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Strong regularization by Brownian noise propagating
through a weak Hormander structure

Paul-Eric Chaudru de Raynal’ Igor Honoré! and Stéphane Menozzit
September 25, 2020

Abstract

We establish strong uniqueness for a class of degenerate SDEs of weak Hormander type under suitable
Holder regularity conditions for the associated drift term. Our approach relies on the Zvonkin transform
which requires to exhibit good smoothing properties of the underlying parabolic PDE with rough, here
Holder, drift coefficients and source term. Such regularizing effects are established through a perturbation
technique (forward parametrix approach) which also heavily relies on appropriate duality properties on
Besov spaces.

For the method employed, we exhibit some sharp thresholds on the Holder exponents for the strong
uniqueness to hold.

1 Introduction

1.1 Statement of the problem

In this work, we aim at establishing a strong well-posedness result outside the classical Cauchy-Lipschitz
framework for the following degenerate Stochastic Differential Equation (SDE) of Kolmogorov type:

dX} =F (t, X}, X0)dt +o(t, XL, ..., X")dW,,
dX? =Fy(t, X}, ..., XM)dt,
dX3 = Fs(t,X2,... X7)dt, t>0, (1.1)

dX? =F,(t, X1 XM,

where (W})¢>0 stands for a d-dimensional Brownian motion on some filtered probability space (2, F, (Ft)t>0, P)
and for all 7 € [1,n]', t+ > 0 the component X! is R%valued as well (i.e. X; € R"¥). We suppose that the
(Fi)ic[2,n] satisfy a kind of weak Hérmander condition, i.e. the matrices (Dx,ilei(t, '))ieﬂz,n]] have full rank.
However, the coefficients (Fi)ieﬂzn]] can be rather rough in their other entries, namely, Holder continuous.
We assume as well that the diffusion coefficient ¢ is bounded from above and below and spatially Lipschitz

continuous.

For a system of Ordinary Differential Equation (ODE) it may be a real challenge to prove the well-posedness
outside the Lipschitz framework (see e.g. [DPL89]) and, as shown by Peano’s example, uniqueness may fail as
soon as the drift of the system of interest is only Holder continuous. For an SDE, the story is rather different
since the presence of the noise may allow to restore well-posedness. Such a phenomenon, called regularization
by noise (see the Saint Flour Lecture notes of Flandoli [Flalla] and the references therein for an overview of
the topic), has been widely studied since the pioneering works of Zvonkin [Zvo74] and Veretennikov [Ver80)
who establish, respectively in the scalar and multidimensional setting, strong well-posedness for non-degenerate
Brownian SDEs with bounded and measurable drift. We recall that a strong solution is adapted to the Brownian
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filtration generated by the driving noise and that non-degenerate means that the noise has the same dimension
as the underlying system on which it acts.

Let us mention, among others, and still within the non-degenerate setting, the works of Krylov and Réckner
[KRO5] (Lq — Ly, drift), Zhang [Zhal0] (L, — Ly, drift and weakly Lipschitz diffusion matrix), Fedrizzi and Flan-
doli [FF11] (Lq — L, and Holder drift). We also mention Flandoli et al. [FGP10] and Beck et al. [BFGM19]
for connections with stochastic transport equations.

The crucial assumption, shared by all the aforementioned results, is the non-degeneracy condition on the
noise added in the considered system. A possible approach to relax this hypothesis was proposed by Vereten-
nikov in [Ver83], where the author extended the result in [Ver80] to some specific case of the considered chain
(1.1) for n = 2. In comparison with our setting, the author does not impose any non-degeneracy condition on
Dy, Fa(t,-). The to price pay is anyhow that all coefficients (i.e. with the notations of (1.1) Fy,Fa, o) need
to be twice continuously differentiable functions with bounded derivatives w.r.t. the degenerate component,
meaning that no regularization by noise is investigated in the degenerate direction. More generally, it is useless
to expect a generalization of the previous results without any additional assumption: we can benefit from the
regularization by noise phenomenon only in the directions submitted to the noise.

In our current framework, the non-degeneracy assumption on the Jacobian (Dxilei(t, )), i € [2,n] pre-
cisely allows the noise to propagate through the chain passing from the ‘" to the (i + 1)t" level thanks to the
drift, hence leading to a propagation of the noise in the whole considered space. The main idea is then to
take advantage of this particular propagation, known as weak Hérmander setting (in reference to the work of
Hormander on hypoelliptic differential operator [Hor67]), to restore strong well-posedness under our current
Holder framework. This feature has already been considered in the literature for the system (1.1) in the kinetic
case (i.e. when n = 2), see the works of Chaudru de Raynal [CdR17], Wang and Zhang [WZ16], Fedrizzi et al.
[FFPV17], Zhang [Zhal8]. In any cases, in addition to the weak Hormander structure, the regularity of the
drift w.r.t. the second space (and hence degenerate) argument is required to be of regularity index superior
or equal (depending on the work) to 2/3 (usually called critical Holder index or critical weak differentiation
index). As a generalization of these results, we prove in this paper that strong well-posedness holds as soon as

each drift component F; is 3;-Holder continuous in the ;' variable for some 3; € ((2j -2)/(25 — 1), 1} when

1 < j, so that we recover the critical index mentioned above when j = 2. We refer to Section 1.5 for a thorough
discussion about those facts.

1.2 Notations, assumptions and main result

Some notations. We will denote by a bold letter, e.g. x or y, any element of R"?, writing as well x =

(X1,...,X%,) where for i € [1,n], x; € R% For practical purpose we will be led in our analysis to consider
subcomponents of a vector x € R*®. Namely, for any 1 <4 < j < n and x € R, we introduce the notation
X;j := (X4,...,X;). Accordingly, we write the drift as the mapping
Fl (8, X)
Fi(s,x) Fy(s,x)
(5,x) € RT x R™ » F(s,x) = = F3(s,x2:n) ,
Fu(s,%) :

Fn(57 anlzn)

from the specific structure of the drift appearing in (1.1).

For f € CYR", R¥), k € {1,d}, we denote for each i € [1,n], by Dy, f(x) the Jacobian matrix of the
derivative of f w.r.t. its R%valued variable x;. As shortened form, and when no ambiguity is possible, we
also write for all x,y € R", Dy, f(x) = D;f(x) and Dy, f(y) = Dif(y). Also, if k = 1 we denote by
Df(x) = (D1f(x),...,Dnf(x))*, where “«” stands for the transpose, the full gradient of the function f at
point x.

Let f:R"™ — R* and B := (B4,...,Bs) € (0,1]" be a multi-index. We say that f is uniformly B-Holder
continuous if for each j € [1,n]

()]s, = sup |f(z1:-1,2,2j41:0) — f (21551, 2", 2110 |

e < 400. (1.2)
(Z1:j—1,2j41:0) ER(M =D, 25427 (2,27)€(R?)? |z — 2|



For a smooth function ¥ : [0,7] x R*® — R™ where T > 0 is a fixed given time, writing for (¢,x) €
[0,7] x R™, ®(t,x) = (¥1(t,%),..., ¥,(t,x)) where for each i € [1,n], ¥; is R? valued, we denote by

n n

IDEoc:=) "  swp DT, IDD1Y)|c =) sup  DDiE)EX)), (13)
‘=7 (tx)€[0,T]xR"d =1 (t,x)€[0,T]xRnd
where in the above equation || - || stands for a tensor norm in the appropriate corresponding dimension. Pre-

cisely, DW;(t,x) € R @ R? and D(D;%¥,)(t,x) € R" @ R? @ R

Assumptions. We will assume throughout the paper that the following conditions hold.

(ML) The coefficients F and o are measurable in time and F(¢,0) is bounded. Also, the diffusion coefficient o
is uniformly Lipschitz continuous in space, uniformly in time, i.e. there exists k > 0 s.t. for all ¢t > 0, (x,x’) €
(Rnd)2:

lo(t,x) — o(t,x")] < k|x —x'].

(UE) The diffusion matrix a := oo* is uniformly elliptic and bounded, uniformly in time, i.e. there exists
A >1st. forallt >0, (x,¢) € R" x R

ATYC? < (a(t,x)¢,¢) < Al¢)2

(Tp) For all j € [1,n], the functions (F;);c1 ;1 are uniformly 3;-Holder continuous in the 4 spatial variable

with 8; € ((2]' —-2)/(25 - 1), 1], uniformly w.r.t. the other spatial variables of F; and in time. In particular,
there exists a finite constant Czg > 0 s.t. with the notations of (1.2),

max sup [(F;);(s,)]g, < Cs.
e oup [(F9);(5, ), < Cs

(H,) For all i € [2,n], there exists a closed convex subset &_1 C GL4(R) (set of invertible d x d matrices)
s.t., for all t > 0 and (x;_1,...,%,) € RO=H24 D Fi(t,x;_1,...,%,) € E_1. For example, &_; may be
a closed ball included in GL4(R) the latter being an open set. Moreover, Dy, ,F; is n -Holder continuous

w.r.t. x;_1 uniformly in x;., and time. We also assume without loss of generality that n € (07 infjcpa.n] {Bj —

(25 —2)/(25 — 1)}), i.e. n is meant to be small.
From now on, we will say that assumption (A) is in force provided that (ML), (UE), (Tg) and (H,) hold.

Main result. The main result of this work is the following theorem.

Theorem 1 (Strong uniqueness for the degenerate system (1.1)). Under (A) there exists a unique strong
solution to system (1.1).

Remark 1. Still in comparison with the results obtained in the non-degenerate cases, and especially the one
of Krylov and Rockner [KRO05], we do not tackle the case of drifts in Ly — L, w.r.t. the first (and then non-
degenerate) variable. This is only to keep our result as clear as possible and to concentrate on the novelty of
the approach we use here. We are anyhow confident that these specific drifts could be handled. Indeed, all the
intermediate results needed to perform the analysis in that setting seem to be already available. We refer to
subsection 1.5 for further details.

1.3 Related discussions and perspectives

One may wonder if the thresholds in (Tg) are sharp. To investigate this question, we should recast our
result within the framework of the regularization by noise phenomenon, see e.g. the lecture notes by Flandoli
[Flalla]. Such phenomenon has been considered for ODEs perturbed by many noise classes (in particular
a-stable, a € (0,2] and fractional Brownian motion with Hurst index H in (0,1)) and has given rise to a
large literature. Before going further, we feel that it is important to specify what “regularization” means when
speaking about regularization by noise. Hereafter, we say that a noise “regularizes” an ill posed system if the
resulting perturbed equation has a unique solution. Within our probabilistic setting, we can thus distinguish
three types of regularizations: the weak reqularization, for which the law of the solution is concerned; the strong
regularization and path by path regularization which relate to the path of the solution. While the difference
between weak and path by path or strong well-posedness is clear, we refer to the recent work of Shaposhnikov



and Wresch [SW20] for the more subtle differences between strong and path by path uniqueness (let us only
mention that path by path uniqueness implies strong uniqueness while the converse is not true).

Also, in order to illustrate the following discussion on the thresholds in (Tj3), we introduce, for a given
scalar a-stable?, a € (0,2] or H-fractional Brownian, H € (0,1) noise W of self similarity index vy > 0, the
following simplified version of (1.1)

0 0
1 0 0

dX; = AXydt + BdW, + P(X,)dt, A = 0 1 0 , Xp=0, (1.4)
: . . 0 :
0o --- 0 1 0

where d =1, P = (Py,...,P,)* and for each i € [1,n], P;(x)= Z;L:z P!(x) with P! := ci7jsgn(xj)(|xj|ﬁ7i7/\1)
with ¢; ; € R and B = (1,0,...,0)* = (1,01,,—1)* where “x” stands for the transpose. The dynamics (1.4)
can be viewed as a perturbation of dX; = AX,dt + BdW,, Xy = 0, corresponding to the noise and its iterated
integrals, i.e. X; = (Wt,fg Wyds, .. .,fot dty fgl dts. ..fg"’l dt,W;,)*, by a Peano type drift P. With the
notations of (1.1), the full drift of (1.4) writes F(¢,x) = F(x) = Ax + P(x).

Note that the above truncation in P is only introduced to avoid technical considerations in the following
discussion (simple statement of parabolic bootstrap results). However, our approach allows to consider general
non-linear unbounded drifts satisfying (Tjs) and (H,). We emphasize that, when n = 1, setting 8] =: 3,
c1,1 = 1, we obtain the following dynamics

dX, = sgn(Xy) (|X|PAL)dt + dW,, Xo =0, (1.5)

known as the (localized version of the) stochastic Peano example and when n = 2, P; = 0,¢cp2 = 1, we get that
) t

dX} =dW;, dX7=sgn(X?)(|X?%2A1)dt +d {/ dsWs} , X=X =0, (1.6)
0

which is the kinetic version of the above stochastic Peano example.

Weak regularization for the stochastic Peano example (1.5). Let us start with the weak regularization
by noise, as it seems to us that it is the most understood and understandable setting. Weak well-posedness
relies on the well-posedness of the martingale formulation for the system which itself relies, in turn, on a good
theory for the associated PDE (see e.g. [SVT79]). Roughly speaking, it consists in showing that the transport
term for the associated PDE is somehow a negligible perturbation of the equation. This can be seen, at least
heuristically, through scaling arguments. Consider indeed the dynamics (1.5) and assume that W is an a-stable
process. The formal associated PDE writes

dpu(t, x) + (sgn(x)(|x|°Al), Du(t,x)) + %A%u(t,x) =0,

where A®/2 stands for the usual fractional Laplacian. Introduce for A > 0 the corresponding rescaled function
ux(t,x):=u(\t, \1/*x) (scaling reflecting the parabolic scale for ¢ and x). We get that uy satisfies the equation:

1 1 1 o
Opun(t,x) + <)\1_Esgn(x)(|)@x|5/\1), Duy(t, x)) + §A5u>\(t,x) =0,

so that the terms associated with the principal part of the partial differential operator in the above PDE,
namely O;uy and A% ?uy(t,x), are comparable. On the other hand, when x belongs to compact subsets of R:

e if 5 > 1— «, the scaled drift coefficient goes to zero with A and the smoothing effect of the principal part
of the partial differential operator dominates;

e if B =1 — «, the scaled drift coefficient stays at a macro scale and the rescaled drift has the same order
as the principal part of the partial differential operator (critical case);

e otherwise, the drift explodes when A\ goes to zero.

2For simplicity reasons, we restrain our considerations to rotationally invariant stable processes with generator 1/2 the usual
fractional Laplacian.



In other words, a sufficient condition on the exponent [ to ensure that the drift is a negligible perturbation
of the equation is
6>1-—a.

This rule can also be obtained by analyzing the path associated with the solution of (1.5), see e.g. the work
[DF14] and the counter-examples to weak uniqueness in [CdR18, CARM17]. From these pathwise analysis, one
can formally generalize the above heuristic and get that, for the system (1.5) driven by a general v self-similar
noise W, the condition

B> 1_%, (1.7)

is needed for the weak well-posedness to hold. When v = 1/a, « in (0,1] we refer to e.g. [CARMP20a,
CdRMP20b] for results in that direction and to [DD15, CC18, FIR17, ZZ17, CARM19, LZ19] for results re-
lated to the case where a in (1, 2] so that the above rule allows § to take negative values, the drift being then
a distribution.

Thresholds for weak well-posedness and thresholds in (Tg). Let us come back to the more tricky
system (1.4) and let us consider first the kinetic version (1.6) with W = W. In this last case, the associated
PDE writes

1
atu(tvxlax2) + <X17 szu(tvxlaXQ» + <SgH(X2)(|X2|ﬂ§/\1), szu(tvxlaXQ» + §Ax1u(tvxlax2) =0.

We introduce the corresponding rescaled function wuy (t,x):=u(M, \/?x1, \3/?x5) (scaling reflecting the usual
parabolic scale for ¢ and x; and the fast regime associated with the integral of the Brownian motion) which
solves the equation

2 1
8tU)\(t,X1,X2) + <X17 Dx2u>\(t7xlax2)> + )‘7% <sgn(x2)(|)\%X2|B§/\l), szuk(taxlax2)> + iAxlu)\(LXlaX?) =0,

so that, again, the terms dpuy, Ax, ux(t,x1,%2) and (x1, Dy, u)(t,Xx1,X2)) associated with the principal part
of the partial differential operator in the above PDE are comparable. On the other hand, when x5 belongs to
compact subsets of R:

e if B2 > 1/3, the scaled drift term A~Y/2(sgn(x2) (| A% 2x|%2 A1), Dy, ux (£, %1, %2)) goes to zero with A, and
the smoothing effect of the principal part of the partial differential operator dominates;

e if 32 = 1/3, the previous scaled drift coefficient stays at a macro scale and has the same order as the
principal part of the partial differential operator (critical case);

e otherwise, the drift explodes when A\ goes to zero.

Observe that 1/3 = 1—1/(3/2) and that 3/2 is precisely the self similarity index of [ Wds, so that we recover
the rule (1.7). This threshold has also been shown to be (almost) sharp through counter-examples in [CdR18].
In comparison, the threshold introduced in (Tg) gives 83 =2 > 2/3 =1—1/[2 x (3/2)] > 1/3 so that, in this
case, we lose a factor 2 w.r.t. the thresholds predicted by (1.7).

Reproducing then the above analysis for the PDE formally associated with (1.4), we obtain that the
degenerate part of the scaled drift, i.e. > ., Z;L:l AT3/2 (sgn(x;) (IM1/2x,4]% A 1), Dy,), explodes when
B} < (20 —3)/(2j — 1), i < jin [1,n]% These thresholds have also been shown to be (almost) sharp in
[CARM17] through counter-examples. On the other hand, along the diagonal of the system (i.e. for the in-
dexes f7), this gives that weak uniqueness fails as soon as ] < (2j —3)/(2j —1) = 1 = 1/(j — 1/2) where
(j — 1/2) again precisely corresponds to the self similarity index of the (j — 1) iterated in time integral of
the Brownian motion. Still in comparison, we assumed in (Tg) that each 8] =§; is (strictly) greater than
(27 —2)/(2j —1) =1—-1/[2 x (j — 1/2)]. Therefore, we lose this factor 2 for each variable of the chain (note
further that we also lose the dependence of the thresholds w.r.t. the level of the chain, i.e. 8] = 3;, i € [1,n]).
We are hence not able to prove strong well-posedness for (1.5) as soon as § < 1 —1/(2v), v = n + 1/2,
n € N*. One may thus wonder if this factor 2 is the price to pay to pass from the weak to strong regularization
phenomenon.

Strong regularization. The first results on strong regularization go back to the pioneering works of
Zvonkin [ZvoT74] and Veretennikov [Ver80] where (1.5) with W = W is shown to be well-posed in a strong



sense as soon as 8 > 0 (the result holds therein for any bounded and measurable drift). This result has then
been extended in the seminal work of Krylov and Rockner [KRO05] for L, — L, singular drifts (see also [Zhal0)]
and [FF11]). When W is a pure jump process (a € [1,2)), Priola showed in [Pril2] that strong well-posedness
holds for any 5 > 1 — /2 for bounded Hélder drifts and Chen et al. obtained in [CZZ17] the same condition
for & € (0,1). When W is a fractional brownian motion with Hurst parameter H > 1/2, it has been shown
by Nualart and Ouknine [NOO02] that (1.5) is well-posed as soon as 8 > 1 —1/(2H). This last result relies on
the Girsanov transform and the Yamada-Watanabe Theorem to deduce that strong existence and uniqueness
in law give strong uniqueness. Putting those results together and denoting by  the self similarity index of W,
we thus get (at least in the stable and fractional setting) that strong well-posedness holds if 5 > 1 — 1/(27),
v € (0,2] and that the “critical” case is attained for v = 1/2. Again, a factor 2 is lost in comparison with (1.7)
and these results exhibit the same type of thresholds as ours.

In the Markovian setting, a good manner to understand how such a factor (and thus threshold) appears
consists in investigating the smoothing properties of the underlying PDE. It is indeed important to notice
that most of the aforementioned results concerning strong uniqueness are based on the same technology: the
Zvonkin transform of the SDE. This is precisely where PDEs come into play.

A primer about Strong regularization and the Zvonkin method. Let us focus on the Markovian
(stable) case. The main idea consists in rewriting the dynamics (1.5) as

Xt = u(t, Xt) + XO — u(O, Xo) — Mo)t(Oé, u, X) + Wt, (18)

with
/ Du(s,X;) - dW,, if a=2;

Mo ¢(o,u, X): (1.9)
/ / N(dr,dz){u(s,X,- +2) —u(s,X,-)}, ifa<?2,
R\{0}
where N is the compensated Poisson measure associated with W and where u is the solution of
]. o
dru(t,x) + (sgn(x)(|x|°Al1), Du(t,x)) + iAfu(t,x) = sgn(x)(|x|°A1), u(T,-)=0. (1.10)

Equation (1.8) then follows from the It6 formula provided u is smooth enough. This transformation allows to
get rid of the bad drift in the equation and to replace it by the solution of a parabolic PDE which benefits
from the smoothing effect associated with the generator of the noise W. The price to pay is that the diffusion
matrix in the “martingale” part is now modified, as one adds a stochastic integral involving the derivative or
a perturbation of u.

For this new equation to be well-posed in any dimension?, it is commonly assumed that the integrand in
the stochastic integral M (a,u,X) must be Lipschitz continuous in the spatial variable (in order to apply a
stability type argument based on martingale and Gronwall inequalities). This roughly means that for any ¢
n [0,7], the gradient of u(t,-) must be Lipschitz continuous, uniformly in ¢, in the case « = 2. In the case
a < 2, it follows from the interpolation type Lemma 4.1 in [Pril2] that a sufficient condition is that for any
tin [0,7T], u(t,-) must belong to C17, where C'*" stands for the usual Hélder space see e.g. [Kry96], with
1 > «/2. This last condition comes from integrability purposes in order to compensate the lack of integrability
of the Lévy measure associated with the pure jump process around 0 when applying martingale inequalities
(see (1.16) below as well). From the corresponding parabolic bootstrap (Schauder estimates for (1.10), see
e.g. [Fri08, KP10] for « = 2 or [CARMP20a, MP14] in the pure jump case), we could expect at best that
llut, Mcatrs < [lsgn(-)(|- | A1)||cs. Hence, we obtain that 8 must satisfies a + 8>14+a/2 < 3> 1—a/2. In
other words, denoting again by v the self similarity index of the noise, we get that strong well-posedness holds
for

1
B>1 5 (1.11)
These are precisely the thresholds obtained in the literature on strong regularization and we will say that they
are thus (almost) sharp w.r.t. the methodology. Let us mention that in the critical case in (1.11) (with an
equality therein) when the noise is a Brownian motion, the Lipschitz property of the gradient of the solution
holds in a suitable L, space only (this is the so-called Calderén-Zygmund estimate for the case of a bounded
and measurable drift and its ad hoc version from [KryO1] in the L, — L, framework of Krylov and Réckner).

3Note indeed that the scalar case induces very specific features, see e.g. [BC03, GO13, ABM20, CARM19].



