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Physical Interpretation of the Unitary Representations of the Poincaré Group

The quantum field theory describes microscopic physical phenomena with experimentally determined parameters. In this study, an attempt of identifying the physical nature with mathematical objects is made in pursuit of interpreting the parameters. For this purpose, the unitary representations of the Poincaré group are studied. Inspired by the structure of the unitary representations, the phenomenon of self-loops is defined, and it gives an equation for the masses of elementary particles. The masses of leptons and W, Z particles are calculated using this equation, and the results are interpreted as a relationship between the self-loop amplitudes and the masses of elementary particles.

I. INTRODUCTION

The Standard Model is the most successful model describing the microscopic physical phenomena. However, with the need for more than ten parameters to be determined by experiments, doubts are that the Standard Model cannot be the ultimate theory of physics, and a more fundamental theory underlies.

In pure mathematics, mathematical structures possess well-defined behavior. This characteristic resembles the physical nature -that it is ruled by laws of nature. A conjecture arises thereafter: the entities of our physical world are mathematical objects, and one can find the complete set of physical phenomena in the corresponding mathematical objects.

We cannot verify this conjecture in the experimental level, therefore it is not a conjecture that can be answered in the realm of physics. This conjecture hence serves only as a motivation for one to develop a physical theory from mathematical structures. Based on these restrictions, the only way to qualify a mathematical structure as the entity of physics is the identification of all physical phenomena.

Wigner [1] studied the unitary representations of the Poincaré group and obtained a correspondence between particle states and the representations. We shall develop the above proposal on this structure.

In Section II, we introduce the unitary irreducible representation of the Poincaré group, and impose the Feynman rules from the quantum field theory to the states within the representations. An essential phenomenon of self-loops arises in this model. The self-loops are viewed as the clocks of elementary particles. With this interpretation, one can derive an equation for the masses of elementary particles. This equation has undetermined parameters, and several choices are made to explore its validity. The masses of leptons, Z, and W particles are then calculated and compared to the experimental values. In Section III, we discuss the physical meaning of these results, the possible limitations, and future work.

The Poincaré group is defined as the symmetry group of the Minkowski spacetime [START_REF] Tung | Group Theory in Physics[END_REF], including the homogeneous and the inhomogeneous transformation. Its unitary irreducible representation is characterized by two parameters: the rest mass M and the spin λ. Wigner identified these representations as particle states. For states from representations of any (M, λ), if λ = 1/2, we call the state a spinor. For λ = 1, the state is called a vector. These names are derived from their behavior under the Poincaré group.

One may identify elementary particles in the quantum field theory as particle states in this representation by imposing different gauge transformations to these states. Furthermore, one can define the Feynman diagrams and impose Feynman rules to these diagrams. This makes defining transition amplitudes between states possible, and identifies the above construction with quantum field theory in the amplitude level.

B. The Self-Loops

In the above construction, if we allow state transition by Feynman diagrams, then the only processes for a spinor to remain as itself are the self-loops. To investigate the physical meaning of the self-loops, consider the thought experiments in Einstein's discussion in the special relativity [START_REF] Einstein | [END_REF]. For the measurer, a clock is necessary to obtain measurements of space and time coordinates. However, suppose that only one electron is present, then there are no clocks, and the only apparatus left are the self-loops. This picture suggests that the self-loop is related to the time evolution.

On the other hand, in relativistic quantum mechanics, the wave equation for particles describes the wave function of particles at rest to be in proportion to e -imt . This factor suggests that a frequency is associated with particles at rest, and is in proportion to the mass of the particle. Again, in the above discussion, the only possible attribute of the particle at rest to be related to the frequency is the self-loop.

With the above two considerations combined, we conjecture that the self-loops are the evolution of time, and the frequency of the self-loops is in proportion to the mass of the particle. Particles with different masses possess clocks with different ticking frequencies.

C. The M Equation

The self-loop amplitude of an elementary particle is related to the frequency of its intrinsic clock. If we identify the time evolution using this clock to the formula from relativistic quantum mechanics, we have

2πΓ ∝ m, ( 1 
)
where Γ is the rate of the self-loops and m is the particle mass. The formula for the infinitesimal decay rate is [START_REF] Peskin | An Introduction to Quantum Field Theory[END_REF] 

dΓ = 1 2m a Π f d 3 p f (2π) 3 1 2E f |M| 2 (2π) 4 δ (4) (p A -Σp f ), (2) 
where M is the amplitude of the self-loop, m a is the mass of the incoming particle, E f are the energies of the outgoing particles, and p A , p f are the four-momentum of the incoming and outgoing momentum, respectively. Inspired by the above formulas, we propose: 4π|M| = m 2 .

