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Abstract—Most current steganographic schemes embed the
secret payload by minimizing a heuristically defined distortion.
Similarly, their security is evaluated empirically using classifiers
equipped with rich image models. In this paper, we pursue an
alternative approach based on a locally-estimated multivariate
Gaussian cover image model that is sufficiently simple to derive
a closed-form expression for the power of the most powerful
detector of content-adaptive LSB matching but, at the same
time, complex enough to capture the non-stationary character of
natural images. We show that when the cover model estimator is
properly chosen, state-of-the-art performance can be obtained.
The closed-form expression for detectability within the chosen
model is used to obtain new fundamental insight regarding the
performance limits of empirical steganalysis detectors built as
classifiers. In particular, we consider a novel detectability-limited
sender and estimate the secure payload of individual images.

Index Terms—Adaptive steganography and steganalysis, hy-
pothesis testing theory, information hiding, multivariate Gaus-
sian, optimal detection.

I. INTRODUCTION

H ISTORICALLY, the design of steganographic schemes
for digital images has heavily relied on heuristic prin-

ciples. The current trend calls for constraining the embed-
ding changes to image segments with complex content. Such
adaptive steganographic schemes are typically realized by first
defining the cost of changing each pixel and then embedding
the secret message while minimizing the sum of costs of all
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changed pixels. Efficient coding methods [1] can embed the
desired payload with an expected distortion near the minimal
possible value prescribed by the corresponding rate–distortion
bound.

Although this paradigm based on the concepts of pixel costs
and distortion gave birth to a multitude of content-adaptive
data hiding techniques with markedly improved security [2],
[3], [4], [5], [6], the entire design is rather unsettling because
there is no formal connection between distortion and statistical
detectability. As argued in [7], this connection may never
be found as empirical cover sources, such as digital media,
are fundamentally incognizable. Steganography designers thus
primarily rely on empirical evidence to support the claims
concerning the security of their embedding schemes.

The design of distortion functions that measure statistical
detectability rather than distortion was identified as one of
the most important open problems in the recent motivational
review article [8].1 As far as the authors of the current
manuscript are aware, there are only a few examples of
distortion functions that consider cover models in their design.
The first is the distortion function of HUGO [2] that prefers
changing pixels with the smallest impact on the empirical
statistical distribution of pixel groups represented in the SPAM
feature space [9]. In [10], the distortion function is first
parametrized and then optimized to minimize the empirical
detectability in terms of the margin between cover and stego
images represented using low-dimensional features. These
approaches are limited to empirical “models” that need to be
learned from a database of images. Such embedding schemes
may become “overoptimized” to the feature space and cover
source and become highly detectable should the Warden
choose a different feature representation [11].

The first attempt to design the distortion as a quantity
related to statistical detectability appeared in [12]. The authors
proposed to use the Kullback–Leibler divergence between
the statistical distributions of cover and stego images when
modeling the cover pixels as a sequence of independent Gaus-
sian random variables with unequal variances (multivariate
Gaussian or MVG). Using a rather simple pixel variance
estimator, the authors showed that the empirical security of

1See Open Problems no. 2 and 9.
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their embedding method was roughly comparable to HUGO
but subpar with respect to state-of-the-art steganographic
methods [3], [4], [5]. In [13], this approach was extended by
utilizing a better variance estimator and replacing the Gaussian
model with the generalized Gaussian. The authors focused
on whether it is possible to further improve the security by
allowing a pentary embedding operation with a thicker-tail
model.

While the current paper builds upon this existing art, it
addresses numerous novel issues not investigated elsewhere.
To clarify the main contribution of this paper, the closed-form
expression for the detectability within the chosen model is
used to obtain the following fundamental insight regarding the
limits of empirical steganalysis detectors built as classifiers:

1) For the first time empirical detectors can be compared
with optimal detectors and evaluated w.r.t. the perfor-
mance bound valid within the chosen cover model.
In particular, when forcing the heteroscedastic model
of sensor acquisition noise to an artificial image with
simple content, we observed that the difference in perfor-
mance between the optimal likelihood-ratio detector and
empirical detectors built as classifiers using rich media
models is rather small. This indicates that in this source,
current empirical steganalysis is near optimal.

2) We introduce a novel type of the so-called “detectability-
limited sender” that adjusts the payload size for each
image to not exceed a prescribed level of statistical
detectability within the chosen model. On a database of
real images, we contrast the theoretical security of this
detectability-limited sender dictated by the model with
the one obtained empirically using classifiers employing
rich models. Despite the fact that the empirical detector
can capture more complex dependencies between pixels
than our MVG model, its detection power is much
smaller. We attribute this suboptimality primarily to the
difficulty of empirical detectors to deal with content
heterogeneity of real images.

3) The availability of a closed-form expression for the
power of the optimal detector allows us to compute the
size of the secure payload for a given image and a chosen
detectability (risk) level. We compare it with the secure
payload size estimated using empirical detectors and
draw several interesting and important facts about the
interplay between theoretical and empirical detectors.

We now discuss in more detail the relationship between the
method introduced in this paper and the prior art [12], [13].
The embedding method of [12] equipped with the enhanced
variance estimator described in this paper and the ternary
method of [13] with a Gaussian cover model coincide in
practice with the method studied in this paper. However,
the approaches are methodologically different. The methods
of [12], [13] minimize the KL divergence between cover and
stego distributions in the asymptotic limit of a small payload,
while the current paper minimizes the power of the most
powerful detector instead of the KL divergence, which is
achieved without the additional assumption of a small payload.
This is why we coin a new acronym MiPOD standing for

Minimizing the Power of Optimal Detector. Moreover, the
framework introduced in this paper allows us to consider
various types of Warden, which was not possible within the
prior art. Finally, in contrast with [13] we investigate the
effect of the parameters of the variance estimator on content
adaptivity and security of MiPOD and identify a setting that
gives it the the smallest empirical detectability.

In Sections II–III, we review the MiPOD algorithm by
first introducing the statistical model of cover images, the
multivariate Gaussian (MVG), deriving the stego image model
for content-adaptive Least Significant Bit (LSB) matching,
and analytically establishing the asymptotic properties of the
optimal Likelihood Ratio Test (LRT) for MiPOD. We also
introduce two types of Warden depending on the available
information about the selection channel (content adaptiv-
ity). In Section IV, we describe the embedding algorithm
of MiPOD based on minimizing the power of the optimal
detector. Section V contains a detailed description of the
cover model variance estimator and studies the effect of its
parameters on MiPOD’s adaptivity (selection channel). The
main contribution of this paper appears in Section VI, which
presents all numerical results divided into the following main
parts. After describing the common core of all experiments,
in Section VI-B we compare MiPOD with prior art on a stan-
dard image source using detectors implemented as classifiers
using state-of-the-art feature sets. In Section VI-C, we use
an artificial image source in which we force a heteroscedastic
cover noise model to show the tightness of the asymptotic LRT
and to demonstrate that the optimal detector and empirical
detectors built as classifiers with rich image models achieve
a very similar level of detectability. A novel detectability-
limited sender is introduced and investigated on a database
of real images in Section VI-D. Finally, in Section VI-E by
contrasting the secure payload size computed from the model
and using empirical detectors, we discover several interesting
and important facts about the interplay between theoretical and
empirical detectors.