Such type of estimates require non-trivial techniques from harmonic analysis to handle singular integrals, which
differ significantly from the Schauder type control adopted here.

The thresholds in (T3) are derived from the Zvonkin method. Let us bring to light how the Zvonkin
transform naturally leads to the thresholds in (Tg) for our simple system (1.4). The corresponding process X
writes

t
X =u(t,X;) +x0 — u(O,xO)—/ Du(s, X)) BdWs + W, (1.12)
0
where u = (uy,...,u,)* and each u; solves

1
O (t,x) + (Ax + P(x), Du, (¢, x)) + = Ay, u;(t, x) = Fi(x). (1.13)

————— 2

=F(x)

In order to have a Lipschitz continuous in space integrand in the stochastic integral associated with the
Zvonkin transform (1.12), we need, due to the particular structure of the embedding matrix B (recall that
B =(1,01,,-1)%), the gradient Dyu to be Lipschitz in all the spatial directions. We thus ask each component
of the function u to have the same regularity (namely their gradient in the non-degenerate direction must be
Lipschitz w.r.t. all variables) and this is the reason why the corresponding thresholds do not depend on the
level of the chain, as opposed to the weak thresholds. Accordingly, from now on, we denote by 3; the regularity
index of any component F;, i in [1,n] w.r.t. the j*" variable, j in [i, n].

Note that the main particularity of PDE (1.13) comes from the different scales at which each component
of the PDE evolves and the unboundedness of the source terms (F;);c[1,,j coming from both the Zvonkin
transform and the weak Hormander setting. Especially, we cannot expect the solutions (u;);eqi,n) to be
bounded. The associated parabolic bootstrap is thus more tricky than in (1.10). In the companion work
[CARHM20], assuming that the source term in the right-hand side of (1.13) is bounded and §;-Hélder w.r.t.
the j*h-variable, we derived Schauder estimates and proved that for any 4 in [1,n], any j in [1,n], for fixed
(X1:j—1,Xj41:) in R""! and ¢ in [0, T, the map

(ui)j(t7 ) R > Zj ui(t,xlzj,l,zrxfrlm) eR (114)

belongs to C'2/(21=1)+8; for any B; in (O, 1/[25 — 1]), uniformly w.r.t. ¢ and (Xi1.j—1,X;41:). This means that
the smoothing effect of the hypoelliptic operator 0; + Ay, + (Ax, D) yields a regularity gain of order 2/[2j — 1]
in the j* variable. In other words, the smoothing effect decreases as one moves away from the source of
noise. This particular feature is reminiscent from the weak Hérmander like structure of (1.13). Especially, one
formally understands that, as (u;);(Z,-) belongs to C?/(2=D+8; (Dyu;); belongs to C*/ 3=+ ie. for ho-
mogeneity reasons, one differentiation w.r.t. the non-degenerate variable induces a loss of Holder regularity of
order 1/[2j — 1] w.r.t. the j'" degenerate variable. In the current work, we first manage to extend such type of
estimates to unbounded sources. As we cannot expect anymore the solutions (ui)ie[[l_yn]] to be bounded, but to
have linear growth (and consequently to have bounded gradients), we therefore specifically state the parabolic
bootstrap in terms of usual Holder spaces on the gradients. Namely, we manage below to prove that for any
Bjin ((2j —2)/(2j —1),1), the map (D1u;);(t, ) belongs uniformly to C/(27=D+5i—¢ for any 0 < ¢ << 1 (see
Section 1.5.1 for details). To obtain the Lipschitz control in all the spatial directions of the gradient D;u, we
therefore need 1/(2j—1)+3; > 1 < B; > (2j—2)/(2j—1), which is precisely the thresholds assumed in (Tg).

Thus, one may conclude that the thresholds in (Tj3) are the one deriving from the Zvonkin method com-
bined with the Schauder type approach. Let us eventually mention that other authors precisely recover those
thresholds in the case n = 2, see e.g. [CdR17, WZ16, FFPV17]. Note also that, therein, the critical case
(B2 = 2/3) for the degenerate component is left open. As already mentioned, such framework requires to use
significantly different techniques that are out of the scope of the present work as well.

Path by path regularization, associated thresholds and Zvonkin thresholds. To the best of our
knowledge, the first result on path by path regularization goes back to the work of Davie [Dav07] and has then
been formalized through the works of Flandoli [Flalla, Flallb]. The main particularity of that approach relies
on the fact that the system (1.5) is considered “w by w”, so that it somehow goes beyond the probabilistic
framework. This setting thus matches the rough path perspective for SDEs. Based on these considerations,
Catellier and Gubinelli proposed in [CG16] a systematic study of fractional Brownian perturbations of ODEs,
for any Hurst parameter H in (0,1). Therein, they prove in particular that (1.5) is well-posed as soon as
B8 >1—1/(2H). Therefore, the authors obtained the same thresholds as the one required for strong well-
posedness in the literature although the approach, especially for [CG16], differs significantly from the PDE



based trick of the Zvonkin method. Furthermore, it seems that, modulo an additional work, the Zvonkin
transform allows to recover, in the Markovian framework, path by path results. We refer e.g. to Shaposhnikov
[Shal6], who revisited the result by Davie, and to Priola [Pril8, Pril9], who extended the Davie result to the
a-stable, v in [1,2) and the degenerate kinetic framework, for recent works in that direction.

From the previous considerations, it is in fact not clear that the Zvonkin thresholds derive from the PDE
approach. We rather feel that they are actually related to the type of well-posedness considered and that the
difference with the “weak thresholds” is indeed a price to pay to pass from weak to strong or path by path
uniqueness.

Conclusions and extension to “pure jump” noise. In view of the previous discussions, it appears that
our thresholds are sharp w.r.t. the method employed, and almost sharp w.r.t. the existing literature (at least
the one we know) on regularization by noise. In this perspective, our result roughly says (in particular) that
a Brownian type noise W of self similarity index v = 1/2 4+ n, n in N restores strong well-posedness for ODEs
whose drift has regularity index § > 1 — 1/(27). As the range v = H in (0,1) is covered by [CG16] and the
range corresponding formally to the case H = 0 has been investigated recently in [HP20], one may wonder if
the range v = 1/a+n, n in N and « in (0,2) could be attainable as well.

The main point to implement the Zvonkin transform consists in establishing parabolic bootstrap results on
the underlying PDE. To this end, the idea is to expand the associated differential operator around the generator
of a suitable proxy process. This is the so-called parametrix type expansion that will be here performed at
order one. The proxy process needs somehow to resemble the initial process to be investigated and to be
well understood. For instance, for the considered example (1.4), the natural prozy process corresponds to
X (degenerate Ornstein-Uhlenbeck type Gaussian process) introduced after (1.4). By well understood, we
mean that the proxy process admits smooth marginal densities, which together with their derivatives, satisfy
appropriate heat kernel estimates. These estimates turn out to be crucial as our methodology relies on duality
arguments between Besov spaces, the underlying Holder spaces being viewed as Besov spaces. Especially,
because we will use the so-called thermic characterization of Besov spaces (see e.g. Chapter 2.6.4 in [Tri83])
with an underlying heat kernel somehow compatible with the one of the prozy. This is precisely why we feel
that the methodology provided here is robust enough to handle the case of a large class of symmetric non-
degenerate pure jump noises “W = Z*” « in (0,2), up to a modification of the associated prozy and heat
kernels, see e.g. [HM16, HMP19, Mar20].

Let us try to understand what are the main steps by restricting ourselves to the (already discussed) prototype
system (1.4). In this case, the Zvonkin transform associated with (1.4) writes

t
X, = u(t, Xy) + X — u(O,XO)—/ / Ni(ds,dz)(u(s, X,- + Bz) —u(s,X,-)) + Z2, (1.15)
0 JR\{0}

where u = (uy,...,u,)* and each u; solves the Integro-Partial Differential Equation (IPDE in short) associated
with (1.1) i.e. the Laplacian therein is replaced by a fractional Laplacian Afél/ 2 As already discussed, we need
the integrand in the stochastic integral in (1.15) to be Lipschitz w.r.t. the spatial variable. Yet again, a
sufficient condition is given by a modification of the interpolation type Lemma 4.1 in [Pril2]: we have for x, y
in R” and z in R, |2| < 1:

|u(t,x + Bz) —u(t,x) —u(t,y + Bz) + u(t,y)| < Clz["[(Du)1],|x — y/, (1.16)

where [(Du),],, denotes the n-Holder modulus w.r.t. the variable x; of the full gradient Du. We therefore
have to control this n-Holder modulus.

In [Mar20], Marino proved Schauder estimates for (more general versions of) the IPDE associated with
(1.4). He established therein that for any j in [1,n], for fixed (x1.j—1,Xj+1.) in R"™! and ¢ in [0, 7], the map
(w;);(t,-) belongs to C*/0+aG=DI+6; ymiformly in ¢ and (x1.j_1,X;41.n), provided that for each j in [1,n]:
o > f3; (this condition comes from integrability purposes), a + 3; > 1 and $; in (0,1/(1 + a(j —1))). This
means that the smoothing effect of the hypoelliptic operator d; + (1 /2)A§1/ 2y (Ax,D) yields a regularity
gain of order a/[1 + a(j — 1)] in the ;" variable. We thus understand (at least formally), that for each j in
[1,n], D;(u(t, ))j belongs to C/[1+a(=DI+8; =1 Note that, due to homogeneity, controlling the the n-Holder
modulus of Dju(t,-) w.r.t. the non-degenerate variable amounts to control the 7/[1+ a(j —1)]-Holder modulus
of (Dju(t, ))] i.e. a n-Holder regularity w.r.t. the non-degenerate variable corresponds to a n/[1 + a(j — 1)]-

Hélder regularity w.r.t. the j*" variable. According to the associated parabolic bootstrap, we thus need the



following condition to be fulfilled:

«@ 7 a/2

A T T T TR =)

1+a(j—3/2)
l1+a(j—1

1+a(j—1)

Aad /8_7 > )
recalling that, for integrability purposes coming from the Lévy measure associated with the pure jump process,
7 must again be strictly greater than «/2. These are precisely the thresholds obtained in the recent work
[HWZ20] in the kinetic case (i.e. when n = 2). Following our method, we should be able to extend in some
sense the Schauder control in order to obtain that for any 3; in ((1+ a(j —3/2))/(1 4+ a(j — 1)),1) the map
(w;);(t,-) belongs uniformly to C*/[I+al=DI+5i=¢ for any 0 < ¢ << 1, so that the result would follow.

1.4 Proof of the main result: Zvonkin Transform and smoothing properties of
the PDE associated with (1.1)

We emphasize that under our assumptions, it follows from [CARM17] that (1.1) is well-posed in the weak sense.
Hence, from the Yamada-Watanabe theorem it is sufficient to prove that strong (or pathwise) uniqueness holds
to prove strong well-posedness. As explained above, our main strategy rests upon the Zvonkin transform
initiated by Zvonkin in [Zvo74] which heavily relies on the connection between SDEs and PDEs. We rewrite
(1.1) in the shortened form

dX; = F(t,X;)dt + Bo(t,X;)dWy,

where we recall that F = (Fy,...,F,) is an R"@valued function and B is the embedding matrix from R? into
R™ ie. B= (Tq,4,04,d,---,04,a)" = (Ta,a,0q,(n—1)a)", where Iy 4,044 respectively denote the identity matrix
and the matrix with zero entries in R? ® R?. For all ¢ € CZ(R"®, R) and (¢,x) € [0,7] x R™® let

Lip(x) = (F(t,%), Dp(t, ) + 5 Tr alt, ) DZ, 0(x)). (1.17)

where a = oo*, denote the generator associated with (1.1). We then formally associate the SDE (1.1) with
the following systems of PDEs:

{(3tui + LtUi)(t7X) = Fi(tvx)7 (t’X) € [O7T) X Rnd’ (118)

w, (T, x) = 0g4, i€ [1,n].

Remark 2. Note that above we adopted the following convention for notational convenience: for each i in
[3,n], all t in [0,T), x in R™ F;(t,x) := Fi(t,x;_1.,) i.e. the independence of each map F;(t,-) with respect
to the first i — 2 components of the vector x = (x1,...,%,) € R™ is implicitly assumed.

Denote by U = (uy,...,u,) its global solution. Let now (F™),,>0,(a™)m>0 denote two sequences of
mollified coefficients satisfying assumption (A) uniformly in m that are infinitely differentiable functions with
bounded derivatives of all orders greater than 1 for F™, and converging in supremum norm to (F,a) (such
sequences are easily obtained from [CdR17]). Then, for each m, the regularized systems of PDEs associated
with (1.18) write:

{(atugn + L) (t,x) = F7(t,%), (t,%) € [0,T) x R, (119)

u(T,x) = 0g4, i€ [l,n],

where L7 is obtained from (1.17) replacing F by F™ and a by a™.

The above system (1.19) is well-posed and admits a unique smooth solution U™ = (uf*,...,u}’). This
can be derived from the Feynman-Kac representation formula, which holds independently of the degeneracy
for smooth coefficients with linear growth, and stochastic flow techniques (see e.g. Gikhman and Skorokhod
[GS69] or Talay and Tubaro [TT90]). Hence, applying It6’s formula, one easily deduces that

/1t dsF(s,Xs) = -U"(0,x) + U™(t,X;) — /t DU™(s,X)Bo(s,Xs)dW, + /t R (Xs)ds, (1.20)
0 0 0
where
RM(Xs) =[F(s,X5) — F™(s,X;)] — (Ls — LT)U™(s,Xy)
=[F(s,X;5) — F"(s,X;)] — (F — F")(s,X;) - DU™(s,Xs) (Ryn)

f%Tr((a —a™)(s,Xs)D2, U™ (s,Xy)).



This representation (1.20) is the Zvonkin Transform discussed above, up to a remainder. Then, the main idea
consists in taking advantage of the regularization properties of the operator L™ (uniformly in m) and expect
that the solutions U™, m > 0 will be smoother than the source term F so that the right-hand side of (1.20) is
smoother than the integrand of the left-hand side of the considered equation. In other words, we are looking
for a good regularization theory for the PDE (1.19) uniformly w.r.t. the mollification argument. This good
regularization theory is summarized in the following crucial result whose proof is, in fact, the main subject of
this work and is postponed to Section 2.

Theorem 2. For T > 0 small enough?, there exists a constant Cr := Cr((A)) > 0 satisfying Cr — 0 when
T — 0 such that for every m > 0, the solution U™ satisfies, with the notation of (1.3):

DU || + [D(D1U™)]| o0 < Cr- (1.21)

Remark 3 (On well-posedness of the initial PDE (1.18)). We also point out that, from the uniformity in
m in the previous theorem, we could also derive some regularizing properties for the system (1.18) through
appropriate compactness arguments. Indeed, as it will appear in the proof of this result, we are in fact able
to control uniformly the Holder moduli of the gradients and of the second order derivatives w.r.t. the non-
degenerate direction (see Lemmas 11 and 12). These controls precisely allow to derive, through the Arzela-
Ascoli theorem, a well-posedness result for equation (1.18) under the sole assumption (A) as well as the above
gradient estimates.

Theorem 2, which is a consequence of Theorem 3 below, is the key to prove our main result for strong
uniqueness.

Proof of Theorem 1. Let now X and X’ be two solutions of (1.1). Using the representation (1.20) to express
the difference of the bad drifts in terms of the function U™ and its derivative up to a remainder, we write:

X, — X,

= U™(t,X;) —U™(¢X)) — /t [DU™(s,X;)Bo(s,X,) — DU™(s,X’)Bo(s, X%)] dW,
0
[Rrx) - RP X)) +/0 Blo(s,X,) — (s, X1)] dW,.

Take then the supremum in time of the square of the difference. Passing to the expectation, a convexity
inequality then leads to the following estimate:

E [sup |X; — X;|2]
t<T

oo

< 5(IE {sup U™ (¢, X;) — Um(taxi)z} +E

T
/ ds |[DU™ B (s, X,) — [DU™ B] (5, X1 o>
t<T 0

T 2
+E / ds(|DU™ B, +1) [[o(s,X.) — o(s,X)]|

+ 27| R ()13 )-

Note that thanks to the particular structure of B one has_ DU™B = (D;U™, 044, - - 04,4)*. Hence, thanks
to Theorem 2 and Gronwall’s lemma, there exists Cp := Cr(Cr, 0, n,d,T) satisfying Cp — 0 when T goes to
0 such that

E {sup IX; — Xﬂ < CrE {sup 1X; — Xﬂ + 10T |R™()||% . (1.22)
t<T t<T

Letting m — +o0, since [la — a™|| and ||[F — F™|« tend to 0, it readily follows from (R,,) and the bound

(1.21) in Theorem 2 that ||R™(-)|lcc — 0. Hence, choosing T' small enough so that Cr < 1/2, we deduce
m

that strong uniqueness holds on a sufficiently small time interval. Iterating this procedure in time gives the

result on RT from usual Markov arguments involving the regular versions of conditional expectations, see e.g.

[SVT79]. O

4By “small enough” we mean that there exists a time 7 > 0 depending only on known parameters in (A) s.t. for any T < T
the statement of the theorem holds.
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1.5 Regularization properties of the underlying PDE (1.18): strategy of the proof
and primer

As mentioned above, the regularization properties of the PDE (1.19) given by estimate (1.21) in Theorem 2
are the core of this work. Smoothing properties of linear partial differential operators of second order with
non-degenerate diffusion matrix have been widely studied in the literature for bounded Holder coefficients. In
that setting, the estimates of Theorem 2 are well known, see e.g. the book of Friedman [Fri64] or Bass [Bas97].
For unbounded drift and source terms, those estimates have been recently established in [KP10]. In our case,
the story is rather different since the diffusion matrix Ba of the system is totally degenerate in the directions
2 to n. However, as we already emphasized, the non-degeneracy condition assumed on the family of Jacobian
matrices (Dx,_, Fi)ic[2,n] allows the noise to propagate in the indicated directions thanks to the drift. It can
be viewed as a weak type of Hormander condition. Under such a condition, the operator L™ with mollified
coefficients is said to be hypoelliptic® and it is well known that hypoelliptic differential operators also have
some smoothing properties (see the seminal work of Hérmander [Hor67] or, for a probabilistic viewpoint, the
monograph of Stroock [Str08]). The tricky point in our weak Hormander setting is that the pointwise gradient
estimates (1.21) of Theorem 2 had, to the best of our knowledge, not been established yet, even though such
a setting has already been considered by several authors (see e.g. Delarue and Menozzi [DM10] for density
estimates, Menozzi [Men11], [Men18] and Priola [Pril5] for the martingale problem and also Bramanti et al.
[BCLP10], [BCLP13] for related LP estimates and Bramanti and Zhu [BZ11] for the VMO framework). We can
mention the work of Lorenzi [Lor05] which gives gradient estimates in the degenerate kinetic like case (n = 2
in our framework) when the diffusion coefficient is sufficiently smooth and the drift linear. We point out that
our main estimate in Theorem 2 needs precisely to be uniform w.r.t. the mollification parameter and therefore
does not depend on the smoothness of F,a™, but only on known parameters appearing in (A). Again, this
is what would also allow to transfer those bounds to equation (1.18) from a suitable compactness argument,
extending well known results for non-degenerate diffusions with Holder coefficients to the current degenerate
setting.

To prove this result our main strategy rests upon the parametriz approach see e.g. the work of McKean
and Singer [MS67] or the book of Friedman [Fri64]. Roughly speaking, it is a perturbative argument consisting
in expanding the operator L™ around a good prozy, usually denoted by L™ (we keep here the super-scripts
in m to emphasize that the perturbative technique we perform will concern the system (1.19) with mollified
coefficients). In our setting, the term good proxy relates to the fact that the operator L™ is the generator of the
“closest” Gaussian approximation X™ of X which has generator L™. In our case, such a process is well known
and is the linearized (with respect to the source of noise) version of (1.1) whose coefficients are frozen along
the curve (67';)sef,r) that solves the deterministic counterpart of (1.1) with mollified coefficients (i.e. with

o™ = 04,4) namely, 0:2 =F™"(s,0¢,). This prory process X™ may be seen as a (non-linear) generalization of
the so-called Kolmogorov example [Kol34] and we refer the reader to the work of Delarue and Menozzi [DM10)]
and Menozzi [Menl1] for more explanations. Having this prozy at hand, the parametrix procedure consists in
deriving the desired estimates for the prory and control the expansion error.

In [CARM17], Chaudru de Raynal and Menozzi successfully used this approach in its backward form to prove
weak well-posedness of (1.1) under less restrictive assumptions (the critical thresholds for the Holder exponents
being smaller as indicated above). In that case, the curve along which the system is frozen for the prozy is the
solution of the backward deterministic counterpart of (1.1)). This backward approach is very suitable when
investigating the martingale problem associated with our main system since it allows to control subtly the
expansion error associating precisely the coefficients F; with their corresponding differentiation operator D;
and does not require any mollification of the coefficients. Unfortunately, when trying to obtain estimates on
the derivatives of the solutions of the PDE, the backward approach is not convenient since the corresponding
prozy does not provide an exact density and this fact does not allow to benefit from cancellation techniques
which are very helpful in this context (see paragraph below).

Hence, our parametrix approach will be of forward® form as done in the work of Chaudru de Raynal
[CAR17]. This is, in fact, a non-trivial generalization of the approach developed in the aforementioned paper
where the strong well-posedness of (1.1) is obtained when n = 2. Indeed, the strategy used in [CdR17] is not
adapted to this general case because of some subtle phenomena appearing only when n > 3. In particular, the
singularities appearing when considering the remainder term of the parametrix were in [CdR17] equilibrated
at hand through elementary cancellation arguments, whereas the current approach takes advantage of the

5Pay attention that this is not the case for L whose coefficients do not have the required smoothness in (Tg) to compute the
corresponding Lie brackets.
6Meaning that the freezing curve 6 solves the corresponding ODE associated with (1.1) in a forward form.
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full-force duality results between Besov spaces (see Sections 1.5.2 and 2.2 below). This forward perturbative
approach has also been successfully used in [CARHM20] to establish some weaker regularization properties of
the PDE (1.18) through appropriate Schauder estimates.

1.5.1 Regularizing properties of the degenerate Ornstein-Uhlenbeck proxy

When exploiting such a forward parametrix approach, a good primer to understand what could be, at best,
expected, consists in investigating the regularization properties of the prozy operator L. To be as succinct as
possible, let us consider the case where (Zt)tzo is the generator of a degenerate Ornstein-Uhlenbeck process
(Xt)tzo with dynamics:

dX; = Ay X dt + BdWy, (1.23)

where A; is the nd x nd matrix with sub-diagonal blocks (a;;—1(t))ic[2,n] Of size d x d and 04,4 elsewhere. In
particular,

0u.a 04.4
a2’1(t) Od,d - . Od,d
A, = 040 as2(t) Oaqa a Oaa | . (1.24)
: 04q - - :
04,4 e 04d ann—1(t) 044

The entries (a;;—1(t))ie[2,,] are uniformly in time non-degenerate elements of R* @ R? (which expresses the
weak Hormander condition). The corresponding generator L; writes for any ¢ € C3(R™, R):

Lip(x) = (A De(x)) + 5 A, 9().

