
HAL Id: hal-01906634
https://hal.science/hal-01906634

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey of symbolic methods for establishing
equivalence-based properties in cryptographic protocols

Stéphanie Delaune, Lucca Hirschi

To cite this version:
Stéphanie Delaune, Lucca Hirschi. A survey of symbolic methods for establishing equivalence-based
properties in cryptographic protocols. Journal of Logical and Algebraic Methods in Programming,
2017, 87, pp.127 - 144. �10.1016/j.jlamp.2016.10.005�. �hal-01906634�

https://hal.science/hal-01906634
https://hal.archives-ouvertes.fr

ar
X

iv
:1

61
0.

08
27

9v
1

 [
cs

.C
R

]
 2

6
O

ct
 2

01
6

A survey of symbolic methods for establishing

equivalence-based properties in cryptographic protocols

Stéphanie Delaunea, Lucca Hirschib

aCNRS/IRISA, Rennes, France
bLSV, CNRS & ENS Cachan, France

Abstract

Cryptographic protocols aim at securing communications over insecure net-
works such as the Internet, where dishonest users may listen to communi-
cations and interfere with them. A secure communication has a different
meaning depending on the underlying application. It ranges from the confi-
dentiality of a data to e.g. verifiability in electronic voting systems. Another
example of a security notion is privacy.

Formal symbolic models have proved their usefulness for analysing the
security of protocols. Until quite recently, most results focused on trace
properties like confidentiality or authentication. There are however several
security properties, which cannot be defined (or cannot be naturally defined)
as trace properties and require a notion of behavioural equivalence. Typical
examples are anonymity, and privacy related properties. During the last
decade, several results and verification tools have been developed to analyse
equivalence-based security properties.

We propose here a synthesis of decidability and undecidability results
for equivalence-based security properties. Moreover, we give an overview
of existing verification tools that may be used to verify equivalence-based
security properties.

Keywords: cryptographic protocols, symbolic models, privacy-related
properties, behavioural equivalence

1. Introduction

Security protocols are widely used to secure transmissions in various types
of networks (e.g., web, wireless devices, etc.). They are (often small) concur-
rent programs relying on cryptographic primitives. The security properties

Preprint submitted to Elsevier August 16, 2021

http://arxiv.org/abs/1610.08279v1

they should achieve are multiple and depend on the context in which they
are used. The main problem they have to cope with is to protect communica-
tion that are done through insecure, public, channels like the Internet, where
dishonest users may listen to communications and interfere with them. This
explains why they are notoriously difficult to design and hard to analyse by
hand. Actually, many protocols have been shown to be flawed several years
after their publication (and deployment). Given the very sensitive contexts
in which they are used, establishing the security of these protocols is a very
relevant research goal with important economic and societal consequences.

Two main distinct approaches have emerged, starting with the early
1980’s attempt of [1], to ground security analysis of protocols on firm, rig-
orous mathematical foundations. These two approaches are known as the
computational approach and the symbolic approach.

The computational approach models messages as bit-strings; agents and
the attacker as probabilistic polynomial time machines; whereas security
properties are defined using games played by the attacker who has to be
able to distinguish the protocol from an idealised version of it (with a non
negligible probability). It is generally acknowledged that security proofs in
this model offer powerful security guarantees. A serious downside of this
approach however is that even for small protocols, proofs are usually long,
difficult, tedious, and highly error prone. Moreover, due to the high com-
plexity of such a model, automating such proofs is a very complex problem
that is still in its infancy (see e.g. [2]).

By contrast, the symbolic approach, which is the one targeted by this
survey, makes strong assumptions on cryptographic primitives (i.e., black-
boxed cryptography assumption) but fully models agents’ interactions and
algebraic properties of these primitives. For instance, symmetric encryption
and decryption are modelled as function symbols enc and dec along with
the equations dec(enc(m, k), k) = m. This means that, without the corre-
sponding key k, it is simply impossible to get back the plaintext m from the
cipher-text enc(m, k). This does not mean however that protocols relying on
these primitives are necessarily secure. There can still remain some logical
attacks like e.g. a man-in-the-middle attack or a reflection attack. Although
less precise, this symbolic approach benefits from automation and can thus
target more complex protocols than those analysed using the computational
approach. Moreover, a line of work known as computational soundness aims
at spanning the gap between these two approaches by establishing that, in

2

some cases, security guarantees in the symbolic model imply security guar-
antees in the computational one. This line has been initiated by Abadi and
Rogaway [3] and has received much attention since then (see [4] for a survey
on computational soundness).

Until the early 2000s, most works from the symbolic approach were focus-
ing on trace properties, that is, statements that something bad never occurs
on any execution trace of a protocol. Secrecy and authentication are typical
examples of trace properties: a data remains confidential if, for any execu-
tion, the attacker is not able to produce the data from its observations. But
many other properties like strong secrecy, unlinkability or anonymity are not
defined as trace properties. These properties are usually defined as the fact
that an observer cannot distinguish between two situations, and require a
notion of behavioural equivalence. Roughly, two protocols are equivalent if
an attacker cannot observe whether he is interacting with one or the other.
In this survey, we shall focus on equivalence-based security properties.

There exist other approaches out of the scope of this survey that do not
strictly follow the symbolic approach nor the computational one but are able
to verify notions of behavioural equivalence. A recent approach proposes to
define a computationally complete symbolic attacker by axiomatizing what
the attacker can not do [5]. This approach has been recently extended to deal
with a notion of behavioural equivalence [6]. Another work proposed semi-
automatic proof of vote privacy using type-based verification [7]. This has
been done using the tool Rf∗, where protocols are modelled using code-based
cryptographic abstractions and security properties are encoded as refinement
types [8]. Security is achieved by type checking the protocol.

Outline. In Section 2, we give an informal presentation of different crypto-
graphic primitives after which we describe the Basic Access Control (BAC)
protocol from the e-passport application, and some of its logical attacks.
Section 3 describes various security properties that one may want to verify.
In Section 4, we give a formal model, following the symbolic approach, for
messages, protocols and equivalence properties. Section 5 is dedicated to the
existing methods and tools for verifying equivalence-based properties. We
conclude in Section 6.

3

2. What is a cryptographic protocol?

A cryptographic protocol can be seen as a list of rules that describe exe-
cutions; these rules specify the emissions and receptions of messages by the
actors of the protocols called agents. These protocols use as basic building
blocks cryptographic primitives such as symmetric/asymmetric encryptions,
signatures, and hash functions. For a long time, it was believed that de-
signing a strong encryption scheme was sufficient to ensure secure message
exchanges. Starting from the 1980’s, researchers understood that even with
perfect encryption schemes, message exchanges were still not necessarily se-
cure. This fact will be illustrated in Section 2.2, but we first briefly explain
the most standard cryptographic primitives together with their fundamental
properties.

2.1. Cryptographic primitives

Cryptographic primitives provide fundamental properties and are used to
develop more complex tools called cryptographic protocols, which guarantee
one or more high-level security properties.

Symmetric encryption. Symmetric cryptography refers to encryption meth-
ods in which both the sender and the receiver share the same key. For
instance, the Data Encryption Standard (DES) and the Advanced Encryp-
tion Standard (AES) are symmetric encryption schemes which have been
designated cryptography standards by the US government in 1976 and 2002
respectively.

A significant disadvantage of symmetric ciphers is the key management
necessary to use them securely. Each distinct pair of communicating parties
must share a different key. Therefore, the number of required keys increases
as the square of the number of network members, which very quickly requires
complex key management schemes to keep them all straight and secret. The
difficulty of securely establishing a secret key between two communicating
parties, when a secure channel does not already exist between them, also
presents a chicken-and-egg problem which is a considerable practical obstacle
for the use of cryptography in the real world. This is why the recourse to
asymmetric cryptography is so popular for key establishment protocols that
aim to establish a fresh symmetric key between two parties.

4

Asymmetric encryption. In 1976, Diffie and Hellman proposed the notion of
public key cryptography, in which two different but mathematically related
keys are used – a public key and a private key [9]. A public key system is
constructed, in such a way that calculation of one key (the ’private key’) is
computationally infeasible from the other (the ’public key’), even though they
are necessarily related. In public key cryptosystems, the public key may be
freely distributed, while its associated private key must remain secret. The
public key is typically used for encryption, while the private key is used
for decryption. Diffie and Hellman showed that public key cryptography
was possible1 by presenting the Diffie-Hellman key exchange protocol [9].
In 1978, Rivest, Shamir, and Adleman invented RSA, another public key
cryptosystem [10] which has established itself as the main standard.

Digital signature. Over the same period, signature schemes have also been
proposed. A digital signature is a mathematical scheme for demonstrating
the authenticity of a digital message or of a document. It gives the recip-
ient a reason to believe that the message was created by a known sender,
that the sender cannot deny having sent the message (authentication and
non-repudiation), and that the message was not altered while in transit (in-
tegrity). Digital signatures are commonly used for software distribution, key
management, financial transactions, etc.

Hash function. A hash function takes a message of any length as input, and
outputs a short, fixed length hash. Hash functions have many information
security applications, notably in digital signatures, message authentication
codes (MACs), and other forms of authentication. They can also be used
as checksums to detect accidental data corruption. For good hash functions,
an attacker cannot find two messages that produce the same hash. Message
authentication codes are much like cryptographic hash functions, except that
a secret key can be used to authenticate the hash value upon receipt.

This list of cryptographic primitives is not exhaustive, and modern pro-
tocols often rely on less standard cryptographic primitives, such as blind
signature, homomorphic encryption, trapdoor bit commitment.

1Diffie and Hellman have been rewarded by the ACM Turing Award in 2015 for having
laid the foundations of asymmetric encryption.

5

2.2. An example: the BAC protocol

For the purpose of illustration, we consider the Basic Access Control
(BAC) protocol used in the e-passport application. An e-passport is a paper
passport with an RFID chip that stores the critical information printed on the
passport. The International Civil Aviation Organisation (ICAO) standard
specifies the communication protocols that are used to access this informa-
tion [11]. We do not plan to describe all the protocols that are specified in the
standard. Instead, we shall concentrate only on the BAC protocol following
the modelling proposed in [12].

The information stored in the chip is organised in data groups (dg1
to dg19). For example, dg5 contains a JPEG copy of the displayed picture,
and dg7 contains the displayed signature. The verification key vk(skP) of the
passport, together with its certificate sign(vk(skP), skDS) issued by the Docu-
ment Signer Authority, is stored in dg15. The corresponding signing key skP
is stored in a tamper resistant memory, and cannot be read or copied. For
authentication purposes, a hash of all the data groups, together with a signa-
ture on this hash value issued by the Document Signer Authority, are stored
in a separate file, the Security Object Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)〉.

