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SHARP SCHAUDER ESTIMATES FOR SOME DEGENERATE KOLMOGOROV

EQUATIONS

PAUL-ÉRIC CHAUDRU DE RAYNAL, IGOR HONORÉ AND STÉPHANE MENOZZI

Abstract. We provide here some sharp Schauder estimates for degenerate PDEs of Kolmogorov type when the
coefficients lie in some suitable anisotropic Hölder spaces and the first order term is non-linear and unbounded.

We proceed through a perturbative approach based on forward parametrix expansions.

Due to the low regularizing properties of the degenerate variables, for the procedure to work, we heavily
exploit duality results between appropriate Besov spaces.

Our method can be seen as constructive and provides, even in the non-degenerate case, an alternative
approach to Schauder estimates.
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1. Introduction and Main Results

1.1. Statement of the problem. For a fixed time horizon T > 0 and given integers n, d ∈ N, we aim at
proving Schauder estimates for degenerate scalar valued Kolmogorov PDEs of the form:{

∂tu(t,x) + 〈F(t,x),Du(t,x)〉+ 1
2Tr
(
D2

x1
u(t,x)a(t,x)

)
= −f(t,x), (t,x) ∈ [0, T )× Rnd,

u(T,x) = g(x), x ∈ Rnd,
(1.1)

where x = (x1, · · · ,xn) ∈ Rnd and for each i ∈ [[1, n]], xi ∈ Rd. Above, the source f and the terminal condition
g are bounded and scalar valued mappings and the bounded diffusion matrix a is Rd ⊗ Rd-valued. Also,
F(t,x) := (F1(t,x), · · · ,Fn(t,x)) is a vector of Rd-valued unbounded mappings Fi which have, for i ∈ [[2, n]],
the following structure:

(1.2) ∀(t,x) ∈ [0, T ]× Rnd, Fi(t,x) := Fi(t,x
i−1:n), xi−1:n := (xi−1, · · · ,xn).

The notation D = (Dx1 , · · · , Dxn) stands for the full spatial gradient and Dxi denotes the partial gradient
w.r.t. to xi. For notational convenience we will denote the spatial operator in (1.1) by (Lt)t∈[0,T ], i.e. for any

ϕ ∈ C2
0 (Rnd,R) (space of twice continuously differentiable functions with compact support):

(1.3) Ltϕ(x) = 〈F(t,x),Dϕ(x)〉+
1

2
Tr
(
D2

x1
ϕ(x)a(t,x)

)
.

In this work, this operator is supposed to be of weak Hörmander type, i.e. we suppose that the diffusion matrix
a is uniformly elliptic and that the matrices

(
Dxi−1Fi(t, ·)

)
i∈[[2,n]]

have full rank.
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1.2. Preliminaries. Under suitable regularity assumptions on a,F it can be shown that the martingale prob-
lem associated with (1.3) is well posed, see e.g. [27], [28], [4]. In that case, there exists a unique weak solution
to the stochastic differential equation

(1.4)

dX1
t = F1(t,X1

t , . . . ,X
n
t )dt+ σ(t,X1

t , . . . ,X
n
t )dWt,

dX2
t = F2(t,X1

t , . . . ,X
n
t )dt,

dX3
t = F3(t,X2

t , . . . ,X
n
t )dt,

...
dXn

t = Fn(t,Xn−1
t ,Xn

t )dt,

t ≥ 0,

where (Wt)t≥0 is a Brownian motion on some filtered probability space (Ω, (Ft)t≥0,P). The operator (Lt)t≥0

then corresponds to the generator of the process in (1.4) where σ is a square root of a. The well posedness
of the martingale problem in particular implies that (1.1) admits a solution in the mild sense on a suitable
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function space (see e.g. Kolokoltsov [14]).

Starting from this framework and assuming that the coefficients a,F, the source f as well as the terminal
condition g lie in appropriate Hölder spaces, we here prove that the Cauchy problem (1.1) is well posed in the
weak sense and that its unique weak solution satisfies some appropriate Schauder estimates.

These Schauder estimates allow in particular to quantify precisely the parabolic bootstrap associated with
(Lt)t≥0, hence emphasizing its intrinsic regularization properties. In [4], the authors show how in a Hölder
framework for the coefficients F, σ, some minimal thresholds allow to guarantee the well posedness of the
martingale problem associated with (Lt)t≥0 and how such thresholds depend on the level i ∈ [[1, n]] of the chain
and the variable j ∈ [[(i − 1) ∨ 1, n]]. Adding to these thresholds some suitable regularity (depending also on
the level and on the variable) allows to derive Schauder estimates. They provide accurate quantitative bounds
associated with the global smoothing effect of (Lt)t≥0 and reflect how the additional regularity propagates
through the operator. From another point of view, which relies on the associated stochastic system (1.4),
such estimates quantify the regularizing properties of the Brownian motion when propagating through the
aforementioned system. In any case, they underline the degenerate structure of the operator (Lt)t≥0 (or
equivalently of the system (1.4)) which leads to more tricky smoothing effects than those exhibited in the
non-degenerate setting.

It is indeed known from the seminal work of Lunardi [24] on the topic that Schauder estimates for degen-
erate Kolmogorov equations differ from those in the usual non-degenerate setting (see e.g. [16] or [10]). They
reflect in some sense the multiple scales in the systems (1.1) and (1.4) (see Section 1.3 below) and are stated
in terms of anisotropic Hölder spaces. In particular, those spaces emphasize that the higher is the index of the
considered variable in [[1, n]], the weaker is the associated regularity gain.