In such a case, each component @;, 7 € [1,n] of the solution U of the corresponding system of PDEs

(0 + LUt x) = F(t,%), (1.x) € [0,7) x B, 125
U(T,x) = 0,gq, '
where F is a non-linear (non-mollified) source satisfying (T3), writes
T
u;(t,x) = —/ ds/ dyF;i(s,y)p(t,s,X,¥). (1.26)
¢ Rnd

Above, p stands for the transition density of the Gaussian process (Xv)vzo with dynamics (1.23). Using the
resolvent associated with (A,)yept,s), i-e. OsRst = ARst, Rt = Lnand, the above equation can be explicitly
integrated. Precisely, for a fixed starting point x at time ¢:

X, =Ry x + / R, ., BdW,. (1.27)
t

Hence, at time s > t the covariance matrix of the random variable X, writes as I~(S,t = j;s duf{S,uBB*f{:)u.
From (1.27), the density at time v = s and at the spatial point y therefore writes:

1 1/~ . _
p(t,s,x,y) = . _ exp [ —=({ (Ks¢) ' (Resx —y), Ry yx — ) 1.28
B y) PEERRIINE p( 2<( ) H(Rex —y), Ry y> (1.28)

Note that the resolvent also appears in (1.27) and in the density. Since the drift in (1.23) is unbounded,
the term R, ;x actually corresponds to the transport of the initial condition x through the associated deter-
ministic and linear differential system. It is well known, see e.g. [DM10] and Section 2.1 below, that the

covariance K, enjoys what we will call a good scaling property. Precisely, for a given T > 0 there exists
C .= C((AU)UE[QT],T) > 1s.t. for any € € R™?,

C_l(s - t)_llr]rsfté‘2 S <Ks,t€v£> S C(S - t)_1|']rsft£|2v (129)
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where for any u > 0, we denote by T, the intrinsic scale matrix:

ulgqg 0gaq -+ Oggq
21 :
T,=| %4 Wlia Dud : (1.30)
04,4 oo 0gq u'lgg

Importantly, the good scaling property stated in (1.29) indicates that, for a given initial time ¢ and for each

€ [1,n], each R%valued component X has typical fluctuations of order (s — ¢)*~'/2 which correspond to
thosc of the (i — 1) iterated integrals of thc Brownian motion. Accordingly, we derive that the frozen density
p also satisfies the bound

_ C R
Pt Y) < Ty e (~C s = OIT (Raax = )IP) = Chor (t,5,%,¥),
s—1) =z
for some C := C(C) such that [;..dypc-1(t,s,x,y) = 1. Similarly, the derivatives of p will be bounded
by a density of the form pc-1 up to an additional multiplicative contribution reflecting the time-singularities
associated with the differentiation index. Precisely, there exists C' s.t. for any [ € [1,n], r € {0,1}:

C
T < _ _ _ 2
IDrDpltos x| < gexp( C™H(s =~ DI, (Ryx — y)?)
C R
S (S_t)(l_§)+gpcfl(tasaX7Y)’ (131)

up to a modification of C for the last inequality. We refer to the proof of Proposition 5 for a complete version
of this statement.

To prove estimate (1.21) of Theorem 2 for the current system (1.25), it follows from the specific structure
of the matrix B that we have to estimate for any I € [1,n] the quantities Dy, D} ;(t,x), 7 € {0,1}. From
(1.31), we thus have

T
|DXLD;1ﬁZ(t’X)| S C7\(/ dS/ dY‘FZ(say)KS - t)i(lié)iéf)cfl(ta S, X, Y) (132)
t Rnd

We now face two problems: first the F; are unbounded, second the above time singularity is, as is, not
integrable. Let us consider the worst case i.e. when r = 1. To smoothen the time singularity, the main
idea consists in using the regularity of the source term F; exploiting precisely the fact that, once integrated
through the variables y; to y,, the transition density p does not depend on the variable x; anymore. This
is due to the structure of A in (1.24), which in particular yields that the resolvent (Rs,t)ogtgng is lower
triangular. Precisely, denoting for conciseness by 6 (x) = Rs,tx (which is coherent with the notation below
when handling non-linear flows), we write:

/ dyl:l—lFi(t7y1a"'ayl—170.lst(x)7'"aegt(x))Dxlel le:nﬁ(t75aXaY) =0.
R(-1)d ’ ’ R(n—(1—1))d

This is what will be called a cancellation (or centering) argument in the following. When using this property,
we obtain that

|Dxlel a; (¢ x)|

ds dy y) — Fi(t,yl,...,yl,l,als,t(x),...,Hg’t(x))) Dy, Dy, D(t,8,%,¥)|.

Rnd

We thus obtain from (1.31):
[ Dx, Dx, i (t, %)

< C/ ds/ ddy‘F $,Y) (t,yl,...,yl_l,OlS’t(x),...,Hgﬁt(x))‘(s—t)_(l_%)_%ﬁcfl(t,s,x,y).
R!L
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Then, using the regularity assumed of F;, which satisfies (Tj3), we get that for some constants C,C' (which
possibly change from line to line)

|Dx1szﬁi(t X)'

é/ ds/ dyZm—e (1 (s — )03 o (t,5, %, )

SC/ ds/
Rwd

<C/ dS/ dyz S—t (l_7 2+6J(] pC (t,S7X,y),
Rnd

7=l

(

<s — )52 (s — 1)~ =273 po (8,5, %,y)

T N1
2

thanks to Remark 4 below for the derivation of the last inequality. Note that the above term is integrable only
if for each j € [l,n], —=(1 —1/2) = 1/2+ B;(j — 1/2) > =1 <= B; > ((2l —2)/(2j — 1)). This condition
actually holds if for any i € [1,n], 8; > ((2i —2)/(2i — 1)) which is exactly the infimum assumed in (Tg). As
we can see, there is no hope to obtain better thresholds with such a strategy. This is the reason why we said
that these thresholds are almost sharp for the approach used here.

Remark 4 (On the absorption of spatial differences by the prozy density). From a technical viewpoint, we also
insist here that in the above inequalities in (Abs), we explicitly made the contribution (s—t)~U=1/?|y;—6) ,(x)|
appear since it precisely corresponds to the absolute value of the j* entry of the vector (t—s)'/?T; 1 (8,+(x)—y)
which also precisely appears with the current notation 0, (x) = f{s}tx, in its square norm, in the off-diagonal
exponential bound of (1.31). This is why for the last inequality this contribution disappeared, i.e. it can be
absorbed by the exponential (again up to a modification of the concentration constant C which is modified at
most a finite number of times).

1.5.2 Back to the perturbative analysis

Let us now briefly explain what happens when one wants to control the approximation error in the forward
parametrix expansion. We now come back to our general setting and denote by p™ the transition density of
a suitable Gaussian proxy process X™ with generator L™. Observe that equation (1.19) can be equivalently
rewritten as:

(D™ + L) (t,x) = F*(t,x) — (L — L) u*(t,x), (t,x) € [0,T) x R™,
u™(T,x) = 04, i€ [1,n].

Since u?(t,x) is smooth (see the arguments following (1.19)), so is the term (L — L7*)u’™ (¢, x) which appears
above as part of the source.

Hence, we derive from the above equation and the Feynman-Kac formula the following representation. For
each regularized component ul”, i € [1,n] of our solution U™ of the systems (1.19) it holds that for any
(t,x) € [0,T] x R™

T
u(t,x) = / ds [ dy{ = FP(s,y) + (LY = LI (s,3) }5" (15, %.¥). (1.33)
t R

This corresponds to the so-called first order parametrix expansion of the initial equation (1.19) around the
prozy generator L™. Above, the additional term in the right-hand side is, in comparison with (1.26), pre-
cisely the approximation error due to the parametrix expansion. It thus appears that the solution has an
implicit representation which makes its derivatives themselves appear. Hence, when differentiating the above
representation to derive the estimate (1.21) in Theorem 2, we obtain bounds that depend themselves on the
derivatives of the solution. We then have to estimate each derivative appearing in the right-hand side and
use a circular argument. Namely, when differentiating u*(¢,x), we will obtain the required estimate provided
the multiplicative constants associated with the terms |[Du;" || and |[[D1Du;™ ||, that will appear in the
corresponding upper-bound for the above right-hand side, are small enough (see also Section 2 of [CdR17] and
Section 2.2 below for details).
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Moreover, as we have already seen, in order to smoothen the time singularity appearing when we apply a
cross differentiation operator in the I** and 1 direction to the term ftT ds [ana dy (L™ —L™)uy(s,y)p™(t,5,%,y)
corresponding to the approximation error, we will have to center this term around the derivatives of the solu-
tion itself (in the sense given in the above discussion). This procedure allows us, thanks to Taylor expansions,
to weaken the singularities and provides integrable (in time) terms. The dramatic point is that, when do-
ing so, our bound involves the cross derivatives DyD;jul", £,j € [1,n] whose control in supremum norm is,
as suggested by the discussion done in the explicit case of a simple degenerate Ornstein-Uhlenbeck process,
definitely out of reach as soon as £ > 1. In fact, as suggested by the results in [CdR17], the only thing we
could hope is that the gradient in the degenerate directions viewed as a function of the degenerate variables,
ie. Donul™(t,x1, ) := (Doul(t,x1,),...,Dpul(t,x1,-))" for any (t,x1) € [0,7] x R%, belongs to an ap-
propriate anisotropic Holder space. Note importantly that such spaces can as well be viewed as particular
cases of anisotropic Besov spaces with corresponding positive regularity indexes. The main idea is thus to use
an integration by parts argument in order to rebalance one differentiation operator from the solution to the
remaining terms coming from the differentiation of (1.33), which in particular involve the coefficients of the
operator L™ — L' and contain the time singularities coming from the derivatives of the frozen Gaussian kernel
™. As the coefficients of the operator L™ — L™ are assumed to be only Holder continuous, their generalized
derivative should belong to some anisotropic Besov spaces of negative regularity index, strictly bigger than —1.
To tackle this problem, our main idea, in order to balance the lack of differentiation property of the remaining
terms, consists in putting precisely in duality the gradient D, ul*(¢,x1, ), belonging to an anisotropic inho-
mogeneous Besov space with positive regularity exponent and the remaining terms, belonging to an anisotropic
inhomogeneous Besov space with negative regularity exponent. We refer to the proof of the main Theorem 2
in Section 2 for details and to Proposition 3.6 in the book of Lemarié-Rieusset [LR02] for duality results on
Besov spaces.

We are thus led to control on the one hand the Besov norm with positive exponent (or equivalently the
Holder norm) of the derivatives of the solution, see Lemma 11, and on the other hand the Besov norm with
negative exponent of the remaining terms in (1.33) (involving the coefficients of the operator L™ — L™), see
Lemma 10. The first control (Holder norm) is crucial and appears to be quite delicate. Indeed, due to the
implicit representation (1.33), this estimate also involves Hélder norms of the full gradient Du}". This again
reflects the circular nature of the arguments needed to derive the result.

Let us close this discussion coming back to Remark 1. As we emphasized, in comparison with the non-
degenerate result, Theorem 1 should hold assuming that the drift F; belongs to a suitable L, — L, space w.r.t.
time and the non-degenerate variable x;. We are convinced that this is the case but we deliberately decide not
to tackle this setting in order to keep this work shorter and more coherent. Indeed, in this case, the difficulty
comes from the estimate on the second order derivative in the non-degenerate direction of the first component
of the solution U™, namely Dy, Dy, uf* (which is a part of the main estimate (1.21) in Theorem 2). The point is
to establish for this quantity an L, — L,, control. This cannot be derived from the previously described approach
and requires harmonic analysis techniques (see also [Kry01]). The main problem to establish the estimate is
mainly due to the source term, which is actually F;. To prove it, the main idea consists in exploiting the
results of Menozzi [Men18] (where such an estimate is proved under the assumption that the drift is Lipschitz)
through the tools developed in [CdRM17] (backward parametrix approach for drift F whose first component
may be in L, — L, and the other ones in Holder spaces). Then, the Zvonkin transform should also be tuned
a little bit following the strategy developed by Veretennikov (see e.g.[Ver80] and [FFPV17]). Such a program
would surely toughen our paper without adding any surprising result and we prefer to focus on the novelty of
the approach based on duality results for Besov spaces and the generalization of the strong uniqueness result
to the whole chain (i.e. to any arbitrary n > 1) rather than drowning the reader into additional technical
considerations.

2 Perturbation techniques for the PDE: proof of Theorem 2

In order to keep the notations as clear as possible, we forget the superscript m standing for the mollifying
procedure and we suppose that the following assumptions hold:

Assumption (AM). We say that assumption (AM) holds if the assumptions gathered in (A) hold true

and the coefficients F, a are infinitely differentiable functions with bounded derivatives of all orders for a and
greater than 1 for the coefficient F.
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About the constants. We importantly specify that all the constants appearing below do not depend on
the (omitted) smoothing parameter m, but only on known parameters from assumption (A) and possibly on
T > 0.

In the whole section, we consider a fixed final time 7" > 0 which is meant to be small, i.e. T < 1. Let us
consider for this section a generic PDE with generator corresponding to (1.17) and scalar source f having the
same Holder regularity than the drift terms in (1.1) (i.e. the scalar function f below can be any of the entries
of the R%-valued (F;);c[1,n) in the dynamics (1.1)). Namely, we concentrate on
(Ou + Lyu)(t,x) = —f(t,x), (t,x) € [0,T) x R,

(2.1)
u(T,x) =0,

where (L¢)¢>0 is defined in (1.17) and stands for the generator associated with (1.1) when the coefficients are
smooth.
The key result to prove strong uniqueness for the SDE (1.1) is actually the following theorem.

Theorem 3 (Pointwise bounds for the derivatives of the PDE (2.1)). There exists v := v((A)) > 0 and
C:=C((A)) >0 s.t.
[Dulloo + [D(D1u)]loe < CT7, (2.2)

with obvious extension of the definition in (1.3) to the current scalar case.

The proof of Theorem 3 is performed in Section 2.2 through the forward parametrix approach consisting
in considering a suitable prozy semi-group around which the initial solution of (2.1) can be expanded. To this
end we first investigate in Section 2.1 below the linearized Gaussian process deriving from the dynamics in
(1.1) which will provide the suitable model for the parametrix.

Proof of Theorem 2. Theorem 2 is then a direct consequence of Theorem 3. Precisely, recalling that U =
(uy,...,u,) where for ¢ € [1,n], u; solves (1.18), we derive that ul, j € [1,d] solves (2.1) with f(t,x) =
ng (t,x). Theorem 2 thus follows in whole generality applying Theorem 3 to each component of the solution
of the systems (1.18). O

2.1 Gaussian proxy and associated controls
2.1.1 Linearization of the dynamics

Fix some freezing points (7,€&) € [0,7] x R"®. For fixed initial conditions (t,x) € [0,T] x R™ a natural
linearization associated with the mollified version of (1.1) writes

dX{7® = [F(0,0,:(€) + DF(v,0,,(8)(X® = 0, ,(¢))]dv + Bo(v,0,-(€))dW,, Yo € [t,s],
X(™8) = x (2.3)
where )
01),7(5) = F(U’BU,T(g))a v e [O’T]’ 07—,7(5) =¢, (2'4)

and DF(v,-) denotes the subdiagonal of the Jacobian matrix DF(v,-). Namely, for z € R"4:

04 044
D, Fy(v,z) 04,4 E e 04,q
DF(v,z) = 04,4 D,,F3(v,22.,) 0g4 04,4 :
: 0.4 ' : :
04,4 e 040 D, Fpn(v,2n-1,2,) 0Oqq

In the following, we will often refer to the Gaussian process (X&T’E))vzt introduced in (2.3) as the proxzy process.
This terminology comes from the fact that it is a natural, well controlled object, meant to locally approximate
the original dynamics in (1.1).
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We explicitly integrate (2.3) to obtain for any v € [t, s]:
X(r)

= RO (0, t)x + / RO (0,0) (P16, (€)) ~ DF(1.0,,,(€)0,.-(&)) + / RO (0, 0) Bo(u, B, (€)W,

t

= m{ ¥ (x) + / R (0, u) Bo (u, 0, ,(£))dW,, (2.5)
t

where (R(78) (v, u));<y.v<s stands for the resolvent associated with the partial gradients (DF (v, 0,,-(§)))velt,s)
which satisfies for v € [t, s]:

0,R™8) (v,t) = DF (0,0, ,(&)R™8 (v,1), RTE(t,1) = Lasna. (2.6)

Note in particular that since the partial gradients are subdiagonal det(R(74) (v,t)) = 1.
(7,8)

Also, for v € [t,s], we recall that m,;>’(x) stands for the mean of X and corresponds as well to the

solution of (2.3) when o = 0 and the starting point is x. Importantly, we point out that x € R"?® m(T’g)(x)

v,t
is affine w.r.t. the starting point x. Precisely, for x,x’ € R"?:

mfff)(x +x') = R(% (v, t)x" + mgff) (x). (2.7)
It is also useful to note that, since from (2.3)

dm{® (x) = [F(v,8,.(€)) + DF(v,0,.(6)(m;% (x) — 6, .(€))]dv, m{;¥(x)=x,

U7

it holds from (2.4) that for (7, &) = (¢,x):

d(m{7(x) — 0,:(x)) = [F(v,0,,(x)) + DF(v,8,,(x))(m}7" (x) — 0, (x))|dv — F(v,8,,(x))dv
= [DF(v,0,,(x))(m{}(x) - 0,.(x))]dv,
m{79(x) — 0,4(x) = 0.

Therefore, the Gronwall lemma yields:

{8 (%) (e =) = M7 (%) = 0,,4(x). (LF)

Namely, when freezing the parameters at the initial time ¢ and the starting spatial point x, the linearized flow
mff”tx) (x) and the non-linear one 8, ;(x) coincide.

From the non-degeneracy of o and the Hérmander like condition, the Gaussian process defined by (2.5)
admits a density (78 (t, s, x, -) which is suitably controlled (see Proposition 5 below and for instance [DM10],
[CARM17]).

We first give in the next proposition a key estimate on the covariance matrix associated with (2.5) and its
properties w.r.t. a suitable scaling of the system.

Proposition 4 (Good Scaling Properties of the Covariance Matrix). The covariance matriz of X8 in (2.5)
writes:

v
Kgff) = / duR™8) (v, u) Ba(u, 0, +(€))B*R™) (v, u)*.

t
Uniformly in (1,€) € [0,T] x R™ and s € [0,T)], it satisfies a good scaling property in the sense of Definition
3.2 in [DM10] (see also Proposition 3.4 of that reference). That is, for any fited T > 0, there exists Cag :=
Cos((A),T) > 1 s.t. forall0 <t <v<s<T, for any (1,€&) € [0,T] x R"4:

V¢ e R™, Cri(v— )7 Tu_iC? < (KUP¢,¢) < Cas(v — )7 TuiCP?, (2.8)

where we again use the notation introduced in (1.30) for the scaling matriz Ty _;.

Under (A), Proposition 4 readily follows from Proposition 3.4 in [DM10] (see also the scaling Lemma 3.6
therein). A complete proof is provided in Appendix C.1.1 below.
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Remark 5 (On some important consequences of the good scaling property). We state here some rather direct
yet important controls that follow from Proposition 4.

- Setting for any s € (¢,T),
K{m&* = (s - )T, L KGO, ()
it follows from (2.8) that for any ¢ € R"4:

CrHleP < (RO, ¢) < ColC? = 3C == C((A).T) 2 1, O~ < det(RU9™) < C. (Snp)

- Equations (S) and (Snyp) then readily give that:

C_f—l(s o t)nzd < det<f<gj—££)) < C_’(S _ t)nzd7 (D)
as well as, for any ¢ € R™,
CodICP < (KY)71¢,€) < Casl¢P = Coils = OITACP < (RTY)71¢,€) < Cas(s — DT ¢
(SND)

This last bound will be of particular relevance to control the tails of the Gaussian density of XFJ’E).

We now state some important density bounds for the linearized model.

Proposition 5 (Density of the linearized dynamics). Under (A), we have that, for any s € (¢,T] the random

£)

variable X% in (2.5) admits a Gaussian density p"8) (t, s,x,-) which writes for any y € R™:

1

5(7,€) —
p (t,S,X,}’) T n
(2m) 7 det(K,

1 (T — T, T,
s o (5 (KGO mP0) -y mif 0 -y)),  (29)
5))2 2

with Kgff) as in Proposition 4. Also, there exist C := C((A),T) > 0 and C := C(C) s.t. for alll € IL, 7],
q, v € {0,1}, we have:
C

DY DY (T8 (t,s,x,y)| < ( t)ﬁ+(l—l)q+£ exp (_C—l(s - t)|']1‘;1t(mg,7££)(x) B y)’2)
S — p) 2 2

¢ (7,8)
mpc 1 (t, $, X, Y)- (2-10)

Proof. Expression (2.9) readily follows from (2.5). The control (2.10) is then a direct consequence of Proposition
4 for ¢ = r = 0 (upper bound of the density). Differentiating w.r.t. x recalling from (2.7) that x — m(T E)( )

is affine yields:

D 07915, y) = =R (5,0)] (R (mT(x) —y)] 57915, x.9), (2.11)
where we denoted here for a vector z = (z1,...,2,) € R", [z]; = z; for readibility. The point is now to use
scaling arguments. We can first rewrite with the notations of (S):

(.) 5.t

RO (5,0)] " (KT = (s — ) [RTO (5,1)] T, (K, )T, (2.12)

Put it differently, KY’Q’” can also be seen as the covariance matrix at time 1 of the rescaled process ((s —

t) % Ts—jtxtax: (T,E)

t+v(s—t))ve[0,1]' From the good-scaling property of Proposition 4, it was already observed in (Syp)

that KET’E)’S’t is a non-degenerate bounded matrix. From (2.6), a similar scaling argument yields that the
resolvent R(7)(s,t) can also be written as:

- 1 [ (T8)st *
RO (s, )] = T, [R (1,0)] T,_,, (2.13)
=~ (1,8),s:
where again R (1,0) is the resolvent at time 1 of the rescaled system associated with (2.6), i.e. for any
- = (7,6),8,t N
€[0,1], T, [RTO(t +v(s — 1), )]*'T, L, = [R (v,0)]". From the analysis performed in Lemma 5.1
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in [HM16] (see also the proof of Propositions 3.3 and 3.4 in [DM10]) one derives that there exists C s.t. for

= (Tr€)7Sat * ~
any ¢ € R™ | [R (1, 0)] ¢| < C1|¢|. We refer to Appendix C for a complete proof of this last bound (see

equation (C.3)). Equations (2.11), (2.12) and (2.13) therefore yield:

|ijﬁ(7—’€)(t757x7y)|
= (7,8),5:t * = -1 1 (1,€)
R0 (K (- 0T 0~ y)

a4l 1 — T, ~(T
< CO(s—t)7+5(s — )3T (mT¥ (%) — y)[T9 (¢, 5,x, y).