The following common notational conventions are used
throughout the paper. Matrices and vectors will be typeset
in boldface, sets in calligraphic font, while capital letters are
reserved for random variables. The transpose of matrix A will
be denoted AT, and ‖x‖ is reserved for the L2 norm of vector
x. A probability measure is denoted with P. The symbol Z
stands for the set of all integers. We also use the notation [P ]
for the Iverson bracket [P ] = 1 when P is true and [P ] = 0
when P is false.

II. IMAGE MODEL

In this section, we describe the cover model and the
embedding algorithm used by Alice and derive the statistical
model for stego images.

A. Cover image model

We only consider images represented in the spatial domain.
Ignoring for simplicity the effects of spatial filtering and
demosaicking, the pixel values in a digital image acquired with
an imaging sensor are typically corrupted by an independent
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Gaussian noise with variance dependent on the pixel light
intensity (the shot noise), temperature and exposure (dark
current), and readout and electronic noise. This common noise
model [14], [15], [16] was previously applied in digital foren-
sics [17] as well as in steganalysis of LSB replacement [18],
[19] and LSB matching [20], [21].

The local pixel mean (the content) can be estimated with
local pixel predictors as is currently commonly done when
forming steganalysis features [22]. However, this estimation
is never perfect, which is true especially in highly textured
regions. In this paper, we include the difference between the
pixel value and its estimated value (the modeling error) into
the noise term, which we still model as a Gaussian.

Formally, we consider the cover pixels as an N -dimensional
vector z = (z1, . . . , zN ) of independent realizations of N
Gaussian random variables Zn ∼ N (µn, ω

2
n), n = 1, . . . , N ,

quantized to discrete points k4, k ∈ Z (for simplicity and
without loss on generality, we set 4 = 1). Here, µn is the
noise-free content and ω2

n is the variance of the Gaussian
acquisition noise. Let µ̂n ∈ Z be an estimate of the mean
of the nth pixel. The differences xn = zn − µ̂n will thus
contain both the acquisition noise as well as the modeling
error. We model xn as independent Gaussian random variables
Xn ∼ N (0, σ2

n), where σ2
n ≥ ω2

n because of the inclusion of
the modeling error.

Assuming the fine quantization limit, 4 � σn for all n,
the probability mass function (pmf) of the nth pixel is given
by Pσn = (pσn(k))k∈Z with

pσn
(k) = P(xn = k) ∝ 1

σn
√

2π
exp

(
− k2

2σ2
n

)
. (1)

Note that it is assumed that the pixels are quantized using an
unbounded number of levels (bits). This assumption is adopted
for the sake of simplifying the subsequent theoretical expo-
sition. For practical embedding schemes, the finite dynamic
range of pixels must be taken into account, for example by
forbidding embedding changes that would lead to cover values
outside of the dynamic range. The fine quantization limit
does not hold in saturated (overexposed) image regions, which
however does not pose a problem as any content-adaptive
embedding should avoid them. This can be arranged in practice
by assigning very small embedding change probabilities to
pixels from such regions. Additional discussion regarding the
feasibility of the fine quantization assumption appears at the
end of Section V.

B. Stego image model

A widely adopted and well-studied model of data hiding
is the Mutually Independent (MI) embedding in which the
embedding changes Alice makes at each pixel are independent
of each other. In particular, we adopt one of the simplest
possible setups when the pixel values are changed by at most
±1 (the so-called LSB matching or LSBM) while noting that
the framework is easily extensible to any MI embedding.
Given a cover image represented with x = (x1, . . . , xN ), the
stego image y = (y1, . . . , yN ) is obtained by independently

applying the following probabilistic rules:

P(yn = xn + 1) = βn,

P(yn = xn − 1) = βn, (2)
P(yn = xn) = 1− 2βn,

with change rates 0 ≤ βn ≤ 1/3. The pmf of the stego pixels
is thus given by Qσn,βn = (qσn,βn(k))k∈Z with

qσn,βn
(k) = P(yn = k) = (1− 2βn)pσn

(k)

+ βnpσn
(k + 1) + βnpσn

(k − 1). (3)

C. Embedding in practice

In theory, if Alice used an optimal embedding scheme, she
could embed a payload of R nats:

R(β) =

N∑
n=1

H(βn), (4)

where H(x) = −2x log x− (1−2x) log(1−2x) is the ternary
entropy function expressed in nats (“log” is the natural log).
In practice, Alice needs to use some coding method, such as
the syndrome-trellis codes (STCs) [1] while minimizing the
following additive distortion function

D(x,y) =

N∑
n=1

ρn[xn 6= yn], (5)

where ρn ≥ 0 is the cost of changing pixel xn tied to βn via

βn =
e−λρn

1 + 2e−λρn
. (6)

with λ > 0 determined from the payload constraint (4). Using
a specific coding scheme instead of optimal coding will intro-
duce a small suboptimality in terms of embedding a slightly
smaller payload than R for a given value of the distortion.
This coding loss, however, can be made arbitrarily small at the
expense of computational complexity. Therefore, in the current
paper we disregard the coding loss and simulate all embedding
changes using simulators that execute the embedding changes
with the probabilities βn.

III. OPTIMAL LR TEST AND ITS STATISTICAL
PERFORMANCE

The main result of this section is a closed-form expression
for the deflection coefficient of Warden’s detector under the
assumption that both Alice and the Warden know the standard
deviations σ = (σ1, . . . , σN ). Without any loss of general-
ity, we will assume that the Warden uses the change rates
γ = (γ1, . . . , γN ) that might, or might not, coincide with
β = (β1, . . . , βN ). In this case, when analyzing the image
x = (x1, . . . , xN ), the Warden’s goal is to decide between the
following two simple hypotheses: ∀n ∈ {1, . . . , N}:

H0 =
{
xn ∼ Pσn

,∀σn > 0
}
,

H1 =
{
xn ∼ Qσn,γn ,∀σn > 0

}
.

(7)

The Warden is especially interested in identifying a test,
a mapping δ : ZN → {H0,H1}, with the best possible
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performance. In this paper, we will use the Neyman–Pearson
criterion of optimality, that is for a given false-alarm probabil-
ity α0 = P(δ(x) = H1|H0) we seek a test that maximizes the
power function π = P(δ(x) = H1|H1), the correct detection
probability (see [23] for details about statistical hypothesis
testing).