Mathematical background. Let us shortly describe particular cases of dynamics of type (1.1) for which
some Schauder estimates have already been proved. We again mention the article by Lunardi [24], who
considered the special case of a homogeneous linear drift F(x) = Ax satisfying the structure condition (1.2).
Precisely, the matrix A writes in this case:

A =


a1,1 · · · · · · · · · a1,n

a2,1 · · · · · · · · · a2,n

0d,d a3,2 · · · · · · a3,n

... 0d,d
. . .

...
0d,d · · · 0d,d an,n−1 an,n

 ,

where the entries (ai,j)ij∈[[1,n]]2 are in Rd ⊗ Rd s.t.
(
ai,i−1

)
i∈[[2,n]]

are non-degenerate elements of Rd ⊗ Rd

(which expresses the weak Hörmander condition)∗. Also, the homogeneous diffusion coefficient a belongs to
an appropriate anisotropic Hölder space and asymptotically converges when |x| → ∞ to a non-degenerate
constant matrix of Rd⊗Rd. The assumptions on the asymptotic behavior on the diffusion coefficient have then
been relaxed by Lorenzi [22], in the kinetic framework, i.e. n = 2 with the notations of (1.4), up to additional
regularity assumptions on a which could also be unbounded.

Priola established later in [29] Schauder estimates, without dimensional constraints for time homogeneous
drifts of the form

(1.5) F(x) = Ax +

(
F̃1(x)

0(n−1)d,d

)
,

for a non-linear drift F̃1 acting on the non-degenerate variable in the expected anisotropic Hölder space. The
underlying technique consisted in establishing bounds on the derivatives of the semi-group of the perturbed
degenerate Ornstein-Uhlenbeck process (i.e. with F̃1) from the usual unperturbed one (with (Ax)1 only)

through the Girsanov theorem assuming first that F̃1 is smooth. This initial smoothness of F̃1 is required in
order to compute the associated tangent flows. Through the continuity approach, the author then managed
to obtain the estimates for a bounded variable diffusion coefficient lying in the natural expected Hölder space
similar to the one of [24] with the same asymptotic conditions. The smoothness of F̃1 is relaxed through an
approximation procedure viewing the difference between the Hölder drift and its mollification as a source term
and exploiting the estimates established for the smooth drift.

Finally, we mention the work of Di Francesco and Polidoro [8] who derived Schauder estimates for a linear
drift of the previous type using an alternative notion of continuity regarding the diffusion coefficient a, which

∗Actually the non-zero entries (ai,j) of A can be non-square and simply have full rank in [24]. We restrict here to square
matrices for the sake of simplicity.
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somehow involves the unbounded transport associated with the drift.

Hence, in the current framework of degenerate Kolmogorov equations, focusing on the drift, the Schauder es-
timates hold, to the best of our knowledge, for either linear drifts or Hölder perturbations on the non-degenerate
variable of a linear drift.

Mathematical outline. There will be two main difficulties to overcome in order to prove Schauder
estimates in our framework: the degeneracy as well as the non-linearity and unboundedness of the drift.
Concerning this second issue let us also mention that, in the non-degenerate setting, Schauder estimates for
unbounded non-linear drift coefficients were obtained under mild smoothness assumptions by Krylov and Priola
[17] who heavily used the flow associated with the first order vector field in Lt, i.e. θ̇t(x) = F(t,θt(x)), to
precisely get rid of the unbounded terms.

In this work we will prove, in the framework of Hölder spaces for the source f , the terminal condition g
and the coefficients a,F, Schauder estimates similar to those of the previously quoted works ([24], [22], [29]).
The diffusion coefficient a and the source term f will have, as in the non-degenerate case, the same regularity.
We mention that, in contrast with the non-degenerate case, this will not be the case for the drift F for which
some additional smoothness on the degenerate entries (Fi)i∈[[2,n]] is needed to guarantee the well posedness
of (1.4). In particular, the Hölder indexes of F will be above the minimal thresholds appearing in [4]. The
flow associated with the drift term will again play a key role in our setting. Eventually, we do not impose any
particular spatial asymptotic condition on the diffusion a.

To prove our result, we will here proceed through a perturbative approach. The idea is to perform a
first order parametrix expansion (or Duhamel expansion) of a solution of (1.1) with mollified coefficients
around a suitable linearized Ornstein-Uhlenbeck type semi-group. The main idea behind consists in exploiting
this easier framework in order to subsequently obtain a tractable control on the error expansion. When
applying such a strategy, the common way to proceed consists in adopting the so-called backward parametrix
approach, as successfully considered by Il’in et al. [13], Friedman [10] or McKean and Singer [26] in the
non degenerate setting. This technique has been extended to the current degenerate setting, which involves
unbounded coefficients, and successfully exploited for handling the corresponding martingale problem or density
estimates of the fundamental solution of (1.1) in [4] and [7].

Unfortunately, this approach does not seem very adapted to derive Schauder estimates since it does not
allow to easily deal with gradient and sensitivity estimates associated with the degenerate directions.

We therefore adopt here an alternative forward parametrix approach which is better designed to deal with
gradient estimates. It has indeed been successfully applied e.g. in [2], [3] to derive strong uniqueness for
degenerate kinetic SDEs of type (1.4) (i.e. n = 2 with the previous notations). Especially, this approach is
better tailored to exploit cancellation techniques which are crucial when derivatives come in, as opposed to the
backward one.