ﬁ(Tvs)

IN

(S —t)_‘j+% (t,s,x,y)

J

From the explicit expression (2.9), Proposition 4 and the above equation, we eventually derive:

| Dy, 979 (L, 5, %, )]

(S_Ct')jé ((S — t)% |’H‘;jt(mthE)(X) _ y)|>
c (7,€)

< mﬁcll (t,8,%x,y),

e (<O (s~ DT (mT () y)P)
(s—t) =2

which gives the statement for one partial derivative. The controls on the higher order derivatives are obtained
similarly (see e.g. the proof of Lemma 5.5 of [DM10] for the bounds on D2 p("8)(t,s,x,y)). O

Remark 6. When the freezing couple (1,&) corresponds to the couple (t,x), where t is the starting time and
x the starting position of X (78 we importantly derive from (LF) that (2.10) can be specified as follows:

C

DI DT ~(71,€) t, s, X, O =(tx) <
| 1 xlp ( y)|( 15) (tv ) — (s—t)#Jr(li%)qu%

X

exp (~C 7 (s = DT (00000 = ¥)[F) - (Ga)

Now, let us state a useful control involving the previous Gaussian kernel which will be exploited in some
cancellation techniques.

Proposition 6. Forallk € [1,n],0<t<s<T, (x,&) € R™ xR" and z € R the following identity holds:

/R dy Do 57O (15, %,3) (2, (v — mE 0 ) = = (2.14)

Proof. From Proposition 5, we have [g,.4 pTE (L, 5, %, y)(y—mg;’g)(x))kdy = 04. Differentiating this expression

w.r.t. xj and using the Leibniz formula (recalling as well the identity (2.7) which yields Dx, [mgf) X))k =

(RO (s, ) = Lag) gives (2.14). =

2.1.2 Density and associated inhomogeneous semi-group: regularization properties

For fixed (t,x) € [0,7T] x R™, we give in this section some important properties concerning the regularization
effects in time of the density p(™%)(t,s,x,-), s € (t,T] and the associated semi-group. From now on, for
notational simplicity, we will write with a slight abuse of notation p¢(t, s,x,y) := p*4)(t, s,x,y), i.e. we omit
the freezing parameter in time when it corresponds to the considered starting time.

Density. The following result will be thoroughly used to derive some key bounds of the sensitivity analysis
performed in Section 2.2.

Lemma 7 (Regularization effects for the density). There exists C := C((A),T) s.t. for all y1,72 € (0,1],
e {0,1}, le[1,n], j,k € [1,n],

1

(v = 0.,:0)), || (v = 052(3)),|* < C(s = )72~ (-2 tmG=D)tmlh=d),
(2.15)

[ ay| DD st x.y)|

¢=x’
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Proof. Equation (2.15) actually follows from (G ) observing that:

/RM dy‘DxlDfllﬁg(S, t, X,y)’g N =05200), " [y = 054(x)) [

/Rnd dy (o t)"ﬁd0+(l—§)+g exp (*C’fl(s — )| T2 (0:,(x) —y) |2)
x (M)”l(s — 1)) x (M)%(s —¢)2k=3) (2.16)

(s—t)i—2 (s —t)k—2

where we normalized the j*® and k' entries at their corresponding time scales in order to absorb them in the
off-diagonal bound of the density. Namely, since:

(0) = )1\ (18.s(x) ~ ¥l - .
() () < 16— 000460 — )P+

we eventually derive from (2.16) that up to a modification of C', which can be chosen uniformly w.r.t. 71,72 €
(0,1] :

/ dy}Dx,Dilﬁf(s,t,x,y)’ |(y — 05.:(x)) |
Rnd ﬁ X J

g:x| (y - es,t(x))k |72

C _ 2 1 1
< d —C Ys—1t)|TL (0, _ —pym—3)+r2(k—3)
- /Rnd y(s N P ( (s = ) T.2 (854 (x) —¥)] ) (s-1) ’ ’

< O(s— ) 3= DEnU-D+nk-1)
which precisely gives (2.15). ]

Semi-group. Fix t € [0,7], £ € R®. With the notations of the previous paragraph, we introduce the
following inhomogeneous semi-group associated with (2.3) for 7 = t. Namely, for all s € (¢t,7], g € Bjin(R"%, R)
(space of measurable functions with linear growth), x € R"¢:

Piox) = [ ayi Ot s, x o). (217)

One can derive from Proposition 5 the following important centering and regularization result.

Lemma 8 (Centering and Regularization effects for the inhomogeneous semi-group). Let f: R" — R be a
9-Hélder continuous functions where ¥ := (91,...,9,) € (0,1]" is a multi-index and for i € [1,n], ¥; stands
for the Holder reqularity of f in the variable x;.

- Centering arguments. For alll € [1,n],k <1, 0<t<s<T, x,€€ R"™ and any a € R™, it holds that:
szﬁs%t (f('l,k*la ak:n)) (X) =0. (218)

- As particular cases of the previous property, we have that there exists C := C((A),T) s.t. for alll € [1,n],
x, €& € R4
Do, D P ()] < C Y [fs(s o, (s — ) 703072, (2.19)

i=l
n

D, PEFx)] < D [fi(s.)]o, (s — 1)~ 6—2),
j=l

with the notations introduced in (1.2).

Proof. Centering arguments like (2.18) will be a crucial tool in the analysis below. To justify such an identity,
write:

Psg,t (f('l:kflvak:n)> (X) - / dyﬁ t787x7Y)f(y1,k71aak:n)

Rnd

5
= / ., dyﬁs (t7 5,X,y + mgt’tg) (X))f(yl,kfl + (mgff) (X))13k717 ak:n) .
]Rn
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Note now from (2.9) that p&(t, s,x,y + m(75 €)( )) does not depend on x. Observe as well that (mgff)(x))lzk_l
does not depend on x;. Thus, the right- hand side of the above equality does not depend on x;, which implies
(2.18).

Let us now prove (2.19). The idea is to use first a centering argument w.r.t. the variables [ to n. Namely,
from (2.18) and Proposition 5, it holds that for any a € R™?,

DDy [PEf(5.)] 00| = | Do D [PE0(£(5:9) = F 5,11, a0a) ) | ()

S C(S - t)7(171/2)71/2 . dyﬁg—l (ta S5, X, Y)’f(‘S:y) - f(S, Yi:i-1, al:n)
Rn

n

C(s — t)*(lfl/Q)*l/Q Z[fj(s’ N, /R . dyﬁg_l (t, s,x, y)‘yj —a;

J=l

9;

IN

Taking now a = mgtf)(x), we derive from (2.10) that:

. _ " 0
D D [Pt (5] ()] < s = )7V sl [ i (o) (v =m0 o),
j=l
n L
< CZ[fj(S, e, (s — )~ G=3)
j=l
which gives the first bound in (2.19). The control for |Dxlﬁ§tf(x)| is derived similarly. O

We state in the lemma below a useful control to obtain through Lemma 8 some smoothing effects for the
degenerate part of the operator. The statement readily follows from (Tg) and (H,).

Lemma 9. From the smoothness assumption on the drift coefficient in (Tpg), there exists C := C((A)) s.t.
for all £ € [2,n], k € [¢,n+ 1], and for any (s,x,a) € [0,T] x (R"?)2:

‘ (FZ(Sv Yo—1:k—1, ak:n) - F[(S, affltn) - lelFf(sv affl:n)(y - a)g_l)

k—1
: C{ Z; {[®2)5(s. g, |(y — @)1 }+[(DerFe)er (s, ))]yly — a)e—1|1+n},

with the convention that for k =n—+1, Fo(s,¥r-1:k-1,8k:n) = Fe(s,yr-1:n).

2.2 Control of the sensitivities: proof of Theorem 3

To prove Theorem 3, the idea is to expand the solution of the PDE with regularized coefficients around a
suitable prozy, as explained in Section 1.5 (see the connection between equations (1.19) and (1.33)). The prozy
used here is the Gaussian process introduced in Section 2.1 for a suitable freezing parameter £ to be specified
later on and whose generator is given by, for all ¢ € CZ(R™ R) and (¢,x) € [0,7] x R"?,

ES000) = (F(1,004(€)) + DF(5,0,4(6))(x ~ 04.4(6)), Do)
+5t1(00° (1,04,(6)) D2, ().

Then, the Duhamel formula (or first order parametrix expansion) yields:

ult, x)
= /Tds[ +/Tds L—LE))(a)}(X)
-/ Tds[ X+ [ " [P, ((Fu(s,) — Pa(s.0.0(€)), Dru(s, 1)) )

Pt, ( > {(F (5,05,4(€)) — Di—1Fi(s,05,:(£))(- — 05,4(§))i—1), Diu(s, )>>1 (x),

(2.20)
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for any &€ in R™®, according to the notations introduced in Remark 2 for the entries (Fi)ieqi,ng of F.

To establish (2.2) we need to differentiate the above expression w.r.t. (x;)ie[i,n) and then w.r.t. xi.
Differentiating first this expression w.r.t. x;,1 € [1,n] we obtain:

Dy, u(t,x)

[ D [PE0r(6.] 00+ [ s [P (2~ ) 5.] 00

{/tTds | PEs)] (x )+/tTdsDx, [P (((Fa(s,) = Fi(s,0,,4(6))), Dru(s,)) | (%)
+f " 45Dy, 75 (570 (066~ alo,0.00€0) D8t ] ) <x>}

T
+{/t dsDx, | P
= {/tTdsZka 5,X } {/ dsIf (s, x } / dsHE (s, x) / dsIf (s, x) (2.21)

The term H f(s,x) gathers the sensitivities w.r.t. x; of the source term and the non-degenerate part of the

2
¢ (Z Fi(5,04.0(6)) — Di1Fi(s5,0,.4(6))(- — 0,.4(€)): 1>,Diu<s,->>)]<x>}

difference of the operators, whereas If(s,x) precisely gathers the sensitivities w.r.t. x; of the degenerate
part of the difference of the operators. We will now start from the representation (2.21) which we will again
differentiate w.r.t. the non-degenerate variable x; in order to prove the estimates of Theorem 3 concerning the
second order derivatives which are the trickiest ones. Indeed, as it has been succinctly explained in Section 1.5,
when differentiating the kernel associated with the frozen semi-group defined by (2.17) we generate an a priori
not integrable time singularity which then needs to be smoothened by using, among others, tools developed
in Lemma 8 (centering or cancellation arguments). The worst case then corresponds to the higher order of
differentiation, namely Dy, (Dxlu(t,x)) which, as suggested by Proposition 5, generates a time singularity of
order 1/2+4 (I — 1/2) in the time integrand of the r.h.s. of (2.21). We then only concentrate on this term and
omit the proof of the statement concerning the boundedness of the gradient Dy, u(t,x) which could be shown
more directly.

The proof will be divided into two parts: we first handle the source and non-degenerate part of the operator
(i.e. the estimate for Dlef(s,x)) and then the degenerate part (i.e. the estimate for Dxlfls(s,x)) which is
a bit more involved.

Source term and non-degenerate part of the operator: estimates for (Dy, HS(s,%))e—x. We first
focus on the source term and the derivatives w.r.t. the non-degenerate variable x;, three first terms in the
r.h.s. denoted by Hfl(s,x),Hf2(s,x), HlE?)(S,X) in (2.21), taking &€ = x after the additional differentiation.

For each [ € [1,n], one readily derives from (2.19) in Lemma 8 that for the source term”:

D H (s:3)| _ = | DDy [P, 7 (5,)] ()] L_x < cim(s, gy (s =)D, (2.22)

Those terms are integrable in time as soon as

Bi(j — %) —1>-1, je[l,n]<pec (Zj:fl] : (2.23)

Similarly, from (2.20), (2.21), for the drift associated with the non-degenerate part, we first rewrite from

7Observe that for this contribution, from (2.19) the bound would hold for any freezing parameter £&. We choose here to take
& = x for the compatibility with the other terms (Dx, Hl 1 (8:%))ke{2,3) for which this specific choice is indeed needed.

22



the centering properties of Lemma 8:

DlefQ(s, x)‘

£=x

= | DD [PE ((Fi(s.2) = Fal5,0,0(€)), Dyucs, )| ()] L_

IN

D D, [P, ((Fi(s,) = Fis, -1a-1,045(€)), Dau(s, ) ) | () L

| Do D [PE, (Fr(s, 1m0, 055(€)) = Fu(s,0..4(6) (Druls, ) = Druls, -14-1,055(6))))) | (0| ] )

Expanding the semi-group yields

‘DlefQ(s,x)‘

£=x

< | dy|Dx Dpf(t, 5, %, ) le=x [Fi(s,y) = Fi(s,y11-1,057 (%)) [ Druls, y)|dy
Rn

+ ddY|Dx1 DXzﬁE(t7 S, X, y)|€=x ’Fl(sa Yi:i-1, Oifg(x)) - Fl(sa Os,t(x))HDlu(Sa y) - D1u<s7 Yi:i-1, 9i,¥(x))’
R”L

Hence,

‘DlefQ(s,X)’

=X

< (S IDalal P15 05: s, [ a¥1D Do oot 9) el B () — ¥, 1
]:l n

n -1
+ Z Z ||D1Dju||00[(F1)k(s7 ')]ﬁk /]Rnd dlexl Dxlﬁg(sv L, X, y)|€:X|(05,t(X> - y)k'ﬁ)c |<65,t(x) - Y)j|>'
=1 k=1

We then conclude from equation (2.15) of Lemma 7, taking v1 = f5;,72 = 0 for the first terms and
v1 = 1,9 = B for the second ones, that

’DlefQ(s,x)‘

- (2.24)
n . n -1 ) 4

< C(Z ID1uloo[(F1);(s,)]g; (s = )~ 5072) 3N "Dy Dyl ao [(F 1) (s, )]y (s — £) 7= 2) 02 ) :
g=l j=l k=1

leading precisely to the same integrability thresholds of equation (2.23) and assumption (T3) (as for the source
term). The idea behind this control is crucial. We first handle, with the sole Holder properties of the drift and
the supremum norm of Dyu, the variables which are at a good smoothing scale w.r.t. the induced singularity.
For the remaining term, which exhibits for the drift non-sufficient smoothing effects, we then additionally

exploit a cancellation argument involving the gradient of the solution itself, which consequently makes the
cross derivatives appear.

Eventually, we get for the diffusive part:

Do, = [P [P (G (0060 ~ a(s.0,€) DRuts. ] ) | 0

=X

-
< D [P (310 [(006:9) — s a1, 02500) D2uts )] ) | 0

E=x

D D [P (70 [(0l001001,642€) — s 0..00) DFuts. ] )| 00

£=x

. ’Dlef?)l(s, x)L:x + ‘Dleﬁ?’Q(s,x)’ (2.25)

E=x
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The term |D,(1Hl’$31(s7 X)|g=x is already centered at the appropriate scales, i.e. from variables [ to n. Recalling
that a is Lipschitz continuous, write:

|DX1H1€31(57X>‘€:X =

_/I;d dny1 Dxlﬁs(ta S, X, Y)%Tl" [(G(S, Y) - a(s, Yii-1, 02;(5)))D%u(87 y):| ’

£=x
1 - n
5/(1 dY|Dx1Dxlp€(t73aX7 y)|£:X |(a(57Y) _a(saylil—laaé,t (X))| |D%U(S’Y)|

R

IN

IN

1 ~, n
3o DRl || dyID Dot 5.5, e [y~ O3

We can apply (2.15) of Lemma 7 with v, = 1,v2 = 0 to any of the entries |y; — HZ)t(X)L J € [l,n] to obtain:

| D, HE 3 (5, %) [e=x < Cl|D}ullclals, )1 Y (s = #)7+072) < C|DYullclals, (s — )77, (2.26)
j=l
which does not give a critical contribution w.r.t. the previously exhibited thresholds in (2.23) and (Tg). For

the contribution | Dy, H, 532(5, X)|g=x We use, in the same spirit as for | Dy, H, 52(5, X)|e=x, a centering argument
and an integration by parts to obtain:

|DX1H£32(3’X)|€:X

= ‘DMDM (P2 (5T (a5, 1201, 655(6) — a(5,8..4(6))) (DEus, ) — Dhuls, 111, 053(©)]) | 0

£=x
1 d
= |5DxDx, (Z /R ay (0 (Pt 5. 3) (a5 (5, 3101, 047(6)) = a1 (5,0.4(6)) ).
j=1
(Diu(s,y) = Dru(s, yia1, ei:’z(@))}) ‘ :
E=x
where y1 = (y1,...,¥9), 3},{ denotes the derivative w.r.t. the j" scalar entry of the non-degenerate variable

y1 and a;. denotes the 4 row of the diffusion matrix a. We therefore derive from the proof of Lemma 7 and
the smoothness of a (by the Rademacher theorem, a is differentiable almost everywhere):

| Dy, Hf 55(5,%)|e=x

CIDDs, e [ st ) (E=2 A 1) o,y = 0us0)

CDDyu(s, )||oo(s — )7 =. (2.27)

IN

[NIE

IA

With the notations of (2.21), plugging (2.26), (2.27) into (2.25) and together with (2.24), (2.22), we eventually
derive that there exists 0 := §((A)) > 0:

< CT°(| Drullos + D D1t oc)- (2.28)

T
/ dsDx, Hf (s,x%)
£=x

t

Degenerate part of the operator: estimates for (Dxllf(s,x))gzx. These are the most delicate terms
to handle. Restarting from (2.21), we first write for any [ € [2,n]:

| D, I (5, %) ¢ —x

= [ 2 [P (3 (050 = Ful5,0.0060) = D B, 0.©)- ~ 0€)), D) )| 0

=2
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which readily yields that

| Doy IF (5, %) | =x

n

< [ Das D [P (32 ()~ Fi5:004(6) = DB 02O~ Bual€)ir): D)) | 0
i=l+1 £=x
~ l
DD [P (30 (Rl = Fils0-1,852(6), Din(s,) ) | )
i=2 £=x
l
+’Dx1DxL |:P§t < Z <(F1(3a 1:-1, Bls,rtl(g)) —Fi(0:.:(5))
— D;—1Fi(5,05(€))(- — 05,(€))i—1), Diu(s, »)] (%)
£=x
=1 | Dy, Ity (5, %) |e=x + | D, 175 (5, %) le=x + | Ds, I} 5 (5, %) [e=x- (2.29)

e Control of |Dx1[fl(s, X)|e=x and |Dx1[f72(s, X)|g=x. We emphasize that the integrands |Dxllfl(s, X)|g=x and

| D, If2(s, X)|¢=x are already designed to smoothen the time singularities generated by the cross differentiation
of the inhomogeneous semi-group w.r.t. the variables x; and x;. Indeed, write:

|Dxllfl(s, X)|e=x

S/ ddy|Dx1Dxlﬁ£(57taX7y)|E:X
Rn

X Z ‘<(F1(57y) —Fi(5,05:(x)) — Di—1Fi(s,05:(x))(y — 05,4(x))i-1), Dm(&)’))‘
i=l+1

S ||Dl+1:nu||oo / dY\Dmelﬁ&(S?taX»Y)k:x Z ‘Fl(svy) - Fi(S, Bs,t(X» - Dilei(& os,t(x))(y - es,t(x))ifl )

R i=l+1

where Djy1.pu = (DH_lu, ey Dnu). Applying now Lemma 9 with a = 0, ,(x), £ =i, k = n + 1 yields:

n

> |Fils,y) = Fils,004(x)) = DiiFi(s,0,,1(x))(y — 84(x))i-1)
i=l+1

< O (105050, 0un(x) = 9317 + [(Dj-1F;(5,))-1 ]yl (0s,0(%) = ¥)j-a[7),
Jj=l+1

using the notation [(Fit1.5);(s, )]s
Lemma 7:

= max;ef41,5][(Fi);(s, )], for the last inequality. We finally derive from

J

|DX1]I§,1(S7X)|§:X (230)
< Dt - {I(Frins (5. ), (-6 550D (D, 1B (5, )il (s—t) 1 F0F00- D
j=l+1

Since in the above contribution j > I + 1, we have on the one hand =l + (1 +n)(j —3/2) > -+ (1 +n)(l +
1—3/2) > —1/2. On the other hand, from assumption (Tg), 8; > (2§ —2)/(2j — 1) and -1 + ;(j — 1/2) >
—1+(2j—-2)/(2j—1)x (j—1/2) = —=l+j —1 > 0. Thus, none of the associated exponent is critical. We have
either integrable singularities or no singularities at all.
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Write now for the other term,

|Dxl152(s, X)|e=x

l
= ’Dxlel P, (Z (Fi(s,) = Fi(s,10-1, 057 (£)), Diu(s, »)] (x)

=2 £=x

l
< Z/ ddy|Dxlel]§£(5at7X7Y)|E:x|Fi(Say) 7F (5 Yii- 170 ( ))HD u(s Y)‘
< IDzzUHOOZZ/ dy| D, Dx, 0 (5,1, %, ¥) e=x[(F4);(s, )], (85,0 (x) = y);1%
=2 j=I
< CP2ulle YA 505, (=07 [ ayDs Do sy leel(01a3) = )y -
J=l 8
Hence, Lemma 7 also yields
|Dx1-[l£,2(sv X)|£:x S CHDQZUHOO Z[(FQ:j)j(s’ )]51 (S - t)_l—i_ﬁj(j_% ) (231)

J=l

and those terms are again integrable as soon as the thresholds of (T3) hold.

e Control of |DxlIl‘£3(s7x)|5:x. It hence remains to control the terms in |Dxllf3(s,x)\£:x. These terms are
the tricky ones since they are, a priori, not designed to smoothen the time singularities generated by the cross
differentiation. Observe indeed that, if one tries to reproduce the above calculations, we obtain from Lemmas
7 and 9, that

|DX1IZ£,3(37X)|£:X

l
P (X (R 111, 052(6) ~ Pi0.(6)

= ‘Dxle,
i=2

D AFu(5,004(€))(- — 0.(€))s1). Dyuls, ->>> ()

£=x

l
< CDzauloos = )7 (Yo [Fay)s(s, Vs, (s = 97 DH 4 (D1 Fy)joa(s, Yy s =) FVU=D)
j=2

< ClIDasullools =)~ (s = )37 + (s - t)aum),

up to a modification of C' and recalling that T" is small. This leads, as soon as | > 2, to a time singularity
which is not integrable. Indeed, (14 7)/2 < 1 (recall that n is meant to be small). To overcome this problem,
the idea consists in writing, thanks to the cancellation properties of Lemma 8,

|DX1I£3(5,X)|£:X
l

= Dxlez[pf,t (Z<<Fi<87~1:H7053(5))—Fi(s705,t<£)>—Di71Fi(s,05,t<£>>(~—05,t(£>)i,l),

=2

(Dyu(s, ) = Dius, 1a-1,655(€)))) ) | ) (2:32)