(3)

Note that we only conjecture that the self-loop amplitude is in proportion to the mass squared, and the factor is not determined. The factor 4π is chosen to fit the calculation results with experimental data. This is an equation of m, because M depends on the particle mass. Therefore, we can solve this equation to obtain masses of elementary particles. This equation is called the M equation because the letter m is present on both sides of the equation. This equation is applied to calculate masses of leptons, Z, and W particles. In the calculation of leptonic masses, since e -, µ -, and τ -are equivalent in terms of Feynman diagrams, we propose a factor of genus g to reflect the fact that there are three generations of leptons, which gives

g × 4π|M| = m 2 . ( 4 
)
The details of calculations are discussed in the appendix, including the specific choices of loops and genus for each particle. The results are compared to experimental values from the Particle Data Group [START_REF] Tanabashi | [END_REF], shown in Table I.

There is a factor two in the ratio between calculated leptonic masses and the masses W and Z particles. One possible explanation is that under unitary transformations, the spinors rotate with half of the speed of the vectors. However, when viewed from external observers, the half rotation is counted as one cycle without noticing the internal 180-degree flip of spinors. Hence, the fermion mass should be 2m.

The neutrino masses are also calculated. The results are smaller than experimental estimations as discussed in the appendix.

III. DISCUSSION

A. The Significance of the M Equation

The M equation gives the masses of Z 0 , W ± , e -, µ -. However, there exists arbitrariness such as the choice of the coefficient 4π, the leptonic genus, the loops, and the argument for the one-half solution of the leptonic masses. Since the M equation is proposed from theoretical considerations, and involves the unobservable self-loops, we cannot justify it as the correct equation for the masses of the elementary particles by studying the self-loops in experiments. Nor can we claim the validity of any specific choice of parameters. One must note that in general, even if we can eliminate all the arbitrariness from this equation, it could still be a numerical accident for the calculated masses to match experimental data. Strictly speaking, we can only claim the discovery of an equation which is satisfied by the masses of elementary particles, and relates the self-loop amplitudes to the masses of the particle.

B. Remarks on the Renormalization

In the renormalization of quantum field theories, bare parameters of Lagrangians are assumed to be infinite and absorb the divergences present in loop diagrams. In the calculation of elementary particle's masses, the assumption that they are in proportion to the maximal momentum gives a mass that is truly infinite as Λ goes to infinity. Still, the compatibility of this theory with the renormalization procedure and the running parameters requires further study.

C. Future Work

The calculation with M equation employs parameters without radiative corrections. Corrections with running parameters are necessary to verify the validity of the results. The choice of loops also needs further investigation. In the calculation of masses of W ± and Z 0 , we adopt choices of loops that lack physical interpretation. For the amplitudes of µ -, we discard the W loop as the major decay channel. In the case of τ -, both Z 0 and W -loops are dropped and a result with error up to 12% is obtained. This reflects our ignorance of the essence of lepton generations, or an inappropriate choice for the coefficients of self-loops. A more thorough analysis of the influence of decays on the coefficients of loops should be carried out.

We can also perform the calculation to the quarks. Among the gluon, γ, W and Z self-loops for quarks, the relatively large gluon coupling constant causes the quark to have divergent mass. This might reflect the fact that there are no free quarks, and when quarks are bound together, the gluon loops disappear due to asymptotic freedom, and are turned on only when the constituents are torn apart.

Despite the results of calculation of masses of elementary particles, to be qualified as the mathematical structure of physical reality, this theory must include all the other fundamental physical phenomena. There are still other parameters undetermined theoretically: the coupling constants, the quark masses, hardron masses, the Cabibbo angle, mixing of neutrinos, and Higgsmechanism-related parameters.

Appendix A: Calculation of Masses of Z and W

We apply the Feynman rules [START_REF] Griffiths | Introduction to Elementary Particles[END_REF][START_REF] Romao | [END_REF] in quantum field theories to calculate the self-loop amplitudes. The amplitudes are simplified using form [8], and the formulas are input in python for integration.

As mentioned above, there are arbitrarinesses when applying the M equation. For instance, the coefficient of the equation and the choice of self-loops for each particle. We adopt several choices of the parameters to explore the validity of the M equation. For the calculation of masses of the vector bosons, we choose the W loop and the Higgs loop for the Z particle, and the Z loop for the W particle.

We demonstrate the calculation with the amplitude of the W loop M ZW of Z particle:

M ZW = ε µ * d 4 k (2π) 4 V λσµ Π σβ W (k)Π λα W (p -k)V βαν ε ν , ( 
A1) where Π σβ W (k) is the W particle propagator, and V λσµ is the vertex factor for three-point interaction of Z 0 and W ± , and p is the four-momentum of the Z particle at rest. The integration domain of k is understood to be the R 4 .