The perturbative approach is not usual to establish Schauder type estimates. The standard way is to
proceed through a priori estimates to establish for a given solution of the PDE in a suitable function space,
the expected bound. Existence and uniqueness issues, in the considered function space, for the solution of
the equation are addressed in a second time. We can refer to [16] for a clear presentation of this approach
and to [17] for an extension of this method to non-degenerate operators with unbounded drift coefficients. We
will here obtain that the solutions of (1.1) with mollified coefficients satisfy, uniformly w.r.t. the mollification
parameter, a Schauder type estimate (see Sections 3 to 5 below). From the well posedness of the martingale
problem established in [4] under our current assumptions, we will then derive that the martingale solution to
(1.1) actually itself satisfies the Schauder controls. Since we want to be in the sharpest possible Hölder setting
for the coefficients, source and terminal functions, we will need to establish some subtle controls (in particular
we have no true derivatives of the coefficients) which will heavily rely on duality results for Besov spaces (see
Section 4.2 below and e.g. Chapter 3 in Lemarié-Rieusset [20]).

Let us emphasize that the perturbative approach developed here provides, even in the non-degenerate case,
a new alternative to establish Schauder estimates. It can be seen as a constructive one in the sense that, from a
sequence of smooth solutions, that uniformly satisfy the expected control, we will extract through convergence
in law arguments a limit solution which also satisfies the bound. Uniqueness of the solution in the considered
class then again follows from uniqueness in law of the underlying limit process.

The drawback of our approach is that, for the parabolic problem (1.1), we first have to establish our esti-
mates in small time. This is intuitively clear since the perturbative methods (expansions along an ad hoc proxy)
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are precisely designed for small times. To obtain the result for an arbitrary given time, we then have to iterate
the estimate, which is precisely natural since Schauder estimates provide a kind of stability in the considered
function space. We are therefore far from the optimal constants for the Schauder estimates established in
the non-degenerate setting for time dependent coefficients by Krylov and Priola [18]. However, to the best of
our knowledge, only two approaches allow to derive Schauder estimates for parabolic degenerate Kolmogorov
equations with fully non-linear drift in Hölder space: ours and the one of Hao al. [11] developed in the kinetic
non-local case and based on Littlewood-Paley decompositions. Also, we think the strategy developed in the
current work should apply for the elliptic degenerate Kolmogorov equation with good potential term, i.e. the
negative sign of the potential would allow to integrate on an infinite time horizon (getting therefore rid of the
small time constraint) or for unbounded sources f that would need in that cases to be somehow controlled by
an associated potential as in [17].

To conclude with this outline, we come back to the stochastic counterpart of (1.1): system (1.4). In con-
nection with the strong regularizing properties of Brownian motion, the perturbative approach we develop
here allows as well to address the problem of strong well posedness for the SDE (1.4) in a Hölder framework
for the coefficients. This was done by Chaudru de Raynal in [3] for n = 2 (let us mention as well in this
kinetic case the works of Fedrizzi et al. [9] and Zhang [32] who derived strong uniqueness for Lp drifts on the
non-degenerate component and a linear degenerate dynamics in (1.4)). Namely, in the companion paper [6],
we establish through a similar approach strong uniqueness for the full chain for some suitable related Hölder
thresholds for the drift. Indeed, from a PDE viewpoint, strong uniqueness for the associated SDE is heavily
related to pointwise controls of the gradient of the solution of the PDE in all the directions (including the
degenerate ones). These controls hence require some additional regularity and are then obtained under some
slightly stronger Hölder regularity assumptions on the coefficients (which for strong uniqueness issues then in
turn become the source term in the PDE with the Zvonkin approach). Some related issues were also considered
under additional smoothness conditions by Lorenzi [21] in the case of a linear drift.

Before stating our main results, we recall some properties associated with the system (1.1). We first describe
in Section 1.3 how the intrinsic multi-scales of the degenerate Kolmogorov like equations appear. We then
introduce the appropriate setting of Hölder spaces to consider in Section 1.4. We eventually conclude the
introduction stating in Section 1.5 our main results concerning Schauder estimates associated with (1.1).

1.3. Intrinsic scales of the system and associated distance. Let us now briefly expose how the system
typically behaves. To do so, consider the following operator:

(1.6) L0 := ∂t + 〈A0x,D〉+
1

2
∆x1

, A0 =



0d,d · · · · · · · · · 0d,d

Id,d
. . . · · · · · ·

...

0d,d Id,d
. . . · · ·

...
...

. . .
. . .

. . .
...

0d,d · · · 0d,d Id,d 0d,d


,

which can be viewed as a typical model for the operator in (1.1). Introducing now, for λ > 0, the dilation
operator δλ : (t,x) ∈ R+ × Rnd 7→ δλ(t,x) =

(
λ2t, λx1, λ

3x2, · · · , λ2n−1xn
)
∈ R+ × Rnd, i.e. with a slight

abuse of notation,
(
δλ(t,x)

)
0

:= λ2t and for each i ∈ [[1, n]],
(
δλ(t,x)

)
i

:= λ2i−1xi, we have that

(1.7) L0v = 0 =⇒ L0(v ◦ δλ) = 0.

This hence leads us to introduce the homogeneous quasi-distance† corresponding to the dilation operator δλ.
Precisely, setting for all 0 ≤ t ≤ s < +∞, (x,y) ∈ (Rnd)2:

(1.8) dP
(
(t,x), (s,y)

)
= (s− t) 1

2 +

d∑
i=1

|yi − xi|
1

2i−1 ,

we indeed have dP
(
δλ
(
(t,x)

)
, δλ
(
(s,y)

))
= λdP

(
(t,x), (s,y)

)
. In our current setting we will mainly use the

spatial part deriving from the parabolic homogeneous quasi-distance dP in (1.8). We set accordingly,

(1.9) d
(
x,y

)
=

d∑
i=1

|yi − xi|
1

2i−1 .

†the triangle inequality holds up to some multiplicative constant.
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From a technical point of view, these (quasi-)distances express the spatial homogeneity associated with the
intrinsic time scales of the variances for the Gaussian process with generator L0. From a more probabilistic
viewpoint the exponents in (1.9) can be related to the characteristic time-scales of the iterated integrals of the
Brownian motion (see e.g. [7], [4]).