The ICAO standard specifies several protocols through which this informa-
tion can be accessed. In particular, read access to the data on the passport
is protected by the BAC protocol.

The BAC protocol is a password-based authenticated key exchange pro-
tocol (PAKE) whose security relies on two master keys, namely ke and km,
which are derived from a password of low entropy optically retrieved from
the passport by the reader before executing the protocol. Through the BAC
protocol, the reader and the passport agree on a key seed xkseed that is then
used to generate an encryption session key as well as a MAC session key for
the next protocols. Following the description given in Figure 1, the protocol
works as follows:

1. The reader sends a constant get Challenge to the passport that will
answer by generating a nonce, i.e. a fresh random number.

2. Once the reader receives this nonce nT , it will generate its own nonce nR,
as well as a key kR that will be used later on to derive session keys.
The reader encrypts the nonce nT , its own nonce nR as well as the

6

Passport Tag
ke, km

Reader
ke, km

get Challenge

new nT nT

new nR, new kR
xenc← senc(〈nR, 〈nT , kR〉〉, ke)
xmac← mac(xenc, km)

〈xenc, xmac〉

new kT
yenc← senc(〈nT , 〈nR, kT 〉〉, ke)
ymac← mac(yenc, km)
xkseed← kT ⊕ kR

〈yenc, ymac〉

xkseed← kT ⊕ kR

Figure 1: Basic Access Control protocol

key kR with the (long-term) symmetric encryption key ke. This mes-
sage senc(〈nR, 〈nT , kR〉〉, ke) is sent to the passport together with the
associated MAC (with key km) to ensure that the encryption will be
correctly transmitted to the passport.

3. The passport performs some checks. In particular, it checks that the
MAC has been computed using the right key km, and that the nonce nT

it has generated at the first step of the protocol is inside the encryp-
tion. Once these checks have been performed, the passport sends to
the reader a message similar to the one it has received using its own
contribution kT .

4. Again, the reader will perform the necessary checks before accepting
the message, and in case of success two session keys will be generated
from the value xkseed obtained by applying the exclusive or operator

7

on kR and kT .

These two session keys are used to provide confidentiality, integrity, and
authentication in subsequent communications. In particular, they are used
to encrypt and MAC the messages exchanged during the execution of the
Passive and Active Authentication protocols in order to ensure that only
parties with physical access to the passport can read the data. The aim of
establishing fresh session keys (instead of reusing ke and km at each ses-
sion) is to make the passport unlinkable, a property that will be discussed in
Section 2.3.

2.3. Some logical attacks on the BAC protocol

In this section, we describe two possible attacks. These attacks are purely
logical in the sense that they do not require to break any cryptographic
primitives.

Authentication issue. First, we would like to pinpoint the fact that the order
in which the nonces nR and nT have been placed inside both encryptions
is relevant. The careful reader will have noticed that the nonces have been
swapped: the reader encrypts 〈nR, 〈nT , kR〉〉 whereas the passport encrypts
〈nT , 〈nR, kT 〉〉. The purpose of this design is to avoid a replay attack. In-
deed, without such a swap, a malicious user (who does not know the keys ke
and km) would be able to simply replay the message he received from the
reader without decrypting it and performing the checks. Such a message will
be accepted by the reader and pass all checks performed by the reader. This
means that the reader will end its session thinking (s)he has talked with the
passport identified by ke and km, whereas this passport will not have really
taken part in the protocol. Moreover, the key seed computed at the end will
be kR ⊕ kR = 0 and thus very different from the one that is supposed to be
computed during a normal execution.

Unlinkability issue. Following the specification provided by the ICAO, each
nation has implemented its own version. Unfortunately, as the specification is
not completely comprehensive, each nation’s passport has subtle differences.
In particular, the standard specifies that the passport must reply with an
error message to every ill formed or incorrect message from the reader, but
it does not specify what the error message should be.

For example, in the French implementation, the passport tag replies dif-
ferent error messages depending on whether the nonce in xenc is not nT or

8

xmac is not a correct MAC w.r.t. the key km [12]. An attacker who does
not know the keys ke and km could then trace a passport in the following
way:

1. He eavesdrops a session between an authentic reader and a passport P
(with keys ke and km) and stores m = 〈xenc, xmac〉;

2. In a different session, he sends the message m and waits for the pass-
port’s answer;

3. Then, we distinguish two cases:
(a) if he receives a nonce error then he knows that the passport suc-

ceeded to check the MAC and so this passport is P ;
(b) if he receives a MAC error then he knows that the passport is not

the one with keys km (and ke), and therefore it is not P .

This attack makes it possible to detect when a particular passport comes
into the range of a reader, which could be, for instance, placed by a doorway,
in order to monitor when a target enters or leaves a particular building.
To avoid the information leakage of these error messages, the specification
should prescribe that, in case of failure, the passport yields the same message
in both situations (as it is done for instance in e-passports from the UK).

We may note that in presence of honest participants who follow the pro-
tocol rules, the protocol works well, and the scenarios described above are
not possible. However, it is important to ensure that these protocols work
well in any situation, especially in the presence of malicious agents that may
want to take advantage of the protocol and therefore do not necessarily follow
the instructions specified by the protocols. Verifying cryptographic protocols
in such a hostile environment is an essential feature which makes protocol
verification a difficult task.

3. A variety of security properties

Cryptographic protocols aim at ensuring various security goals, depending
on the application. The two most classical security properties are secrecy
(also called confidentiality) and authentication.

Secrecy. This property concerns a message used by the protocol. This is
typically a nonce or a secret key that should not become public. Even for
this quite simple security property, several definitions have been proposed
in the literature. When considering the notion of (weak) secrecy, a public
message is a message that can be learnt by the attacker.

9

Authentication. Many security protocols aim at authenticating one agent to
another: one agent should become sure of the identity of the other. There
are also several variants of authentication. A taxonomy of these has been
proposed by Lowe in [13].

Authentication and weak secrecy are both trace properties, that is, state-
ments that something bad never occurs in any execution trace of a protocol.
Several results and tools have been developed to analyse trace properties.
However, privacy properties cannot be defined (or cannot be naturally de-
fined) as trace properties. They are defined relying on a notion of indistin-
guishability. Intuitively, two protocols P and Q are indistinguishable if it
is not possible for an attacker to decide whether (s)he is interacting with P
or Q. This notion of indistinguishability is also used for defining a stronger
notion of secrecy, and we may also rely on this notion of indistinguishabil-
ity to compare a protocol with an idealised version of it. We will see in
Section 4.4 how this notion of indistinguishability is formalised. Below, we
simply list some security properties that can be formalised relying on such a
notion.

Strong secrecy. This notion is stronger than (weak) secrecy, and related to
the concept of indistinguishability. Intuitively, strong secrecy means that an
adversary cannot see any difference when the value of the secret changes [14,
15, 16].

Anonymity. Frequently, communication between two principals reveals their
identities and presence to third parties. Indeed, anonymity is in general not
one of the explicit goals of common authentication protocols. However, we
may want protocols that achieve this goal. It has been informally defined in
the ISO/IEC 15408-2 standard as follows:

[Anonymity] ensures that users may use a [protocol] without dis-
closing their identity.

It is usually formally defined (see [17, 18, 19]) as the fact that an observer
cannot distinguish two scenarios where the same protocol is executed by
different users.

Vote privacy. In the context of electronic voting, privacy means that the vote
of a particular voter is not revealed to anyone. This is one of the fundamental
security properties that an electronic voting system has to satisfy. Vote

10

privacy is typically defined (see e.g. [20, 21]) by the fact that an observer
should not observe when two voters swap their votes, i.e. distinguish between
a situation where Alice votes yes and Bob votes no and a situation where
these two voters have voted the other way around.

In the context of electronic voting, some strong forms of vote-privacy
are desirable too. For instance, receipt-freeness stipulates that a voter does
not obtain any receipt information, which could be used by a coercer to
prove that she voted in a certain way [22]. Receipt-freeness is intuitively a
stronger property than privacy. Privacy says that an attacker cannot discern
how a voter votes from any information that the voter necessarily reveals
during the course of the election. Receipt-freeness says the same thing even
if the voter voluntarily reveals additional information. Again, several formal
definitions of such a property have already been proposed relying on the
notion of indistinguishability (see e.g. [23, 24]). We may also be interested
to ensure such a security property even if the strength of the encryption has
eroded with the passage of time (which is unavoidable). This property, known
as everlasting privacy, has again been formalised relying on the concept of
indistinguishability [25].

Note that these concepts are not specific to the electronic voting applica-
tions and the definitions of privacy and receipt-freeness described above have
also been reused and adapted to model privacy and receipt-freeness in e.g.
on-line auction systems [26, 27].

Unlinkability. Protocols that keep the identity of their users secure may still
allow an attacker to identify particular sessions as having involved the same
principal. Such linkability attacks may, for instance, make it possible for a
third party to trace the movements of someone carrying an RFID tag without
him being able to notice anything (as the attack on the French version of
the BAC protocol described in Section 2.3). Intuitively, protocols are said to
provide unlinkability (or untraceability) according to the ISO/IEC 15408-2
standard, if they

[...] ensure that a user may make multiple uses of [them] without
others being able to link these uses together.

Formally, this is often defined as the fact that an attacker should not be able
to distinguish a scenario in which the same agent (i.e., the user) is involved
in many sessions from one that involved different agents in each session.
Following this intuition, slightly different definitions have been proposed (see

11

e.g. [17, 12, 28, 29]). A comparison between these definitions may be found
in [30].

More generally, this notion allows one to express flexible notions of se-
curity by requiring indistinguishability between a protocol and an idealised
version of it, that magically realises the desired properties. This is typically
what is done to express security goals of a protocol in the Universal Com-
posability (UC) framework. The universal composability paradigm has been
quite successful in the computational approach [31]. The idea of UC is not,
however, restricted to the computational setting, and has now a counterpart
in symbolic models as well [32, 33].

4. Formalising protocols and properties

Several symbolic models have been proposed for cryptographic protocols.
The first one has been described by Dolev and Yao [1] and several other
models have been proposed since then. A unified model would enable better
comparisons between the different existing results but unfortunately such
a model does not exist currently. The reason for having several popular
symbolic models probably comes from the fact that they have to achieve two
antagonistic goals. On the one hand, models have to be as fine grained and
expressive as possible to capture a large range of applications. One the other
hand, models have to remain relatively simple in order to allow the design
of verification procedures. In order to formally define the problems we are
interested in, and to present the existing results, we will describe one such
model which is intuitive enough. This model is inspired from cryptographic
calculi, and actually pretty close to the applied-pi calculus [34].