The Neyman–Pearson Lemma ([23, Theorem 3.2.1]) states
that the most powerful (MP) test (the one maximizing the
power function for a prescribed false-alarm probability) is the
Likelihood Ratio Test (LRT), which in our case is

Λ(x,σ) =

N∑
n=1

Λn =

N∑
n=1

log

(
qσn,γn(xn)

pσn
(xn)

)
H1

≷
H0

τ, (8)

by the statistical independence of pixels.2

Under the fine quantization limit, 4 � σn for all n, it is
shown in Appendix A that, as the number of pixels N →∞,
the Lindeberg’s version of the Central Limit Theorem implies

Λ?(x,σ) =

∑N
n=1 Λn − EH0 [Λn]√∑N

n=1 V arH0
[Λn]

 

{
N (0, 1) under H0

N (%, 1) under H1

, (9)

where  denotes the convergence in distribution and

% =

∑N
n=1 (EH1 [Λn]− EH0 [Λn])√∑N

n=1 V arH0
[Λn]

=

√
2
∑N
n=1 σ

−4
n βnγn√∑N

n=1 σ
−4
n γ2n

(10)

is the deflection coefficient, which completely characterizes
the statistical detectability. We note that, under the fine quan-
tization limit, In = 2/σ4

n is the Fisher information of LSBM
in quantized N (0, σ2

n) with respect to the change rate βn
(see [12] for details).

A. Impact of Warden knowledge on detectability

In this paper, we will consider two types of Warden: an
omniscient Warden, who knows the change rates βn used by
Alice and uses γn = βn for all n, and an indifferent Warden
who is completely ignorant about Alice’s actions and uses
the least informative (non-adaptive) change rates γn = γ for
all n. The case of the omniscient Warden represents the worst
(conservative) scenario for Alice motivated by the Kerckhoffs’
principle and is frequently made in steganography design. The
indifferent Warden was introduced to see how the detection
is affected when the Warden does not utilize the knowledge
of the selection channel – the change rates βn. In empirical
steganalysis, the indifferent Warden essentially corresponds to
steganalysis that does not use the knowledge of the change
rates, such as a classifier equipped with the SRM [22].

2Note the false-alarm probability α0 is not specified as it does not change
the LRT up to the decision threshold τ .

For the omniscient Warden, the deflection coefficient of the
optimal LR (10) simplifies to:

%?=

√
2
∑N
n=1 σ

−4
n β2

n√∑N
n=1 σ

−4
n β2

n

=

√√√√2

N∑
n=1

σ−4n β2
n, (11)

while for the indifferent Warden, the LR becomes:

% =

√
2
∑N
n=1 σ

−4
n βn√∑N

n=1 σ
−4
n

. (12)

The Cauchy–Schwartz inequality implies that %? ≥ %, which
means that the indifferent Warden’s detector will always be
suboptimal w.r.t. the omniscient Warden.

Formally, the statistical properties of the LRT based on
Λ?(x,σ) are given in the following proposition.

Proposition 1. It follows from the limiting distribution of
the LR under H0 (9) that for any α0 ∈ (0, 1) the decision
threshold τ? given by:

τ?= Φ−1(1− α0), (13)

where Φ and Φ−1 denote the cumulative distribution function
(cdf) of the standard Gaussian distribution and its inverse,
asymptotically as N → ∞, guarantees that the false-alarm
probability of the LRT does not exceed α0.

It also follows from the limiting distribution (9) that the
power π = π(%?) of the LRT is given by:

π(%?) = 1−Φ (τ? − %?) = 1−Φ
(
Φ−1(1− α0)− %?

)
. (14)

Proof: Immediately follows from (9) and the properties
of Gaussian random variables.

B. Detectability-limited sender

A detectability-related distortion allows us to introduce a
novel “detectability-limited sender” which adapts the payload
for a given cover so that the embedding does not exceed a
prescribed detectability level. One frequently used measure of
security in practical steganalysis is the total probability or error
under equal priors PE = minα0(α0 + 1 − π0(α0))/2. Since
the optimal LR test is essentially a test between two shifted
Gaussian distributions, it is immediate that

PE = 1− Φ (%?/2) . (15)

The steganographers can adjust the embedding to guarantee
that a Warden who uses the optimal test will always have her
PE ≤ P ?E for any given 0 < P ?E ≤ 1/2 by making sure that
the deflection coefficient %? (11) satisfies:3

%? ≤ 2 · Φ−1 (1− P ?E) . (16)

Of course, this detectability guarantee is only valid within
the chosen model. In particular, if the Warden uses a more
accurate cover model than the steganographers, e.g., by consid-
ering higher-order dependencies among pixels, the bounds (15)
and (16) may not be satisfied.

3Note that since the LR test remains the same for any prescribed false-
alarm probability α0, up to the decision threshold, this LR test also has the
lowest achievable PE.
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Fig. 1. Simplified flowchart of a typical prior-art adaptive embedding scheme (left) and the proposed MiPOD (right).

IV. STEGANOGRAPHY BY MINIMIZING THE
PERFORMANCE OF OPTIMAL DETECTOR (MIPOD)

In this section, we study steganography design based on the
MVG cover model under the omniscient Warden who uses the
optimal LRT since it will provide her with the highest possible
power within the model. We also describe the embedding
process using a pseudo-code to explain how to implement
MiPOD in practice.

To present the theoretical foundation of the proposed ap-
proach, we will assume for now that Alice knows exactly the
variance of each pixel, σ2

n. In reality the variance will have to
be estimated using the variance estimator described in Section
(V). Hence, maximizing the security under the omniscient
Warden means that Alice should select change rates βn that
minimize the deflection coefficient %? (11) or, equivalently, its
square:

%?
2

= 2

N∑
n=1

σ−4n β2
n (17)

under the payload constraint (4). This can be easily established
using the method of Lagrange multipliers. The change rates
βn and the Lagrange multiplier λ > 0 that minimize (17) must
satisfy the following N + 1 non-linear equations for N + 1
unknowns, which are λ and the change rates β1, . . . , βN :

βnσ
−4
n =

1

2λ
ln

1− 2βn
βn

, n = 1, . . . , N, (18)

R =

N∑
n=1

H(βn), (19)

with the last equation being the payload constraint with R
expressed in nats. This system can easily be solved numer-
ically. Details of the solution can be found in the prior
art [12]. Once the change rates are computed, they need to be
converted to costs so that the actual message embedding can
be executed with the well established framework of syndrome-
trellis codes. The costs can be obtained by inverting the
relationship between βn and ρn (6):

ρn = ln(1/βn − 2). (20)

To further clarify the embedding procedure, in Algo-
rithm (1) we provide a pseudo-code that describes the indi-
vidual phases of the embedding scheme.

Note that the change rates (and costs for practical embed-
ding) of MiPOD are determined by minimizing the impact
of embedding on the cover model. In contrast, all current
content-adaptive steganographic schemes (with the exception
of our prior work [12], [13]) use pixel cost computed in some
heuristic manner by quantifying the impact of an embedding
change on the local pixel neighborhood (see Figure 1 and [3],

[4], [5]). Also notice that MiPOD costs (20) depend on the
payload.

Finally, we wish to point out that in practice nothing
prevents the Warden from selecting a more accurate model
of pixels and improve the detection beyond that of the LRT,
which is optimal only within the MVG cover model. Naturally,
this possibility will always be available to the Warden and this
is also what drives the current research in steganography.