The non-degeneracy and boundedness assumption on a as well as the Hörmander condition on the (Fi)i∈[[2,n]]

that we assume for (1.1)-(1.4) (see assumptions (UE) and (H) below) will allow us to consider for our analysis
the previous quasi-distances associated with the simplest yet typical equation in the class described by (1.1)-
(1.4).

1.4. Associated Hölder spaces. We first recall some useful notations and spaces. We denote for k ∈ N, β ∈
(0, 1) by ‖ · ‖Ck+β(Rm,R`), m ∈ {1, d, nd}, ` ∈ {1, d, d2, nd} the usual homogeneous Hölder semi-norm, see e.g.

Krylov [16]. Precisely, for ψ ∈ Ck+β(Rm,R`), denoting by ϑ = (ϑ1, · · · , ϑm) ∈ Nm a generic multi-index and
|ϑ| =

∑m
i=1 ϑi, we define the semi-norm:

‖ψ‖Ck+β(Rm,R`) :=

k∑
i=1

sup
|ϑ|=i

‖Dϑψ‖L∞(Rm,R`) + sup
|ϑ|=k

[Dϑψ]β ,

[Dϑψ]β := sup
(x,y)∈(Rm)2,x 6=y

|Dϑψ(x)−Dϑψ(y)|
|x− y|β

,(1.10)

where | · | denotes the Euclidean norm on the considered space. We will also need to consider the associated
subspace with bounded elements. Namely, we set:

Ck+β
b (Rm,R`) := {ψ ∈ Ck+β(Rm,R`) : ‖ψ‖L∞(Rm,R`) < +∞}.

We define correspondingly the Hölder norm:

(1.11) ‖ψ‖Ck+βb (Rm,R`) := ‖ψ‖Ck+β(Rm,R`) + ‖ψ‖L∞(Rm,R`).

We are now in position to define our anisotropic Hölder spaces with multi-index of regularity. Let ψ : Rnd →
R` be a smooth function. We first introduce, for i ∈ [[1, n]], x ∈ Rd the perturbation operator that writes:

(1.12) ∀z ∈ Rnd,Πx
i (ψ)(z) := ψ(z1, · · · , zi + x, · · · , zn).

We then define for each i ∈ [[1, n]], the mapping

(1.13) (z, x) ∈ Rnd × Rd 7−→ ψi(z, x) := Πx
i (ψ)(z).

Let us introduce the following anisotropic Hölder space in d-quasi-metric: given a parameter γ ∈ (0, 1), and

k ∈ N, we say that ψ is in Ck+γ
d (Rnd,R`), if

(1.14) ‖ψ‖Ck+γd (Rnd,R`) :=

n∑
i=1

sup
z∈Rnd

‖ψi(z, ·)‖
C
k+γ
2i−1 (Rd,R`)

< +∞.

For the sake of simplicity, we will write:

‖ψ‖L∞ := ‖ψ‖L∞(Rnd,R`), and ‖ψ‖Ck+γd
:= ‖ψ‖Ck+γd (Rnd,R`).

The subscript d stands here to indicate the dependence of the Hölder exponents appearing in the r.h.s. on the
underlying quasi-distance d reflecting the scale invariance of the system (see equation (1.9) and the comments
above for details). Note in particular that, for k = 0, there exists C := C(n, d) ≥ 1 s.t.:

C−1[ψ]γ,d ≤ ‖ψ‖Ck+γd (Rnd,R`) ≤ C[ψ]γ,d,

[ψ]γ,d := sup
x6=x′,(x,x′)∈(Rnd)2

|ψ(x)− ψ(x′)|
dγ(x,x′)

,(1.15)

see also e.g. Lunardi [24].

From (1.11) and (1.14), we write that ψ ∈ Ck+γ
b,d (Rnd,R`) if

‖ψ‖Ck+γb,d (Rnd,R`) :=

n∑
i=1

sup
z∈Rnd

‖ψi(z, ·)‖
C
k+γ
2i−1
b (Rd,R`)

< +∞.

From now on, we will denote:

‖ψ‖Cγb,d := ‖ψ‖Cγb,d(Rnd,R`).
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Finally, through the article, we use the following notation for all ϕ1 ∈ L∞
(
[0, T ], Ck+γ

b,d (Rm,R`)
)

and ϕ2 ∈
L∞
(
[0, T ], Ck+γ

d (Rm,R`)
)
:

‖ϕ1‖L∞(Ck+γb,d ) := sup
t∈[0,T ]

‖ϕ1(t, ·)‖Ck+γb,d (Rm,R`), and ‖ϕ2‖L∞(Ck+γd ) := sup
t∈[0,T ]

‖ϕ2(t, ·)‖Ck+γd (Rm,R`).

1.5. Assumptions and main result. With these notations at hand we can now state our assumptions and
main results. In the following, we will assume:

(UE) Uniform Ellipticity of the diffusion Coefficient. There exists κ ≥ 1 s.t. for all (t,x) ∈ R+×Rnd,
z ∈ Rd,

κ−1|z|2 ≤ 〈a(t,x)z, z〉 ≤ κ|z|2,
where | · | again denotes the Euclidean norm and 〈·, ·〉 is the inner product.

(H) Weak Hörmander like condition. For each i ∈ [[2, n]], there exists a closed convex subset Ei−1 ⊂
GLd(R) (set of invertible d × d matrices) such that, for all t ≥ 0 and (xi−1, . . . ,xn) ∈ R(n−i+2)d,
Dxi−1

Fi(t,xi−1, . . . ,xn) ∈ Ei−1. For example, Ei−1 may be a closed ball included in GLd(R), which is
an open set.