4.1. Messages

In symbolic models, messages are a key concept. Whereas messages are
bit-strings in the real-world (and in the computational approach as well),
they are modelled using first-order terms within the symbolic model. Atoms
can be for instance nonces, keys, or agent identities. Examples of function
symbols are concatenation, asymmetric and symmetric encryptions or dig-
ital signatures. We consider an infinite set N of names which are used to
represent keys and nonces (e.g. k, n); and two infinite and disjoint sets of
variables, denoted X andW. Variables in X will typically be used to refer to
unknown parts of messages expected by participants and will be denoted x,

12

y, z, . . . Variables in W will be used to store messages learnt by the attacker
and will be denoted w, w1, w2, We assume a signature Σ, i.e. a set of
function symbols together with their arity. Given a signature F and a set of
initial data A, we denote by T (F ,A) the set of terms built from elements of
A by applying function symbols in F . Given a term u, we note vars(u) the
variables that occur in u. A message is a ground term, i.e. a term that does
not contain any variable. Some works rely on a sort system for terms, and
consider that only atomic data may occur at a key position (atomic keys).

Example 1. Consider the signature

Σ = {senc, sdec, 〈 〉, proj1, proj2,mac,⊕, 0}.

We use the binary symbols senc and sdec to represent symmetric encryp-
tion and decryption. Pairing is modelled using the binary symbol 〈 〉, whereas
projections are modelled using the unary symbols proj1 and proj2. The binary
function symbol ⊕ and the constant 0 are used to model the exclusive or op-
erator, and the binary symbol mac is used to model message authentication
code.

There are two different ways to assign a meaning to function symbols,
which we describe next.

Equational theory. To give a meaning to these function symbols, we asso-
ciate an equational theory E to the signature Σ. An equational theory is a
Σ-congruence on terms that is closed under substitutions of terms for vari-
ables. We usually require the equational theory to be closed under one-to-one
renaming (of names in N), but not necessarily closed under substitutions of
arbitrary terms for names. Usually, an equational theory is generated from
a finite set of equations M = N with M,N ∈ T (Σ,X). In this case, we have
that E is closed by substitutions of terms for names.

Example 2. To reflect the algebraic properties of the exclusive or operator,
as well as the encryption/decryption and pairing/projection functions, we
may consider the equational theory generated by the following set of equations
(i ∈ {1, 2}):

proji(〈x1, x2〉) = xi sdec(senc(x, y), y) = x
x⊕ 0 = x (x⊕ y)⊕ z = x⊕ (y ⊕ z)
x⊕ x = 0 (x⊕ y) = (y ⊕ x)

In such a case, we have that senc(a⊕ (b⊕ a), k) =E senc(b, k).

13

Rewriting system. Some frameworks rely on a rewriting system to give a
meaning to function symbols. In such a case, function symbols in Σ are split
into constructor/destructor symbols, namely Σ = Σc ⊎ Σd, and a rewriting
system is used to reduce destructor symbols. For instance, assuming the
signature given in Example 1, let us consider Σc = {senc, 〈 〉,mac,⊕, 0} and
Σd = {sdec, proj1, proj2} together with the three following rewriting rules:

proji(〈x1, x2〉)→ xi with i ∈ {1, 2}, and sdec(senc(x, y), y)→ x.

This rewriting system allows us to rewrite terms until reaching a message
(terms that only use constructor symbols). In case such a message cannot
be reached, we say that the computation failed.

This gives us two slightly different ways to model e.g. symmetric en-
cryption, with some fundamental differences. Relying on a modelling using
equations, an attacker will be able to apply the decryption algorithm using
a key k on top of a term which is not a cipher-text. Considering a mod-
elling of encryption/decryption using a rewriting rule, such a computation
will fail, and therefore the attacker will be able to see whether the message
is a cipher-text (encrypted with the expected key) or not. Some frameworks,
such as the one used in the ProVerif tool [35], allow both kinds of func-
tion symbols: some are equationally defined whereas some other are defined
through rewriting rules.

For the sake of clarity, we will assume that all function symbols are given
a meaning through an equational theory only. Considering rewriting systems
would require some adaptation (for instance, the fact that a computation fails
is something that can be observed by the attacker).

Relying on equational theories gives us enough flexibility to model a vari-
ety of cryptographic primitives. For instance, it is possible to model a blind
signature scheme (a primitive that is often used in e-voting protocols) as
follows [20]:

unblind(blind(x, y), y) = x checksign(sign(x, y), pk(y)) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

Intuitively, an agent can apply the function blind on a message using a blind-
ing factor of his choice. Then, it is possible to retrieve the original message
only for one who knows this blinding factor. Note that the last equation also
permits one to extract a signature out of a blind signature, but only when
the blinding factor is known.

14

4.2. Assembling terms into frames

At a particular point in time, while engaging in one or more sessions of
one or more protocols, an attacker may know a sequence of messages (ground
terms) u1, . . . , uℓ. This means that he knows all messages and also their order.
So it is not enough for us to say that the attacker knows the set of terms
{u1, . . . , uℓ}. In the applied-pi calculus [34], such a sequence of messages is
organised into a frame, i.e. a substitution of the form:

φ = {w1 7→ u1, . . . , wℓ 7→ uℓ}.

The variables w1, . . . , wℓ from W enable us to refer to each message ui, and
these variables will allow us to make explicit the order in which these mes-
sages are sent.

For modelling purposes, we split the signature Σ into two parts, Σpub

and Σpriv (this is orthogonal to the splitting that may have been done between
constructors and destructors mentioned previously). An attacker builds his
own messages by applying public function symbols (i.e., in Σpub) to ground
terms he already knows and that are available through variables from W.
Formally, a computation done by the attacker is a recipe, i.e. a term in
T (Σpub,W). The application of a substitution σ to a term u is written uσ,
and we denote by dom(σ) its domain. For two recipes R,R′ and a frame φ,
we note (R =E R

′)φ when Rφ =E R
′φ.

Example 3. Consider the signature defined in Example 1 together with the
equational theory presented in Example 2. Let φ be the following frame:

φ = {w1 7→ senc(n1, k), w2 7→ senc(n2, k), w3 7→ senc(n3, k), w4 7→ k}

We have that R1 = sdec(w1, w4), R2 = sdec(w2, w4), and R3 = sdec(w3, w4)
are three recipes. These recipes allow the attacker to compute the messages
R1φ, R2φ, and R3φ. These terms are equal modulo E to the names n1, n2,
and n3.

Several notions of equivalence between processes have been introduced
in the literature to express indistinguishability, but actually they all rely on
the notion of static equivalence. Intuitively, an attacker can distinguish two
frames if he is able to perform a test that succeeds in one frame, whereas it
fails in the other. More formally, we have that:

15

Definition 1. Two frames φ and φ′ are in static equivalence, written φ ∼E φ
′,

when dom(φ) = dom(φ′), and for any recipes R1, R2 ∈ T (Σpub, dom(φ)), we
have that:

(R1 =E R2)φ if, and only if, (R1 =E R2)φ
′.

Example 4. Resuming Example 3, consider the frame:

φ′ = {w1 7→ senc(n′

1, k
′), w2 7→ senc(n′

2, k
′), w3 7→ senc(n′

1⊕n
′

2, k
′), w4 7→ k′}.

We have that R
def
= R1 ⊕ R2 and R′

def
= R3 (where R1, R2, and R3 are as

defined in Example 3) are two recipes such that (R =E R′)φ′ whereas this
equality does not hold in φ. Therefore the frames φ and φ′ are not in static
equivalence.

Consider the frame ψ (resp. ψ′) obtained by removing its last element
w4 7→ k (resp. w4 7→ k′) from φ (resp. φ′). We have that ψ and ψ′ are in
static equivalence.

Many decidability and complexity results for static equivalence already
exist (e.g. [36, 37, 38]), and some of these procedures have even been imple-
mented (e.g. KISS [39], YAPA [40], FAST [41]). These results cover a wide
class of cryptographic primitives as long as they are modelled through con-
vergent equational theories (i.e., theories in which equations can be oriented
and form a convergent rewriting system).

However, static equivalence is a static notion, and does not take into ac-
count the dynamic behaviour of the underlying protocols. Static equivalence
represents a passive attacker who can only observe messages that are sent
on the public network, and is not powerful enough to mount the attacks
described in Section 2.3. Even if this notion of static equivalence plays an
important role for the analysis of security protocols in the presence of an
active attacker (i.e., an attacker who may interact and interfere with the
protocol), it remains challenging to obtain decidability results for the active
case, especially in presence of algebraic properties. The results that have al-
ready been obtained in this direction (and the associated tools) are described
in Section 5.

4.3. Protocols

We assume an infinite set Ch = Ch0⊎Chfresh of channel names, where Ch0
and Chfresh are infinite and disjoint. Intuitively, channels of Chfresh will be
used to instantiate channels when they are generated during the execution
of the protocol. They should not be part of a protocol specification.

16

Syntax. Protocols are modelled through processes built by the grammar
given below (where c, c′ ∈ Ch0, x ∈ X , n ∈ N , and, u, u1, u2 ∈ T (Σ,N ∪X)):

P,Q := 0 null
| P | Q parallel
| in(c, x).P input
| out(c, u).P output
| !P replication
| new n.P restriction
| new c′.out(c, c′).P creation of public channel
| if u1 = u2 then P else Q conditional

The process 0 denotes the null process that does nothing. The process
P | Q runs P and Q in parallel. The process in(c, x).P waits to receive
a message on the public channel c, and then continues as P but with x
replaced by the received message. The process out(c, u).P outputs a term u
on the channel c, and then continues as P . The process !P executes an
infinite number of copies of P in parallel. The restriction new n.P is used
to model the creation in a process of new random numbers (e.g., nonces or
key material). The process new c′.out(c, c′).P is a special construction for
creating new channels: any new channel should be made public immediately.
Intuitively, we consider here only public channels. These fresh channel names
are used to identify a process, similarly to a session identifier for example.
The process if u1 = u2 then P else Q runs as P if the terms u1 and u2 are
equal in the equational theory, and as Q otherwise. Note that the terms u, u1,
and u2 that occur in the grammar may contain variables but the terms will
become ground when the evaluation will take place. Note also that new n.P
and in(c, x).P are binding constructs, respectively for the name n and for the
variable x, and in both cases the scope of the binding is P .