V. ESTIMATING PIXEL VARIANCE

The question of which variance estimator will lead to the
most secure embedding scheme when evaluating security using
empirical detectors is far from being simple and needs to
be considered within the context of the entire steganographic
channel. If the Warden was able to completely reject the
content and isolate only the indeterministic acquisition noise,
Alice’s best choice would be to use the best possible denoising
filter to estimate the pixels’ variance. However, current state-
of-the-art steganalyzers for adaptive LSB matching [22], [24],
[25], [26] use feature representations of images based on
joint distributions of quantized noise residuals computed using
local pixel predictors. As long as the Warden stays within
this established framework, Alice’s “best” variance estimator
should avoid rejecting the content too much or too little. In
this paper, we give the variance estimator a modular structure
that can be adjusted to minimize the detection using current
best empirical detectors.

In particular, we use a variance estimator that consists of
two steps. Assuming the cover image is an 8-bit grayscale with
the original pixel values z = (z1, . . . , zN ), zn ∈ {0, . . . , 255},
we first suppress the image content using a denoising filter F :
r = z − F (z). This can be interpreted as subtracting from
each pixel its estimated expectation. The residual r will still
contain some remnants of the content around edges and in
complex textures. To further remove the content, and to give
the estimator a modular structure that can be optimized for
a given source and detector in practice, as the second step
we fit a local parametric model to the neighbors of each
residual value to obtain the final variance estimate. At this

Algorithm 1 Pseudo-code for MiPOD embedder.

1: Estimate pixel residual variances σ2
n using the estimator

described in Section V.
2: Numerically solve Eqs. (18) and (19) and determine

the change rates βn, n = 1, . . . , N and the Lagrange
multiplier λ.

3: Convert the change rates βn to costs ρn using Eq. (20).
4: Embed the desired payload R using STCs with pixel costs
ρn determined in the previous step.
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point, we openly acknowledge that this is certainly not the
only or the best approach one can adopt. There likely exist
other estimator designs that can produce comparable or even
better security. We opted for the current approach because of
its modularity and because it gave us the best results out of all
estimators we experimented with. This estimator can also be
efficiently implemented and it produced respectable results in
steganalysis [18], [20] and in image processing in general [27],
[28].

Formally, this second step of the estimator design is a
blockwise Maximum Likelihood Estimation (MLE) of pixel
variance using a local parametric linear model [28]. We model
the remaining pixel expectation within small p × p blocks as
follows:

rn = Gan + ξn. (21)

Here rn represents the values of the residual r inside the
p × p block surrounding the nth residual put into a column
vector of size p2×1, G is a matrix of size p2× q that defines
the parametric model of remaining expectations, an is a vector
of q × 1 of parameters, and ξn is the signal whose variance
we are trying to estimate. We note that ξn is a mixture of the
acquisition noise as well as the modeling error.

It is well known that for a linear model corrupted by
Gaussian noise, the MLE of the parameter an from the
residuals rn is given by:

ân =
(
GTG

)−1
GTrn, (22)

which also coincides with the ordinary least squares estimator
by the Gauss–Markov theorem. Hence, the estimated expecta-
tion of the residuals rn is given by:

r̂n = Gân = G
(
GTG

)−1
GTrn. (23)

Finally, assuming that the pixels within the n-th block have
the same or similar variances, from (23) the MLE estimation

1013.pgm HILL S-UNIWARD

Small p = 3 Medium p = 9 Large p = 17

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 2. First row, left to right: A 128 × 128 crop of ’1013.pgm’ from
BOSSbase 1.01 and the embedding probability for payload 0.4 bpp using
HILL and S-UNIWARD. Second row, left to right: MiPOD with three different
settings showing an extreme, medium, and low content adaptivity obtained
by changing the parameters of the variance estimator. See the text for more
details.

of the central pixel variance in the n-th block is:

σ̂2
n =
‖rn − r̂n‖2

p2 − q
=

∥∥P⊥Grn
∥∥2

p2 − q
, (24)

where P⊥G = In−G
(
GTG

)−1
GT represents the orthogonal

projection onto the p2 − q dimensional subspace spanned by
the left null space of G (In is the n× n unity matrix).

We would like to stress that this method of variance
estimation is applied “pixelwise” instead of blockwise, which
means that the estimated value of the variance is attributed
only to the central pixel of the considered block. To obtain the
variance, e.g., for the right neighbor, the block is translated
by one pixel to the right, etc. Mirror padding is applied at
the image boundaries to obtain the variance estimates for all
pixels.

The proposed variance estimator can attain many different
forms based on the employed denoising filter and the local
parametric model. After experimenting with polynomial and
DCT parametric models as well as numerous denoising filters,
we determined that a good trade-off between complexity and
empirical security was obtained with a simple two-dimensional
Wiener filter implemented in Matlab as wiener2(X,[w
w]), where w > 1 is an integer, and a parametric model with
two-dimensional (discrete) trigonometric polynomial functions
similar to those used in the two-dimensional DCT:

G =
(
1, cos(u), cos(v), cos(u) · cos(v), cos(2u), cos(2v),

cos(2u)·cos(2v), . . . , cos(lu), cos(lv)
)
. (25)

In (25), the dot stands for the element-wise product, 1 ∈
Rp2 is a column vector of ones, and the vectors u ∈ Rp2

(v ∈ Rp2 ) are obtained by unfolding the matrix U

U =



π
2p

3π
2p · · ·

π(2p−3)
2p

π(2p−1)
2p

π
2p

3π
2p · · ·

π(2p−3)
2p

π(2p−1)
2p

π
2p

3π
2p · · ·

π(2p−3)
2p

π(2p−1)
2p

...
... . . .

...
...

π
2p

3π
2p · · ·

π(2p−3)
2p

π(2p−1)
2p


(26)

(V = UT) into a column vector [18], [20], [27]. Thus, our
parametric model has q = l(l+1)/2 parameters, where l is the
degree of the two-dimensional cosine polynomial. The adap-
tivity of MiPOD can be adjusted by selecting different values
for the parameters w, p, and l. We determined experimentally
that it is advantageous to use a larger block size p but keep the
Wiener filter width w small. In this paper, we fixed the value
to w = 2. The profound effect of p and l on the embedding
adaptivity is shown in Figure 2 contrasting the change rates
of HILL and S-UNIWARD with those of MiPOD with three
parameter configurations: 1) small blocks with p = 3 and l = 3
(q = 6), 2) medium blocks with p = 9 and l = 9 (q = 45),
and large blocks with p = 17 and l = 12 (q = 78).

Finally, we wish to make an additional comment on the
fine quantization assumption. It is true that at pixels whose
estimated variance is small, the fine quantization limit is not
satisfied. However, since Eq. (18) implies that −βn lnβn ≤
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TABLE I
DETECTABILITY IN TERMS OF PE VERSUS EMBEDDED PAYLOAD SIZE IN BITS PER PIXEL (BPP) FOR THREE VERSIONS OF MIPOD AND PRIOR ART ON

BOSSBASE 1.01 USING THE FLD ENSEMBLE CLASSIFIER WITH TWO FEATURE SETS.