(S) Smoothness of the Coefficients. Fix γ ∈ (0, 1). We suppose the following conditions hold.
(i) Smoothness of the diffusion coefficient. We assume that a is measurable in time and that

a ∈ L∞
(
[0, T ], Cγb,d(Rnd,Rd ⊗ Rd)

)
.

(ii) Smoothness of the drift in time. We only assume here that the drift is measurable in time
and bounded at the origin, i.e. the measurable mapping t 7→ F(t,0) is bounded.

(iii) Smoothness of the drift in space. We now state, for each level i ∈ [[1, n]] the smoothness
assumptions on the drift component Fi (see the remark below for more explanations):

Fi ∈ L∞
(

[0, T ], C
(2i−3)∨0+γ
d (R((n−i+2)∧n)d,Rd

)
.(1.16)

For a fixed parameter γ ∈ (0, 1), we will say that (A) is in force as soon as (UE), (H), (S) hold.

Remark 1. Let us come back to assumption (S)-(iii), which may seem difficult to understand at first sight.
Namely, we here explain a little bit how the particular thresholds appearing in this assumption come from as
well as the precise regularity imposed on each component of the drift F w.r.t. any space variable.
• Note first that for i = 1 assumption (S)-(iii) readily says, with the previous notations for Hölder spaces,

that F1 ∈ L∞([0, T ], Cγd(Rnd,Rd)).
• For each level i ∈ [[2, n]] of the chain in (1.2), we shall consider different types of assumptions on Fi

depending on the variables xi−1 and xi:n = (xi, · · · ,xn) respectively. Let us now fix i ∈ [[2, n]].
The component xi−1 is hence the one which transmits the noise. Coherently with the usual Hörmander

setting, we need some differentiability of Fi w.r.t. xi−1. In order to have a global coherence, in terms of time-
space homogeneity, for all the considered variables, the specific smoothness to be considered for that variable

is that Fi(t, ·,xi:n) is in C1+ γ
2(i−1)−1 (Rd,Rd). Recalling now the previous definition of d and of the associated

Hölder spaces, we have C1+ γ
2(i−1)−1 (Rd,Rd) = C

2i−3+γ
2(i−1)−1 (Rd,Rd).

Now, at level i, the components xi:n are above the current characteristic time-scale, i.e. the vector of their
associated time rescaling, which writes according to the homogenous quasi-metric dP in (1.8) as (ti−

1
2 , t(i+1)− 1

2 ,

· · · , tn− 1
2 ), has in small time entries that are actually smaller or equal than the time rescaling of the current

variable xi in ti−
1
2 . We recall as well that, in order to have the well posedness of the martingale problem

associated with the operator (Lt)t≥0 in (1.3), some natural minimal thresholds of Hölder continuity appear for
these variables. Precisely, at level i, Fi must be Hölder continuous in xj , j ∈ [[i, n]], with index strictly greater
than 2i−3

2j−1 (see [4] for details). Here, still to have a global coherence, in terms of time-space homogeneity,

for all the considered variables, we assume that Fi is 2i−3
2j−1 + γ

2j−1 Hölder continuous in its jth variable.

This precisely corresponds to the minimal threshold required to which we add the intrinsic γ-Hölder regularity
w.r.t to the associated scale appearing in d for the considered entry. Thus, with a slight abuse of notations,

z 7→ Fi(t,xi−1,xi, · · · ,xj−1, z,xj+1, · · · ,xn) is supposed to be in C
2i−3
2j−1 + γ

2j−1 (Rd,Rd).
• “Gathering” the regularity conditions assumed on each variable for each component of F hence gives as-

sumption (S)-(iii).

Remark 2. Concerning the time regularity in the previous assumptions we can refer to the earlier work of
Kruzhkov et al. [15] who first consider this type of regularity to establish Schauder estimates in the classical non
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degenerate framework with bounded coefficients. We can also mention Lorenzi [23] for extensions to unbounded
coefficients.

We are now in position to state our main result.

Theorem 1 (Schauder Estimates for degenerate Kolmogorov Equations with general drifts.). Let γ ∈ (0, 1)
be given. Suppose that (A) is in force and that the terminal condition g and source term f of the Cauchy

problem (1.1) satisfy: g ∈ C2+γ
b,d (Rnd,R) and f ∈ L∞

(
[0, T ], Cγb,d(Rnd,R)

)
.

Then, there exists a unique mild and weak solution u in C2+γ
b,d (Rnd,R) to (1.1). Furthermore, there exists a

constant C1 := C1

(
(A), T

)
s.t.

(1.17) ‖u‖L∞(C2+γ
b,d ) ≤ C1

(
‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)

)
.

Note that some Schauder estimates results were recently established for a non-local operator associated with
a stable process. Let us mention [5] for the non-degenerate case (n = 1) with super-critical drift (stability
index strictly less than 1), [11] for a kinetic case (n = 2) and [25] for the complete degenerate chain. If the
second order term in (1.1) is replaced by an α-stable operator, α ∈ (0, 2), then the parabolic regularity gain
associated with the parabolic distance d, established therein, is α instead of 2 in Theorem 1.

Section 2 below is dedicated to the presentation and description of the various steps that we perform to
obtain Theorem 1. From now on we will denote by C a generic constant that may change from line to line
but only depends on known parameters in (A) and the considered fixed final time T , i.e. C := C((A), T ). We
reserve the notation c for generic constants that may also change from line to line, depend on (A) but are also
independent of T , i.e. c := c((A)).

2. Detailed Guide to the proof

The various steps of our procedure could be roughly summed up as follows: we first mollify the coefficients in
equation (1.1) in order to work with well defined objects. In the following, we will call, with a slight terminology
abuse, by regularized or mollified solution of (1.1) the solution of (1.1) associated with the regularized or
mollified coefficients.