We consider only a fragment of the applied-pi calculus. In particular, we
do not allow channel passing nor internal communication. Such a calculus
will be (almost) sufficient to present all the existing results. A protocol is a
ground process, i.e. a process whose variables are in the scope of an input.

For the sake of clarity, we often omit the null process, and we omit the
else branch of a conditional when it contains the 0 process.

Example 5. We are now able to model the French variant of the tag’s role
of the BAC protocol (see Figure 1) as a process parameterised by two (long-

17

term) keys ke, and km.

PTag(ke, km) := in(cT , z).new nT .out(cT , nT).in(cT , x).
if mac(π1(x), km) = π2(x)
then if π1(π2(sdec(π1(x), ke))) = nT

then new kT .out(cT , 〈m,mac(m, km)〉)
else out(errorNonce)

else out(errorMac)

where m = senc(〈nT , 〈π1(sdec(π1(x), ke)), kT 〉〉, ke). If PReader(ke, km) is the
process modelling the reader, the protocol BAC with many readers and tags
that can play arbitrary many sessions can be modelled through the following
process:

PBAC = ! new ke.new km. ! (PTag(ke, km) | PReader(ke, km)).

Configurations represent processes having already evolved by e.g. disclos-
ing some terms to the environment.

Definition 2. A configuration is a pair (P;φ) where P is a multiset of
ground processes; and φ = {w1 7→ u1, . . . , wn 7→ un} is a frame.

We implicitly assume that null processes are removed from a configura-
tion. The applied-pi calculus as introduced in [34] does not introduce this
notion of configuration but considers instead the notion of extended processes
together with a notion of structural equivalence to identify processes that are
identical up to some rearrangement of their structure (e.g. P | Q and Q | P).
A configuration can be seen as a more canonical way to represent an extended
process, and this will avoid us to rely on a notion of structural equivalence.

A configuration is said to be initial when it does not use channel names
from Chfresh.

In some cases, it is helpful to know which process has executed a given
observable action. Hence, some methods and tools we will discuss in Section 5
consider the class of the simple processes.

Definition 3. A simple process is a process of the form:

!new c1.out(c
′

1, c1).B1 | · · · | !new cn.out(c
′

n, cn).Bn | Bn+1 | · · · | Bn+k

where all ci, c
′

i are distinct and for any 1 ≤ i ≤ n + k, Bi is a basic process
built on channel ci, where a basic process on channel c is a process built using
the following grammar:

B,B′ := 0 | in(c, x).B | out(c, u).B | new n.B | if u1 = u2 then P else Q

18

This class is reasonable given that the attacker often knows with whom
he is communicating. For simple processes, this is reflected by the fact that
concurrent processes use different channels that are observable by the at-
tacker.

Semantics. The semantics is given by a labelled transition system (LTS) on
configurations (see Figure 2). This labelled operational semantics allows one
to avoid the quantification over all contexts when analysing a protocol in
presence of an arbitrary attacker.

The rules are quite standard and correspond to the intuitive meaning of
the syntax given in the previous section. When a process emits a message,
we distinguish two cases. The rule Out corresponds to the output of a
term by some process: the corresponding term is added to the frame of the
current configuration, which means that the attacker can now access the sent
term. The rule Ch corresponds to the special case of an output of a freshly
generated channel name. In such a case, the channel is not added to the
frame but it is implicitly assumed known to the attacker, as all the channel
names.

These rules define the relation
ℓ
−→, where ℓ is either an input, an output,

or a silent action τ . The relation
tr
−→ where tr denotes a sequence of labels

is defined in the usual way, whereas the relation
tr′

=⇒ on configurations is

defined by: K
tr′

=⇒K ′ if, and only if, either K = K ′ and tr′ = ǫ (the empty

trace); or there exists a sequence tr such that K
tr
−→ K ′ and tr′ is obtained

by erasing all occurrences of the silent action τ in tr.

Given an initial configuration K0 = (P;φ), we define its set of traces as
follows:

traces(K0) = {(tr, φ
′) | K0

tr
=⇒ (P ′;φ′) for some configuration (P ′;φ′)}.

Example 6. Continuing Example 5, we consider the following configuration

KA = ({PTag(ke
A, kmA)}; {w0 7→ 〈m0,mac(m0, km

A)〉})

where m0 = senc(〈n0
R, 〈n

0
T , k

0
R〉〉, ke

A). This configuration represents a sce-
nario where the attacker has eavesdropped a message 〈m0,mac(m0, km

A)〉
from a previous session between a reader and Alice’s tag with keys keA,
and kmA; and now the attacker is again in presence of Alice’s tag. We

have that KA
trA=⇒(∅;φA) where

19

Then

({if u1 = u2 then P1 else P2} ⊎ P;φ)
τ
−→ (P1 ⊎ P;φ) when u1 =E u2

Else

({if u1 = u2 then P1 else P2} ⊎ P;φ)
τ
−→ (P2 ⊎ P;φ) when u1 6=E u2

In

({in(c, z).P} ⊎ P;φ)
in(c,R)
−−−−→ (P{z 7→ Rφ} ⊎ P;φ) where vars(R) ⊆ dom(φ)

Out

({out(c, u).P} ⊎ P;φ)
out(c,w)
−−−−→ (P ⊎ P;φ ∪ {w 7→ u}) where w ∈ W is fresh

Ch

({new c′.out(c, c′).P} ⊎ P;φ)
outCh(c,ch)
−−−−−−→ (P{c′ 7→ ch} ⊎ P;φ)

where ch ∈ Chfresh is fresh

New ({new n.P} ⊎ P;φ)
τ
−→ (P{n 7→ n′} ⊎ P;φ) where n′ ∈ N is fresh

Par ({P1 | P2} ⊎ P;φ)
τ
−→ ({P1, P2} ⊎ P;φ)

Repl ({!P} ⊎ P;φ)
τ
−→ ({!P, P} ⊎ P;φ)

Figure 2: Semantics

• trA = in(cT , get Challenge).out(cT , w1).in(cT , w0).out(cT , w2); and

• φA = {w0 7→ 〈m0,mac(m0, km
A)〉; w1 7→ 〈mA,mac(mA, km

A)〉; w2 7→
errorNonce} (for some mA).

Our calculus has similarities with the spi calculus [42]. The key differ-
ence concerns the way in which cryptographic primitives are handled. The
spi calculus has a fixed set of built-in primitives (namely, symmetric and
public key encryption), while our calculus allows a wide variety of primitives
to be defined by means of an equational theory as in the applied-pi calculus.
Process algebras are not the only way to model protocols. We may at least
mention the multiset rewriting (MSR) model that has been introduced in [43]
to model reachability properties (e.g. weak secrecy, authentication), and the
strand space model [44] that comes with an appealing graphical represen-
tation, and some proof techniques. These two models have been recently
extended to capture an equivalence based property similar to the notion of
diff-equivalence that we will introduce in the following section.

20

4.4. Equivalences

In order to express the security properties introduced in Section 3, we
need to formally define the notion of indistinguishability we are interested
in. Intuitively, two processes are indistinguishable if an attacker has no way
to tell them apart. A natural starting point is to say that processes P and Q
are indistinguishable if they can output on the same channels, no matter the
context in which they are placed. The quantification over contexts makes
this definition hard to use in practice. Therefore indistinguishability notions,
which are more suitable for both manual and automatic reasoning, have been
proposed. All these notions rely on a labelled transition semantics as the one
presented in Section 4.3 to reason about protocols that may interact with an
environment that models an arbitrary attacker.

Here, we make the choice to directly present a labelled semantics to-
gether with equivalence notions that are based on this semantics and there-
fore avoid the quantification over contexts required when using a reduction
semantics. Actually linking these two semantics and their associated notions
of equivalence is not an easy task. Starting with the pioneering work of
Milner and Sangiorgi [45], this problem has been addressed for different cal-
culi and different notions of equivalence in several papers (e.g. pi-calculus,
spi-calculus [46, 47], applied-pi calculus [34], and psi-calculus [48]).

Trace equivalence. The notion that seems to be the most appropriate to
capture the notion of indistinguishability we are interested in is the notion
of trace equivalence.

Definition 4. Let KP and KQ be two initial configurations, KP ⊑t KQ if
for every (tr, φ) ∈ traces(KP), there exists (tr′, φ′) ∈ traces(KQ) such that
tr = tr′ and φ ∼ φ′. We say that KP and KQ are trace equivalent, denoted
by KP ≈t KQ, if KP ⊑t KQ and KQ ⊑t KP .

Example 7. In order to formalise whether the attacker is able to distinguish
between Alice’s tag and Bob’s tag, one may want to check if KA is trace
equivalent to

KB = ({PTag(ke
B, kmB)}; {w0 7→ 〈m0,mac(m, kmA)〉})

This equivalence actually fails to hold. We have that (trB, φB) ∈ traces(KB)
for some trace trB that has exactly the same observable actions as trA. How-
ever, the only possible resulting frame is φB (for some message mB):

{w0 7→ 〈m0,mac(m0, km
A)〉; w1 7→ 〈mB,mac(mB, km

B)〉; w2 7→ errorMac}

21

It is easy to see that φA ∼E φB does not hold. Indeed, using recipes R1 = w2

and R2 = errorNonce, we have that (R1 =E R2)φA but (R1 6=E R2)φB.
Hence, just by looking at the second output of the tag and checking whether

it is equal to the public constant errorNonce, the attacker is able to learn if
he was interacting with Bob or Alice. This formalises the unlinkability attack
discussed in Section 2.2 for the specific case of two sessions.

Note that, in case the two error messages errorNonce and errorMac were
equal as in the UK version, one would have KUK

A ≈t K
UK
B . This is a non-

trivial equivalence that can be established using e.g the Apte tool presented
in Section 5.

Labelled bisimilarity. Showing trace equivalence properties is a very difficult
task. The notion of labelled bisimilarity for the spi-calculus has been intro-
duced to approximate trace equivalence [42]. The fact that labelled bisimilar-
ity is based on a notion of step-by-step simulation between processes makes
this notion sometimes easier to establish directly.

Definition 5. Labelled bisimilarity ≈ is the largest symmetric relation R
on configurations such that (P;φ) R (Q;ψ) implies:

1. static equivalence: φ ∼ ψ;

2. if (P;φ)
τ
−→ KP , then (Q;ψ)

τ
=⇒KQ and KP R KQ for some KQ;

3. if (P;φ)
α
−→ KP , then (Q;ψ)

α
=⇒KQ and KP R KQ for some KQ.