Feature Embedding Method 0.05 0.1 0.2 0.3 0.4 0.5

SRM

WOW .4572 ± .0026 .4026 ± .0028 .3210 ± .0038 .2553 ± .0028 .2060 ± .0022 .1683 ± .0023
S-UNIWARD .4533 ± .0026 .4024 ± .0019 .3199 ± .0027 .2571 ± .0016 .2037 ± .0032 .1640 ± .0024
HUGO-BD .4255 ± .0016 .3716 ± .0013 .2871 ± .0016 .2255 ± .0015 .1796 ± .0014 .1450 ± .0010

HILL .4691 ± .0017 .4364 ± .0034 .3611 ± .0024 .2996 ± .0022 .2482 ± .0030 .2055 ± .0024
MiPOD, Small Blocks .4204 ± .0039 .3477 ± .0023 .2484 ± .0018 .1879 ± .0020 .1420 ± .0025 .1105 ± .0025

MiPOD, Medium Blocks .4513 ± .0021 .4065 ± .0043 .3300 ± .0036 .2698 ± .0018 .2210 ± .0022 .1833 ± .0028
MiPOD, Large Blocks .4416 ± .0023 .3888 ± .0025 .3105 ± .0039 .2534 ± .0026 .2071 ± .0018 .1719 ± .0034

MG .3689 ± .0019 .2953 ± .0026 .2146 ± .0028 .1658 ± .0024 .1357 ± .0030 .1119 ± .0029

maxSRMd2

WOW .3539 ± .0024 .2997 ± .0023 .2339 ± .0041 .1886 ± .0036 .1543 ± .0036 .1306 ± .0021
S-UNIWARD .4180 ± .0025 .3660 ± .0040 .2886 ± .0025 .2360 ± .0022 .1908 ± .0025 .1551 ± .0019
HUGO-BD .3652 ± .0023 .3130 ± .0025 .2431 ± .0018 .2020 ± .0015 .1635 ± .0014 .1326 ± .0007

HILL .4232 ± .0029 .3771 ± .0019 .3091 ± .0018 .2573 ± .0033 .2184 ± .0037 .1814 ± .0030
MiPOD, Small Blocks .3826 ± .0014 .3105 ± .0023 .2220 ± .0018 .1651 ± .0019 .1303 ± .0038 .1022 ± .0028

MiPOD, Medium Blocks .4300 ± .0028 .3747 ± .0014 .3030 ± .0019 .2481 ± .0027 .2038 ± .0039 .1678 ± .0038
MiPOD, Large Blocks .4195 ± .0029 .3657 ± .0026 .2962 ± .0029 .2390 ± .0036 .1948 ± .0022 .1634 ± .0030

MG .2315 ± .0027 .1653 ± .0019 .1161 ± .0016 .0936 ± .0015 .0813 ± .0018 .0715 ± .0018

σ4
n/(2λ) , we have βn → 0 as σn → 0 for any fixed

payload (λ). Thus, even though the change rate obtained by
solving (18) will be imprecise when the fine quantization is
violated, the change rate will be too small to have any effect
on security. Indeed, pixels with σ̂2

n ≈ 0 lie in a smooth image
region and should have a small probability of change anyway.
In practice, for numerical stability, we introduce a finite floor
for the estimated variance:

σ̂2
n ← max{0.01, σ̂2

n}. (27)

VI. EXPERIMENTS AND COMPARISON TO PRIOR ART

A. Common core of all experiments

Unless mentioned otherwise, our experiments are carried out
on BOSSbase 1.01 [29] containing 10,000 grayscale 512×512
images. The detectors were trained as binary classifiers im-
plemented using the FLD ensemble [30] with default settings.
We note, however, that in most experiments, the ensemble
classifier was used within the framework of hypothesis testing
as proposed in [31], [32] because this implementation of
the FLD ensemble permits obtaining the LR values instead
of binary outputs, which is crucial in order to measure the
detection power for a given level of the false-alarm rate to
plot Receiver Operating Characteristic (ROC) curves.

The two feature sets used are the Spatial Rich Model
(SRM) [22] and its recent selection-channel-aware version
called the maxSRMd2 [26], which is particularly interesting
in the context of this paper as it uses the knowledge of
change rates. All tested embedding algorithms are simulated
at their corresponding payload–distortion bound for payloads
R ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} bpp (bits per pixel). The sta-
tistical detectability is empirically evaluated using the original
version of the FLD ensemble [30] using the minimal total
probability of error under equal priors PE averaged over ten
5000/5000 database splits, denoted as PE.

We selected four content-adaptive steganographic tech-
niques that appear to be the state of the art as of writing
this paper (April 2015): WOW [3], S-UNIWARD implemented
with the stabilizing constant σ = 1 as described in [4],
HUGO-BD [2] implemented using the Gibbs construction with

bounding distortion [33], and the HIgh-Low-Low embedding
method called HILL [5]. For HILL, we used the KB high-
pass filter and the 3×3 and 15×15 low-pass averaging filters
for L1 and L2 as this setting provided the best security as
reported in [5]. Finally, we also included the steganographic
technique proposed in [12], which inspired the present work
and which is also based on minimizing detectability for a
multivariate Gaussian (MG) cover model, to show the rather
dramatic improvement of this scheme when using the variance
estimator described in Section V.

B. Comparison to prior art
We first tested MiPOD implemented with the three settings

described in Section V to see the influence of the variance
estimator. Table I shows the average total probability of error
PE and its standard deviation for a range of payloads for all
MiPOD versions and also for four steganographic schemes
described in the previous section. Note that, among the three
MiPOD versions, the one using the medium block size offers
the best security. It also outperforms HUGO-BD, WOW, as
well as S-UNIWARD with both feature sets. In the rest of this
paper, we always use MiPOD with the medium block size.

Figure 3 is a graphical representation of the table with
MiPOD’s medium block variance estimator. Note the lower de-
tection errors when steganalyzing with the selection-channel-
aware maxSRMd2 feature set in comparison to errors obtained
with the SRM. With the more advanced detector, HILL and
MiPOD have comparable security with HILL being slightly
better for large payloads. At this point, we note that the
security of MiPOD can be increased above that of HILL by
applying a step similar to what was proposed in [6], [5] by
smoothing the Fisher information In = 2/σ4

n in MiPOD.
In order not to disrupt the flow of this paper, we postpone
this to Section VI-F. Finally, we would like to point out a
very significant improvement of MiPOD over the MG scheme,
which is also based on the multivariate Gaussian cover model
but uses a rather simple variance estimator.

C. Experiment on artificial image source
In this section, we justify using the asymptotic approxima-

tion of the LR (9) instead of the LR (8) for detection. To this



V. SEDIGHI, R.COGRANNE, AND J.FRIDRICH, “CONTENT-ADAPTIVE STEGANOGRAPHY BY MINIMIZING STATISTICAL DETECTABILITY”, c© IEEE, 2013. 8

0 0.05 0.1 0.2 0.3 Payload(bpp) 0.5
0

0.1

0.2

0.3

P
E

0.5

MG

MiPOD

WOW

S-UNIWARD

HUGO-BD

HILL

0 0.05 0.1 0.2 0.3 Payload(bpp) 0.5
0

0.1

0.2

0.3

P
E

0.5

MG

MiPOD

WOW

S-UNIWARD

HUGO-BD

HILL

Fig. 3. Detection error for different embedding schemes when steganalyzing with SRM [22] (left) and the selection-channel-aware maxSRMd2 [26] (right)
which uses the knowledge of change rates. the plot correspond to the results given in Table I.