We then derive the estimate of Theorem 1 in this framework but uniformly in the mollification parameter.
To do so, we will expand the regularized solution of (1.1) around a well chosen proxy. This expansion will
allow us to obtain an explicit representation of the mollified solution of (1.1) for which we will derive the
desired estimates in small time. A key point is that such a representation is of implicit form, so that, when
applying our strategy, the upper-bound of the Hölder estimate will involve the Hölder norm of the smoothed
solution itself. To overcome this problem, the main idea consists in using a circular argument, bringing together
the Hölder norms of the solutions on the same side of the inequality. This strategy then requires to obtain
constants in front of the bounds depending of the solution as small as needed. This property will be fulfilled
when working with an appropriately rescaled version of the smoothed solution. We can then transfer estimates
on the (regularized) rescaled version of the solution to the original (regularized) one and then extend it to
arbitrary time length intervals by using a chaining argument. We then conclude the proof of the estimates
in Theorem 1 through a compactness argument, allowing us to get rid of the regularization parameters, and
eventually show that the mild solution of (1.1) is a weak solution thanks to suitable controls deriving from our
analysis.

The main objective of this section is to introduce the approach shortly described above. Especially the
derivation of the estimates in Theorem 1 for the regularized solution in small time, involving norms of the
solution itself. This part is actually the core of the paper (we refer to Section 6 for the last steps of our
procedure: scaling arguments, finite time issues and weak solution property). The main point is thus to
emphasize the various difficulties arising when applying our strategy and to introduce the adapted tools that
can be used to circumvent them.

2.1. The mollifying procedure. The first step of our strategy is to mollify equation (1.1) in order to get a
well-posed Cauchy problem in the classical sense. Precisely, for ϕ ∈ C2

0 (Rnd,R), m ∈ N and t ∈ [0, T ] we define
the operator:

(2.1) Lmt ϕ(x) := 〈Fm(t,x),Dϕ(x)〉+
1

2
Tr
(
D2

x1
ϕ(x)am(t,x)

)
,

where Fm, am are mollified versions in space of the initial coefficients F, a in (1.3), i.e. Fm(t,x) = F(t, ·) ?
φm(x), am(t,x) = a(t, ·) ? φm(x), where for any z ∈ Rnd, φm(z) := mndφ(zm) for a smooth, i.e. C∞, non-
negative function φ : Rnd → R+ s.t.

∫
Rnd φ(z)dz = 1 and the previous convolutions are to be understood
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componentwise. We introduce correspondingly the stochastic differential equation with generator (Lmt )t≥0.
Namely, for fixed (t,x) ∈ [0, T ]× Rnd and s ≥ t,

(2.2) Xm,t,x
s = x +

∫ s

t

Fm(u,Xm,t,x
u )du+

∫ s

t

Bσm(u,Xm,t,x
u )dWu,

where σm is a square root of am and B = (Id,d,0d,d, . . . ,0d,d)
∗ is the embedding matrix from Rnd to Rd. The

dynamics in (2.2) is similar to the one in (1.4) up to the mollification of the coefficients. It can be deduced
from the well-posedness of the martingale problem, which holds under our current assumptions from [4], that
(Xm

t )t∈[0,T ] ⇒m (Xt)t∈[0,T ] (convergence in law on the path space) where (Xt)t∈[0,T ] is the unique weak solution
of (1.4) (see also [30]).

Consider now mollified versions fm, gm of the source f and the final condition g in (1.1). It is then rather
direct to derive through stochastic flows techniques, see e.g. Kunita [19], that

(2.3) um(t,x) := E[gm(Xm,t,x
T )] +

∫ T

t

E[fm(s,Xm,t,x
s )]ds,

belongs for any given m to C∞b (Rnd,R) (space of infinitely differentiable functions with bounded derivatives)
and precisely solves:

(2.4)

{
∂tum(t,x) + 〈Fm(t,x),Dum(t,x)〉+ 1

2Tr
(
D2

x1
um(t,x)am(t,x)

)
= −fm(t,x), (t,x) ∈ [0, T )× Rnd,

um(T,x) = gm(x), x ∈ Rnd.

2.2. Proxy and explicit representation of um. The idea is now to obtain controls of the norms ‖um‖L∞(C2+γ
b,d )

which are uniform w.r.t. the mollifying parameter m. To this end, we will use a perturbative method by expand-
ing um around a suitable Ornstein-Uhlenbeck like Gaussian proxy corresponding to an appropriate linearization
of the dynamics in (2.2). Consider first the deterministic dynamics deriving from (2.2) obtained setting σm to
0d,d, i.e.

(2.5) θ̇
m

v,τ (ξ) = Fm(v,θmv,τ (ξ)), v ∈ [0, T ], θmτ,τ (ξ) = ξ,

where (τ, ξ) ∈ [0, T ]× Rnd are freezing parameters, respectively in time and space to be specified.
Fix 0 ≤ t < s ≤ T and x ∈ Rnd. The typical linearization of (2.2) on the time interval [t, s] around

(θmv,τ (ξ))v∈[t,s] writes:

X̃m,(τ,ξ)
v = x +

∫ v

t

[Fm(r,θmr,τ (ξ)) +DFm(r,θr,τ (ξ))(X̃m,(τ,ξ)
r − θmr,τ (ξ))]dr +

∫ v

t

Bσm(r,θmr,τ (ξ))dWr,

(2.6)

where for any z ∈ Rnd,

(2.7) DFm(v, z) :=



0d,d · · · · · · · · · 0d,d
Dz1Fm,2(v, z) 0d,d · · · · · · 0d,d

0d,d Dz2Fm,3(v, z2:n) 0d,d 0d,d
...