Two initial configurations KP and KQ are labelled bisimilar if KP ≈ KQ.

It is well-known that labelled bisimilarity implies trace equivalence whereas
the converse is false in general. Actually, it has been proved in [49] that these
two notions coincide for a large class of processes that include in particular
the class of simple processes as described in Definition 3.

Diff-equivalence. Another notion of equivalence that has been extensively
used in the context of cryptographic protocols verification is the notion of
diff-equivalence. Such a notion is defined on bi-processes that are pairs of
processes that have the same structure and differ only in the choice of terms
they use. The syntax is similar to the one introduced in Section 4.3 but
each term u has to be replaced by a bi-term written choice[u1, u2] (using
ProVerif syntax). Given a bi-process P , the process fst(P) is obtained

22

by replacing all occurrences of choice[u1, u2] with u1. Similarly, snd(P) is
obtained by replacing choice[u1, u2] with u2. These notations are also used
for bi-frames.

The semantics of bi-processes is defined as expected via a relation that
expresses when and how a bi-configuration may evolve. A bi-process reduces
if, and only if, both sides of the bi-process reduce in the same way: e.g. a
conditional has to be evaluated in the same way on both sides. For instance,
the Then and Else rules are as follows:

Then

({if choice[u1, u2] = choice[v1, v2] then Q1 else Q2} ⊎ P;φ)
τ
−→bi (Q1 ⊎ P;φ)

when u1 =E v1 and u2 =E v2

Else

({if choice[u1, u2] = choice[v1, v2] then Q1 else Q2} ⊎ P;φ)
τ
−→bi (Q2 ⊎ P;φ)

when u1 6=E v1 and u2 6=E v2

When the two sides of the bi-process reduce in different ways, the bi-

process blocks. The relation
tr
=⇒bi on bi-processes is therefore defined as for

processes. This leads us to the following notion of diff-equivalence.

Definition 6. An initial bi-configuration K0 satisfies diff-equivalence if for

every bi-configuration K = (P;φ) such that K0
tr
=⇒biK for some trace tr, we

have that:

• fst(φ) ∼ snd(φ);

• if fst(K)
α
−→ AL then there exists a bi-configuration K ′ such that K

α
−→bi

K ′ and fst(K ′) = AL (and similarly for snd).

As expected, this notion of diff-equivalence is actually stronger than the
usual notion of labelled bisimilarity, and thus trace equivalence. It may be the
case that the two sides of the bi-process reduce in different ways (e.g. taking
two different branches in a conditional) but still produce the same observable
actions. This strong notion of diff-equivalence happens to be sufficient to es-
tablish some interesting equivalence-based properties such as strong secrecy,
and anonymity. However, this notion is actually too strong to establish for
example vote privacy for many interesting e-voting protocols [21], or unlink-
ability as defined in [12].

For instance, looking back to Example 7 (when error messages are equal),
it can be shown that KUK

A ≈t K
UK
B . On the other hand, KUK

A and KUK
B are

23

not related by diff-equivalence. Indeed, the first three observable actions of
trA/trB are executable, but this results in a bi-process with a conditional
that evaluates differently on both sides. Therefore, even if the error message
outputted on both sides is the same, diff-equivalence does not hold.

5. Methods and tools for verifying equivalence-based properties

Modelling protocols using the symbolic approach allows one to benefit
from machine support through the use of various existing techniques, ranging
from model-checking to resolution and rewriting techniques. Aiming at ma-
chine support is really relevant since manual proofs are error-prone, tedious
and hardly verifiable. Moreover, new protocols are developed quite frequently
and need to be verified quickly. Nevertheless, verifying a security property in
such a setting (and especially those expressed using the notion of equivalence)
remains a difficult problem which is actually undecidable [50, 51].

5.1. Bounded number of sessions

In order to design decision procedures, a reasonable assumption is to
bound the number of protocol sessions (i.e., forbid replication), thereby lim-
iting the length of execution traces. Under such an assumption, the first
decision procedure towards automatic verification of equivalence between
protocols dates back to [50], where a fragment of the spi calculus (no replica-
tion, no else branch) is considered. Note that, even under this assumption,
infinitely many traces remain, since each input may be fed infinitely many
different messages. This issue has been tackled in various ways using forms of
symbolic execution and the development of dedicated procedures. Obtaining
a symbolic semantics to avoid potentially infinite branching of execution trees
due to inputs from the environment is often a first step towards automation
of equivalence. Depending on the expressivity of the calculus and the way its
semantics is given, this task can be quite cumbersome (e.g. applied-pi cal-
culus [52], spi calculus [53, 54], psi calculus [55]) and sometimes only leads
to incomplete procedures.

A table summarising the main features of existing tools dedicated to
bounded verification is given in Table 1.

5.1.1. Constraint solving approaches

Baudet targets the decision of security of protocols against off-line guess-
ing attacks defined using static equivalence between open frames (i.e., frames

24

with some unknown parts constrained with some deducibility and equality
constraints) [56]. The main novelty of his work was to design a constraint
solving procedure that is not only able to solve satisfiability problems (suffi-
cient for reachability properties) but also to establish equivalences (i.e., two
systems have the same sets of solutions), which are needed when one wants to
verify equivalence-based security properties. This is done for a user-defined
equational theory given in the form of a subterm convergent rewriting system
(i.e., convergent and such that the right-hand side of each rewriting rule is
actually a syntactic subterm of the left-hand side). As a result, this work al-
lows for verifying trace equivalence of simple processes (with no else branch)
for all the standard primitives [49].

A shorter proof of the result by Baudet is given in [57]. It is shown that
if two processes are not equivalent, then there must exist a small witness of
non-equivalence, and a decision procedure can be derived by checking every
possible small witness. The main issue with all the results mentioned so far
is practicality. Consequently, they have not been implemented.

A decision procedure for a stronger notion of trace equivalence (namely
open bisimulation) has been proposed in [58] and implemented in the tool
Spec

2. The procedure deals with a fixed set of cryptographic primitives,
namely symmetric encryption and pairs, and protocols with no else branch.
The procedure is sound and complete w.r.t. open bisimulation (a notion that
is strictly stronger than trace equivalence [59]) and its termination is proved.
The attacker’s deductive ability is modelled as logical rules in sequent calcu-
lus, and procedures deciding message deduction and message indistinguisha-
bility are defined as proof-search strategies. Finally, the proposed procedure
iteratively builds an open bisimulation from the two initial processes by sym-
bolically executing them and checks that possible instantiations are coherent
on both sides.

For a fixed but richer set of cryptographic primitives (i.e., symmet-
ric/asymmetric encryptions, signature, pair, and hash functions), a differ-
ent procedure, presented in [60] (improved version of [61]), allows to decide
equivalence of two sets of constraint systems that may also feature disequality
tests. Dealing with disequality tests and sets of constraint systems is needed
in the presence of protocols with else branches (different symbolic executions

2http://www.ntu.edu.sg/home/atiu/spec/index.html

25

Apte [62] Akiss [65] Spec [58]

Equivalence ≈t ≈ct , ≈ft open bisim.

Primitives standard
convergent with
finite variant

pair & sym.
encryption

Class of
protocols full

linear role with
equality tests

linear role with
filtering

Input
syntax

applied-pi calculus
spi calculus

Termination proved

proved for sub.
convergent proved

Exploration forward

Table 1: Main features of existing tools (for a bounded number of sessions)

may be associated to a single symbolic trace). Actually, the procedure pre-
sented in [60] allows for slightly more general processes than those presented
in Section 4 since it deals with private channels and internal communica-
tions. The tool Apte [62] implements the procedure described in [60]. This
procedure explores all possible symbolic traces and computes all possible
resulting symbolic constraint systems on both sides. This forward symbolic
exploration of two processes is finite since all symbolic traces have a bounded
length and the exploration is finitely branching since inputs are abstracted
away by variables and constraints. The procedure then checks the symbolic
equivalence of all the resulting pairs of sets of constraint systems. Recently,
this procedure has been further extended to deal with some forms of side-
channel attacks regarding the length of messages [63], and the computation
time [64].

5.1.2. Resolution-based approaches

The procedure described in [65] deals with rich user-defined term algebras
provided that they can be defined using a convergent rewriting system en-
joying the finite variant property [66]. This property basically requires that
it is possible to finitely pre-compute possible normal forms of terms with
variables. This especially includes all subterm convergent equational theo-

26

ries. In the setting of [65], protocols are modelled as sets of symbolic traces
with equality tests. Further, the authors of [65] use first-order Horn clauses
to model all possible instantiations of symbolic traces, and they rely on a
saturation procedure to put all clauses into solved forms. Finally, this finite
description of all possible concrete executions is used to decide equivalence
between the two processes under study. This procedure is actually able to
check an over-approximation (called ≈ct) and an under approximation (called
≈ft) of trace equivalence, and it has been shown that ≈ct actually coincides
with trace equivalence for a large class of processes (the class of determinate
processes) that typically includes simple processes. This procedure has been
implemented in the tool Akiss3 and has been effectively tested on several
examples including checking vote privacy of an electronic voting protocol re-
lying on the blind signature primitive. Recently, termination of the procedure
has been established for subterm convergent theories [67].

Systems we are interested in are highly concurrent and existing meth-
ods and tools naively explore all possible symbolic interleavings causing the
so called state-explosion problem. This problem seriously limits the prac-
tical impact of those tools. Recent works [68, 69] have partially addressed
this issue by developing dedicated partial order reduction techniques to dra-
matically reduce the number of interleavings to explore. They have been
implemented in Apte and brought significant speed-up. Actually, they are
generic enough to be applicable to any method as long as it performs forward
symbolic executions.

5.2. Unbounded number of sessions

The decidability results mentioned in the previous section analyse equiv-
alence for a bounded number of sessions only, that is assuming that protocols
are executed a limited number of times. This is of course a strong limita-
tion. Even if no flaw is found when a protocol is executed n times, there is
absolutely no guarantee that the protocol remains secure when it is executed
n + 1 times. Therefore, despite the difficulty of the problem in the general
case, several solutions have been proposed for an unbounded number of ses-
sions. A table summarising the main features of existing tools dealing with
an unbounded number of sessions is given in Table 2.

3http://akiss.gforge.inria.fr

27

5.2.1. Decidability results

It is well-known that replication (allowing us to encode an unbounded
number of sessions) very quickly leads to undecidability even when consider-
ing the simple and well-known weak secrecy property. Therefore, obtaining
decidability results can only be achieved under various restrictions.

