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ABSTRACT

This paper studies the detection of anomalies, or defects, on
wheels’ surface. The wheel surface is inspected using an
imaging system, placed over the conveyor belt. Due to the
nature of the wheels, the different elements are analyzed sep-
arately. Because many different types of wheels can be manu-
factured, it is proposed to detect any anomaly using a general
and original adaptive linear parametric model. The adaptiv-
ity of the proposed model allows us to describe accurately
the inspected wheel surface. In addition, the use of a linear
parametric model allows the application of hypothesis testing
theory to design a test whose statistical performances are ana-
lytically known. Numerical results show the accuracy and the
relevance of the proposed methodology.

Index Terms— Anomaly detection; Nondestructive test-
ing; Adaptive image model; Hypothesis testing theory.

1. INTRODUCTION

During the past decades computer-vision based non-destructive
testing have been broadly used for inspection of wide range
of “objects” such as fabrics [1, 2], nuclear fuel rods [3] or
even food to cite few. However, such systems are usually
designed to help and ease an operator who has to do the
inspection “manually” which might be subjective and labor
intensive. Thus, there is a great need for fully automatic de-
tection methods. However, depending on the inspected object
such a detection may be difficult due to the non-anomalous
“background”.

Prior methods for defect detection using computer-vision
can be divided into three categories [1, 4]: 1) Generic meth-
ods that are highly flexible since they do not need any prior
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knowledge on the inspected object. Such methods are usu-
ally based on tools for image processing and defect enhance-
ment (contrast enhancement, edge detection, etc. . . ) and pat-
tern recognition [2]. 2) Specific methods that are based on
ground-truth or examples of a reference [4]. The detection is
then merely based on the observed differences between the
reference and the inspected image. This approach is effi-
cient but also very sensitive to experimental conditions, such
as object position, illumination, etc. . . 3) Methods based on
computer-vision and image processing [3, 4], that usually re-
quire prior information on the non-anomalous object. Two
main approaches have been proposed to introduce statistical
prior knowledge: Bayesian and non-Bayesian approaches.
Statistical Bayesian approach allows the design of efficient
and rather simple methods for anomaly detection. However
those methods require 1) that the defect occurs with known
prior probability and, 2) that the non-anomalous object is also
random with known apriori distribution. Those requirements
limit the application of Bayesian methods.

In this paper, it is proposed to design a non-Bayesian
method based on an adaptive model of the non-anomalous
wheel image, referred to as the “background”. The model
is sufficiently accurate and flexible for inspection of a wide
range of wheels.
The main contributions of the present paper are the following:
1) An adaptive statistical model is proposed to represent the
imaged wheels. This model only requires knowledge of ge-
ometry which makes the proposed method fully-automatic
and applicable to a wide range of wheels.
2) The proposed model is accurate enough, to ensure high
detection performance and computationally simple, for real-
time application.
3) The statistical properties of the method are explicitly pro-
vided. Hence, the operator can, for instance, prescribe a
false-alarm probability easily and can know which type of
anomalies can be detected with which probability.
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Fig. 1: Description of the different elements of a wheel.

The present paper is organized as follows. Section 2 de-
scribes the different elements of a wheel. Then, in Section 3,
the proposed adaptive model of the wheels is detailed. Sec-
tion 4 presents the proposed statistical method for anomaly
detection and studies its statistical properties. Finally Sec-
tion 5 presents numerical results and Section 6 concludes the
paper.

2. WHEEL’S ELEMENTS DETECTION

The face of the wheel is a complicated surface to inspect
because each wheel is made of different parts (zones). The
methodology proposed in this paper is applied on each zone
separately, hence the first step is to split the image of a wheel
into those different parts, see Fig. 1a. Besides, a wheel also
contains some key elements among which the most impor-
tant are the pilot hole, the countersinks, the valve hole and
the ventilation holes, see Fig. 1b. Those elements must be
localized for the two following reasons 1) because those are
used to perform a geometrical re-adjustment, which can be
considered as a self-calibration and 2) those element must be
taken into account into the detection of anomalies. Hence,
let us first briefly describe how those key elements are de-
tected. It is important to note that, the design of each wheel
is known, thus the parameters describing the geometry of in-
spected wheels, especially the key elements mentioned above,
are known.

The pilot hole, the countersinks, and the valve hole, all
have a circular shape. Thus, their detection and localization is
carried out using the Circular Hough Transform (CHT). This
is one of the most robust methods for circular shape detec-
tion [5]. In our case, the CHT is also computationally very
efficient since it is applied on a limited search area and, be-
cause the radius of each element is known, only two unknown
parameters have to be found: the coordinates (x0, y0) of the
center of each element.