£=x

and to take advantage of the additional smoothing effect from the solution of the regularized PDE itself
through the above contribution D;u(s, ) — Du(s,1.1-1, 0?’; (&), i € [2,1]. This was the strategy implemented
in [CdR17] which, unfortunately, cannot be repeated as this in our general framework. Roughly speaking, to
control for any k in [, n], for fixed (y1.5-1,Yk+1:n) € R®™D9 and any 0 < s < ¢t < T, the ai-Holder modulus
of the partial application (see (1.14)) yx — (D u) (s, yk), we need to control the aj-Holder modulus of the
map yi — (D;GEf)r(s,yr), where GE£(s,y) f dvPé ,f(v,y) is the Green kernel involving the source f in
the indicated equation. When doing so, we are faced to the fact that we should only consider indexes k < i
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in order to apply cancellation arguments. The only corresponding index in (2.32) is thus ¢ = &k = [. When
i =1 and k lies in [l + 1,n], we can handle the corresponding terms by interpolating the aﬁc—Hélder modulus
of the partial application (Dju)y, from the a!-Holder modulus of the partial application (Dju);, see Lemma 12
below. Otherwise, i.e. when i < [, we expand the gradients in (2.32) with the Taylor formula. Namely, using
the Fubini theorem we write:

|Dxlll€3(57x)|£:x
-1 n

2D / DD D [ P2, ({ (Bils10-1,054(6) = Fil5.0.4(6) ~ DiaFi(s.0.4(6) (- ~0.1(8), .., )

=2 k=]

Dy Dyu(s, 11-1, 0 (€) + Al el;f:(a)))«0s7t<5”’€>>}(x)

£=x

+Dx, D, [Pﬁ <<(Fl<s7 10-1,055(6)) = Fi(5,0,.4(6) ~ Di1Fi(5,0,,4(6) (-—0.,4()),._, )

(Dru(s,) = Druls. 11-1,05(6)) ) ) | )

£=x
= |Dxlll€,31(37x)‘£:x + |Dx11532(s,x)|5:x. (2.33)

As already underlined, the term | Dy, I 532, (s,%)|e=x is handled thanks to interpolation type argument. It thus
remains to deal with the term |Dy, I f3l(s,x)|5:x. Our main idea consists first in switching the differential
operators acting on the map u therein and then in rebalancing the differential operator w.r.t. the “less
degenerate” direction (namely D;) on the remaining terms in the integrand through an integration by parts.
To do so, we introduce now for all i € [2,1—1],k € [l,n], (Y1.i-1,Yit1:n) € ROV (2 x) € [0,T] x R,
s € (t,T] and y; € R%, the function:

Q(S(’lyi)lk.l’yl+l in )y (t,%) (yl)

= {Dxlpxl;ﬁﬁ(t,s,x, y) (2.34)
O (B (03101, 007(6€)) = 5,001 (€) Dt Fi(s, 01 € y = 004(6)),-0) ) (0 = 0us(O))"| .

where the subscript (I,1) in \I/(é(’lyll)lkl’yi“:”)’(t’x) is here to indicate the differentiation w.r.t. Dy, Dx, acting

on the frozen density. Pay attention that the above function is (R%)®*-valued. With these notations at hand,
we write for \Dxlff31(s7x)|£:x:
-1

|DX1 131 €—x ZZ

=2 k=l

/}R ) dyi{(\P(i’f;;;’”*“) “X)(y:)) : Dy, Dy, u(s,y11-1,0"75 (%) + A(yin — el;,?(x)))}

1
/ d\ d(Y1:i—1:Yit1:n)
0

R(n—1)d

)

[{3NE})

where stands for the double tensor contraction. We now use the Schwarz theorem to exchange the order
of the differentiation operators acting on the PDE solution and then integrate by parts to obtain

/d)\/( g A(Y1:i-1,Yit1:n) (2.35)

/R ddyi{ (ST (50) < Dy,uls yiaoa, 60 <>+A<yzn—e§,’;<x>>>}|.

-1 n
|DX1[l 31(8,X)|e=x < Z
=l

1=

Let us now explain why such an expression is well designed. From the very definition of the “U” term in
(2.34), one can see that the additional contribution (- — 6, (%)) is, thanks to Lemma 7, precisely designed to
smoothen the time singularity coming from the differentiation w.r.t. the variables x; of the semigroup (recall
that k > 1). Also, we have from Lemma 9 that the contribution of the transport term (degenerate part of the

27



operator) therein is, up to a multiplicative constant, bounded by »°7_;(] - —05:(x)); %+ |(- = 05,4(x)) 1|17
Therefore, it follows from Lemma 7 and (Tpg) that this term allows to smoothen the differentiation coming
from the Schwarz theorem and the integration by parts (pay attention that for any ¢ in [2,1—1], the differential
operator D; now acts on the term \I/Z) The main idea consists now in absorbing the additional singularity
(of order 1/2) coming from the differentiation w.r.t. the variable “x;” thanks to the af-Holder regularity of
(Dyu);, provided the exponent af is large enough (see Remark 7 below). This is done by putting the two
above terms “in duality” w.r.t. the variable y;, within the framework of Besov spaces.
k

Recall indeed that C (RY,R) = B oo (R%, R), where from now on the notation B; , stands for a Besov
space with associated indexes p, ¢, s (see Triebel [Tri83] and the reminder at the beginning of Section 3) The
indexes p, g refer to the integrability parameters and s to the smoothness one. A classical fact is that BOQOo and

—aP . . .- . ST . .

Blf‘l can be put in duality, see e.g. Proposition 3.6 in Lemarié-Rieusset ([LR02]). Indeed, with the notations
k

k _ K ~ _ ok ~ _ ok . —at
therein B! o is the dual of Bl,?i = Bl’f" where Blf” denotes the closure of the Schwartz class S in Blf’

k
(see also Theorem 4.1.3 in Adams Hedberg [AH96] for the density of S in By ). Exploiting this fact, we then
derive from (2.35) and the multi-linearity of the tensors involved that:

|Dxlll£31(svx)|£=x
-1 n

< CZZ/ d>\/ d(Y1:i-1,Yit1:n)
i=2 k=l R(n=1)d
* [Pl 0| v e Deuts v, 0800+ A — 0560 |
11 00,00
-1 n
< CZ Z/ d(y1:i-1,Yit1:n) || Di ‘I’(S(’lyll)lkl’YLH () o sup Dyu(s, Z1:i-15 % Zit )|, -
=2 k=l (n=1d Bl,fi Zj,jelll,n]],j;éi B(oloi,oo

To handle this term and conclude the proof of the main theorem, we now need the following results whose
proofs are postponed to the next section:
Lemma 10. Let | € [2,n], i € [2,1-1] and k € [I,n] and let \I/(S(’lyi)lkl’y”l") (bx) Ry (R4)®* be the
fun;ti(;ln defined by (2.34). There exist C := C((A),T) >0, C :=C(C), of := (1+2)/(2i—1), v == L +n(i—32)
such that

(37}’11 1,4 ln) (tx)
H [D iiye ()}

~ — 34k
k S C(S - t) 217 QC\Z(t? S5, X, (Y1:i—17 Yi+1:n)),

where ¢ = C~1 and with the notations of Proposition 5, exploiting as well equation (Gnr) of Remark 6,

ch\i(thva (}’1:i—1,}’i+1:n)) ::/ dyiﬁf(t757xay): H Nc(s t)2i— 1(( 91‘( )7Y)])7 (236)

d .
R JE[l,n],j#i

denoting for a >0, z € R%, by No(2) = (2ma)~4?exp (— |2/?/(2a)) the standard Gaussian density on R? with
covariance matriz aly.

Lemma 11. Let u be the solution of (2.1). There exists C := C((A)) > 0 such that for all i < k € [2,n]?
and of = (14 2)/(2i — 1),

sup
vi.g€[l,n],j#i

Dku(81Y1:i717 '7yi+1:n> C(”Du”oo + ||DD1U||00) (237)

k
ak
Bod, 0o

Remark 7 (About the Holder exponent af, 2 < i <k < mn). We emphasize that upper bounds of the

Holder exponents (a§)2<z<k<n can be derived fmm the analysis of the Hélder modulus of the partial application
— (DrGEf)i(s,y:), where GEf(s,y) f dvP¢ f(v,y) is the Green kernel involving the source f in the

indicated equation (see Appendix C.2 or Sectwn 5. i in [CARHM20] for similar issues).

Let us briefly sketch why these upper bounds are large enough to absorb the additional time singularity of order

1/2 coming from the differentiation w.r.t. the variable x;. First note that the computations done in Appendiz
C.2 yield for each (i < k) in [2,n]* the upper bound [1 — (1 — Bi)(k — 1/2)]/[i — 1/2]. Recall then from (T3)
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that By € ((2k—2)/(2k—1),1]. Thus, if Bx = ([2k—2]/[2k—1))" := (2k—2)/(2k —1) +& for some 0 < £ << 1
meant to be very small, we obtain (1 — By)(k —1/2) = (1/2)” :=1/2 —e. Therefore, the smoothing effect of
the gradient of the solution of the PDE in the direction “x;” w.r.t. the i™" variable is designed to smoothen a
time singularity of order of (i —1/2) < [(1/2)%/(i —1/2)] x (i —1/2) = (1/2)F

To control the term |Dy, I, 532(8, X)|e=x in (2.33), we will need the following auxiliary lemma whose proof is
postponed to Appendix D.

Lemma 12 (Holder moduli of the gradients after the differentiation index through reverse Taylor expansion).
There is a constant C > 0 s.t, for alll € [2,n], k € [I,n], (y,€) e R* x R™ s € [t,T] :

Dius,y) ~ Dra(s,y1.0-1,653(6)] < CUIDule + [(Dras N (16e€) ~ il + 3 (608~ ).
k=Il+1
where ¢ := (1 +n/4)/(2l +n/4).

Now, from Proposition 5, Lemma 9 and Lemma 12,

|DX1[Z€,32(Sa X)‘ﬁzx

< ARSI [ty tsx IO -y
X (IDullos + [(Dru)i(s,)]at) (1(85,e(x) — VI Y 1(000(x) — ¥l
k=i+1
< C(HDUHoo + [(Dlu)l(S, )]af)(i(s _ t)—l-i—(l-i—??)(l—%)-&-ocf(l—%)]Ik:l+Cl(k—%)llke[[wrl,n]])7 (2.38)
k=l

using as well Lemma 7 for the last inequality. Hence, the above equation yields:

n

1D I35, e < CDullo + (Deale(s, M oy ) D25 = 1) HH 0TI Bl Dlecr s G D,
Bos oo k=l
(2.39)
Observe now that the time exponents in the previous r.h.s. are integrable. In particular, for each [ € [2,n]
3 1 3 3 1 3 3 1417 1
—1+(1 1-= 1= = —(1-51-(1 —)>nu-2)=% Li-=
FIHm-5)+all—5) = —(=50-(1+m)-S+ali—5)2nl-5) - +540-3)
3 3 1 3
> 2 l— )+ = =—= k 2.40
> —Sanl-5)+5=-5+af, (2.40)
with the notations of Lemma 10. Also, for k € [l + 1,n]:
3 1 3 3, 1+7 1 3 3, 11+7 1
—I+(1 l—- k—=) = —= l—- Tlk—2)>—= l—=-)+ - L4 =
FOAME =D HGl=5) = =)+ e g) 2 =54l = D)+ 5y )
3 3 1 3
> = =)+ =—S4AF 2.41
Z 2+77( 2)+2 5 T (2.41)

Observe carefully from the above computations that the exponent (; precisely allows to recover a smoothing
effect in time of order strictly greater than 1/2. This perfectly fits the smoothing effects observed for the other
contributions, see Remark 7 above.

We can then deduce from (2.36) and (2.39), using Lemma 10 and Lemma 11 that

l n

_3 k
IDs I, %) le=x < €D 3 (s = 1) FF (IIDufl + [DDyullc ), (2.42)
1=2 k=l

which are integrable terms since v¥ > 1/2. With the notations of (2.21), (2.29), we eventually derive from
(2.42), (2.31), (2.30) that there exists v := y((A)) > 0 such that:

T
‘ / dsDXIIf(s, X)
¢

< CT’Y<HDu||OO + ||DD1uHOo). (2.43)
£=x
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Final proof of Theorem 3. Bringing together (2.43) and (2.28) yields for all [ € [1,n] and (¢,x) € [0,T]:
|Ds Dy ult, x)| < C(T7 + T%)(||Dufloc + DD ) (2.44)

It is clear that the previous analysis can be reproduced without differentiating w.r.t. x, leading to improved
singularity exponents (see also the proof of Lemma 11 which somehow exactly explicit these computations).
We therefore get:

|Dyqu(t,x)| < O +T%) (Dl + [DDyu]c ), (2.45)

for some positive exponents v/, 8" (with v > ~, § > §).
Taking the time-space supremum in the Lh.s of (2.44) and (2.45), recalling as well that T is meant to be
small, i.e. s.t. 40T < 1/2, we derive:

[Duloo + [|[DD1u||oe < 2C(T7 + T7).

This concludes the proof. O

3 Estimates in Besov norm

This section is dedicated to the proofs of the main technical results needed to obtain Theorem 3. Namely, we
prove the Besov estimates of Lemmas 10 and 11. We first start by recalling some definitions/characterizations
on Besov spaces from Section 2.6.4 of Triebel [Tri83]. For a € R,q € (0,+00],p € (0,00], Bg,(R?) := {f €
S'(RY) : | fll3s, < +oo} where S(RY) stands for the Schwartz class and

1 1

£l 2= 16D) Al + ([ o™ 2100 5 11 )" (3.1)
with ¢ € C5°(R?) (smooth function with compact support) s.t. ¢(0) # 0, o(D)f := (¢f)" where f and (¢ f)V
respectively denote the Fourier transform of f and the inverse Fourier transform of ¢ f . The parameter m is
an integer s.t. m > /2 and for v > 0, z € R?, h,(z) := W exp (—‘;—7‘?) is the usual heat kernel of R?. We
point out that the quantities in (3.1) are well defined for ¢ < co. The modifications for ¢ = +o0 are obvious
and can be written passing to the limit.

Observe that the quantity || f ||7.L§7q7 where the subscript ‘H stands to indicate the dependence on the heat-
kernel, depends on the considered function ¢ and the chosen m € N. It also defines a quasi-norm on B q(Rd).
The previous definition of Bg‘_’q(Rd) is known as the thermic characterization of Besov spaces and is particularly
well adapted to our current framework. By abuse of notation we will write as soon as this quantity is finite

1 fll#g, = /1By, -

3.1 Proof of Lemma 10

We will here exploit the thermic characterization of Besov spaces (see Chapter 2.6.4 in [Tri83]) which is also
recalled above. From (3.1), we are thus led to estimate, for any { € [2,n], ¢ € [2,1 — 1] and k € [I,n]:

1 k
$,¥1:i—1,Yi+1:n),(L,%X dv 2 $,¥1:i—1,Yi+1:n),(L,%X
leD) DT 0 Ol g gy + /0 OV 9y« DA 0 ()

for a C*° compactly supported function ¢ s.t. ©(0) # 0. From the definition of \Ilgf(’lyi;;l’y”l:”)’(t’x) in (2.34),

using Lemmas 7 and 9, we easily deduce
D D,\I,(S7y1:7:—17yv:+1:n),(t7x) .
le(D) D (Vo gee z)

/ dz} / dyszla(z — yz) . qj’gf(l)’llli)i’;l7Yi+1:n)7(t!x) (y’L)
R4 R4

Cls =) 2((5 = )37 4 (5 = )30 st 5,5, (Y11, i 1n)):

IN

IA
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Let us now focus on the second term in the above definition. We split therein the time integral into two parts
writing:

(s—t)Pisk
/ dvw 0,y 5 DAY ()
0

(L, 1) k
' (s i+1:n),(t,%)
+[ oo dU’U 53 ||a h * D \Ijz (7lyll)7kl 3 Yit1:n)s(t, (')”Ll(Rd,R) (32)
s—t)"

(1)K i,(1,1),k

for a parameter p; > 0 to be specified. The term Upper corresponding to the upper-part of the integral
w.r.t. v does not involve singularities. We will use this fact to calibrate the associated parameter p;j in order
to match the integrability constraint

=: Lower {D \Il(s’yl i-nYitan (s x)] + Upper {D P&V 1Y itnn ) (6x)

Upper [Di\l’g,s(’giz)l,il’ylﬂm)’(t’x)] < 7(3 t)ir;v!“ Geni(ts 8, %, (Y1:-15 Vit 1:m))s (3.3)
where g.\; has been defined in (2.36) and 'yf > 1/2 in order to obtain a time integrable singularity. For this
term, we will only use crude upper-bounds on the derivatives of the heat-kernel and the coefficients satisfying
(Tp). On the other hand, the contribution Lower in (3.2) precisely contains the singularities w.r.t. v. It is
therefore crucial to use there suitable cancellation tools. The point will then be to prove that the associated
estimates are compatible with the upper-bound in equation (3.3).

We now write:

Upper {D \I/(s(’lyll)t 1Y it1n ) (L, x)}

1
/(t)m: ] dovs ||a ho x DU () sy

1 ok
/ dvUTl/ dz‘/ dy;D;Ophy(z — )\II(S(’lyll)l i) (62) (g
( R4 Rd ok

s—t)Pik

Recall from the definition in (2.34) that \Ifgs(ly P (89 (9 i (RY)®4_valued. To proceed with the compu-

tations we assume w.l.o.g. for the rest of the proof that d = 1 to avoid tensor notations for simplicity. Writing

explicitly the function \I/(s(’yi)‘ 1Y itin )y (£:%) (y:) leads to:

4,(1,1),k

1 ok
< / dval/ dz
(s—t)Pisk Rd

(Fi(S,YLkh els?(f)) - Fi(Sy as,t(ﬁ)) - Dilei(Sv es,t(f))(y - as,t(ﬁ))i_l})‘

Upper |:D \I/(é’yl i—1,Yi+1: n) (t x):|

[ @D (=30 (D Do (1. 5,3) [ (0:4(6) = ¥)0)

£=x
From Lemma 9 and Proposition 5, we derive that there exist C' := C((A),T) > 0, C := C(C) such that
introducing §.(t, s,x,y) = pX(t, s,x,y), c = C~L:

Upper {D \I’(S Yii—1, yi+1:n)a(t1x):|

J(L1),k
Z) dC(t7s7X7y)
< C dw? | d 0, _
a (s— t)”l k v /Rd Z/}Rd v3 (s —t)(l—%)ﬂ% 1(85,0(x) = y)xl
{ S {10069 = 31,17} +1(04000) - y>i1|1+"}
Jj=i

ok -1
< C’/ dvv® / dz/ - Yi) et 5, % y Z (s —t)P10=2) 4 (s — )1+m=3)
k>1 (s—t)Pirk R Rd v2 S — t =

1 ok -1 A
S C’(j(,\z(ta S, X, (}’1:1—1,Y¢+1;n))/ dvv7%+71 .S — t % Z BJ(J 2) + ( )(1+n)(17%)
Fubini (s—t)Pisk =i

0‘? ;1
< C’(j('\z(ta 5, X, (}’1:1'717 yi+1:n))(8 - t)[_%—i_T]pi'k_% ((S - t)Bi(l_E) + (3 - t)(1+n)(l_7))
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recalling that the lower bound of 3;(j —1/2) is increasing for the last inequality (recall indeed that we assumed

that 3; € (%, 1}), up to modification of C,C in the previous inequalities. We now want to choose the

threshold p; j in order to match the integrability condition in (3.3). This amounts to write:

1 1 af 1 1 3
o L6 haaema- ),
Since this condition should hold for any 3; € %, 1} and since the parameter n € (0,1) is small (see (H,))

we have §;(i —1/2) A (1 +n)(i —3/2) = (1 +n)(i — 3/2). The above condition rewrites:
k

1 1 o 1 3
1= oA = [ ik — —+(1 i — 2.
5 T =[5+ S lpiw — 5+ +m)(E - 5)
Our global integrability constraint associated with the " variable in the k*" derivative writes:
1 1 aof 1 3
-1-= F ==+ Lpix — =+(1 p— — -1, 3.4
S+t =[5+ ok — 51+ - 5) > (3.4)
which gives
14+7n)(2e—-3)+1

l—«

1

It therefore remains to check that such a choice is compatible with the time integral part for v € [0, (s —
t)Pi+#] in the thermic characterisation of the Besov norm, see (3.2). We point out that for this term it is
absolutely essential to get rid of the exponent v—3/2 coming from the upper-bound of the thermic heat-kernel,
ie. D;0uhy(z —yi). In order to get an integrable singularity in v, we need to decrease the crude upper-

bound on D;d,h,(z — y;). This is done through cancellation techniques exploiting the smoothness properties
of \P(Syy1:i—17)’i+1:n)7(t;x)-

4,(1,1),k
To investigate Lower Di\I!Z(.S(’l)fll:)izl’y”l‘")’(t’x) let us first recall from the definition in (2.34) that for each
ke [l,n]:
(57 1i—1,Y4 ;n),(t,x)
\IIi,(lb,’ll)ykl yirt (yi)
= {Dxlelf)g(t,S,X,y) (36)

%[ (Fis.¥10-1,0571(€)) — Fil5.0,4(€)) — DicaFi(s, 054(€)) (v — 0.(6)),_, ) | v - os,t(a)z}g
Let us now specify the dependence w.r.t. y; of the previous expression in function of the considered indexes
le[2,n],ie[2,l—1],k € [l,n]. This will be useful to develop corresponding adapted cancellation arguments.
Observe first that the dependence in y; in (3.6) appears for all [ € [2,n],i € [2,l — 1],k € [I,n] through
the term Dy, Dy, p*(t, 5, %, y).
For the term into brackets, since ¢ <[ — 1, then k > ¢ and the only bracket term containing y; is the one
associated with F;(y1.—1, Oi?(ﬁ))

With the notations of (3.2), we write:

Lower [DZ\IIES(lyi); ’yi“’")’(t’x)}

(o=t ok (5711 110 )o(E:%) (5711 1100 ) (£%)
= / dvv= /d dz| ; dyiD;iOphey (2 — yi)(qji,s()ﬁ:)tELYlﬂm " yi) - \Ili,s(ylﬁ:)tilyyzﬂm "E(2))]
0 R R

(smtyth ok (o3t 1yt (69 | oyt 1¥igiin),(6%)
— /O dva /]Rd dz|(<717i:(}2;17/)}:}’z+1:n (L + %J:z?:{)}i,yzﬂ:n s\l )(’U,Z)|, (3'7)
where:
T w,2) (3.8)

= / inDiavhv(z - Yi) (Dxlelﬁg(t,S,X,y)
R4

X [(Fi(S,YLZA, 02?(5)) —Fi(s,y1:i-1, 2, Vit 11-1, 92?(5)))(}’ - as,t(ﬁ))ZD )
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with a slight abuse of notation when ¢ =1 — 1 and

9(5:5111) ]i’ywrl in)y(t,%) (1)7 Z) (3.9)

= /d dyzDZavhv(Z - yl){ |:DX1 Dxlﬁg(ta S, X, Y) - Dx1 Dxlﬁﬁ(t7 5, X,¥1:i—-1, Z7Yi+1:n)i|
R

X [(Fi(57y1:i—17 2, Yis10-1,01(€)) — Fi(s,0,,:(8)) — Di1Fi(s,0,.(8)(y — 9s,t(§))z’—1) (y - gs,t(@)ﬂ } :

Write now from (3.9), Proposition 5 and Lemma 9:
S, i—14Yi n)s t,x
| 2(’11’()21)’}; Yit1:n)( )(1) Z)|
~ heo(z — yi) Ge(t, 8, %, Y1:i-1, 2 + A(yi — 2), Yit1m)
< ) _ -
=¢ R ayi v: /o “ (s —t)(i=2)+(=2)+3 I = Ose(x))ullys — 2
X (‘Fi(sa}’l:ifh 2, Yit1:1—1, 9??(X)) —Fi(5,054(x)) — Di—1Fi(s,05:(x))(y — as,t(x))ifl‘)
< dyi - yi) / d}\qc (t, 8, %, y1:i— 1,Z+/\1( zl 2); Yitin)
Rd (s—t)(l 2)+a
= O+ Y (50D ¢ (s pieniiD
j=i+1
where for the second inequality, we used that for k > 1 >4, |(y — 0s.¢(x))x|(s — )"V < |(y — 05.4(x))x|(s —
t)~(=1/2) which can be absorbed by the k*® variables of .
Writing now for any A € [0, 1],
2= 050 (x)il < Az —yil + 12+ Ayi — 2) = (05.0(x))il,
we thus derive
S, i—1sY4 n)s t7x
| 2(i)()211)1$)’+1 ) ( )(’U Z)|
/ ) / d)‘QC(t 5, X, ¥1:i— 1a2+)\( )7yi+1:n)
0
-1
( s ) D d (s ) O D RGBS (5 - g G DB 4 (5 - g6 D H1+n)(if%))
J=i+1
- 1
< Chelt, 57X7y1:i71aYi+1:n)/ X /Rd dyihey(z = ¥i)Nes—pzi-1 (2 + Ayi — 2) — (04,4(x))s)
xv™! (07 (s — ) OTHTE 4 (s )T HTEH IR, (3.10)

recalling for the last inequality that for any j in [i,! — 1], 58;(j —1/2) > j —1 > i — 3/2 and 7 is supposed to
be a small parameter.

