm-long bar and a 

quasi-ballistic regime in the 20 nm one. 

  

Figure 4. Temperature profiles in a 5 µm 

long Si bar: our numerical pBTE 

(symbols) and analytical calculation 

(solid line) for a large temperature 

gradient. 

Figure 5. Effective temperature profiles for different 

Si bar lengths L from 4 µm down to 2 nm for a small 

temperature gradient. 
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4.2. From diffusive to ballistic phonon distributions 

To further investigate the transition between the diffusive and ballistic regimes the 

phonon distributions in q -space have been extracted. These spectra are very 

specific to our approach based on pBTE that provides microscopic insights into the 

phonon transport in all transport regimes. 

The evolution of TA (for LA see Ref. [50]) phonon distributions from the hot 

contact at Th = 400 K to the cold contact at Tc = 300 K is displayed in Figure 6 for 

bar lengths of 2 µm, 200 and 2 nm which correspond to diffusive, intermediate and 

ballistic regimes, respectively. The distributions are computed as a function of the 

component qz, of the wave vector. 

   

Figure 6.  Evolutions of the longitudinal wave vector qz spectra for TA phonons at different positions 

regularly distributed between the two contacts for (a) 2 µm (b) 200 nm and (c) 20 nm bar lengths. The 

arrows show the direction from contact 1 to contact 2. 

Obviously, the phonon occupations depend on temperature and decrease from hot 

to cold contacts. Besides, in all samples, the applied boundary conditions impose 

the phonon distributions at these two contacts to be given by the corresponding 

Bose-Einstein occupation function.  

For a 2 µm-long sample which is longer than the MFP, the transport is quasi-

diffusive. The distributions are quasi-symmetric and their shape is a clear 

manifestation of the local thermodynamic quasi-equilibrium all along the device. 

In contrast, the evolution of phonon occupations in the 20 nm long bar are strongly 

dissymmetric, except at the contacts. The shape of the distributions inside the 

device strongly differs from those at equilibrium and is typical of ballistic transport 

[51] [52]. In this ultra-short sample the phonons travel without experiencing any 

scattering event. Hence, the distribution of phonons remains unchanged during their 

crossing of the device and is exactly the same as that injected from the emitting 

contact. Therefore, the phonons may be separated in two distinct populations: the 

negative and the positive parts of the distribution. The negative (positive) part, i.e. 
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with qz < 0 (qz > 0), is related to phonons flowing from contact 2 (1) to contact 1 

(2).  

An intermediate regime in which the influence of scattering is neither dominant nor 

negligible is observed in the 200 nm-long bar. The occupations are also asymmetric 

and two populations can be distinguished. However, for positive (negative) qz the 

transition from contact 1 (2) to that of contact 2 (1) is not as abrupt as in the ballistic 

case. It should be highlighted here that a strong advantage of our numerical 

approach for heat transport is its capability to capture accurately the physical 

features of such an intermediate transport regime. 

5. Electro-thermal Simulator 

To investigate self-heating effects in electronic devices, the thermal solver 

presented in the previous part has been coupled to an electron transport simulator. 

The resulting electro-thermal simulator is described in this section.  

5.1. Electron Monte Carlo simulation 

To solve the electron transport equation we have used a homemade Ensemble 

Monte Carlo simulation for electrons (eMC). In this approach the Boltzmann 

equation is solved using a stochastic calculation of particle trajectories self-

consistently coupled with the Poisson equation. In this version of the code the 

conduction band of electrons in silicon is described through an analytical non-

parabolic model for the six ellipsoidal Δ valleys. This model provides a density of 

states (DOS) close to that of a full-band description below about 1.5 eV [53]. 

Degeneracy effects and quantum corrections [4] are not included here. All details 

of the band structure and the scattering parameters used for acoustic phonon, inter 

valley phonon, ionized impurity and oxide interface roughness scattering 

mechanisms can be found in Ref. [54]. This simulator reproduces well the 

experimental mobility in unstrained (and strained) bulk-Si [54] and allows the 

detailed investigation of non-stationary effects [51]. 

5.2. Heat generation and phonon dispersion 

The cartography of the phonon temperature is an input to the eMC simulation that 

provides the heat generation term needed in Eq. 2 via the local counting of electron-

phonon scattering events. In contrast to macroscopic approaches assuming local 
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equilibrium, this method includes an accurate description of the energy transfers 

between phonons and hot electrons and gives access to their accurate location [38]. 

As in most common eMC models, the phonon dispersions used to conveniently 

compute the intervalley scattering rates are assumed to be wave vector-independent. 