The last and most complicated step is the detection of the
ventilation holes. Those elements exhibit a wide range of
different designs for aesthetic reasons but also to reduce the
weight of the wheel. This high variety in shapes of the ventila-
tion holes explain the choice of the active contour models, or
snakes, for their detection [6]. Such models have been exten-

Fig. 2: Illustration of results for detection of all the holes

sively used in image segmentation in order to detect complex
geometrical forms. The final result of the detection procedure
to localize all those elements is shown in Fig. 2

3. ADAPTIVE MODEL OF THE WHEEL

Once the key elements described above are localized, one can
split the wheel within several areas, see Fig. 1a.

3.1. Background model

For each inspected area, an original adaptive model is applied
to subtract the anomaly-free image of the wheel. In fact this
“background” acts here as a nuisance as it has no interest for
defect detection while must be carefully taken into account.
The present paper proposes to use a parametric linear model
to represent the background. Such a model has, indeed, indis-
putable advantages: it is simple and, hence, usually compu-
tationally efficient and can be used within the well-founded
statistical theory of invariance.

Due to space limitation, the rest of this paper focuses on
the galbe zone. For clarity and simplicity, the galbe zone is
unfolded to a rectangular image, denoted Z = {zm,n}, of size
M ×N . The inspected area corresponding to image Z is split
into non-overlapping small blocks of size w × h (for width
and height resp.). Let us also denote zk the k-th block from
Z. Because the image Z is corrupted with additive Gaussian
noise, each block zk can be modeled as:

zk ∼ N (µk,Σk). (1)

whereN represents the Gaussian distribution, which expecta-
tion µk and covariance matrix Σk. The idea of a linear model
is to represent the expectation as a sum of non-anomalous
“basis vector” µk = Hxk. However, the present paper uses
an original model for the background expectation, which is
adaptive in the sense that the basis vectors H are actually
changed to model better each block. This paper also uses a
realistic noise model, discussed in subsection 3.2.

The proposed parametric background model is based on



the following two dimensional algebraic polynomial:

f(x, y) =

dx∑
i=0

dy∑
j=0

ci,jx
iyj (2)

with dx and dy the degree of the polynomial.
For simplicity, the block zk is represented as a vector, reading
pixels lexicographically. The same applies for the (discrete)
coordinates, denoted as x and y, and for the coefficients ci,j
of the polynomial (2), denoted as vector ck of (dx+1)×(dy+
1) dimension. Denoting as matrix F the polynomial model,
which is detailed in [3, 7, 8] but not in this paper due to space
limitation, the model of the background (2) can be written as:

µk = F ck, (3)

The model (1) - (3) is simple and efficient enough for
several applications [3, 7, 8]. However, the non-anomalous
background of a wheel is too much complex, with multiple
light reflection and artifacts, to be represented with a simple
polynomial model. To tackle this difficulty it is proposed in
this paper to design an adaptive model, for which the ma-
trix F changes to take into account the specificity of each
block. For this purpose, it is proposed to exploit the circu-
larity of the wheel. Roughly speaking, along the angle, pixels
should share similar profiles. The design of an adaptive linear
model based on this idea is done using the Principal Com-
ponent Analysis (PCA). In fact, without subtracting the em-
pirical mean, the first principal components account for the
most significant components (eigenvector with highest eigen-
values) of the signal and can be added to the model (3). One
can note that sparse dictionary learning methods are also effi-
cient to this purpose but we observed that the PCA provides
good results for a much lower computational complexity.

Let us denote Pk the part of the first principal compo-
nents that corresponds to the locations along the rows of the
extracted block zk. With the addition of the adaptive part
due to the few first principal components, the proposed model
for representing the background, that is the expectation of the
block zk (1), can be written as :

µk = Hk dk. (4)

where the matrix Hk is given by the concatenation:

Hk = (F|Pk) .

Similarly the weighting vector dk represents the contribution
of those different basis vectors.

Roughly speaking, the principal components allow us
to model with high accuracy the complexity of the back-
ground, and the polynomial part models the remaining part
that changes from block to block.
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Fig. 3: Illustration of the noise model showing, for several
images, pixels’ variance as a function of expectation.