One of the first decidability results for checking trace equivalence of pro-
tocols for an unbounded number of sessions is due to Chrétien et al. [70, 51].
They consider a limited fragment of protocols, namely ping-pong protocols,
with standard primitives but pairs, and at most one variable per protocol
rules. Even if the secrecy preservation problem is known to be decidable
in this setting [71], it turns out that checking equivalence is undecidable.
Then, considering determinate protocols, they establish decidability through
a characterisation of equivalence of protocols in terms of equality of lan-
guages of (generalised, real-time) deterministic pushdown automata. Note
that this result only holds for a restricted signature, and names can only
be used to produce randomised cipher-texts. Very recently, the algorithm
for checking equivalence of deterministic pushdown automata has been im-
plemented [72], and the translation from protocols to pushdown automata
has been implemented too, yielding the first prototype able to decide trace
equivalence considering an unbounded number of sessions [51].

Assuming finitely many nonces and keys, another decidability result has
been obtained in [73]. The primitives that are considered are pairs, and
symmetric encryption only, but they go beyond ping-pong protocols and
consider the class of simple protocols. In order to derive a strong typing
result that drastically limits the shape and size of messages needed to mount
an attack, the authors introduce the notion of type-compliance for a protocol.
This notion generalises the idea of tagging as introduced by Blanchet in [74],
and avoids ambiguity in the interpretation of the origin of any message sent
on the network. From this typing result, they derive a decision procedure for
trace equivalence for an unbounded number of sessions for type-compliant
protocols without nonces.

Actually, the typing result mentioned above has also been used to derive
the first decidability result for trace equivalence in presence of unlimited fresh
nonces [75]. Such a decidability result inherits the conditions introduced
above (type-compliance, restricted signature), and develops in addition a
notion of dependency graph. This notion formally abstracts the dependencies
between the actions occurring in a protocol specification. Then, considering

28

acyclic protocols (i.e., those for which the dependency graph is acyclic) which
is intuitively related to protocols without loops in their well-typed executions,
decidability of trace equivalence is established. These procedures have not
been implemented yet.

5.2.2. Procedures for checking diff-equivalence

As said before, the problem of checking trace equivalence for rich class
of protocols is undecidable. To circumvent this undecidability result, many
works aim at developing procedures (not necessarily completely automatic)
that are sound w.r.t. trace equivalence but not complete. Moreover, ter-
mination is not guaranteed. The main idea is to merge the protocols under
study into a so-called bi-process, and to consider a strong form of equivalence,
namely diff-equivalence as described in Definition 6. This method has first
been presented in [76] and implemented in the ProVerif tool. Recently,
this technique has been integrated into the verification tools Tamarin [77]
and Maude-NPA [78] that have been extended to deal with equivalence
properties. The main limitation of all these results is the fact that the tools
are not able to analyse trace equivalence (but only diff-equivalence). Thus,
these tools are not well-suited in general to analyse several privacy-related
properties such as (strong) unlinkability [12], and vote privacy [21].

The method presented in [79] and implemented in ProVerif4 repre-
sents bi-processes that are given in input using Horn clauses (performing
some well-chosen approximations, and thus losing completeness). Then, a
dedicated resolution algorithm tries to resolve those Horn clauses. Crypto-
graphic primitives are decomposed into: reduction rules and a union of linear
equational theories (i.e., each equation has the same variables on both sides)
and convergent theories (i.e., terminating and confluent). This formalism is
flexible enough to model for instance different flavours of encryptions (sym-
metric, asymmetric, randomised, . . .), signature, and blind signature, but
excludes exclusive-or, and more generally associative and commutative oper-
ators. The resulting tool is quite efficient, and terminates on many examples.

As already mentioned, diff-equivalence is strictly stronger than trace
equivalence. Basically, the two processes have to be executed exactly in
the same way, notably for internal rules, whereas the attacker cannot observe
such details. This problem has been partially tackled in [80] by pushing away

4http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

29

ProVerif [79] Maude-NPA [78] Tamarin [84]

Equivalence diff-equivalence

Primitives linear +
convergent

convergent with
finite variant

(inc. XOR, A.G.)

convergent with
finite variant
(inc. DH)

Class of
protocols full

linear role with
filtering full + state

Input
syntax

applied-pi
calculus strand spaces multiset rewriting

Termination may diverge

Exploration resolution backward

Table 2: Main features of existing tools (for an unbounded number of sessions)

the evaluation of conditionals into terms. Nevertheless, the problem remains
in general (e.g., for interleavings of conditionals and observable actions).

To extend the class of equivalences and protocols that can be automati-
cally verified by ProVerif, several extensions have been proposed. For in-
stance, ProSwapper5) has been designed to consider cryptographic protocols
that require barrier synchronisation (also called phases) to achieve security
objectives [81]. The ProSwapper extension allows the algorithm to go beyond
diff-equivalence by rearranging bi-processes. This extension has been shown
particularly useful to establish vote privacy for several electronic-voting pro-
tocols. More recently, theoretical foundations have been provided for this
technique and soundness of this extension has been proved [82]. A reduction
result to get rid of some particular equations (that cannot be handled by the
ProVerif tool) has been devised in [83]. Relying on it, a first automated
proof of privacy for the protocol Prêt à Voter (that uses re-encryption and
associative/commutative operators) has been carried out with success.

Recently, the approach behind the Tamarin verification tool [85] has
been extended to deal with equivalence-based properties. In this approach,

5http://www.bensmyth.com/proswapper.php

30

protocols are modelled as multiset rewriting (MSR) systems. This allows one
to model a rich class of protocols that may feature else branches and allow the
storage of some data from one session to another. The framework supports a
rich term algebra including subterm convergent theories, and Diffie-Hellman
exponentiation. The proposed algorithm exploits the finite variant prop-
erty [66] to get rid of some equations, and it builds on ideas from strands
spaces and proof normal forms. It basically performs a backward search from
attacks states. Tamarin provides two ways of constructing proofs: an effi-
cient, fully automated mode that uses heuristics to guide proof search, and
an interactive mode. The interactive mode enables the user to explore the
proof states using a graphical interface. The Tamarin tool has been used to
analyse different security properties on many protocols. However, regarding
equivalence, the tool is less mature and has only been used on a few exam-
ples; the main one being a stateful TPM protocol (namely the TPM envelope
protocol) on which a strong secrecy property has been established.

The Maude-NPA tool has also been recently extended [78] to deal with
bi-processes (called synchronous product) and diff-equivalence. Their semi-
decision procedure is able to deal with a very large class of term algebras (as
soon as they have the finite variant property as defined in [86]) like Abelian
groups, exclusive-or, and exponentiation. However, it can only be applied to
linear role scripts with filtering over inputs (and therefore does not handle
protocols with else branches). Regarding equivalence, only a few case studies
have been performed. The approach of [78] suffers from termination prob-
lems, especially when considering primitives such as exclusive-or. Regarding
equivalence, their main example is a proof of absence of guessing attacks on
a version of the EKE protocol (that relies on standard primitives only).

5.2.3. Some other results

In many cases, existing methods and tools are not sufficient to carry
out fully automated proofs. On the other side, fully manual proofs are te-
dious, error-prone, and hardly verifiable. For instance, previous works gave
a manual and formal proof of vote privacy for Helios [87] and the Norwegian
e-voting protocol [88]. Those proofs are not automated mainly because ex-
isting tools are not able to deal with an unbounded number of voters and
complex equational theories featuring for instance homomorphic encryption.
For such proofs, one has to exhibit complex bisimulation relations and show
static equivalence of infinite families of frames.

31

Actually, it is also possible to combine manual and automatic proofs. For
instance, in [89], the authors establish an unlinkability property on a fixed
version of the TMSI reallocation procedure used in mobile telephony systems.
As pointed out in the paper, no tool could, at this time, deal with both
stateful protocols and an equivalence-based property like unlinkability. Thus,
they exhibit a manually-built bisimulation and discharge static equivalence
verification to ProVerif.

This idea has also been applied to analyse some privacy properties (namely
unlinkability and forward privacy) on a very restricted class of stateful RFID
protocols [28]. In this work, single-step protocols that only use hash func-
tions as cryptographic primitives are considered. In such a restricted setting,
the authors introduce the notion of frame independence which is closely re-
lated to the notion of static equivalence between frames. Then, they provide
conditions under which unlinkability and forward privacy hold. They per-
form several case studies and establish those conditions (up to some arbitrary
bound) using ProVerif. More recently, a new method [90] based on suf-
ficient conditions for unlinkability and anonymity allows to automatically
verify such security properties for unbounded number of sessions for proto-
cols that were out of the scope of existing tools (e.g., BAC protocol and
some RFID protocols). Instead of improving the tools and their precisions,
such approaches rather focus on security properties of interest and devise
sufficient conditions that are checkable much more easily.

6. Conclusion

The results obtained so far are not completely satisfactory. The protocols
that are deployed nowadays in various applications rely on operators and
primitives that can still not be handled by existing verification algorithms
and tools. For instance, electronic voting protocols often rely on complex
primitives in order to achieve their goals (e.g. homomorphic encryption [87,
88]), and RFID protocols that have power-consumption constraints often
use some low-level operators with algebraic properties (e.g. exclusive or
operator [91]). Despite some advances that have been done in this direction
(see e.g. [92]), analysing these protocols is still out of scope of the existing
algorithms and tools.

Due to the complexity of the verification problem (especially when con-
sidering equivalence-based properties), a promising approach seems to devise
methods (with tool support) that are sound but not necessarily complete.

32

However, we advocate verification techniques that go beyond the notion of
diff-equivalence. Learning from previous experience, we deem it acceptable
to provide tools with some hints, in order to guide them in their attempt to
establish the equivalence property under study. The main difficulty is prob-
ably to find a reasonable way to allow interactions between the user and the
tool during the verification process.

Acknowledgements. This work has been partially supported by the ANR
project Sequoia ANR-14-CE28-0030-01.

7. References

[1] D. Dolev, A. C. Yao, On the security of public key protocols, in: Proc.
22nd Symposium on Foundations of Computer Science (FCS’81), IEEE
Computer Society Press, 1981, pp. 350–357.

[2] B. Blanchet, A computationally sound mechanized prover for security
protocols, in: Proc. Symposium on Security and Privacy (S&P’06),
IEEE Computer Society Press, 2006, pp. 140–154.

[3] M. Abadi, P. Rogaway, Reconciling two views of cryptography (the com-
putational soundness of formal encryption), in: Proc. International Con-
ference on Theoretical Computer Science, 2000, pp. 3–22.