Fortunately, the simulator provides information about the wave vector of the 

phonon selected to be involved in the electron-phonon scattering event: 𝑞⃗ = 𝑘’⃗⃗⃗ ⃗ − 𝑘⃗⃗ 

where 𝑘⃗⃗ and 𝑘’⃗⃗⃗ ⃗ are the electron wave vectors in the initial and final states, 

respectively. If the wave vector 𝑞⃗ is out of the first actual Si Brillouin zone which 

is tetrahedron, a relevant lattice vector is added to manage only wave vectors in the 

first Brillouin zone. Then, the angular frequency of an interacting phonon is 

computed afterward from the wave vector 𝑞⃗ and the quadratic dispersion of Eq. 1. 

For both acoustic and optical phonons, we have checked that this approach does not 

break the average energy conservation between electrons and phonons (see more 

details in Ref. [38, 50]).  

 

Figure 7.  Main steps of the coupled electro-thermal simulator. 

5.3. Self-consistent alogorithm 

The schematized coupling procedure between electron and phonon transport is 

illustrated in Figure 7. The coupled simulation starts with an isothermal (300 K) 

eMC simulation (referred as “open loop” simulation). Then, the net phonon 

generation rates, which are functions of both the position and the phonon frequency, 

are extracted from eMC outputs and used as inputs for both the Fourier heat 

equation and pBTE solver described in Section 2. The resulting local effective 

temperature is then re-injected in the eMC simulator. It should be mentioned that 

only the effective temperature fields are exchanged between steps because in 

standard situations the phonon occupations do not significantly differ from their 

equilibrium distribution [38]. Next, all electron scattering rates, as electron-phonon 
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and electron-impurity scattering rates, are re-calculated in each cell according to 

the position-dependent Teff. Then, the eMC simulation is performed again with this 

new field of temperature. This three-step process, that successively includes an 

electron and a phonon transport simulation, is called a loop. The convergence is 

reached when the effective temperature field between two consecutive loops is 

smaller than the target value. It should be noted that in most cases the convergence 

is reached after only three loops.  

6. Self-heating effects in DG-MOS 

The electro-thermal simulator presented in Section 4 was used to investigate the 

self-heating effect in a 20 nm long DGMOS transistor. As presented later, hot 

electrons play a significant role in this device; thus the optical modes and the related 

LTO decay are included in the pBTE solving. 

A 2D cross-section of the studied Si DG-MOSFET is schematized in Figure 8. The 

device consists of three regions: the highly N-doped (51019 cm-3) source and drain 

regions and the 20 nm long and non-intentionally doped (1015 cm-3) channel. The 

source length is 50 nm, while the drain length is extended to 150 nm to make it 

larger than the relaxation length of hot electrons. The thickness of the Si-film is 

20 nm.  

 

Figure 8.  Schematic cross-section of the simulated device. 

6.1. Heat generation 

The profile of heat power density resulting from the initial isothermal (300 K) eMC 

simulation (the ‘open loop’) is plotted in Figure 9.a. This MC result (solid line) 

indicates that hot electrons heated in the channel, that is the high electric field 

region, transfer their energy to the phonon bath mainly in the drain region, and for 

a significant part of them far into the drain extension. This result considerably 
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diverges from the prediction based on local equilibrium (dashed line) which 

estimates the heat power as the product of the local electric field (𝐸⃗⃗) and the local 

current density (𝐽). This macroscopic approach, neglecting the important out of 

equilibrium effects occurring in this DGMOS, would predict a maximum of 

dissipated heat inside the channel where the field is high.  

Additionally, the generated heat power is positive all along the device, i.e. no 

thermoelectric cooling is observed even near the source/channel potential barrier 

where the electric field is negative. 

In Figure 9.b, the phonon generation rates computed for each phonon mode are 

plotted along the source-drain direction. In the source region where electrons 

remain close to equilibrium (cf. [38]) the emitted phonons belong mainly to the LA 

and TO branches while the other modes have no noticeable effect. In the channel, 

where the transit time of electrons is very short compared to the scattering times, 

the net phonon generation is almost zero for all modes. In the drain, where the 

phonon generation rate is clearly the strongest, the main emission processes are 

once again due the LA and TO modes. However a significant contribution of TA 

phonons can be observed near the channel, with a shorter decay length. From the 

channel-drain junction the decaying of the total phonon generation rate is 

characterized by a decay length of about 28 nm for Vds = 1.0 V, which is much 

shorter than the length of the drain extension. Thus, near the drain contact the heat 

generation rate of each mode reaches a local equilibrium state very similar to that 

in the source. 