3.2. Noise model

A usual model for the noise corrupting raw images (that are
not processed) can be obtained by considering separately the
shot noise, due to Poissonian process of photo-counting, and
the various electronic noises. While the variance of the Pois-
sonian process equals its expectation, the electronic noises are
well modeled as a Gaussian random variable with constant
variance [9, 10]. Due to the very high number of counted pho-
tons, the Poissonian process can be approximated as a Gaus-
sian distribution [9, 10]. Hence, the value of pixel at location
(m,n) can be modeled as a Gaussian random variable whose
variance is given by:

σ2
m,n = aµm,n + b. (5)

These parameters (a, b) of the heteroscedastic noise model (5)
only depend on the imaging system and acquisition settings.
Thus, because neither the camera nor the acquisition settings
change, parameters (a, b) remain constant for all pixels from
all the images of wheels. After camera calibration, this paper
assumes that the noise model parameters (a, b) are known.

The model of the noise (5) allows us to take into account
the variance of each pixel in the ensuing statistical test, to
improve its accuracy [10, 11]. An example of this model (5) is
illustrated in Fig. 3. This Figure shows the variance of pixels
as a function of estimated expectation from the same pixels
highlighting the linear relation between them (5).

Since the pixels do not share the same variance, the esti-
mation of expectation of block zk is made difficult. To tackle
this estimation problem without applying a time-consuming
optimization algorithm, a two step approach is proposed in
this paper. A first estimation of pixels expectation and vari-
ance is obtained with a simple Least-Square (LS):{

µ̃ls
k = Hk

(
HT
kHk

)−1
HT
k zk,

Σ̃
ls

k = Iw×h × (a µ̃ls
k + b),

where Iw×h denotes identity matrix of size w×h. This rough
estimation of the covariance is thus re-used to update the es-
timation of the expectation using the well-known Weighted



Least-Square (WLS) given by:µ̃k = Hk

(
HT
k Σ̃

ls−1

k Hk

)−1

HT
k Σ̃

ls−1

k zk,

Σ̃k = Iw×h × (a µ̃k + b).

(6)

It is of course possible to continue this procedure. It has
been observed that this two-steps method is a good trade-off
between accuracy and computational time.

4. STATISTICAL DETECTION OF ANOMALIES

As described above, see Eq. (4), when there is no anomaly, the
expectation of block zk is given by Hkdk. On the opposite,
when an anomaly is present in the block zk, its expectation is
modified and is modeled by Hkdk + θk with θk the expecta-
tion of the anomaly. For simplicity, it is assumed in this paper
that the presence of the anomaly has no effect on the variance.

Hence the goal of anomaly detection problem studied in
the present paper is to decide between these two following
composite hypotheses:{
H0 : {zk∼N (Hkdk,Σk),∀k ∈ {1, . . . ,K}}
H1 : {zk∼N (Hkdk + θk,Σk),∀k ∈ {1, . . . ,K}} ,

(7)

with of course, θk 6= 0 for some k.
Formally, a statistical test δ is a mapping δ : Rw.h 7→

{H0;H1}. The false alarm probability of a test is defined as:

α0(δ) = PH0(δ(Z) = H1)

where PH0 denotes the probability under hypothesis H0.
Conversely, the power function of a test δ is defined as:

β(δ;θk) = PH1(δ(Z) = H1).

Note that the power β(δ;θk) depends on the anomaly θk.
In this paper it is proposed to apply the invariance principle to
remove the nuisance parameters Hkdk and to design a Uni-
formly Best Constant Power (UBCP) test [12]. To this end,
the observations zk are projected onto the orthogonal com-
plement of the sub-space spanned by the columns of Hk by
using the projector:

P⊥Hk
=Iw×h−

(
Hk

(
HT
k Σ̃
−1

k Hk

)−1

HT
k

)
Σ̃
−1

k . (8)

However, because the variance is not constant over all the
pixels, it is necessary to normalize the “residuals” by divid-
ing each residual by its standard deviation. Those normalized
residuals can be written as follows:

rk = Σ̃
−1/2

k

(
P⊥Hk

zk
)
. (9)

It is then easy to establish [12, 3] that the norm of the
normalized “residuals” rk follows the distribution

‖rk‖22 ∼

{
χ2

Υ(0) , ∀k ∈ {1, . . . ,K} underH0

χ2
Υ (%k) , ∀k ∈ {1, . . . ,K} underH1,

(10)

where χ2
Υ (%k) denotes the non-central χ-squared distribution

with Υ = w × h − p degree of freedom, here p denotes the
number of columns of Hk, and the non-central parameter %k
under hypothesisH1 is given by :

%k =
∥∥∥Σ̃−1/2

k P⊥Hk
θk

∥∥∥2

2
. (11)

Here %k denotes the “anomaly-to-noise” ratio [3] and is es-
sential to define how detectable the anomaly is.