We can use the Feynman parametrization to combine the two denominators of propagators, and the integral becomes

d 4 k (2π) 4 1 0 dx V λσµ V βαν g σβ -k σ k β m 2 W g λα -(p-k) λ (p-k) α m 2 W [(k -xp) 2 -∆] 2 , (A2) where ∆ = (x 2 -x)m 2 Z + m 2 W .
Next, change the integration variable from k to l = k -xp, contract the vertices, apply the Wick rotation l 0 → il 0 to get

d 4 l (2π) 4 1 0 dx Φ(x, l) (l 2 + ∆) 2 , (A3) 
where Φ(x, l) is the numerator of Equation A2 with k replaced by l + xp. At this step, we assume that there is a maximal selfclock frequency Λ, and the Z clock should be in proportion to that clock, m Z = Λ/Λ Z . The form of the 1/Λ Z factor is defined for future convenience. With this assumption, by changing the integration variable from l to l = k/m Z , dividing m W by m Z and p by m Z , we obtain

|l| 2 ≤Λ 2 Z d 4 l (2π) 4 1 0 dx m 2 Z Φ(x, l) l 2 + ∆ 2 , (A4) 
where Φ(x, l) = Φ(x, l)/m 2 Z and ∆ = ∆/m 2 Z . Note that the m 2 Z will be cancelled by the right-hand side of the M equation. The same manipulations are performed on all the self-loops under consideration. After summing up all the self-loop amplitudes under considertaion, we are ended up with a equation of Λ Z . Solving the equation with the Weinberg angle cosθ W = 0.8768 and g e = 0.3028, we obtain Λ Z = 2.3751, Λ W = 2.6966. This choice of parameters possesses one special feature. Suppose that we include the condition of m W /m Z = cosθ W from the Higgs mechanism, and solve cosθ W and the M equation for m Z , m W simultaneously, we can get Λ Z = 2.3455, Λ W = 2.6602, and cosθ W = 0.8817.

We can use another choice of parameter and obtain similar results. We change the coefficient of the M equation to be 8π. Use all possible loops and bubbles except for the fermionic ones, and perform the same procedures as above, we have Λ Z = 4.7547 and Λ W = 2.6812. Note that if we divide Λ Z by 2, we have Λ Z = 2.3773 and cosθ W = 0.8860. electron has three self-loops: the γ loop, W -loop and Z loop. µ -decays easily in W -channel, while Z and W -channel are forbidden for τ -. The approximation of zero neutrino mass is made in the propagator of neutrinos, and we use m Z = 2.3455 and cosθ W = 0.8768 for the mass parameters of Z and W loops.

To calculate the mass of the electron, use the γ loop, W -loop, Z loop and genus 1, define m e = Λ/Λ e , apply the Feynman parameter and Wick rotation, we can obtain Λ e . The muon has the γ and W -loop, with genus 3/2. Only the γ loop is considered for the case of tauon, with genus 2. The results are normalized by m Z and given in Table I. Note that we divide the Λ values for all leptons by 2 to obtain the results in the table, as explained in Section II C.

The neutrinos all undergo W + and Z loops. If we assume that the neutrinos are left-handed, the amplitudes are zero. We also calculated the case assuming neutrinos to be Dirac spinors, and the M equation does not give a solution below Λ ν = 10 12 , with genus 1, 2, 3, or 4. This suggests that the neutrinos may have a mass smaller than the current estimated values [START_REF] Tanabashi | [END_REF].

TABLE I

 I 

		. M Equation Mass Calculations
	Particle	Mass	Mass	Error
		(normalized by mz) (calculated)	
	Z 0	1	1	
	W -	8.815 × 10 -1	8.817 × 10 -1 0.023%
	e -	5.604 × 10 -6	5.762 × 10 -6 2.817%
	µ -	1.159 × 10 -3	1.165 × 10 -3 0.529%
	τ -	1.949 × 10 -2	2.167 × 10 -2 11.2%

Appendix B: Calculation of Masses of Leptons

There are twelve elementary leptons, which are e -, µ -, τ -, ν e , ν µ , ν τ , and their anti-particles, with three generations of leptons ordered by increasing masses. It is assumed that leptons of different generations rotates with different genus. For electrons, muons and tauons, the genus is chosen to be 1, 3/2 and 2, respectively. When choosing the self-loops, we require that the particles cannot decay through the chosen channels. Therefore, the Appendix C: Remarks on the Top Quarks

The top quark is the heaviest elementary particle observed. To investigate whether the mass of the top quark, m t , is the maximal frequency of self-clocks, we divide m t by the mass of Z 0 , which gives 1.898 using m t = 173.1 GeV/c 2 . If we assume that Λ Z = Λ/m Z = 1.898, and calculate the masses of electrons as above, we obtain m e /m Z = 5.514 × 10 -6 , which is of -1.6% error compared to the experimental values, without the factor two mentioned in Section II C.

There is a choice of self-loop parameters related to this observation. Use 8π as the coefficient of the M equation. Adopt all bubbles and loops of the Z particle except for the W loop, and all the loops of the W particle. Together with m W /m Z = cosθ W , the M equation gives Λ Z = 1.873, Λ W = 2.142, and cosθ W = 0.8745. Using the above results with cosθ W = 0.8768, we have m e = 5.790 × 10 -6 , with 1.387% error. Note that for this choice, the genus of electrons is chosen to be 1/2. Again, the m e in this choice does not require the factortwo remedy, and the drop of W loops may be a result of the Z-particle loss during the process. However, we do not have reasonable results for masses of µ -and τ -. This may imply an unclear understanding of the generations of elementary particles.