 

  

Figure 9.  At Vgs = 0.5 V and Vds = 1.0 V. (a) Heat power density extracted from eMC simulation 

(green solid line) and from the product J E  (dashed red line). (b) Net phonon generation rate 

per mode (dashed lines) and total generation rate (continous line) due to electron-phonon 

scattering, from eMC simulation. 

(a) (b)
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6.2. Self-heating effect  

The heat generation computed from the initial eMC simulation presented above has 

been included in the phonon transport equation (p-BTE) to initiate the iterative 

algorithm presented in Section 5. 

We plot in Figure 10.a the profile of the effective temperature Teff at Vgs = 0.5 V and 

Vds = 1.0 V after each loop. It confirms that the convergence is obtained after only 

three loops. The feedback resulting from the iterative process induces a slight 

reduction of the hotspot temperature from 441 K in the 1st loop to 433 K after 

convergence. Besides, near the two contacts with the thermal reservoirs, a 

temperature drop can be observed. This drop is higher near the drain contact 

because the phonon transport is further from equilibrium than in the source side. 

In Figure 10.b, we study the effect of the interface quality of the Si-SiO2 interface 

by artificially tuning the roughness parameter Δ. Switching from a quasi-specular 

(Δ = 0.35 nm) to a quasi-diffusive interface (Δ = 3 nm) significantly modifies the 

thermal resistance of the Si bar leading to an important change in the hot spot 

temperature. At the studied bias, the Teff difference can reach 50 K in the hot spot.  

More interestingly, this figure shows the difference between the temperature 

profiles of Teff resulting from the pBTE (solid lines) and of TFourier given by the 

simple heat equation (dashed lines). This difference quantifies the influence of the 

out-of-equilibrium thermal effects. Near the source and drain contacts these two 

temperatures are similar and the temperature profile is linear as expected in near-

equilibrium regime. However, they significantly differ in the vicinity of the region 

of strong heat generation where the Teff profiles exhibit a more complex evolution 

than the TFourier ones. The Teff peak is more abrupt and occurs in front of the 

channel/drain junction. The difference between TFourier and Teff reaches 8 K in the 

case of weak thermal resistance i.e. for Δ = 0.35 nm. This difference is reduced 

when the thermal transport is degraded (Δ = 3 nm).  
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Figure 10.  At Vg = 0.5 V and Vds = 1.0 V. (a) Evolution of the effective temperature Teff along the 

device for several loop numbers. (b) After convergence, profiles of Teff (solid lines) and TFourier 

(dashed lines) for roughness parameters  = 0.35 nm, 1 nm and 3 nm. 

6.3. I-V characteristics  

The drain current characteristics Id-Vds at a gate voltage Vgs = 0.5 V and the transfer 

characteristics Id-Vgs at Vds = 1.0 V are shown in Figure 11.a and b, respectively. To 

highlight the effect of self-heating, the isothermal open loop simulations have been 

compared with electro-thermal simulations. As expected, the impact of self-heating 

manifests itself mainly at high drain current, when the enhancement of channel 

temperature is sufficient to induce a significant increase of the number of scattering 

events in the active region. It induces a drain current degradation of 6.9% and 20% 

for Vds = 0.5 V and 1.0 V, respectively. Moreover, the maximum value of 

transconductance m d gsg d I dV  is degraded too.  

  

Figure 11.  (a) Id-Vds at Vg = 0.5 V and (b) Id-Vgs at Vds = 1.0 V. Open loop (blue lines with 

circular symbols) vs. electro-thermal simulations (red lines with triangular symbols). Roughness 

parameter  = 3 nm. 

(a) (b)

(a) (b)
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7. Conclusion 

We have presented a numerical method to solve the stationary Boltzmann transport 

equation for phonons (pBTE) in the relaxation time approximation, considering 

quadratic phonon dispersions. A specificity of our approach is to evaluate the 

equilibrium temperature to be considered in the expressions of scattering relaxation 

times via a preliminary solution of the Fourier heat equation. Using adjusted 

parameters of the Holland’s model of phonon scattering, our model reproduce the 

thermal conductivity in silicon in the full 100–600 K temperature range. In Si films, 

the in-plane conductivity is also well reproduced. Besides, our advanced thermal 

simulator is versatile and able to describe the heat transfer in all diffusive, 

intermediate and ballistic transport regimes. It also provides a deep microscopic 

insight into the phonon behaviour such as the local phonon occupation spectra. 