Based on the residuals rk and their distribution, see
Eq. (10), the UBCP test can be written as follows

δ =

{
H0 if ‖rk‖22 ≤ τ
H1 if ‖rk‖22 > τ,

(12)

where, in order to guarantee the false-alarm probability α0,
the decision threshold τ is set as follows:

τ = F−1
χ2

Υ
(1− α0; 0) (13)

where Fχ2
Υ

(x, %k) and F−1
χ2

Υ
(x, %k) resp. represent the non-

central χ2 cumulative distribution function with non-centrality
parameter %k and its inverse.
Similarly the power function of the test is given by:

β(δ,θk) = Fχ2
Υ

(τ, %k). (14)

One can note from the previous results, Eq. (13)-(14),
two important things. First, the threshold τ depends only on
the false-alarm probability α0 and is thus constant for all the
blocks. Second, the detectability of the anomaly depends only
on the “anomaly-to-noise ratio” %k. More precisely, Eq. (11)
shows that it is crucial for the model to represent the expecta-
tion of zk with high accuracy but also ensure that the anomaly
θk remains in the residuals (orthogonal complement of Hk).

5. EXPERIMENTS AND RESULTS

Because of the space limitation, only a limited number of re-
sults can be presented. To show the accuracy of the proposed
adaptive model, Fig. 4 presents two examples of galbe zones,
with typical defects intended to be detected. Note that the de-
fects are highlighted with red circles and that we picked, on
purpose, defects which are difficult to see from naked eyes.

First, Fig. 4c and 4d show the normalized residuals rk,
see Eq. (9), for the second example of anomaly. The image
from Fig. 4c has been obtained using the proposed adaptive
model over blocks with size h = 23 (height) and w = 50
(width). The degree of the polynomial used is dy = 5 (along
the height) and dx = 1 (along the width) and the number
of Principal Components added to this model is 3. The
defect is clearly visible which confirms that the proposed
adaptive model has the ability to describe with accuracy the
background while preserving the anomaly in the “residuals”.



j
(a) First example of circular shape anomaly.j

(b) Second example of rectilinear shape anomaly.j
(c) Normalized residuals obtained from Fig. 4b with the proposed model.j

(d) Normalized residuals obtained from Fig. 4b with wavelet decomposition.

Fig. 4: Example of typical anomalies it is aim at detecting.

Contrast this result with the image from Fig. 4d which shows
the same normalized residuals rk obtained using the usual
wavelet decomposition for estimating pixels’ expectation.
The wavelet used in this Figure is the Symlet 2, with three
levels of decomposition and soft thresholding of the coeffi-
cients. With such a generic approach, it is very difficult, for
any background and for any anomaly, to model accurately the
background while preserving the anomaly in the residuals.

Second, it is wished to show the relevance of the proposed
statistical test and the accuracy of the theoretical results. The
first example of defect, see Fig. 4a, has been used to perform a
Monte-Carlo simulation on 1 000 images. Because it is hardly
possible to obtain many images with similar anomalies, we
picked randomly a set of 1 000 images without any defect on
which the anomaly has been superimposed. Fig. 5 presents
the empirical distribution of the normalized residuals norm
‖rk‖22, see Eq. (12). One can note from Fig. 5 that the two
hypothesis are separable without any classification error.
Beside, Fig. 5 also compares the empirical distribution under
H0 with the theoretical one (10). A non-negligible discrep-
ancy can be observed which may be explained by two reasons.
First, the estimation of pixels expectation has a non-zero vari-
ance which is not yet taken into account in the proposed test.
Second, the proposed adaptive model, though efficient, is not
perfect and, hence, may sometime put a small part of the non-
anomalous background among the residuals.

6. CONCLUSION

This paper studies the problem of fully automatic anomaly
detection on wheels. The proposed method analyzes the dif-
ferent zones of a wheel separately. The main originalities of
the proposed approach are the use of an adaptive linear model
for the non-anomalous background and the heteroscedastic
noise model. The proposed adaptive model is simple, accu-
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Fig. 5: Empirical and theoretical distributions of the proposed
test over 1000 of images with and without anomaly.

rate and preserves the anomaly within the residuals. Because
the adaptive model is linear, it can be used easily with theory
of hypothesis testing taking into account the noise model. The
proposed method allows a fully-automatic detection scheme
in real time. Numerical results show the high accuracy of the
model and the relevance of the statistical test.
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