Let us now consider the first contribution in the r.h.s. in (3.6),

|g( 7?;117) ’i WYit1:in)s(ts X)( )| < C’/ dyihcv(z;)’i) Ge(t, s,%,y)
R v

5 (s—t) =+
= hcv(z - yz) QC<t7 s, X, y)
S C in 3 Bi 1
Rd V2T 2 (5 — t)2

From (3.10) and (3.11) we derive, with the notation introduced in (2.36):

Py = O, (%))

|z —yi

(3.11)

|Ovhy * D; ‘I’is(’zyi)l RS x)||L1(1Rd,R)
_ 1 o1+ % -1
< Cgel(t i—1 Yi+1n - - - -
< qC\z(,S,X,(yL 1,Yi+1 )){vg %(s—t)% +((s—t)l+(3_t)1—(1+?7)(z—2)>
1
X / d)\/ dz/ dyihey(z — yi)Nc(s_t)Qi—l(Z + My —2) — (OS’t(X))Z-)}
0 R R4
_ 1 o1+ 5 -1
< Cq::\z(tv S, X, (Y1:i71, yiJrl:n)) < PR + - + NE

viF(s—t)p (5=t (s—ty-(Hmi-3
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using the change of variable (w1, w2) = (2 — ¥4, 2 + A(y; — 2) — (05,.(x));) for the last inequality.
For p;  chosen as in (3.5) one gets from the definition in (3.2):

Lower Di\IIE)S(yz’i:)z;gl7Yi+1:n)7(t,x)}

) (s=0)"0k g0 ok 1 o2 1
CA(: i t,S,X, d—1yYi+1ln / 71}71 e + -+ - -
dc\ ( (Y1:i-1,Yit1m)) ) v (Ul 7 (s — t)% (s —t)t (s — t)17(1+77)(l7%)

IN

= Cdc\z(tv S, X, (Y1:i—1,}’i+1:n))81,pi,k (ta 8)

It therefore remains to prove that, if By ,, , (t,5) < (s — t)*l’l/%ﬁ for v¥ > 0 then:

1 1
“los 4> ol T > o (3.12)
Write:
B < (s=8)"0" d U*%JFL;L% v*1+a§2+5i vilJF?
o (t,s) < v + — + -
Loiw () /0 (s—t)2 (s —t) (s —t)s—n(=3)
af4Bi-1 akis, oF gy

< C((s B S B N PR o SOt ) (3.13)

assuming for a while that of is s.t. af +3; > 1 to guarantee the integrability of the first above integrand (this
condition will be fulfilled for the choice below). Let us check condition (3.12) is satisfied. Actually, the first
two terms in (3.13) yield negligible contributions. Recall indeed from Remark 7 that the parameter af must be

chosen so that af < %ﬁk_l/g) ;= aF. Since B € (g]'z—j,l], af = 2_(1_2[?:)1(2’“_1) > 3_2’;5?_2) = Til
Thus,
1+7
af =51 (3.14)
is an admissible choice (recall indeed that we chose n < inf ez ,){58; — %} in assumption (H,)). It gives in

particular that ai-“ + B > % =1+ 22‘7/741' Hence,

af + 8 -1 11
Pik 9 9 9

which already provides a regularizing term in time for the first term in the r.h.s. of (3.13). Now from (3.5),

pip < SEWEESEL . 5 The previous choice for af gives

lfaf'
_ 20 —2+4n(2i —3) . 20 —2+4n(2i —3) .
Pik = ey =(2i—1) 57 5 > (21— 1),
21 4
and
pik =21—1 (3.15)

is an admissible choice. We therefore get for the exponent of the second term in (3.13):

n

1 1 1
—i> ~(pin(1+ 2 f2') .
Z>2(’)”“(+2i—1) )= 75

ol + B;
2

Pik

Eventually, for the exponent of the third contribution in (3.13), for the previous choice of p; ) = 2i — 1, we
get

i — 4 nli—2)==(2—1 4 _ T apli—)=—-14+—~-+4+n(i—= -1, 3.16
Pik 2 2 0 2) 2( ! )21'—1 2 (i 2) 8 (i 2)> ( )

which means that criterion (3.12) is indeed satisfied, even though if this last contribution is rather critical in
order to obtain the required smoothing effect with 4% = 1/2 + (i — 3/2). This concludes the proof of Lemma
10. O

34



3.2 Proof of Lemma 11

We now tackle the Besov estimate of the derivative of the solution of (1.18). Fix ¢ € [0,T] and (X1.,-1,Xi+1:n) €
R(™=1d4  From the thermic characterization of Besov spaces recalled in equation (3.1), we actually have to
control:

[ Dru(t, x1,i-1, s Xit1,n) = | Dru(t, x1i-1, Xit1n) | Lok

[
ah
Bod, 0o

= || Dru(t,x1:-1, -, Xit1:n)|loo + [Drw(t, X1,i—1, - Xit1,0)]ar-  (3.17)

i

Observe first that || Dyu(t, X1:i—1, *s Xit1:n) |[oo < [|Dulleo. Hence, we can focus on the Holder modulus in (3.17).
For given x;, z € R? we want to control the difference:

Dy, u(t,X1:5-1, X, Xit1m) — D u(t, X1:i-1, 2, Xit1:n) (3.18)

through the expansion of the gradients given by (2.21). Two cases then arise: the system is globally in the
off-diagonal regime, i.e. the spatial points x; and z are far w.r.t. their corresponding time scale (there
exists co such that co|x; — z| > (T — t)""1/2 or equivalently co|x; — 2|/?/(**=1) > (T —t)); the system is
globally in the diagonal regime, i.e. the spatial points x; and z are close w.r.t. their corresponding time scale
(CO‘Xi — Z|2/(2i71) < (T — t))

Since in the global off-diagonal regime the spatial points are far, it is not expectable to control suitably
the expansion of the gradients around their difference. In this case, it is in fact more natural to expand each
gradient term thanks to (2.21) taking as freezing point the associated spatial argument, i.e. & = x for the first
gradient and denoting by x’ = (X1.;_1,2,X;+1.n), & = X’ for the second one. This allows to take advantage of
the underlying smoothing properties in time of the gradient (cf. Section 3.2.1 below®).

On the other hand, in the global diagonal regime (when co|x; — 2|?/(**=1) < (T —t)), we are again faced
with a regime dichotomy. Note indeed that, expanding the gradients in (3.18) from (2.21), we have to deal
with a time integral associated with the source and perturbative terms. We are hence again led to separate,
within this time integral, the local off-diagonal and diagonal regimes, i.e. w.r.t. the time integration variable s.
We hence introduce the time set S; = {s € [t,T] : (s — t) < co|x; — 2|?/*=D} (for the same previous constant
¢p) which corresponds to the local off-diagonal regime and the complementary set S = {s € [¢,T] : (s —t) >
co|x; — z|?/(?*=1Y which corresponds to the local diagonal one.

As above, in the local off-diagonal regime, we will not expand the difference of the gradients and we will
only use their underlying smoothing properties in time, working thus with their expansion around two different
freezing points associated with the corresponding spatial arguments, as suggested by (2.21) (see again Section
3.2.1).

Concerning the local diagonal regime, the proximity of the spatial points suggests to expand the gradients
through a Taylor expansion. Starting again from their corresponding representation of (2.21), it is natural to
consider similar spatial freezing points. Such a strategy indeed yields to only consider spatial sensitivities of the
underlying Gaussian prozy (see Section 3.2.2). Observe that keeping the two distinct freezing points would lead
to investigate the full sensitivity between two different prozys, including the sensitivity of the corresponding
covariance matrix and generator. Such an investigation appears to be quite involved. Furthermore, we did not
succeed to make it work.

With our approach, we are led to expand one of the gradients in (3.18) around two different freezing
points. Such a strategy was already used in the companion paper [CARHM20] and leads to consider an
additional boundary term arising precisely from the change of freezing point (see Section 3.2.3). Namely, we
will expand the term Dy, u(t, X1:i—1, Xi, Xi+1:n) With (2.21) taking & = x, whereas we will expand differently the
contribution Dx, u(t,X1:i—1, 2, Xi+1:n), depending on the considered (local) regime (off-diagonal or diagonal)
for the current running time. With the previous notations, this term will be expanded as in (2.21) around the
freezing point & = x’ in the local off-diagonal regime and around é/ = x in the local diagonal one. Denoting
by to =t + co|x; — z|2/(2i_1) the transition time between the two regimes, we actually have:

z!

urx) = [ s (Hsi, [P £ (5, )] () + T [P, (5. <x’>) + [P ulto, )] o) = [ B sulto, )] (<)

+ /t s (]151. [pg; ((Ls - ig’)u) (s, -)} (x) + Is: [155; ((Ls - if')u) (s, .)} (x')). (3.19)

We refer to Appendix B below for a proof of expansion (3.19) (see also Section 2.4 of the “Detailed guide to
the proof” in [CARHM20]). We again emphasize that in comparison with (2.21), the term in the second line

8note that in this case we have that for any s in (t, T] the off-diagonal regime holds.
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in the r.h.s. of the above equation is the price to pay to consider different freezing points associated with the
corresponding local off-diagonal and diagonal regimes.

From now on, we will assume w.l.o.g. that ¢y is a constant meant to be small (see Section 3.2.3, Lemma
14 and its proof). We also suppose that |x’ — x| < 1 since otherwise the global off-diagonal regime holds, and
the analysis of Section 3.2.1 applies.

Starting from (3.18), we expand Dy, u(t,x) = Dx,u(t,X1:i—1,X;, Xit1:n) using (2.21) with € = x and
Dy, u(t, X151, 2, Xi1+1.) differentiating (3.19) w.r.t. x; and setting then ¢’ = x’,él = x. We rewrite:

Dy, u(t,x) — Dy u(t,x’) =: (Dx,u(t,x) — Dyu(t,x'))|s, + (Dx,u(t,x) — Dx,u(t,x")) |se
+(Dx, u(t, x) — Dxu(t,x')) s, (3.20)

where, with the notation of (2.21):

(D, u(t, %) — Dy, u(t, X)) s, == /5 s{ (150 = 1 )+ [0 —1f 6]} @2
corresponds to the difference of the previous expansions on the off-diagonal regime,
(Dspult, x) — Dyyu(t, x)) |s: = /S ds{ [H,f (5,%) — Hgl(s,x’)} + [1,5 (5,%) — I¢ (s, x’)} }@,g/):(x,x)’ (3.22)
is the contribution of the diagonal regime and
(Dayult, %) = Dult, X)) los, 1= { D, PE gulto, X') = D, P yulto, X/)}@,@):(xax)’ (3.23)

is the resulting boundary term. This last term, arising from the change of freezing point, is particularly delicate
to analyze.

3.2.1 Off-diagonal estimates: control of (3.21).

On the time set S;, we cannot expect some regularization from the difference of the transition densities so that
we bluntly estimate the terms appearing in (3.21), writing:
é/_x/) '

(3.24)
Those terms can then be handled following the previous analysis performed in Theorem 3 and Lemma 10,
observing here that, w.r.t. the previous proofs, the above terms are not differentiated w.r.t. x;. This improves
the exponents of the time singularities of 1/2. Similarly to (2.22), (2.24), (2.26) and (2.27) this therefore yields
for the terms H,f (s,x):

| Dy u(t, x) = D u(t, x'))|

| (5.)|

&=

< [ as(jmgte 0|+ 18 o)
S; S; E=x

— k
\H§<s,x>|\ < C(s = ) (|Dufloc + IDD1u]), (3.25)
£=x
with 1 >68>1/24+7n/2 > 1/2.
Reproducing the arguments that led to equations (2.30), (2.31), (2.36)-(2.39) and the statement of Lemma
10, exploiting again that there is now no differentiation w.r.t. x; we get with the notations of (1.2):

60| __ = 0o (Dl + st (D005, (3.26)
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Similar bounds hold for H,fl(s,x’) . Hence, from (3.25) and (3.26),

¢ =x’
¢/ _x/>

(t+co\x,:—z\27%1)/\T ek ok
o / ds((s = )7 (| Dullo + [DDyuflc) + (s — )" <||Du|\oo+fesgpﬂ[(Dw),.(sz-)104-))

and ‘I,f,(s,x’)

¢/ =x’

/ ds(‘HE(&x)H +‘H§(S7X/) +’I§(S7X)H +‘I§/(S’X’)
S; £=x I =x' =x

3 3

IA

25? 27?
< C’(|x1- — 2|7T=IA (T — t)‘sf( IDu|| oo+ DDt 0o) + |x; — 2|71 A (T — t)”f( IDull + sup [(Dyu),(5, )]ak)>
5€[0,T] ‘
< Clxi — 2T (| Dulloc + IDD1uloc + sup [(Dyu) (5, )]s ) (3.27)
3€[0,T] ’

for some & := §'((A)) > 0, recalling for the last inequality that 4% = 1/2 + n(i — 3/2) so that 2¢F/(2i — 1) =
[14+2n(i—3/2)]/(2i—1) > (14+n1/4)/(2i—1) = oF (see also the statements of Lemmas 10 and 11) and similarly
for the contributions involving §¥ > 1/2. We eventually get from (3.27) and (3.24):

| Dy, u(t,x) — Dy, u(t,x")|

< CTé’(||Du||Oo + DDyl + sup [(Dyu), (5, -)]ak). (3.28)
Si 5€[0,T) :
3.2.2 Diagonal estimates: control of the term (3.22).

We consider here the difference Dy, u(t,x) — Dy, u(t,x’) of (3.18) on S¢. In that case the points x; and x;
are close w.r.t. the characteristic time scale of the i*? variable and the main idea consists in controlling the
difference between the frozen densities at £ = E’l = x with starting points x and x’ respectively. Precisely,
recalling that x and x’ only differ in the i*" component, we can write:

1
Dy, p*(L, 5,%, ) = D (£, 5, %', y) = — / AADs, (Do 5 (1 5,x + A = %),3)) - (X =%)i.  (3.29)
0

From Lemma 8 we thus derive:

~ ~ C|(x" — x); ! A
D (t5,3) = Dt sl < 02y [Fant g exe -0y 63
DD ),

Now, from the definition of po-1 in Proposition 5, recalling as well from (2.7) that x — mgt(x) = mgtf)(x)
is affine, we get:

|ﬁg,1(t7 s, X + )\(X/ - x),y)|

77 oxp(—c(s — )|T. 2 (mS, (x + A(x' = x)) = y)[*)

< m exp(c(s — t)|TS__1tR(ta5)($, t)(X — X/)‘Q) exp(fg(s i t)|’]rs_—1t(m§,t(x) i y)‘Z).

Using the rescaling arguments of the proof of Proposition 5 on the resolvent (see equation (2.13)), we then
get (s — )V T L RGO (s,8)(x — x')| < C(s — )Y2T Y (x — x)| = C(s — t)H1/2|(x' — x);| < O, from the
very definition of §¢. Hence,

C

R c -
[5g 1 (t 5, % + AX = %), y)| € ———7 exp( 5 (5= 8T 2 (m$ (%) - y)P),

(s—t) =

so that, from (3.30) and recalling that on S¢, |(x' — x);|/(s —¢) < C(|(x' — x):|/(s — t))“f, the following
important control holds:

Ol(x' — x)i|*

13 _ 13 4
|DXAp (t,S,X,y) Dka (t,S,X 7Y)| S (Sft)@;c(i—%)‘f‘(k—%)

Be (t,5,%,). (3.31)
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Write now from (3.22), recalling that E' =E,

| Dsc, u(t, %) — D, u(t,x')]

, (3.32
S¢ E=x ( )

(/S.C ds [Hg(s,x) - H,f(s,x’)} + /S? ds {I,f(s,x) - I,f(s,x’)} )

and let us discuss how the terms H,f(s, x) —H,f(s, x'), I,f(s, X) —I,f(s, x’) in the above equation can be handled.
We first focus on the term I,f(s7 X) — I}S (s,x’) in (3.32). This contribution, associated with the degenerate
components of perturbed operator, is again the most delicate to handle. From the definitions in (2.29) we are
led to control the sum ZZ’ZI[I,SZ(S, x) — I,fe(s,x’)]. For the terms I,f_l(s, x) — I,f 1 (8,%"), Ilf o(8,%x) — Ig 5(s,%x)
we are going to reproduce the analysis leading to (2.30), (2.31). Observe first that the above terms do not
involve Dy, , therefore we gain a singularity of order 1/2 w.r.t. the indicated equations (2.30), (2.31). On the
other hand, the difference of the derivatives of the frozen densities w.r.t. x5 can be handled with (3.31). This
leads to:
2

Z/tT 2 dS(I]S’Z(s,X) _Ilf,é(svxl))

¢=1 7 ttcol (¥ —x); 211

£E=x
n_ .7
< Ol =)l Dulle Y [ ds(s = ) * DD (s BB (s G-,
j=k"t
changing the summation variables from (2.30) for notational simplicity.

From the very definition of o = (1+417/4)/(2i — 1) in Lemma 10 and the specific choice of 7 in assumption
(A) (see (H,)), which yields that 8;(j —1/2) > j — 14+ n(j — 1/2)), we derive

i:/tT 2 dS(IIS,Z(S’X) - I]S’K(S,X/))

=1 7 tteol(x/—x);| 2i-1

< C|(x' = x);|°" || Dul oo T°, (3.33)
£=x

for some 6 > 0.

From the previous analysis it is therefore sufficient to focus on the tricky term, namely Iy 5(s,x) introduced
in (2.29). We begin the proof considering first Ij, 5(s,x). Exploiting as well Lemma 8 for a centering argument
w.r.t. the k" variable, we write:

Igyg(s,x) - If’g(s,x’)
k
=y /R dy< (Fe(s, Yik-1,057 (&) = Fu(s,05,4(€)) — De-1Fe(s,0,,:(6)) (v — as,t(g))z_l),
=2

(Dyzu<S>Y) - Dyzu(&yl:kfla 05,?(5)))>(kaﬁ£(t’ S»XaY) - kaﬁg(t’ S7X/>Y))'

Let us reproduce now the arguments used in Section 2.2 to handle I/Sﬁ (see e.g. the computations from

equation (2.32) to (2.33)). For ¢ € [2,k — 1], expanding with the Taylor formula the difference (D‘Wu(s7 y)—

Dy, u(s,y1:6-1, 0’;? (5))), using the Schwarz theorem to exchange the order of differentiations?, and integrating
by parts as well, we obtain:

I,f)?)(s,x) — I’S}S(S’X’)

k-1 n 1
= Z Z /0 dA dyDYtz [(F@(Sa}q:k—ly 01:,?(5)) - Fl(sa Os,t(ﬁ)) - D€—1F2(57087t(€))(y - 9s,t(€))g,1)

=2 m=k Rnd

(D, (1, 8,%,y) — D, (1, 8,%',¥)) (¥ — es,t(s))m] Dy, u(8,¥1:-1, 057 (&) + Ay — 05,6(€))1n)
[ ay [(Fus, V11,057 () = Fa(s,0,4(6)) = Dio1Fe(s, 0,46 (v — 0:4(8)),._, )
Rnd

(kaﬁg (t7 87 X7 y) - kaﬁg (ta 87 X/7 y)>:| (Dyku(87 y) - Dyku(87 y11k717 95’? (6)))

=: Aim(s?x,xl) + Aigz(s,x7 x'). (3.34)

9Recall indeed that what we are able to control is precisely the Hlder moduli of the derivatives Dy, u(s,-) w.r.t. the variables
< m.
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Let us now modify slightly the definition of (2.34) and introduce: for all ¢ € [2,k—1],m € [k, n], (Y1.6~1,Y¢+1:n) €
R("=1d (¢ 7,x) € [0,T] x (R")?, s € (t,T] and y; € R*:

\Pés;;yﬁf 1Y e+1:n),(t,2,%) (ye)

= [kaﬁﬁ(t’ $,2,Y) (3.35)

& ((Fo(5 y101,057(€)) = Fu(5, 04,4(€) — Do 1Fu(5, 05,4(€)) (v — 054(8)),_,)) (¥ - es,t@))m)*} .

Write now with the notations of (3.36):

(Ai ,31 (8,%,%))e=x
k—

1 n
— Z/ d)\/ ddyDye |:\I,§€;€y71nz 1,Ye+1:n)s (txx)(yd \IJ(Q Y;’L/z 1Y et1:n), (6%, x)(ye):|
=2 m=k R

DYm (S Yik— 1?0315( )+>‘(y Ost( ))kn)

Thus, we derive similarly to (2.36):
A% a1 (5:%, %) le=x

= yy

(=2 m=k

Dy [ Wiy (0220 () gk (00|

—a

1,1

}, (3.36)
Bt o

where fR(n,Ud d(y1.0—1,yYe+1.n) means that we integrate over yi.,—1 and ysy1.,- To conclude, we need the
following appropriate version of Lemma 10 to handle the Besov norm with negative exponent in the above
r.h.s. Its proof is postponed to the next section.