This pBTE simulator has been coupled with our home-made Ensemble Monte Carlo 

simulation for electrons to study the self-heating effects in a 20 nm -long DG-

MOSFET. The convergence is quickly reached, i.e. usually after only three loops. 

In simulations with contacts perfectly thermalized at 300K, the effective 

temperature can exceed 400 K in the hot spot of the transistor in on-state. Besides, 

it has been shown that the heat Fourier equation is not able to catch accurately the 

exact location and value of this temperature overshoot. The self-heating increases 

the detrimental effects of the access resistances and finally, the drain current can be 

reduced by a factor of 20% at high applied voltage.  

This study could be extended in further works to investigate other devices and to 

extend to 2D configuration to take into account the interface effects.  

Appendix:  

Diffusive equation and temperature 

dependent diffusivity 

 

In steady-state, without heat generation, the diffusive heat equation can be reduced 

to 

   0TD T   ,      (A-1) 
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Where DT is the thermal diffusivity where DT = κT/(ρ×cs). κT is the thermal 

conductivity, cs the specific heat and ρ the mass density. 

The evolution of Silicon thermal diffusivity DT with respect to temperature T is 

assumed to be 

 
TD C T  .       (A-2) 

where C and α are the fitting parameters. 

Substituting (A-2) into (A-1) and noting that 
1

1

T
T T







 


, it yields a Laplace’s 

equation for the variable U T1. 

By integrating the above equation in its 1D form with temperatures Th (at z=0) and 

Tc (at z=L) at the 2 boundaries, it gives:  

 

 1/ 1

1 11c h

z z
T T T

L L



 



   
      
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    (A-3) 
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Figure captions 

Figure 1. Thermal conductivities in bulk Si as a function of the temperature: 

experimental data [42] (triangles), model of Holland [41] (solid line), scattering 

parameters from [41] with the dispersion of Eq. 1 (dashed line) and our work (red 

crosses). 

 

Figure 2. Thermal conductivity as a function of the roughness parameter  for 20, 

50, 100 nm and 1.6 μm film thickness. Symbols are the experimental data for 

TSi = 20 nm (triangle)[45], 50 nm (square)[45], 100 nm (diamond)[46] and 1.6 μm 

(circle) [47]. 
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Figure 3. In-plane Thermal conductivities in silicon thin-films at 300 K as a function 

of the film width. Continuous lines: our analytical RTA model, symbols: 

experimental data [47] (squares), [14] (blue triangle),[45] (red triangles), [46] (red 

circles), [48] (blue quadrangle).  

 

Figure 4. Temperature profiles in a 5 µm long Si bar: our numerical pBTE 

(symbols) and analytical calculation (solid line) for a large temperature gradient.  

 

Figure 5. Effective temperature profiles for different Si bar lengths L from 4 µm 

down to 2 nm for a small temperature gradient.  

 

Figure 6. Evolutions of the longitudinal wave vector qz spectra for TA phonons at 

different positions regularly distributed between the two contacts for (a) 2 µm (b) 

200 nm and (c) 20 nm bar lengths. The arrows show the direction from contact 1 to 

contact 2.  

 

Figure 7. Main steps of the coupled electro-thermal simulator. 

 

Figure 8. Schematic cross-section of the simulated device. 

 

Figure 9. At Vgs = 0.5 V and Vds = 1.0 V. (a) Heat power density extracted from 

eMC simulation (green solid line) and from the product   (dashed red line). (b) Net 

phonon generation rate per mode (dashed lines) and total generation rate (continous 

line) due to electron-phonon scattering, from eMC simulation. 

 

Figure 10. At Vg = 0.5 V and Vds = 1.0 V. (a) Evolution of the effective temperature 

Teff along the device for several loop numbers. (b) After convergence, profiles of 

Teff (solid lines) and TFourier (dashed lines) for roughness parameters  = 0.35 nm, 

1 nm and 3 nm. 

 

Figure 11.  (a) Id-Vds at Vg = 0.5 V and (b) Id-Vgs at Vds = 1.0 V. Open loop (blue 

lines with circular symbols) vs. electro-thermal simulations (red lines with 

triangular symbols). Roughness parameter  = 3 nm. 
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Table caption 

Table 3. Expressions of relaxation times for phonon-phonon interactions in Bulk 

Si. The values of parameters BTN, BTU and BL are discussed in the text and given 

in Table 2 

 

Table 4. Set of parameters used for phonon-phonon interactions in Bulk Si when 

considering a quadratic dispersion. 

 

  



27 

Figure 1. 
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Figure 2. 

 

 

 

 

 

  



29 

Figure 3. 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10. 
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Figure 11 
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