Fig. 4. Artificial image (left) and two test images used in the experiment in
Section VI-E.

end, we executed an experiment using Monte Carlo simulation
on an artificial image source for which the assumptions of
our framework are better satisfied. We started with the image
shown in Figure 4 (left) and then superimposed a non-
stationary Gaussian noise to it to obtain a source whose noise
is known.

The noise variance was selected to be scene dependent
based on the heteroscedastic sensor noise model [15], [17]
σ2
n = a · zn + b, where zn ∈ {0, . . . , 255} is the nth

pixel grayscale value and a = 6/255, b = 2 are constants.
According to [15], [17], these values are fairly typical for a
variety of imaging sensors at ISO 200. In other words, in this
experiment we made the MVG noise component mimic just
the sensor acquisition noise. This was repeated 10,000 times
each time with a different realization of the noise to obtain
10,000 cover and the same number of stego images embedded
with a fixed payload of 0.2 bpp. Knowing the pixel variances
allowed us to compute the ROC curve of the asymptotic
LRT (9). Having 10,000 images, we could also sample the
LR under both hypotheses and obtain the ROC curve for the
sampled LRT (8). We did this for both the omniscient and
indifferent wardens.

Figure 5 shows the results when giving the knowledge of
the variances to both the sender and the LRT. The close
match between the ROC curve of the asymptotic LRT (9)
and the sampled LR (8) testifies about the sharpness of our
asymptotic analysis. Also observe that the difference in ROC
curves between the omniscient and indifferent Warden (%? (14)
vs. % (12)) is not significant. In other words, the knowledge of
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0
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0
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Indifferent LRT, Sampled

SRM with Ensemble

Fig. 5. Comparison between the theoretical and empirical detection for a
single artificial image (α = 0.2 bpp). In this case, both MiPOD and the LR
tests know the exact variance of each pixel.

the selection channel does not provide a substantial advantage
to the Warden for the tested MiPOD. This is mainly because
in our artificial image source MiPOD adapts only to the super-
imposed heteroscedastic noise as there is almost no modeling
error. This makes the embedding only weakly adaptive because
2 ≤ σ2

n ≤ 8.
Finally, to see how the optimal LRT compares with em-

pirical detectors, we applied the FLD ensemble with the
SRM feature set4 to the database of 10,000 cover and stego
images and drew the ROC curve, also shown in the figure.
Remarkably, the empirical detector achieves virtually the same
performance as the optimal LR test! This is not obvious
at all because both detectors are built very differently. It
indicates that, at least in sources with simple content and the

4The ROC curve for the maxSRMd2 features is not shown for better
readability because its performance is almost identical to that of SRM because
MiPOD is only weakly adaptive due to the properties of the added noise. The
detection gain when using the selection-channel-aware maxSRMd2 is thus
correspondingly smaller.
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Fig. 6. ROC curves for the detectability-limited MiPOD for %? = 2
(asymptotic LRT, omniscient Warden) and two empirical detectors – the FLD
ensemble with SRM and maxSRMd2 feature sets. For comparison, we also
show the ROCs for the payload-limited sender (PLS) with payload fixed at
the average payload of the DLS (0.2562 bpp).

heteroscedastic noise model, empirical steganalysis detectors
are near optimal.

D. Detectability-limited sender

In this section, we investigate MiPOD’s security on BOSS-
base for the detectability-limited sender implemented with
%? = 2 as the security level. When embedding, the payload
size was iteratively adjusted for each BOSSbase image so that
MiPOD induced the prescribed value of %?. Both the LRT
and MiPOD used the same variance estimator (Section V)
with the medium block size. Figure 6 shows the ROC curves
for the optimal LRT that knows the embedding change rates
βn (the omniscient Warden) and when steganalyzing using
the FLD ensemble classifier as described in [31] using SRM
and maxSRMd2. In contrast with the results of Figure 5
obtained for a homogeneous source, the SRM now performs
significantly worse than the optimal LRT because it has to deal
with content diversity across images. The fact that the ROC
of the optimal LRT bounds those obtained using empirical
detectors indicates that the proposed variance estimators are
conservative. In general, however, one cannot claim that the
LRT will bound the empirical detectors because the considered
MVG cover model is only an approximation.

The DLS could be used for batch steganography [34] to
spread the payload among multiple covers to minimize the
overall detectability. To see the gain of the DLS over a
payload-limited sender (PLS), in the same figure we added the
ROCs for the FLD ensemble with the SRM and maxSRMd2
features for a PLS that embeds the same payload in each
image so that the average payload per image is the same as
for the DLS. When comparing the corresponding ROCs for
both senders, one can see a markedly lower detectability of
the DLS over the PLS.

E. Determining the secure payload size

Having the distortion related to detectability gives us one
more rather interesting possibility to determine, for each
image, the size of the secure payload of MiPOD for a given
level of risk. Here, we adopt the approach introduced by
Ker [35], who proposed to measure the risk by a pair of false-
alarm and correct-detection probabilities, α0, π0, of the War-
den’s detector. The steganographers are at (α0, π0)-risk if the
Warden’s detector can simultaneously satisfy αWar

0 < α0 and
π0 < πWar

0 . Using the analytic expression for the performance
of the optimal LRT (14), it immediately follows that:

Φ−1(1− π0) = Φ−1(1− α0)− %?

⇔ %? = Φ−1(1− α0)− Φ−1(1− π0)

⇔ %? = Φ−1(π0)− Φ−1(α0). (28)

Hence, the steganographers are not at (α0, π0)-risk if the
deflection coefficient %? (11) satisfies:

%? ≤ Φ−1(π0)− Φ−1(α0). (29)

We define the secure payload that corresponds to risk
(α0, π0) as the largest payload for which the inequality (29)
is satisfied. In this paper, we use two types of fundamentally
different detectors – optimal detectors in the form of the like-
lihood ratio and empirical detectors constructed as classifiers
trained on cover and stego features. We first describe how to
determine the secure payload for LR tests and then for an
empirical detector.

Once the pixels’ variances are known (estimated), the per-
formance of the LRT for a single image can be captured using
its ROC curve, which can drawn by first computing the de-
flection coefficient using either (11) or (12), depending on the
Warden type, and then drawing the ROC using formula (14).
To estimate the size of the secure payload for a given risk,
(α0, π0), the payload size can be iteratively adjusted so that
the LRT’s ROC curve goes through the pair (α0, π0).

To estimate the secure payload for a specific image using
empirical detectors, we create a database of 10,000 images by
denoising the image and then superimposing to the denoised
image 10,000 different realizations of MVG noise with the
estimated variances σ̂2

n. Given a payload R, one can create
a database of 10,000 stego images embedded with payload
R, train an empirical detector for the given cover and stego
sources, and draw its ROC curve. The secure payload for a
given risk (α0, π0) is again determined iteratively by adjusting
R to force the empirical ROC curve to go through the pair
(α0, π0).