[4] V. Cortier, S. Kremer, B. Warinschi, A survey of symbolic methods in
computational analysis of cryptographic systems, Journal of Automated
Reasoning 46 (3-4) (2011) 225–259.

[5] G. Bana, H. Comon-Lundh, Towards unconditional soundness: Compu-
tationally complete symbolic attacker, in: Proc. 1st International Con-
ference on Principles of Security and Trust (POST’12), Springer, 2012,
pp. 189–208.

[6] G. Bana, H. Comon-Lundh, A computationally complete symbolic at-
tacker for equivalence properties, in: Proc. 21st Conference on Computer
and Communications Security (CCS’14)), ACM, 2014, pp. 609–620.

[7] V. Cortier, F. Eigner, S. Kremer, M. Maffei, C. Wiedling, Type-based
verification of electronic voting protocols, in: Proc. 4th Conference on
Principles of Security and Trust (POST’15), Springer, 2015, pp. 303–
323.

33

[8] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy, S. Zanella-
Béguelin, Probabilistic relational verification for cryptographic imple-
mentations, in: Proc. 41st Symposium on Principles of Programming
Languages (POPL’14), Vol. 49, ACM, 2014, pp. 193–206.

[9] W. Diffie, M. Hellman, New directions in cryptography, Transactions on
Information Society 22 (6) (1976) 644–654.

[10] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Communications of the ACM 21 (2)
(1978) 120–126.

[11] PKI for machine readable travel documents offering ICC read-only ac-
cess, Tech. rep., International Civil Aviation Organization (2004).

[12] M. Arapinis, T. Chothia, E. Ritter, M. Ryan, Analysing unlinkability
and anonymity using the applied pi calculus, in: Proc. 23rd Computer
Security Foundations Symposium (CSF’10), IEEE Computer Society
Press, 2010, pp. 107–121.

[13] G. Lowe, A hierarchy of authentication specifications, in: Proc. 10th
Computer Security Foundations Workshop (CSFW’97), IEEE Computer
Society Press, 1997, pp. 18–30.

[14] M. Abadi, Secrecy by typing in security protocols, in: Theoretical As-
pects of Computer Software, Springer, 1997, pp. 611–638.

[15] B. Blanchet, Automatic proof of strong secrecy for security protocols,
in: Proc. . 2004 Symposium on Security and Privacy, IEEE Computer
Society Press, 2004, pp. 86–100.

[16] M. Abadi, A. D. Gordon, A calculus for cryptographic protocols: The
spi calculus, in: Proc. of the 4th ACM conference on Computer and
communications security, ACM, 1997, pp. 36–47.

[17] M. Arapinis, T. Chothia, E. Ritter, M. Ryan, Untraceability in the ap-
plied pi-calculus, in: Proc. International Conference for Internet Tech-
nology and Secured Transactions (ICITST,09), IEEE Computer Society
Press, 2009, pp. 1–6.

34

[18] S. Schneider, A. Sidiropoulos, CSP and anonymity, in: Proc. Interna-
tional Conference on Computer Security (ESORICS’96), Springer, 1996,
pp. 198–218.

[19] T. Chothia, Analysing the mute anonymous file-sharing system using
the pi-calculus, in: Formal Techniques for Networked and Distributed
Systems-FORTE 2006, Springer, 2006, pp. 115–130.

[20] S. Kremer, M. D. Ryan, Analysis of an electronic voting protocol in
the applied pi-calculus, in: Proc. 14th European Symposium on Pro-
gramming (ESOP’05), Vol. 3444 of LNCS, Springer-Verlag, 2005, pp.
186–200.

[21] S. Delaune, S. Kremer, M. D. Ryan, Verifying privacy-type properties of
electronic voting protocols, Journal of Computer Security 17 (4) (2008)
435–487.

[22] J. Benaloh, D. Tuinstra, Receipt-free secret-ballot elections (extended
abstract), in: Proc. 26th Symposium on Theory of Computing
(STOC’94), ACM Press, 1994, pp. 544–553.

[23] S. Delaune, S. Kremer, M. D. Ryan, Coercion-resistance and receipt-
freeness in electronic voting, in: Proc. 19th Computer Security Founda-
tions Workshop (CSFW’06), IEEE Computer Society Press, 2006, pp.
28–39.

[24] M. Backes, C. Hritcu, M. Maffei, Automated verification of remote elec-
tronic voting protocols in the applied pi-calculus, in: Proc. 21st Com-
puter Security Foundations Symposium, (CSF’08), IEEE Computer So-
ciety Press, 2008, pp. 195–209.

[25] M. Arapinis, V. Cortier, S. Kremer, M. D. Ryan, Practical Everlasting
Privacy, in: Proc. 2nd Conference on Principles of Security and Trust
(POST’13), Vol. 7796 of LNCS, Springer, 2013, pp. 21–40.

[26] N. Dong, H. Jonker, J. Pang, Analysis of a receipt-free auction proto-
col in the applied pi calculus, in: Proceedings of the 7th International
Workshop on Formal Aspects in Security and Trust (FAST’10), Vol.
6561 of LNCS, Springer, 2010, pp. 223–238.

35

[27] J. Dreier, P. Lafourcade, Y. Lakhnech, Formal verification of e-auction
protocols, in: Proc. 2nd Conferences on Principles of Security and Trust
(POST’13), Vol. 7796 of LNCS, Springer, 2013, pp. 247–266.

[28] M. Brusó, K. Chatzikokolakis, J. Den Hartog, Formal verification of pri-
vacy for RFID systems, in: Proc. 23rd Computer Security Foundations
Symposium (CSF’10), IEEE Computer Society Press, 2010, pp. 75–88.

[29] T. Van Deursen, S. Mauw, S. Radomirović, Untraceability of RFID pro-
tocols, in: Information Security Theory and Practices. Smart Devices,
Convergence and Next Generation Networks, Springer, 2008, pp. 1–15.

[30] M. Brusó, K. Chatzikokolakis, S. Etalle, J. Den Hartog, Linking unlink-
ability, in: Trustworthy Global Computing, Springer, 2013, pp. 129–144.

[31] R. Canetti, Universally composable security: A new paradigm for cryp-
tographic protocols, in: Proc. 42nd Annual Symposium on Foundations
of Computer Science (FOCS’01), IEEE Computer Society Press, 2001,
pp. 136–145.

[32] S. Delaune, S. Kremer, O. Pereira, Simulation based security in the ap-
plied pi calculus, in: Proc. 29th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’09), Vol. 4 of
Leibniz International Proc. in Informatics, Leibniz-Zentrum für Infor-
matik, 2009, pp. 169–180.

[33] F. Böhl, D. Unruh, Symbolic universal composability, in: Proc. 26th
Computer Security Foundations Symposium (CSF’13), IEEE Computer
Society Press, 2013, pp. 257–271.

[34] M. Abadi, C. Fournet, Mobile values, new names, and secure communi-
cation, in: Proc. 28th Symposium on Principles of Programming Lan-
guages (POPL’01), ACM Press, 2001, pp. 104–115.

[35] B. Blanchet, Proverif 1.91, http://prosecco.gforge.inria.fr/personal/bblanche/,
as downloaded on October 1st, 2015. See files in directory /exam-
ples/pitype/choice/.

[36] M. Abadi, V. Cortier, Deciding knowledge in security protocols under
equational theories, in: Proc. 31st International Colloquium on Au-
tomata, Languages, and Programming (ICALP’04), Vol. 3142 of LNCS,
Springer-Verlag, 2004, pp. 46–58.

36

[37] M. Abadi, V. Cortier, Deciding knowledge in security protocols un-
der (many more) equational theories, in: Proc. 18th Computer Secu-
rity Foundations Workshop (CSFW’05), IEEE Computer Society Press,
2005, pp. 62–76.

[38] V. Cortier, S. Delaune, Decidability and combination results for two
notions of knowledge in security protocols, Journal of Automated Rea-
soning 48 (4) (2012) 441–487.

[39] Ş. Ciobâcă, S. Delaune, S. Kremer, Computing knowledge in security
protocols under convergent equational theories, Journal of Automated
Reasoning 48 (2) (2012) 219–262.

[40] M. Baudet, V. Cortier, S. Delaune, YAPA: A generic tool for com-
puting intruder knowledge, ACM Transactions on Computational Logic
14 (1:4).

[41] B. Conchinha, D. A. Basin, C. Caleiro, FAST: an efficient decision pro-
cedure for deduction and static equivalence, in: Proc. 22nd Interna-
tional Conference on Rewriting Techniques and Applications, (RTA’11),
Vol. 10 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011, pp. 11–20.

[42] M. Abadi, A. D. Gordon, A calculus for cryptographic protocols: The
spi calculus, Information and Computation 148 (1) (1999) 1–70.

[43] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, A meta-
notation for protocol analysis, in: Proc. 12th Computer Security Foun-
dations Workshop (CSFW’99), IEEE Computer Society Press, 1999, pp.
55–69.

[44] F. J. Thayer, J. C. Herzog, J. D. Guttman, Strand spaces: Proving
security protocols correct, Journal of Computer Security 7 (1) (1999)
191–230.

[45] R. Milner, D. Sangiorgi, Barbed bisimulation, in: W. Kuich (Ed.), Proc.
19th International Colloquium on Automata, Languages, and Program-
ming (ICALP’92), Vol. 623 of LNCS, Springer Verlag, 1992, pp. 685–695.

[46] M. Abadi, A. D. Gordon, A bisimulation method for cryptographic pro-
tocols, Nord. J. Comput. 5 (4) (1998) 267.

37

[47] M.Boreale, R. D. Nicola, R. Pugliese, Proof techniques for cryptographic
processes, SIAM Journal on Computing 31 (3) (2002) 947–986.

[48] J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: a frame-
work for mobile processes with nominal data and logic, Logical Methods
in Computer Science 7 (1).

[49] V. Cheval, V. Cortier, S. Delaune, Deciding equivalence-based properties
using constraint solving, Theoretical Computer Science 492 (2013) 1–39.

[50] H. Hüttel, Deciding framed bisimilarity, Electronic Notes in Theoretical
Computer Science 68 (6) (2003) 1–18.

[51] R. Chrétien, V. Cortier, S. Delaune, From security protocols to push-
down automata, ACM Transactions on Computational Logic 17 (1:3).

[52] S. Delaune, S. Kremer, M. D. Ryan, Symbolic bisimulation for the ap-
plied pi calculus, Journal of Computer Security 18 (2) (2010) 317–377.