Lemma 13. Let k € [2,n], £ € [2,k—1] and m € [k,n] and let \I'(S‘y:ne Py (b52) L Rl _y R pe the
function defined by (3.36). There exist C := C((A)) > 0 and 7" := 7} m((A)) :=1/2+n(l —3/2) > 1/2 such
that

m
(n—1)d ’

yl:@—l? y[+1:n) { ‘

X sup
z;,j€[1,n],j#L

Dmu(sa Z14—1, ", Zf+1:n)

HDe O R t r A E O] ‘

~ (i1 Rk am
< ch\é(t757xa (Y1:e—1,}’é+1:n))(5—t) 1=(=3)ai+7 |(X—X/)i

with Go\e(t, 8,X, (Y1:0-1, Yet+1:m)) as in (2.36).

Again, for the specific choice of af = (1+1/4)/(2i — 1) performed in the proof of Lemma 10, we eventually
derive from Lemma 13 and (3.36) that:

k—1 n T
.1 k m k
/ ds|AS 51 (5, %, %) e <C<ZZ sup (D), ()l o / ds(s — )~ 1- (=Bt )|(x—x')i|°‘i
=2 m=k 5€[0T et
al?
SCT& sup ||(Dmu)z(8 )HB;}/’; (X_X/)i| Y (337)

mel[k,n],L€[1,k],s€[0,T]

for some § := 3n/8 > 0. On the other hand, from the definition in (3.34), using as well Proposition 5, Lemmas
9, 12 and 7, we get similarly to (2.38):

Cl(Dr-1Fr)k-1(s,-))ly
(s — t)b=D)+(-3)

AT 35 (5, %, X )|e=x < |(x = x)i /dﬁ’é—l(t,s,x,Y)l(as,t(X) =¥k
R,

X([Dufloo + [(Dru)e(s, Nar) (1(0s,0() = Y[ + D" 1(054(%) = ¥)m|*)

m=k+1

IN

CIDulloo + [(Dru)r(s, )ar)l(x = )il ™

X( Z(S _ t) (k—3)—(i—L)af+(1+n) (k= 2)+af (k=3 ) lmek+Ce (M=) negret1, n.]]) (3.38)

m=k

39



where we have expanded the difference of the Gaussian densities and exploited the fact that on the considered
time set the diagonal regime holds for those densities. From (3.38) and recalling (2.40) and (2.41) we finally
get:

IA

/Sc ds|A§732(s, X, X' )|g=x

i

C(IDulloe + [(Dru)i (s, Nap )| (x = X):i

k " T 3 m
% Z / ds(s —t)" 2%
m=k vt

CT* ([ Dulc + [(Diu)i(s, Yo )16 = %)l (3.39)

IN

for ¢ small enough. Combining the estimates (3.37) and (3.39) together with (3.33) we eventually derive

<T°C|(x' - x);
E=x

/S;‘ ds {I,f(s,x) - I,f(s,x’)}

ak (Du|Oo + sup [(Dmu)é(s, .)]azn> )

méel[k,n],Le[1,k],s€[0,T]
(3.40)
Now, the term Hf(s,x) — H,S(s,x’) in (3.32) (non-degenerate variables) can be handled reproducing the

same previous arguments for I,S (s,x) — I,S(s, x'), exploiting (3.31) and following the computations performed
for Hy, in the proof of Theorem 3 (see e.g. (2.28)). From the definition of S we obtain:

/tT , ds (H,f(s,x) — H,f(s,x’))

+eo| (x/ —x); | TT

£=x
T k(i 1y sk
|DD1U||OO+ HDUHOO)/ ds(sft)*lfai (i—3)+9;
t

k
ai(

k
C|(x' = x);|* (|DD1ullos + |[Dulloc) T, (3.41)

IN

C|l(x' —x);

IN

for some & > 0 recalling for the last inequality that, from the bound following (3.25), 6¥ > 1/2 + /2, so that
—af(i—1/2) +6F = —(1+n/4)/2 + 6% > 0. The arguments needed to control this term are actually those
already exploited in [CdR17] when n = 2.

Gathering equations (3.40) and (3.41), we finally derive with the notations of (3.32):

k
|Dygult,x) = Dy ult. x| < OT|(x' = )il (IDDrufloc + [Dulloc+ sup—[[(Dyntr) (5, ) o )-
i 2<4<m<n,s€[0,T] 00,00
(3.42)

3.2.3 Discontinuity term associated with the regime time change: control of the term (3.23).

We here aim at handling

(Dxu(t,x) — Dy, u(t, X)) |os, = {kapfoytu(to,x’) - kapf)ytu(tg,x’)}(gl @)t

which we will actually handle like the off-diagonal components. Recall here that the transition time ty =
t + co|(x — x');|* %=1 From Lemma 8 (cancellation argument), we write:

kapt%_’tu(to, x') — kapfoﬁtu(to, x")
= / p dnykﬁgl (tv tO, le y)[u(th Y) - u(th Yik—1, (etg,t(xl))k:n)]
RTI,

- / B dnykﬁg (tv tOv xl7 y)[u(t()v Y) - U(to, Yik—1, (mﬁoﬁt(xl))lﬁ eto,t(X/)k+1:n)]~
Rn

We now split the above contribution into three terms:

Dy, B, julto,X') = Ds Pf yulto, ') = (5% + B85 + 5% )(to,x), (3.43)
where

</

‘@fé (th X/) = { / 4 dyDka{,(tv Lo, X/, Y)[u(to, Y) - u(t07 Yik;s (0t07t(xl))k+1in)]
R’n
_/ dnykﬁé/ (t,th/a}’) [U(tO»Y) - U(t07Y1:k7 (eto,t(xl))k+1:n)i| }7 (344)
Rnd
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FEE (1, %))
= { |:/ 4 dnykﬁgl(t7 tOv X/a Y) U(to, Yik, (eto,t(xl))k-i-l:n) - U(to, Yik—1, (eto,t(xl))k:n)
R’Vl
—~(Dutto Ykt Bt (X)) (¥ = B0t X))

’

- |: ., dnykp{ (tv t07 X/a y)[u(th Yi:k, (Gtg,t (X/))k-i-l:n) - u(th Yik—1, (mfo)t (X/))k, ato,t (X/)k—i-l:n)
R‘VL

~(Drulto, yrip-1, (0, () s B1 0 (K )is1:0), (v — S, (X)) } (3.45)

7=l

{@3&) o (th X/) = { 4 dnykﬁEI (ta to; X/7 Y) <Dku(t07 Yik—1, (Oto,t (X/))k:n)a (y - Oto,t(xl))k>
R"L

b

- . dnykﬁE (t, to, Xl)Y) <Dku(toa Yik—1; (mfo,t(xl))k’ etoyt(xl)k-‘rl!n)’ (y - mfo,t(xl))k>}'
RTL(

(3.46)

We now exploit the Holder regularity of Dyu w.r.t. the k'!' variable to control the terms in %’5’5 (to,x’)
defined in (3.45). Let us first write from the previous decomposition:

|B5F (to,x)]
= ) / dyDka{/ (t,to,Xl,y) [u(thylik? (eto,t(xl))k+1in) - ’u’(tO?yl:k*l’ (eto’t(xl))k:n)
Rnd
~(Dyulto, y1:b-15 (Bra, 0 (X)) (7 = it ()] |

1
! ak
— [y [ D5 (6o, 3| IDkulto, s B (6D g — B %,
Rn 0 ’
From Proposition 5, we thus derive:

1BEE (10,5 ) ¢ &) )

k _1 N
< C(to—t)*F=2)  sup [Dru(to, z1:, ',Zk+1:n)]a;;/ dy1:k-18yk+1:ndo-—1\k(t, 8, %, (Y1:k—1, Yk+1:m))
2;,5€[Ln], j#k R(n—1)d

= C(to — )73 [(Dxuw)(to, ag (3.47)
recalling from (3.14) that of = (1+1n/4)/(2k — 1). The same arguments readily give:

|#55 (to,x)|
= ‘ glnykp{ (t7t07X/aY)[U(t0,Y1:k, <6to,t<x/))k+1:n) - u(thyl:kfla (mfo)t(x/))lweto,t(x/)kJrl:n)
R?L

~(Drulto, Y1, (05, ()i, Ot (K Y100 (v = m, (X)) ) |
< Clto— ) [(Diwli(to, ag- (3.48)
Observe also that for this term we do not need to exploit the specific choice (&, él) = (x/,x) for the freezing

point. i
Let us now deal with the contribution %% (to,x') in (3.44). Observe from this definition that this term is
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non-zero if and only if £ < n. Write then

185 (10,5 e &y

IN

B dY‘DXkﬁE (tv tOv Xla Y)|£’:x/|u(t07 Y) - U(to, Yi:k, (Gto,t(xl))k-‘rl:n”
Rfl

+/ . dy|kaZ~)€ (ta th X/7y)|g’:x|u(t07 y) - U(to, Yi:k, (eto,t(xl))k+1:n)|
R’”

IA

d o
cmuum( / (b0, X ) (Bt () — ¥ )i (3.49)
Rnd (tO — t) 2

dy x x x
+/R (o —tF 3 t)k_;pc—l(tvto7X/aY)(|(mto,t(X') = ¥kt 1|+ (mF (x) — ato,t(xl))k-‘rl!n'))'
n 0 — 2

To deal with the last contribution in the r.h.s., we will need some auxilliary lemmas already used in [CdARHM20]
for Schauder estimates. Namely, analogously to Lemmas 1 and 3 therein, we have the following result.

Lemma 14. There exists ¥ = 9((A)) € (0,1) s.t. for all j € [1,n], x € R™ x" = (X1.i_1,2, Xit1.n) € R™:

2j—1

2T (3.50)

(3 (%) = Or0,e (x));] < cfd® ™! (x,x') =] (x — x);

For the sake of completeness a proof is provided in Appendix A below. Recalling that tg = t + co|(x —
x'); >/ =1 with |(x — x');| < 1, we obtain

Du [IDw| 2(kt1) -1
H ”;:i; ‘(mfmt(xl) — 0t (X))kg1n| < Y oo Py cal(x —x');| " =T
(to —t)" 2 cp Z|(x —x/); 20
9—(k—1 2
< Duflccy *T(x — x'),| 7
9—(k—1 k
< Dulleccy * T (x = )il

Plugging the above control in (3.49) and using as well Lemma 7 and Proposition 5, we obtain:

|1 B5°€ (t9,x')] < CIDullo {20t = ) + 5" |(x = x)ilt | (3.51)

(€/.€")=(x"x)
Let us eventually control the term %’gl’é/(to,x’ ) defined in (3.46) which we rewrite in the following way:
5 (10, %)
= { » dy Dy, 7 (t, 10, X, Y)< [Drulto, y1n—1, (0t0,t(X))kin) — Drulto, Oy (x))], (y — eto,t(x/))k>

’

- dy Dy, ¥ (t, 10, X/, Y)< [Dru(to, y1:r-1, (mfo,t(xl))ka Ot0.+(X ) kt1m)
—Dyulto, (m, (<)) 1k Ot (O 1)) (¥ = m§;,t<x’>>k>}

+{ /R Ay D ¥ (1,10, %, y)
([Dwu(to, 010,1(x')) = Diulto, (mf, ()1t Byt (< Yt 1): (¥ = eto,t<x’>>k>}

{ [ AP (oto,x ) (Dt (0 ()1 1 X ). (3 = (i)
— [ D (o ) (Dl (0, D)1 B X ) 3 = ato,t<x'>>k>},

where, thanks to Proposition 6 the last contribution is actually 0. For the first and second contributions in the
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above r.h.s. we have, thanks to the Holder regularity of x;.; — Dyu(-,X1.x,-), Proposition 5 and Lemma 14:

|85 (to, %)

(& .€)=(x"x)
k—1 .
~x’ ~AX ak(j—1
S C ddy {pC*l(t7t07x/aY)+pC’*1(t7t07X/aY)} [(Dku)_](t(%)]ak(to_t) J(J 2)
Rn - J
j=1
k .
+C dypc Lt to, X, y) Z Dyu);(to, ) (to—t)%‘(fé)
Rnd
j=1
b 14
< (D) (to, N ) (fo — )3+, (3.52)
j=1

Thus, plugging estimates (3.47), (3.48), (3.51) and (3.52) in (3.43) we deduce that

|DXth£07tu(t07 X/) - kaPt%7tu(t07 X/)|(£/ E)=(x',x)

} (zk: [(Dru);(to, ) )(to—t)%+%]. (3.53)
j=1

From the definition of tq = t 4 co|(x —x);|> 1) and o = (1+1n/4)/(2i — 1), recalling that to — t is small
as well (i.e. tg —t < C(tg — t)*/?*"/8) we obtain from (3.53):

< C[IDull {(to— 1) + g " P lx—x

|DXth£o,tu(t0v X/) - kaptgoﬂfu(to’ X/)|(£/aél):(x/1x)

k n k
< 0{ i (oIDwa) 0, ot ) + (b )+c5*8>||Du||oo}l<x—x’>i|af.

Thus, from (3.23), there exists 6 := 6((A))e (0,1) such that

k i1 <
‘(kau(t, x) — Dy, u(t, x’)) \agi‘ <|(x—=x")i|%Cleq d [IDul|0o + cg2<?i%<<n[(Dmu)£(to, -)]azn). (3.54)

Conclusion: control of (3.20). Plugging (3.28), (3.42) and (3.54) into (3.20), (3.18), we eventually derive
that for some positive § := §((A)) > 0:

51 N <
IDsyutt xrir il x < O(c5" IDullc HIDDullct (477 sup (D) (5. ) o ).
00,00 s€[0,7],2<l<m<n 00,00

The main point to close our circular argument then consists in taking the supremums w.r.t. Xi.;—1,X;41:n,
i,k and t € [0,7] on the Lh.s. and to tune the constant ¢y and the terminal time T in order to obtain

C’(cg~ + Ts) < 1/2. We then derive that for all 2 <i <k < n:

sup ||(Dyu);(t, )] ar < C{IDulloo + [DD1ullo}, (3.55)
tE[O T] Boo,oo
which concludes the proof of Lemma 11. .

3.3 Proof of of Lemma 13

We follow the proof of Lemma 10, concentrating on the case £ < k — 1, the specific case £ = k could be treated
similarly considering the slightly different cancellation terms already discussed in Lemma 10. The quantity to

estimate is now:
Dy [[q/és;cy%e 1,Ye+1:n),(tX, x)( ) - \IIE’SIZ’Tlr;E—lvyAZJ»l:n)»(tvx ,X) ()] (3.56)

Splitting the thermic part of the Besov norm as in (3.2), we obtain the same kind estimate for the non-singular
in time part. Indeed, we point out that the difference (3.56) does not involve Dy, , therefore we gain a singularity
of order 1/2 w.r.t. equation (3.3). On the other hand, the difference of the derivatives of the frozen densities
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w.r.t. x5 can be handled with (3.31). Choosing py., = 2¢ — 1 as in the proof of Lemma 10, and recalling that
ak(i—1/2) = (1+n/4)/2 (see (3.14)), it is plain to check that:

Y 1:6—1; in ), (8%, X 3 ) n tx s X
Upper | Dy W72 00 i (40 |

Cl(x — x');|* .
(S — t)l"ral-c(i—%)—"/}n qc\f(ta S, X, (}’1:[—17 YZ+1:n))7 (357)

where from (H,), 1+ af(i —1/2) — 4" < 1. Turning to the singular in time contribution of the thermic part
of the Besov norm of (3.56) we decompose with the notations of Lemma 10 (see e.g. (3.8), (3.9) which exhibit
an additional spatial derivative):

m

Lower |:Dé [\I;ésl;b':nz 1,Ye+1:n), (%, x)( ) \Il(q’yl 1Y es1in), (X x)( )H

(S t)"é m
. +1 (s }'1 —1,Yet1n),(tx,x") (8, ¥1:0—1,¥e+1:m),(t,x,x") ~
=: / / dZ|(T, —|—<72’é7k’m )(w,z)|,
0

where ¢ < k < m and:

Ty 022, 2) (3.58)

= /d dyZDanh/w(fg - W)(kaﬁg(t S,X,y) - kaﬁg(ta S,XI>Y))£:X
R
<Ff(8, Yik—1, 01;?()()) - Ff(S, Yiu—1, 27 Yo41:k—1, 0136,1751()()))7 (y - Hs,t(x))m>7

with a slight abuse of notation when £ = k — 1 and

Ty (w2 (3.59)

= /d dyZDéawhw(g - yZ) [(kaﬁg(ta S, X>Y) - kaﬁg(tv $,X,¥1:0—-1, 27 y€+1:n))
R

- (kaﬁg(tv S, X/v y) - kaﬁs(tv S, xl7 Yi—1, 27 y£+1:n)>‘|
£=x

(Fols,yre1,2, yesr 1,057 (%)) = Fuls,04,0(%)) = D1 Fu(s,0,,0(x))(y = 05, ())e1, (v = (X)) )-

Note now that, when proceeding first as in (3.29), (3.30) and controlling then the associated difference as
n (3.9), we get thanks to (3.31) that:

(kaf)g(tv S5, X, y) - kaﬁg(t7 5,X,¥1:0—-1, 27 ye-‘rl:n)) - (kaf)g(tv S, X/a Y) - kaﬁg(ta S, Xla Yie—1, Za YZ+1:7L)) |

IN

¢ v i —
(5 _ t)ziéJrii%Jrki% /0 dApc—l(tasaxa yl:E—laZ+>‘(ylfz)7y2+1:n)|(x *X)i||27y2|

< C
- (S_t)(f——)+ak(z—f)+(k—f)

1
J a2 o) (=0
using the fact we are in the diagonal regime in the last inequality. With this control at hand, together with
estimate (3.31), to handle the contributions (91(;:%%_1’y“l:”)’(t’x’x )+ %(Z’Z%‘_l’y“l:”)’(t’x’x ))(w Z), we can
mimic the proof of the estimation of the contributions (9(5’}'1 i-tYignn),(62) 9 > );11’) PR m) (s x)) (v, 2) done

4,(1,1),
in Lemma 10 to obtain

LOWeI' |:‘DZ [\I}gf]:’;;ffl7y2+1:n)’(t;x,x)( ) l:[/(s,yl 0—1,Y041: n) (t x’ x)( ):|:|

k,m
(=)™ iy am
~ k w20
< Claaltsx G ye)6 -t [T e
0
1 —1422 w1
% T i) | el G- D) (-3/2)
wh-F (s ori-D) | (s— ) BEGD) | (5 )i dref-D-(n
< Chovelt, 5, (Y1:z71,w+1:n))(s_t)_l_(l_f)a | (x = %),
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where 7" = 1/24n(¢—3/2). From (H,) and the very definition of af we hence have 1 —af(i —1/2)+~" < 1
which, together with (3.57), concludes the proof. O

A Sensitivity results for the mean: Proof of Lemma 14

In order to prove Lemma 14, we first need to establish some controls on the sensitivity of the flows, see Lemma
15 below. Those results are obtained under the sole assumption (A) and remain valid for the mollification
procedure of the coefficients considered in (AM). We will then proceed to the final proof of Lemma 14 in
Section A.2.

For our analysis, we now introduce the spatial homogeneous distance, which basically reflects the various
scales of the system already seen e.g. in Proposition 5. Namely, for (x,x’) € R™, we define:

7T (A.1)

The distance is homogeneous in the sense that, for any A > 0, d(A~'/2T,x, A\~ /2T\x') = A\}/2d(x, x).

A.1 A first sensitivity result for the flow

Lemma 15 (Control of the flows). Under (A), there exists C := C((A),T) s.t. for all spatial points (x,x’) €
(R")?2 d(x,x') <1, 0<t<s<T<1andic[l,n]:

[(6.0(%) = 050(x)i] < C((s = 1)} + @ 1 (x = x)).

The flow, 6 ; is, somehow, locally “almost” Lipschitz continuous in space w.r.t. the homogeneous distance
d, up to a time additive term. This time contribution is a consequence of the non-Lipschitz continuity of the
drif F. The analysis which was already done for F Lipschitz continuous in Proposition 4.1 of [Men18], and
Appendix A.1 in [CdRHM20] with different Holder regularity of F. Actually, as we consider a smoother drift
than in [CARHM20], the following lemma can be seen as a by-product of Lemma 12 therein. For the sake of
completeness, we provide the corresponding, and more direct, analysis below.

Proof. The analysis mainly relies on Grénwall type arguments coupled with suitable mollification techniques,
because F is not Lipschitz continuous, and appropriate Young inequalities in order to make the intrinsic scales
associated to the spatial variables appear. Let § € R™ be the vector whose entries §; > 0 correspond to the
mollification parameter of the drift F; for i € [2,n]. Namely, for all v € [0,T], z € R*, i € [2,n], we define

F?(“? Zi_l:n) = Fi(vv ) * Ps; (Z) = /d dwFi(Uv Zi—1,2; — WyZj41,- - zn)ﬂ&; (w)7 (AQ)
R

with ps, (w) := (1/6%)p (w/6;) where p : R — R, is a usual mollifier, namely p has compact support and
Jga p(z)dz = 1. Eventually, we write F°(v,2) := (F1(v,z),F}(v,2),...,F(v,z)). With a slight abuse of
notation in the previous definitions, since the first component F; is not mollified. The sublinearity of F; is
actually enough to obtain the desired control.

To be at the good current time scale for the contributions associated with the mollification, we pick §; in
order to have C := C((A),T) > 0 s.t. for all z € R v € [t, s]:

’(5 L (F(u, z) — Fo(u, z))‘ <CO(s—1)~L (A.3)

By the previous definition of F? in (A.2), identity (A.3) is equivalent to:

n

Ss -0 < O(s— )7 (A.4)
i=2
Hence, we choose from now on, for each i € [2,n]:
8= (s — t)(i—%)gl}:é. (A.5)
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Next, let us control the last components of the flow. By the definition of 85, in (2.4), we get:
[(05,¢(x) — gs,t(xl))n|
< o=l [ do([F3(0,0,00x)) ~ B (0. 6,.4(x)
t

HF(0,00,0(%)) = Fu(v,0,,4(x))] + |F5,(0,0,,4(x)) = Fa(v, 91},t(X'))|)

2n—2

= |(X_X/)"|+C/tsdv(‘(0”’t(x)_avat( )|+ 0n e ll(ev,t(x)—gv,t(xl))no+(s—t)5ﬁ”771,

observing for the last inequality that since 8, > (2n — 2)/(2n — 1) and J,, is meant to be small, 67> <
57(12n—2)/(2n—1).