In order to proclaim the secure payload determined from our
model as an accurate estimate for an image acquired using an
imaging sensor rather than an artificial image, we need a close
match between our adopted model and the reality. Because
BOSSbase images were processed using demosaicking (which
is a form of content-driven filtering) and resizing, they are too
complex to closely follow our model. Consequently, secure
payload estimates obtained using our simplified model would
most likely be inaccurate. Thus, for the experiments in this
section we used two raw BOSSbase images, sampled them
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Fig. 7. Secure payload determined from the asymptotic and sampled LR for both Wardens and an empirical detector implemented with FLD ensemble and
SRM. The secure payload is shown for various risk levels as a function of π0 for α0 = {0.05; 0.25; 0.5; 0.75; 0.95} for BOSSbase image ’1310.pgm’ (left)
and ’1289.pgm’ (right) with superimposed MVG noise with the variance of each pixel computed using the estimator described in Section V. Note the different
y-axis scales between the figures.

only at the red color filter (the red channel), and then centrally
cropped to 512 × 512 pixels. The processing was executed
using the ’convert’ linux script from ImageMagick (version
6.7.7-10), for resizing and extracting the red color channel,
and using ufraw version 0.18, which uses dcraw version 9.06,
for conversion from RAW to the PPM format, see [36] for
more details. Thus, in these images the pixel values were
processed using only point-wise operations, which included
gain and gamma adjustment.5 Because the images were not
resized (in contrast to BOSSbase images), their content is
much smoother (Figure 4 middle and right). The noise variance
is thus mostly affected by the acquisition noise, which follows
the MVG model but not the heteroscedastic model because of
the gamma correction.

In all experiments below, the variances σ2
n were estimated

using MiPOD’s variance estimator with the medium block
size. They were given to the LR detectors of both the om-
niscient and indifferent Wardens as well as to MiPOD.

In order to see how the image content affects the secure
payload estimate, we carried out experiments on two images
from BOSSbase shown in Figure 4 middle and right. Figure 7
shows the secure payload on the y axis as a function of
π0 for selected values of α0 (different risks) for BOSSbase
images ’1310.pgm’ and ’1289.pgm’. As expected, if the
steganographers desire perfect security by setting α0 = π0,
the secure payload tends to zero. On the other hand, if the
steganographers do not set any constraints on the security by
choosing π0 = 1, the secure payload tends to 1.

Notice that the secure payload estimates are higher for
image ’1289.pgm’ because it has more complex content and
larger differences in pixel intensity. The estimates using the
sampled and asymptotic LR are close for both images and
both Wardens. Because the omniscient Warden can detect
embedding more reliably than the indifferent one, the secure
payload determined using the omniscient Warden is under-

5These operations are in fact performed on the CMOS sensor.

standably always smaller than the one obtained with the
indifferent Warden. This difference is slightly larger for the
busier image. Because of the lower detection power of the
empirical detector with SRM features, its secure payload size
is always overestimated. For the smoother image, however, the
empirical estimates and the ones obtained using the indifferent
Warden are quite close, which again validates our model. As
our final note, we point out that the secure payload size for
the maxSRMd2 feature set is not shown in the figures because
it is similar to that of the SRM.

F. Improving MiPOD’s security by smoothing the Fisher in-
formation

Recently, it has been shown that the empirical security
of steganographic schemes can be improved by smoothing
the embedding costs using a low-pass filter [5], [6]. This
can be explained intuitively by observing that the smoothing
spreads high costs of pixels into their neighborhood making
the embedding more conservative. Moreover, and most impor-
tantly, it evens out the costs and thus increases the entropy of
embedding changes (the payload) in highly textured regions
where empirically built detectors fail to detect embedding
because the changes affect mostly the marginal bins in co-
occurrences of SRM noise residuals [22].

In MiPOD, the linear parametric model is applied pixelwise,
which makes variance estimations of neighboring pixels (and
the associated pixel costs) strongly correlated. Therefore, the
smoothing is at least partially an inherent property of MiPOD
rather than artificially forced. Note in Figure 2 that the em-
bedding change probability for the medium-size-block MiPOD
is much smoother than that of S-UNIWARD. On the other
hand, it is not as smooth as for HILL. Thus, we decided to
investigate whether additional smoothing might further boost
MiPOD’s security. Since in MiPOD we do not natively work
with the concept of a pixel cost (we only need to revert to it
when implementing an actual embedding scheme using codes),
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we decided to apply the smoothing to the Fisher information,
In = 2/σ4

n. Because the pixel cost of MiPOD (20) is positively
correlated with In, smoothing In will have a similar effect as
smoothing the costs. The result will, however, be different
because the relationship between In and the cost is non-linear
(see Eqs. (18)–(20)).

We performed a search over the size of a simple square
averaging kernel applied to In and determined that, in our
image source, the 7× 7 support gave the overall best results,
boosting the detection error PE by up to 2.4% when detecting
with the maxSRMd2 feature set. We summarize the results in
Table II and Figure 8.
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Fig. 8. The effect of smoothing the Fisher information on MiPOD’s security
w.r.t. the maxSRMd2 feature set. The plot corresponds to the results given in
Table II.

VII. CONCLUSIONS

Model based steganography has been around for almost
fifteen years since the introduction of OutGuess. What makes
our approach different is the dimensionality of the parameter
space, which allows us to capture the non-stationary character
of images, as well as the fact that we do not attempt to preserve
the model but rather minimize the impact of embedding.
We model the image noise residual as a sequence of inde-
pendent quantized Gaussian variables with varying variances.
By working with the residual, besides the acquisition noise
we managed to include in the model the content-dependent
modeling error, which has a strong effect on steganalysis.
On the other hand, the assumption of independence and the
simplicity of the Gaussian distribution allowed us to derive
a closed-form expression for the power of the most powerful
detector of content-adaptive LSB matching within the selected
model. This allows us to achieve the following novel insights
into both steganography design and steganalysis.

First, we use our approach to design steganography that
minimizes the power of the optimal detector rather than a
heuristically assembled distortion. By adjusting the parameters
of the model variance estimator, our embedding scheme called
MiPOD rivals the security of the most advanced stegano-
graphic schemes today. Further improvement is likely possible
by optimizing the local variance estimator. Here, we point out
a caveat that such an optimization will necessarily be limited to

TABLE II
MIPOD’S DETECTABILITY PE WHEN SMOOTHING THE FISHER

INFORMATION (BOSSBASE 1.01, MAXSRMD2).

Payload HILL MiPOD
Medium Blocks

MiPOD
Medium Blocks

Smooth FI

0.05 .4232 ± .0029 .4300 ± .0028 .4380 ± .0012
0.1 .3771 ± .0019 .3747 ± .0014 .3939 ± .0022
0.2 .3091 ± .0018 .3030 ± .0019 .3237 ± .0021
0.3 .2573 ± .0033 .2481 ± .0027 .2717 ± .0045
0.4 .2184 ± .0037 .2038 ± .0039 .2243 ± .0055
0.5 .1814 ± .0030 .1678 ± .0038 .1845 ± .0030

a given image source and empirical detector (classifier choice
and the feature space).