[53] L. Durante, R. Sisto, A. Valenzano, Automatic testing equivalence ver-
ification of spi calculus specifications, ACM Transactions on Software
Engineering and Methodology 12 (2) (2003) 222–284.

[54] J. Borgström, A complete symbolic bisimilarity for an extended spi cal-
culus, Electr. Notes Theor. Comput. Sci. 242 (3) (2009) 3–20.

[55] J. Borgström, R. Gutkovas, I. Rodhe, B. Victor, The psi-calculi work-
bench: A generic tool for applied process calculi, ACM Trans. Embedded
Comput. Syst. 14 (1) (2015) 9:1–9:25.

[56] M. Baudet, Deciding security of protocols against off-line guessing at-
tacks, in: Proc. 12th ACM conference on Computer and communications
security (CCS’05), ACM, 2005, pp. 16–25.

[57] Y. Chevalier, M. Rusinowitch, Decidability of symbolic equivalence of
derivations, Journal of Automated Reasoning 48 (2) (2012) 263–292.

[58] A. Tiu, J. Dawson, Automating open bisimulation checking for the spi
calculus, in: Proc. 23rd Computer Security Foundations Symposium
(CSF’10), IEEE Computer Society Press, 2010, pp. 307–321.

38

[59] A. Tiu, A trace based bisimulation for the spi calculus, in: Programming
Languages and Systems, Springer, 2007, pp. 367–382.

[60] V. Cheval, H. Comon-Lundh, S. Delaune, Trace equivalence decision:
Negative tests and non-determinism, in: Proc. 18th ACM Conference on
Computer and Communications Security (CCS’11), ACM Press, 2011,
pp. 321–330.

[61] V. Cheval, H. Comon-Lundh, S. Delaune, Automating security analysis:
symbolic equivalence of constraint systems, in: Proc. 5th International
Joint Conference on Automated Reasoning (IJCAR’10), Vol. 6173 of
LNAI, Springer-Verlag, 2010, pp. 412–426.

[62] V. Cheval, Apte: an algorithm for proving trace equivalence, in: Proc.
20th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’14), Vol. 8413 of LNCS,
2014, pp. 587–592.

[63] V. Cheval, V. Cortier, A. Plet, Lengths may break privacy – or how to
check for equivalences with length, in: Proc. 25th International Con-
ference on Computer Aided Verification (CAV’13), Vol. 8044 of LNCS,
Springer Berlin Heidelberg, 2013, pp. 708–723.

[64] V. Cheval, V. Cortier, Timing attacks in security protocols: symbolic
framework and proof techniques, in: Proc. 4th Conference on Principles
of Security and Trust (POST’15), Springer, 2015, pp. 280–299.

[65] R. Chadha, Ş. Ciobâcă, S. Kremer, Automated verification of equiva-
lence properties of cryptographic protocols, in: Proc. European Sympo-
sium on Programming (ESOP’12), Springer, 2012, pp. 108–127.

[66] H. Comon-Lundh, S. Delaune, The finite variant property: How to get
rid of some algebraic properties, in: Proc. International Conference on
Rewriting Techniques and Applications (RTA’05), Springer, 2005, pp.
294–307.

[67] R. Chadha, V. Cheval, Ş. Ciobâcă, S. Kremer,
Automated verification of equivalence properties of cryptographic protocol,
ACM Transactions on Computational LogicTo appear.
URL https://hal.inria.fr/hal-01306561/document

39

https://hal.inria.fr/hal-01306561/document
https://hal.inria.fr/hal-01306561/document

[68] D. Baelde, S. Delaune, L. Hirschi, Partial order reduction for security
protocols, in: Proc. 26th International Conference on Concurrency The-
ory (CONCUR’15), Vol. 42 of LIPIcs, Leibniz-Zentrum für Informatik,
2015, pp. 497–510.

[69] D. Baelde, S. Delaune, L. Hirschi, A reduced semantics for deciding
trace equivalence using constraint systems, in: Proc. 3rd Conference on
Principles of Security and Trust (POST’14), Springer, 2014, pp. 1–21.

[70] R. Chrétien, V. Cortier, S. Delaune, From security protocols to push-
down automata, in: Proc. 40th International Colloquium on Automata,
Languages and Programming (ICALP’13), Vol. 7966 of LNCS, Springer,
2013, pp. 137–149.

[71] H. Comon-Lundh, V. Cortier, New decidability results for fragments
of first-order logic and application to cryptographic protocols, in: 14th
Proc. International Conference on Rewriting Techniques and Applica-
tions (RTA’2003), Vol. 2706 of LNCS, Springer, 2003, pp. 148–164.

[72] P. Henry, G. Sénizergues, Lalblc a program testing the equivalence of
dpda’s, in: Proc. 18th International Conference on Implementation and
Application of Automata (CIAA’13), Vol. 7982 of LNCS, Springer, Hal-
ifax, NS, Canada, 2013, pp. 169–180.

[73] R. Chrétien, V. Cortier, S. Delaune, Typing messages for free in security
protocols: the case of equivalence properties, in: Proc. 25th Interna-
tional Conference on Concurrency Theory (CONCUR’14), Vol. 8704 of
LNCS, Springer, 2014, pp. 372–386.

[74] B. Blanchet, A. Podelski, Verification of cryptographic protocols: Tag-
ging enforces termination, in: Proc. International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS’03),
Vol. 2620 of LNCS, 2003, pp. 136–152.

[75] R. Chrétien, V. Cortier, S. Delaune, Decidability of trace equivalence for
protocols with nonces, in: Proc. 28th Computer Security Foundations
Symposium (CSF’15), IEEE Computer Society Press, 2015, pp. 170–
184.

[76] B. Blanchet, M. Abadi, C. Fournet, Automated Verification of Selected
Equivalences for Security Protocols, in: Proc. 20th Symposium on Logic

40

in Computer Science (LICS’05), IEEE Computer Society Press, 2005,
pp. 331–340.

[77] D. Basin, J. Dreier, R. Sasse, Automated symbolic proofs of observa-
tional equivalence, in: Proc. 22nd Conference on Computer and Com-
munications Security (CCS’15), ACM, 2015, pp. 1144–1155.

[78] S. Santiago, S. Escobar, C. Meadows, J. Meseguer, A formal definition
of protocol indistinguishability and its verification using Maude-NPA,
in: Security and Trust Management, Springer, 2014, pp. 162–177.

[79] B. Blanchet, M. Abadi, C. Fournet, Automated verification of selected
equivalences for security protocols, Journal of Logic and Algebraic Pro-
gramming 75 (1) (2008) 3–51.

[80] V. Cheval, B. Blanchet, Proving more observational equivalences with
ProVerif, in: Proc. 2nd Conference on Principles of Security and Trust
(POST’13), Vol. 7796 of LNCS, Springer, 2013, pp. 226–246.

[81] S. Delaune, M. D. Ryan, B. Smyth, Automatic verification of privacy
properties in the applied pi-calculus, in: Proc. 2nd Joint iTrust and PST
Conferences on Privacy, Trust Management and Security (IFIPTM’08),
Vol. 263 of IFIP Conference Proc. Springer, 2008, pp. 263–278.

[82] B. Blanchet, B. Smyth, Automated reasoning for equivalences in the
applied pi calculus with barriers, in: Proc. 29th Computer Security
Foundations Symposium (CSF’16), 2016, to appear.

[83] M. Arapinis, S. Bursuc, M. D. Ryan, Reduction of equational theories
for verification of trace equivalence: Re-encryption, associativity and
commutativity, in: Proc. 1st International Conference on Principles of
Security and Trust (POST’12), Vol. 7215 of LNCS, Springer, 2012, pp.
169–188.

[84] S. Meier, B. Schmidt, C. Cremers, D. Basin, The tamarin prover for
the symbolic analysis of security protocols, in: Proc. International Con-
ference on Computer Aided Verification (CAV’13), Springer, 2013, pp.
696–701.

[85] B. Schmidt, S. Meier, C. Cremers, D. Basin, Automated analysis of
Diffie-Hellman protocols and advanced security properties, in: Proc.

41

25th Computer Security Foundations Symposium (CSF’12), IEEE Com-
puter Society Press, 2012, pp. 78–94.

[86] S. Escobar, R. Sasse, J. Meseguer, Folding variant narrowing and op-
timal variant termination, in: Rewriting Logic and Its Applications,
Springer, 2010, pp. 52–68.

[87] V. Cortier, B. Smyth, Attacking and fixing helios: An analysis of bal-
lot secrecy, in: Proc. 24th Computer Security Foundations Symposium
(CSF’11), IEEE Computer Society Press, 2011, pp. 297–311.

[88] V. Cortier, C. Wiedling, A formal analysis of the norwegian e-voting
protocol, in: Proc. 2nd Conference on Principles of Security and Trust,
Springer, 2012, pp. 109–128.

[89] M. Arapinis, L. I. Mancini, E. Ritter, M. Ryan, Privacy through
pseudonymity in mobile telephony systems, in: Proc. Network and Dis-
tributed System Security Symposium (NDSS’14), 2014.

[90] L. Hirschi, D. Baelde, S. Delaune, A method for verifying privacy-type
properties: the unbounded case, in: Proc. 37th Symposium on Security
and Privacy (S&P’16), 2016, to appear.

[91] T. van Deursen, S. Radomirović, Algebraic attacks on RFID protocols,
in: Information Security Theory and Practice. Smart Devices, Pervasive
Systems, and Ubiquitous Networks, Springer, 2009, pp. 38–51.

[92] S. Delaune, S. Kremer, D. Pasailă, Security protocols, constraint sys-
tems, and group theories, in: Proc. 6th International Joint Conference
on Automated Reasoning (IJCAR’12), Vol. 7364 of LNAI, Springer-
Verlag, 2012, pp. 164–178.

42

	1 Introduction
	2 What is a cryptographic protocol?
	2.1 Cryptographic primitives
	2.2 An example: the BAC protocol
	2.3 Some logical attacks on the BAC protocol

	3 A variety of security properties
	4 Formalising protocols and properties
	4.1 Messages
	4.2 Assembling terms into frames
	4.3 Protocols
	4.4 Equivalences

	5 Methods and tools for verifying equivalence-based properties
	5.1 Bounded number of sessions
	5.1.1 Constraint solving approaches
	5.1.2 Resolution-based approaches

	5.2 Unbounded number of sessions
	5.2.1 Decidability results
	5.2.2 Procedures for checking diff-equivalence
	5.2.3 Some other results

	6 Conclusion
	7 References