... 0d,d
. . .

...
...

0d,d · · · 0d,d Dzn−1Fm,n(v, zn−1, zn) 0d,d


denotes the subdiagonal of the Jacobian matrix DzFm(v, ·) at point z. From our previous assumptions (non-
degeneracy of σ and Hörmander like condition), the Gaussian process with dynamics (2.6) admits a well
controlled multi-scale density p̃m,(τ,ξ)(t, s,x, ·) (see e.g. Section 3.1 below and for instance [7], [4]). Namely,
there exists C := C((A), T ) ≥ 1 s.t. for j ∈ {0, 1, 2}, for all k ∈ [[1, n]]2, ` ∈ {0, 1}, and for all 0 ≤ t < s ≤ T ,
(x,y) ∈ (Rnd)2:

|D`
xk
Dj

x1
p̃m,(τ,ξ)(t, s,x,y)| ≤ C

(s− t)`(k− 1
2 )+ j

2 +n2d
2

exp
(
−C−1(s− t)|T−1

s−t(m
m,(τ,ξ)
s,t (x)− y)|2

)
=:

C

(s− t)`(k− 1
2 )+ j

2

p̄
(τ,ξ)
C−1 (t, s,x,y),(2.8)
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where m
m,(τ,ξ)
s,t (x) stands for the mean of X̃

m,(τ,ξ)
s and for any u > 0, Tu is the intrinsic scale matrix:

(2.9) Tu =


uId,d 0d,d · · · 0d,d

0d,d u2Id,d 0d,d
...

...
. . .

. . .
...

0d,d · · · 0d,d unId,d

 ,

that is, the ith diagonal entry of u−
1
2Tu reflects the time order of the variances of the (i−1)th iterated integral

of the standard Brownian motion at time u. Observe as well that the time singularities in (2.8) precisely reflect
the typical scale of the associated variable, i.e. differentiating in xk yields an additional time singularity in
(s − t)−k+ 1

2 where (s − t)k− 1
2 is exactly the order of the standard deviation of the (k − 1)th iterated integral

of the Brownian motion.
Denoting by (L̃

m,(τ,ξ)
v )v∈[t,T ] the generator of (2.6), it also holds that:(

∂s − (L̃m,(τ,ξ)
s )∗

)
p̃m,(τ,ξ)(t, s,x,y) = 0, p̃m,(τ,ξ)(t, s,x, ·)→s↓t δx(·),(

∂t + L̃
m,(τ,ξ)
t

)
p̃m,(τ,ξ)(t, s,x,y) = 0, p̃m,(τ,ξ)(t, s, ·,y)→t↑s δy(·).

The above equations are respectively the forward and backward Kolmogorov equations. In the first one, the

operator (L̃
m,(τ,ξ)
s )∗ acts on the forward variable y whereas in the second one, L̃

m,(τ,ξ)
t acts in the backward

variable x. We will use the notation P̃
m,(τ,ξ)
T,t for the corresponding semi-group, i.e.

P̃
m,(τ,ξ)
T,t gm(x) :=

∫
Rnd

p̃m,(τ,ξ)(t, T,x,y)gm(y)dy,

as well as

G̃m,(τ,ξ)fm(t,x) :=

∫ T

t

ds

∫
Rnd

p̃m,(τ,ξ)(t, s,x,y)fm(s,y)dy,(2.10)

for the associated Green kernel (with fixed final time T > 0).
For fixed (t,x) ∈ [0, T ]×Rnd and the above Gaussian proxy, for which (τ, ξ) still remain to be specified, we

recall that Duhamel’s formula (first order parametrix expansion) yields that:

(2.11) um(t,x) = P̃
m,(τ,ξ)
T,t gm(x) + G̃m,(τ,ξ)fm(t,x) +

∫ T

t

ds

∫
Rnd

p̃m,(τ,ξ)(t, s,x,y)(Lms − L̃m,(τ,ξ)
s )um(s,y)dy.

Note for instance that the superscript (τ, ξ), which stands for the freezing parameters, does not appear in the
regularized solution um. This is because the smoothed solution does not depend on the freezing parameters.
Hence, the above representation is valid for any choice of (τ, ξ).

2.3. Estimates of the supremum norm of the second order derivative w.r.t. the non degenerate
variables: introduction of the Besov duality argument. Recall from the statement of our main Theorem
1 that we have to give bounds on ‖um‖L∞(C2+γ

b,d ). For this introduction to the proof, we will focus on the

contribution D2
x1
um, that already exhibits almost all the difficulties and for which we want to establish a

control in time-space supremum norm and for the γ-Hölder modulus associated with the distance d.
Differentiating in D2

x1
equation (2.11) gives:

D2
x1
um(t,x) = D2

x1
P̃
m,(τ,ξ)
T,t gm(x) +D2

x1
G̃m,(τ,ξ)fm(t,x)

+

∫ T

t

ds

∫
Rnd

D2
x1
p̃m,(τ,ξ)(t, s,x,y)(Lms − L̃m,(τ,ξ)

s )um(s,y)dy.(2.12)

Concentrating on the last term, which turns out to be the most delicate, we see that the choice of (τ, ξ) must
be made in order to balance the time singularities coming from D2

x1
p̃m,(τ,ξ)(t, s,x,y). Let us first consider the

non-degenerate part coming from the difference (Lms − L̃
m,(τ,ξ)
s )um(s,y) which explicitly writes from (2.1) and

(2.6):

〈Fm,1(s,y)− Fm,1(s,θms,τ (ξ)), Dy1
um(s,y)〉+

1

2
Tr
(

(am(s,y)− am(s,θms,τ (ξ)))D2
y1
um(s,y)