Second, we used the closed-form expression for the the-
oretical detectability to reveal new fundamental insight into
the complex interplay between empirical detectors constructed
as classifiers and detectors derived as optimal within the
chosen model. In particular, when the cover noise model
was forced onto an artificial image with simple content, we
observed that empirical detectors built as classifiers in rich
feature spaces closely matched the detection performance of
optimal detectors, despite their extremely different nature. On
real image sources, however, the empirical detectors were
markedly suboptimal with respect to the theoretically optimal
detectors. We attributed this to the difficulty of empirical
detectors to deal with the heterogeneity of natural images.

Third, we also performed experiments aimed at estimating
the size of the secure payload with respect to a given level of
risk as defined by Ker. Here, we used the red channel of a raw
image acquired by an imaging sensor quantized to 8 bits that
has undergone only gain and gamma adjustment. Because such
images closely follow our model, one can compute their secure
payload from the deflection coefficient of the asymptotic likeli-
hood ratio once the variances are estimated. Such estimate was
contrasted with the secure payload determined using empirical
detectors (FLD classifiers) trained on a database of 10,000
cover images (and the corresponding stego images) obtained
by denoising the image and superimposing 10,000 realizations
of multivariate Gaussian noise estimated from the original
image. For images with simple content, both estimates appear
quite close while for images with more complex content the
empirical detector overestimates the payload due to its lower
detection power.

We intend to pursue several extensions of this work. On
the steganography side, we plan to investigate models that
capture dependencies among spatially adjacent pixels, e. g.,
by considering pairs of neighboring pixels as jointly Gaussian
random variables. This may lead to schemes that adjust the
direction of the embedding change based on the changes made
to adjacent pixels. The detectability-limited sender and the
asymptotic LRT could both be used to further investigate the
difficult and open problem of batch steganography and pooled
steganalysis.
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APPENDIX

In this appendix, without loss of generality, we analytically
establish the performance of the Generalized Likelihood Ratio
Test (GLRT) for the case in which the sender changes each
pixel with probabilities β = (β1, . . . , βN ) while the Warden
uses estimated change rates γ = (γ1, . . . , γN ). Note also that
we use the term GLRT for convenience here as generally γn
may not be MLE estimates.

This appendix is divided into two parts, first, the GLRT
is presented and a simple asymptotic expression is obtained
under the fine quantization limit and for a large number
of pixels. Then, the statistical performance of this GLRT is
analytically established.

A. Asymptotic expression for the GLRT
Using the corresponding expressions for pσn(k) (1) and

qσn,βn
(k) (3), the LR (8) for one observation Λn can be

written as

(1−2γn)exp
(
−x2

n

2σ2
n

)
+γnexp

(
−(xn+1)

2

2σ2
n

)
+γnexp

(
−(xn−1)2

2σ2
n

)
exp

(
− x2

n

2σ2
n

) ,

(30)
which can be simplified as follows:

Λn = 1− 2γn + γn exp

(
−(xn + 1)2 + x2n

2σ2
n

)
+ γn exp

(
−(xn − 1)2 + x2n

2σ2
n

)
(31)

= 1− 2γn + γn

(
exp

(
xn − 1/2

σ2
n

)
+ exp

(
−xn − 1/2

σ2
n

))
.

(32)

Under the fine quantization assumption, σ2
n � 1, we

can further simplify using the second-order Taylor expansion
around σ−2n = 0:

Λn ≈ 1− 2γn + γn

(
2− 1

σ2
n

+
x2n + 1/4

σ4
n

)
(33)

= 1 + γn

(
− 1

σ2
n

+
x2n + 1/4

σ4
n

)
. (34)

Using the fine quantization assumption again, we replace
the log-LR, log Λn, with its first-order Taylor approximation:

log Λn = γn

(
− 1

σ2
n

+
x2n + 1/4

σ4
n

)
. (35)

Since the term involving 1/4 can be removed from the test
statistic (it stays the same under both hypotheses) the log-LR
can be further simplified:

log Λn = γn

(
− 1

σ2
n

+
x2n
σ4
n

)
. (36)

B. Analytic expression of GLRT performance

We now compute the mean and variance of the log-LR (36)
under both hypotheses. Because under H0, xn

σn
∼ N (0, 1),

we have x2
n

σ2
n
∼ χ2

1. Since E[χ2
1] = 1 and Var[χ2

1] = 2, and

because x2
n

σ4
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= 1
σ2
n

x2
n

σ2
n

,

E0

[
x2n
σ4
n

]
=

1

σ2
n

, (37)

Var0
[
x2n
σ4
n

]
=

2

σ4
n

. (38)

Finally, it follows from the expression for the log-LR (36)
that

E0 [log Λn] = 0, (39)

Var0 [log Λn] =
2γ2n
σ4
n

. (40)

Under hypothesis H1, the calculation of the log-LR’s mo-
ments is slightly more complex because the pmf of stego pixels
is a mixture of three different cases: sn = xn, sn = xn + 1,
and sn = xn − 1. In particular,

E1[x2n]=(1−2βn)E0[x2n] + βnE0[(xn−1)2] + βnE0[(xn+1)2]

=(1−2βn)E0[x2n] + βnE0[x2n+1] + βnE0[x2n+1]

=(1−2βn)E0[x2n] + 2βnE0[x2n+1]

=(1−2βn)σ2
n + 2βn(σ2

n + 1)

=σ2
n + 2βn.

Thus, E1

[
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4
n − 1/σ2

n

]
= 2βn/σ

4
n, which implies

E1[log Λn] = 2γnβn/σ
4
n. As for the variance, we use fact

that Var[X] = E[X2] − E[X]2 for any random variable X
and that

E1[x4n]=(1−2βn)E0[x4n] + βnE0[(xn−1)4] + βnE0[(xn+1)4]

=(1−2βn)E0[x4n] + 2βnE0[x4n+6x2n+1]
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2
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After some simple arithmetic and keeping only the leading
term:

Var1 [log Λn]=E1
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Therefore, the final result under the alternative hypothesis
is

E1 [log Λn] =
2βnγn
σ4
n

, (41)

Var1 [log Λn] ≈ 2γ2n
σ4
n

= Var0[log Λn]. (42)

We are now ready to compute the detectability of LSBM.
To this end, we study the properties of the log-LR of all pixels,
which, from the statistical independence of pixels, is given by
Λ(x) =

∏N
n=1 Λn, or, after taking the logarithm, log Λ(x) =∑N

n=1 log Λn. From the Lindeberg’s version of the Central

http://dde.binghamton.edu/download/
http://dde.binghamton.edu/download/
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Limit Theorem, we have under H0 from the moments of the
log-LR (37)–(38):

log Λ√
2
∑N
n=1 σ

−4
n γ2n

 N (0, 1), (43)

with  denoting the convergence in distribution. Similarly,
under the alternative hypothesisH1 one immediately gets from
the moments of the log-LR (41)–(42):

log Λ√
2
∑N
n=1 σ

−4
n γ2n

 N (%, 1) (44)

with

% =
2
∑N
n=1 σ

−4
n γnβn√

2
∑N
n=1 σ

−4
n γ2n

. (45)
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