Hence by Gronwall’s lemma, we get:

(85,6(x) — 05,4(x'))nl ‘ )
< Cexp (s~ 1)0n s f) (16— %)l + (s — )52t +/t 40 (84(x) ~ 0.4(x)),,_, )
< Cexp (C(s - t)%) (\(x — X )| + (s — )" 4 /t o] (0,,4(x) — 0u4(x)) |), (A.6)

using (A.5) for the last inequality. For the (n — 1)*® component, the situation is quite different in the sense
that we have to handle the non-Lipschitz continuity of F_; in its n'" variable. Write:

[(05,6(x) — Bs,t(X/))n 1
2(n—1)—2 2(n—1)—2

< Cexp (Cls = )8, 11777 ) (10 = x|+ (s = 300
+f 0] (8,130 = 8,4), |+ 1(8,4(x) — 0,.4(x), |7}

< Coxp(Cls = 0 (J0x = X)aal + =0+ [ 0o{ (0,400 - 0,160)),
(= X )P+ (0 — )PP 4 (/v | (6,.4(x) — aw,t(x’))nl\)B"D

t

< Cexp(C(s — t>%>(<x—x'>n1| +(s—t)"% + / s dv{|<0v,t<x> = 0u.0(x) |
B ([ @it - 00u), 1) ). (A7)

from our choice of §,,_1 in (A.5) for the second inequality. We also exploited for the last inequality that, since
under (Tg), B, > (2n —2)/(2n —1), Bp(n—3) >n—1>n—-3/2and 0 < t < s < T where T is small,
then (v — t)Pr("=1/2) < (v — t)»=3/2 Also, since d(x,x’) < 1, the same arguments yield |(x — x'),|%» <
|(X o X/)n|(2n72)/(2n71) < |(X _ Xl)n|(2n73)/(2n71)'

From (A.7), which still holds true replacing s by any 5 € [t, s], we deduce that taking the supremum over
€ [t, s]:

+H(x = x)n

sup |(05,¢(x) — 05,¢(x'))n—1]

3€(t,s]

Cexp(C(s—t)%)<|(x X V1| + (s =)~ %+/ dv{ —9v,t(xl))n_2’

t

+|(xx’)n§‘2?+(/tvdw|(wt X)) D })

Taking then the supremum in w € [t, s] in the above integral, we obtain:

sup [(05,1(x) — 05,.1(x))n-1]

S€(t,s]

Cexp(C(s — t)%) (|(x =X V1| + (s — t)"_% + /ts dv| (Ov,t(x) — 0v,t(x’)))n_2|

IN

IN

(o = x) |51 + up (8149 = 00.0()), (s - t)‘*n“)). (A8)
welt,s
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From Young’s inequality we now derive:

n 1 1
SI?tp | |(0w,t(x) - ew,t(xl)))n_l |ﬁ (5 - t)ﬂn+1 S 5 Sl[ltp | ‘(ew,t(x) - ew,t(xl)))n_1|(5 - t) + C(S - t) 1_lﬁn
welt,s wel(t,s

. .
S 5 sup [(Buwt(x) = Ouwi(X))) | +C(s— i,
wEl[t,s]

recalling for the last inequality that s —¢ < 1, and since §,, > (2n —2)/(2n —1),1 — 3, < 1/(2n — 1), we also
have (s —t)1/(1=Fn) < (s — )21 < (s — )" ~3/2, Plugging the above control into (A.8), we obtain:

1
5 SUP [(B5.1(%) = 05.1(x'))ui (A.9)
3€(t,s]

< Coxp(Cls =) (=X )a| + (s — 0" F + / 0] (6,40 — 0,0()), | + (x — ), [BH).

We explicitly see from (A.10) that each entry of the difference of the starting points appears at its intrinsic
scale for the homogeneous distance d introduced in (A.1).
Plugging the above inequality into (A.6) we derive:

|(057t(x) - 087t(X/)>n|
< Cexp (Cls =)} ) (1x = XDl + (s = )" F 4+ |(x =X )al(5 — )

3t (s — 1) +/tsdv /tvdwl (01 (x) — Ow,t(X’)))n_g})
< Cexp (0(3 — t)%) (|(x =Xl + (5 = £)"F 4 |(x = X )| +/tsdv /tvdW| (Bu.e(x) = "wvt(x/)))nﬁo’

+l(x = x)n|

using again the Young inequalities |(x — x'),,|(?"=3)/Cn=D (s —t) < O(|(x — X)n| + (5 — )"~ /2) and |(x —
X n-1|(s — 1) < C(|(x = %) |1/ @n=3) 4 (s — £)7=1/2) for the last inequality. Iterating the procedure,
we get:

(05.4(x) — 05.4(x))] gc<(s_t)"—% +Z|(x—x’)j|i?if +/ dvn,l.../ dvll(evl,Ax’)—em,t(x>)1\>-
t t

j=2
Anagolously, for i € [2,n], we obtain:

(0.0(x) — 0.0(x'))i] < c<<s S Y e ) B 4 / i / 1] (8, (%) — evl,t<x>>1|>~

i=2 t

Remark 8. Observe that equations (A.10) and (A.10) are available for any fived time s € [t,T).

The first term, i.e. for ¢ = 1 is controlled slightly differently. In other words, for any § € [, s], write:
[(85,4(x) — 05,0(x)1| < [(x —x')1] + CZ/ dv| (8, +(x) — 0,4 (x'));1%,
j=17t

which in turn implies from (A.10), Remark 8 and convexity inequalities:

sup |(0s,¢(x) — 05.¢(x)|

5€(t,s]
< =30l +C((5 =0 5w [(6u(0) = Ol + 3 / 0](8,()  0,,,(), 1)
vElt,s =2 t
< Jx =X+ (<s — )5 sup [(B5.4(0) ~ s, (x| + €]

2 vE(t,s]

FOD (s =0 =07 7F 4 2 Ioe =l 4 (-0 s |<ev,t<x>ev,t<x/>>1)ﬁj).
j=2

h—2 vE[t,s]
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Recalling 5; > (2j —2)/(2j —1) and 0 <t <s < T <1, d(x,x") <1, we get:

1 sup [(0z.4(x) — 05.4(x'))1]

2 S€(t,s]
< x—=x) (A.10)
+c(<s =843 = (5 = O+ 3 Jox = XDl T (5= )07 sup |80 - emt(x’))ll“))
j=2 k=2 velt,s

Write now from the Young inequality:
) 1
Cls =) U7V sup |(By,6(x) = u,e(x' )17 < C(s — 1) + 7 5P [(004(x) = 001 (x))a-
veElt,s] vE(t,s]

We eventually derive from (A.11) that:
sup [(6,,4(x) = 00.0(x))1] < O((s — )% + d(x, %)),

vE[t,s]

which gives the statement for ¢ = 1. Plugging now this inequality into (A.10), we get for each i € [2,n]:
(04,0(x) = B, (xX))il < C((s =) 72 +d* 71 (x,x) + (s = )" sup [(Bu,4(x) = 004(x'))1])

vE[t,s]
c((s —1)iTE a2 (xx) 4 (s — )L (s — )% +d(x, X')))
C((s— t)i_% +d* 1 (x, x)),

using again for the last identity the Young inequality to derive that (s — ¢)"'d(x,x’) < C((s —t)""1/2 +
d?~!(x,x’)). The proof is complete. O

IN

IN

A.2 Sensitivity results for the mean: final proof of Lemma 14

Again through the analysis, we assume w.l.o.g. that d(x,x’) < 1. The control is done with a distinction of two
contributions to handle.

my(x') = 0,,:(x) = [mT,(x') = 05,4(x)] + [0s,4(x) — 054(x)]. (A.11)
By the prozy definition in (2.3), we deduce that the mean value of X%, mat is s.t.
m’s"t(xl) —05:(x) =x"—x+ / dvDF (v, Gvﬁt(x))[mi}"t(x’) —6,,.(x)]. (A.12)
t

The sub-triangular structure of DF yields that for each i € [2,n]:
(m}, (%) — 6.4(x)), = %] — xi + / dvD; 1 Fi(v,0, +(x))[m} ,(x")i1 — 0y +(%)i1].
t

Also, since mj ,(x'); = x + J dvF1(v,6,,(x)), so we obtain that [mi,(x')1 — 0,(x)1] = X} — x1, we then
obtain by iteration that:

V=S8

7 Vi i
(m(’;t(x/) — 057t(x))i = Xg —X; + Z |:/ d”Ui_l .. / dvk_l H Dj_le(’Uj, Ovjyt(x)) [X;c—l — Xk_l],
k=2 7t ¢

=k

with the convention that for ¢ =1, ZZ:Q = 0. From the above control, equation (A.11) and the dynamics of
the flow, and because the starting points are the same, the contributions involving differences of the spatial
points (x" — x) or flows only appear in iterated time integrals, we obtain:

|(m, (x') = 0:.:(x)),|

= ]; [/t dvi-y . /t dvk—ljl:[ij—le(Ujvevj,t(X))} [X)—1 — Xk—1]
+ ts |F;(v,0,:(x)) — Fi(v,0,(x))|dv
_ C( ifl(s — )" F|xp — x|+ /ts dv(i |(60,:(x) — Ov,t(x’))j‘ﬁj + | (80,¢(x) — Bv,t(X/))i_1|))'

k=2
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We derive from the previous Lemma 15 (control of the flows) recalling again that 5; > (25 —2)/(2j — 1) and
d(x,x')<1,0<t<s<T <1

[(m, (x) — 05,4(x)),|
i—1 -, . . ) .
= C(DS — 1) R = X[+ (s — )77 T2, x) (s — 1)+ (s — )TV TE 4 d20 D7 (3, %)) (s — ﬁ)'
k=2

In particular, for s =ty = t + cod?(x, x’) with ¢y < 1, the previous equation yields:
. . . ;1 .
(3 (%) = 01, 0(x) | < C(0d® (%, %) + (ch + c0)d® 1 (x,x') + (6 T +0)d® " (x,%) ).

using again d(x,x’) < 1 for the middle term. After summing and by convexity inequalities, we eventually
deduce:

1
d(mJ,(x'),0,:(x")) < Ccg" T d(x,%).
This concludes the proof of Lemma 14. O

B Parametrix expansion with different freezing points

In this section we show how the parametrix expansion (3.19) involving different freezing points can be derived.
This can actually been done from the Duhamel formulation up to an additional discontinuity term. Restarting
from (2.20) we can indeed rewrite from the Markov property that for given (¢,x’) € [0,T] x R and any
re(t,T),¢ e R

w(t,x) = [Pfu(r)] ) + /t s [PEf (s, () + /t s 25 ((Ls = )u) (5] ). (B)
Differentiating the above expression in r € (¢, T yields for any & € R™4:
0= 0, [ P, )] o) + [ PEL 1) | () + [P (20 = T ()| (). (B.2)

Denoting by tg € (t,T] the time at which we change the freezing point and integrating (B.2) on [¢, o] for a first
given ¢’ and between [to, T| with a possibly different é'/ yields:

0 = [Pt )] 0) a4 [ as[PErts 0] 0+ [ as[PE (0 - T8 ) 5. ] )

t t
%7 il T il T ~ % ~ 2l
+[PE ) ) = [B utto, | ) + [ ds[PEss ] 0)+ [ as[PE (2= Eu) (s,9)] ).
to to
Recalling that «(7,-) = 0 (terminal condition), the above equation rewrites:
u(t,x’)

-/ "as (ﬂsgto [P8,1(5,)] ) + Tosg [BE, 5, )] <x'>) + [P ulto, )] ) = [P sulto, )] ()
- s (u (P8, (Lo = L€ )) (5,)] () + sty [ P& ((Ls = L€ yu) (5, )] <x’>).

We see that for & # é/ we have an additional discontinuity term deriving from the change of freezing point

along the time variable. Eventually, the above equation precisely gives (3.19), recalling that for tg = t+cg|(x; —
Z)|2/(2i_1), I

Sgto = ]ISL .

C Auxiliary results concerning the multi-scale Gaussian densities,
their derivatives and some related objects
In order to be self contained, we gather in this section the proof of some results related to the Gaussian

dynamics in (2.3). Namely, we provide a complete proof of Proposition 4 and some auxiliary related results
used throughout the previous proofs. We here freely use the notations of Section 2.1.
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C.1 About the objects appearing in the multi-scale density
C.1.1 Good scaling properties of the covariance matrix: proof of Proposition 4
We recall the correspondence between the notations of [DM10] and those of the current article.
- Notations and Assumptions from [DM10]. Consider the Gaussian process with dynamics
dG; = Lidt + BXdWs (LIN)

where (X¢)e[0,7) is a measurable deterministic R? @ R? valued family s.t. A; := X;X} has uniformly non-
degenerate spectrum, i.e. there exists A > 1 s.t. for any ¢ € [0,T], Spec(A;) € [A~!, A], and the measurable
deterministic R"? @ R™? valued family (L;);e[o,7] is such that for any t € [0, T7:

1,1 1,2 1,n
Ut Ut2 ; e A Ut2
af  UD u:n
2 3,3 3,n
Li=| Oua o U U , (C.1)
—1 n,n
Od,d Od,d af Ut

where the (ai)ie[l’n,lﬂ and (Uf’j)ie[[l’n]]yje[[i,n]] are R% ® R? valued.

This is assumption (A!mear) in [DM10]. Proposition 3.4 of that reference states that, whenever for all
i€[l,n—1] and t € [0,7], o belongs to &; (closed convex subset of GL4(R)), there exists a constant ¢ > 1
depending on &;, A,k s.t. max;e[1 n—1] SUPsefo,7] |at| < K, m, d such that the Gaussian process (G)tejo,r]
introduced in (LIN) satisfies a good scaling property with constant ¢ in the sense of Definition 3.2 of [DM10].

Precisely, denoting by (R(s, t))o < o< the Tesolvent matrix associated with (L;)¢>0, the covariance matrix

t
Kt:/ dSRt)SBASB*R:)S
0

of the random variable Gy satisfies that for any y € R™¢,

Ty < (Key,y) < et HTuyl?,
or equivalently, for all ¢ € (0,T:

Ty < (Kily,y) < et Ty

- Derivation of the Proposition 4 from the previous results of [DM10]. From the dynamics of the process

(XS,T’E))UGMT] given in (2.3) and starting from x at time ¢, see also the associated integrated expression in

£)

(2.5), it can be seen that the covariance matrix of the random variable X writes, with the notations of

Section 2.1: .
K = / duR ™ (v, u)Ba(u, 0, (&) B R™E) (v, u)*,
t

as given in the statement of Proposition 4. This covariance matrix also corresponds to the one of a Gaussian
process with dynamics (LIN) setting for fixed 0 <t < s < T and for any r € [0, s — ]

04.q 04,4
DZ1F2 (t +, 0t+r,7’ (E)) Od,d ce ce Od,d
L"‘ = Od:d D22F3 (t + 0t2rr,7' (é)) Od,d Od,d y (CQ)
; 04,4 - - :
Od,d T Od,d DZn—an(t + 7, 9?411,7” (6)) Od,d

and
X, = U(t + 0t+'r,r(£))'

Since the resolvent (R(r,v))ye[o,s—¢ associated with (L, ),epo,s—¢g Wwrites R(r,v) = R(T’g)(t + 7t + v), one
readily derives that the covariance matrix K¢ of G;—s = R(¢t — s5,0)x + fot_s R(t — s,7)BX,.dW, coincides
with Kgf). Since K;_; = th,g) satisfies a good scaling property, this proves Proposition 4.
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C.1.2 Scaling Properties of the resolvent.
We here aim at proving the following control. There exists C; := C}((A),T) s.t.

nd (12 (T8)st " R

We will proceed following the arguments of Lemma 3.6 in [DM10] specifying how they can apply to the
current setting. Let us restart from the previous linear Gaussian dynamics. Namely, for fixed ¢ € [0,T], let
(Gs)sepo, be as in (LIN) and introduce the scaled process GY = t1/2T; ' Gy, s € [0,1]. Intuitively, from the
previously established good scaling property of G, all the components of the process G! actually evolve at a

macro scale, L.e. its covariance matrix is of order one at time s = 1. o
It is then easily checked that G satisfies (LIN), i.e. dG. = LLGL + XLdW! with:

LL =T, 'Ly Ty, 3% = Sy, W!=t"2W,, s€[0,1].

From the general structure of L in (C.1), and the definition of the scale matrix Ty, one easily derives that
ILY| < (1V T")|Lg|. More specifically, for the special structure considered in (C.2), i.e. without upper-
triangular part, we even get L, = Lg,. In any case, we obtain |L%| < (1V T")x as soon as supgeo,1 [ Lst| < k-

It is then clear that denoting by R! the resolvent associated with (ﬁg)se[o’l] it holds that there exists
C1 == C1((A),T) s.t. for all so,s1 € [0,1], |R!(s1,50)| < C1. On the other hand, direct computations also
yield that

R'(s1,50) = T; 'R(s1t, s0t) Ty <= R(s1t, sot) = T{R (51, 50)T7 ! = [R(£,0)]* = T; HRY(1,0)]*T,,

where R stands for the resolvent associated with L. The final bound (C.3) on the rescaled resolvent asso-

ciated with the frozen process ((s — t)/ QT;,ltXS,T’g)’(t’x))ve[t’s] is eventually derived from the same previous
correspondence exhibited to prove the good scaling property of Proposition 4 in the previous paragraph.

C.2 Control of the Holder modulus of the frozen Green kernel.

We aim here at proving, with the notations of Section 2.2 that the Hélder regularity index of of y;

Dy, G f(s,y;) := Dy, GEf(s,y) = Dy, fST drP, . f(s,y), withi < k, can be taken equal to af = %ﬁ}glfﬁk)

First, we get from (2.19) in Lemma 8 that:
~ . T n T 1 .1
Dy Gty = | [ ar [ asDy sy a)fs.m) <O [t — sy e,
s Rnd —rs
Recall from Assumption (Tg) that 5;(j — 1/2) > Bix(k — 1/2) for j € [k,n]. The above equation thus yields:

T
Dy G f (s, =| [ dr [ daDy, ¥ sy 2 (s.2)

T
< C/ dr(r — )~ (b= D) H0e(k=3) (C.4)
< O(T — s)' = (k=2)(=5x)

From this first bound we can then first draw a control of the Hélder modulus in the so-called off-diagonal case
w.r.t. the current time scale of the considered variable ¢ in the oscillator chain. Namely, for y;,y; € R? s.t.
(T —5)/2 < |y; — y}|*/=1/2)  equation (C.4) readily gives:
Dy G f(5,51) = Dy, G f(s,y0)| < [Dy G f(5,3:)] + Dy, G f (s, 57)]
<20(T — 5)1*(’6*%)(1*@:)

1—(k—$)(1-8y)

<Clyi-yil % . (C.5)
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Assuming now that (T'—s)/2 > |y; —y}|'/(=1/2 we split the integrals as follows. Denoting with a slight abuse
of notation y’ := (y1.i-1, ¥}, Yi+1in),

| Dy, GH f (s, yz) Dy, G** f(5,y7)]

s+]yi— y7\ 2 s+|yi— y\
‘/ dr dszkp (s,7,y,2)f(s,2)| + ‘/ dr dszkﬁg(s,r, y',2z)f(s,2)
Rnd Rnd

+’/ d)‘/ ‘lr/ dZDYkDyiﬁs(svrvy/+)‘(y_yl)vz)'(Yi_yg)f(svz)"
0 +Hyi—yil*"2 JRnd

For the two first term, we have a local off-diagonal regime within the global diagonal one. Applying (C.4) with
T replaced by s + |y; — yi|"/~1/2) | we get:

|DYkéi,£f(57Yi) - DYkéil'gf(Svsz
1—(k—$)(1-8y)

1 T
< iyl b | o] [ Dy, Dy £ My ¥ (52
Hyimyil T Jrnd

Using again (2.19) from the new Lemma 8, one eventually gets:

|DYkéi7€f(s Yi) - Dykéi75f(3,y§)|

1— <k—l><1 Br) n T
o I Do) SR e [T
+IYL ‘177
1— (k—l)u 1—(k—$)(1—Bg)
< vyl b sef dr(r — 5) = D=6DA |y, )
+|YL Y I
1-(k—3)(1-8y) o ) =T
< C(|Yi_ yil = + (r — 5)7 (72T (k=2)(0=5) Zrlyi— |)
r=s+|yi— ‘
1—(k—3)(1-8y)
< Clyi— o (C.6)

Equations (C.5) and (C.6) precisely give the claim. Since Dy, G*¢f(s,y;) is bounded (see (C.4)), any of <

—(k=1/2)(1=B%)

=i actually fits.

D Reverse Taylor formula

Proof of Lemma 12. We assume here, for the sake of simplicity and without loss of generality, that d = 1 (scalar
case). When d > 1, the proof below can be reproduced componentwise. Let us decompose the expression around
the variables for which Lemma 11 applies and those for which it does not. Namely, we write:

Dyu(s,y) — Diu(s, yri-1,6057(€))
= (DZU(SaY) - Dlu(say1:l—170lg,t(£)73’l+1:n)) + (Dlu(3>)’1:l—17Bls,t(ﬁ)a}’lﬂ:n) - Dl“(&)’l:l—lﬁ?ﬁ(ﬁ)))
=1 (A +A7)(s,y,€) (D.7)
We readily get:

AL (5,5, €)] < CUDw)(s, )] ot (v = Bs.0(€))1] (D.8)

which is controlled from Lemma 11. On the other hand, setting for any a € R(*~!+1)d, Biy.s(a) == Diu(s, y1.4-1,a),
and d =37, [(05,.(€) — y)&| we now have for any 6; > 0

A%(S,y,é) = |—'l,y, ((0 ( ))laYl+1:n) _El,y,s(ei:,rtl(é))

= / ({Dlu 5,101, (05t (€)1, Vit 1:n) — Diw(s,¥1:0-1, (05.¢(€))1 + pd® yi41:m)}

+H{Dyu(s, y1a-1, (05(€))i + pd®, 0757 (€)) — Dyu(s, y14-1,6057(8))}
+{Dlu(57 Yii-1, (03715(5))[ + Hd&ﬁ}’l-&-l:n) - DlU(S, Yi:i-1, (es,t(é.))l + ud5170l‘;:i_tln(€))})
3
= Y AM(s,y.€). (D.9)
/=1
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The first two terms can be dealt directly.
1
AP (5,3, )] + |A22(s5,y, )] < 20(Duw(s, )] oy d™ek. (D.10)

For Al2’3(s,y,£), we use an explicit reverse Taylor expansion which yields together with the smoothness as-
sumption of F; in (A):

A (s,y,8) = a7

[u(s, Yi:i-1, (as,t(g))l + délayl—i-l:n) - U(S, Yi:i-1, <Os,t(£))l; yl+1:n)

—(u(s, y1a-1, (85,6(€))1 + A%, (85,6(€)™ ™) — (s, y1:-1, (05,6 ()i (Bs,t(é))l“:"))} ‘
2| D[ ood %, (D.11)

IN

using the Lipschitz property of u w.r.t. the variables [ + 1 to n. Taking d; s.t. §;a} = 1— 6!, which implies that
&= (1+al)™1, gives in (D.10) and (D.11) a global bound of order 2(||Du|o + [(Diu)(s, ~)]oé§)d‘slai. Since we
now recall from Lemma 11 that of = (1 +n/4)/(2l — 1) so that

1 1+4 147

214143 2] — 1 21+ 2
21—1 4

l
(SlOél =

= Q.

We then write from (D.9) and the definiton of d that:

n

A7 (5,5, €)| < 2(| Dulloo + [(Drw)i(s, M) D 1(0s6(6) = ¥)ul,
k=Il+1

which together with (D.8) gives the result. O
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