)
=: ∆1,Fm,σm(τ, s,y,θms,τ (ξ), um),(2.13)
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and can be upper-bounded from the Hölder continuity assumption (w.r.t. the underlying homogeneous metric
d) on F1 and a as:

|∆1,Fm,σm(τ, s,y,θms,τ (ξ), um)|

≤
(

[F1(s, ·)]d,γ‖Dy1
um(s, ·)‖L∞ +

1

2
[a(s, ·)]d,γ‖D2

y1
um(s, ·)‖L∞

)
dγ(y,θms,τ (ξ)).(2.14)

The contribution dγ(y,θms,τ (ξ)) in the above r.h.s. must then equilibrate the time singularity in (s − t)−1

coming from D2
x1
p̃m,(τ,ξ)(t, s,x,y) (see (2.8) and Proposition 3 below). This is possible if dγ(y,θms,τ (ξ)) is

compatible with the off-diagonal bound (s − t)|T−1
s−t(m

m,(τ,ξ)
s,t (x) − y)|2 in (2.8). This is precisely the case

considering (τ, ξ) = (t,x) which gives

(2.15) m
m,(τ,ξ)
s,t (x)|(τ,ξ)=(t,x) = θms,t(x),

as it can readily be checked from (2.5), (2.6) (taking the expectation) and the Grönwall’s lemma. Therefore,
observing precisely from the metric homogeneity (see equations (1.8) and (1.9)) that:

dγ(y,θms,t(x)) = (s− t)
γ
2 dγ((s− t) 1

2T−1
s−ty, (s− t)

1
2T−1

s−tθ
m
s,t(x))

≤ C(s− t)
γ
2

( n∑
i=1

|(s− t)−
2i−1

2 (y − θms,t(x))i|
γ

2i−1

)
,

we get that the terms of last contribution in the above r.h.s. can precisely be absorbed by the exponential
off-diagonal bound in (2.8).

We therefore eventually derive for the non-degenerate contribution with the notation of (2.8):∣∣∣ ∫ T

t

ds

∫
Rd
D2

x1
p̃m,(τ,ξ)(t, s,x,y)∆1,Fm,σm(τ, s,θms,t(ξ),y, um)dy

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤
∫ T

t

ds

(s− t)1− γ2

∫
Rnd

C
(
‖a‖L∞(Cγd) + ‖F1‖L∞(Cγd)

)
p̄

(τ,ξ)
C−1 (t, s,x,y)

×
(
‖Dy1um(s, ·)‖L∞ + ‖D2

y1
um(s, ·)‖L∞

)
dy

≤ 2Λ

γ
(T − t)

γ
2

(
‖Dy1

um‖L∞ + ‖D2
y1
um‖L∞

)
≤ 2Λ

γ
(T − t)

γ
2 ‖um‖L∞(C2+γ

b,d ).(2.16)

Remark 3 (Constants depending on the Hölder moduli of the coefficients). In equation (2.16), we denoted
Λ := C

(
‖a‖L∞(Cγd) + ‖F1‖L∞(Cγd)

)
, i.e. Λ explicitly depends on the Hölder moduli of the coefficients a and F1

on the time interval [0, T ]. Importantly, in the following, we will keep the generic notation Λ for any constant
depending on the Hölder moduli of a,F, but not on the supremum norms of a and (DFi)i∈[[2,n]] and such that
Λ → 0 when the Hölder moduli of a, F1 and for any i ∈ [[2, n]], Fi w.r.t. to the variables i to n, themselves
tend to 0. In other words, Λ is meant to tend to 0 when the coefficients do not vary much. In the computations
below Λ may change from line to line but will always enjoy the previous property.

Equation (2.16) thus precisely yields a time smoothing effect corresponding exactly to the Hölder continuity
exponent γ of the coefficients. The previous choice of (τ, ξ) is known as the forward parametrix and seems
adapted as soon as one is led to estimate derivatives of the solution.

Let us mention that, as far as one is concerned with density estimates, which formally amounts to replace
um(s,x), um(s,y) in (2.11) with pm(t, T,x, z), pm(s, T,y, z) (density at some fixed point z ∈ Rnd of Xm

T

starting from x at time t), or with the well-posedness of the martingale problem, another choice, consisting in
freezing in (τ, ξ) = (s,y) in the above equation, could also be considered. Note that the freezing parameters
would here depend on the time and spatial integration variables. This backward approach was first introduced
by Il’in et al [13] (see also Friedman [10] or McKean and Singer [26]) and led successfully to density estimates
and well-posedness of the martingale problem for the current model (1.4) in the respective works [7], [28], [4].

However, when dealing with derivatives, the forward perturbative approach appears more flexible since
it allows to exploit cancellation techniques whereas this is much trickier in the backward case for which
p̃m,(s,y)(t, s,x,y) is not a density w.r.t. y. Some associated errors associated with this approach are thor-
oughly discussed in [4].

Let us emphasize that, in view of the above calculations, from now on, the choice of the freezing parameters
(τ, ξ) will by default be (τ, ξ) = (t,x). We will hence sometimes forget the superscript on quantities that
depend on these parameters for the sake of clarity and assume implicitly this choice. It may happen in the
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following that another choice for the freezing space point ξ will be done. If so, we will specify it. In any case,
when the regularized solution um will be evaluated at point t in [0, T ], we will choose τ = t so that this choice
shall be assumed in the following.

Let us now turn to the contributions associated with the degenerate variables in the difference (Lms −
L̃
m,(τ,ξ)
s )um(s,y). They precisely write:

n∑
i=2

〈(
Fm,i(s,y)− Fm,i(s,θ

m
s,τ (ξ))−Dxi−1

Fm,i(s,θ
m
s,τ (ξ))(y − θms,τ (ξ))i−1

)
, Dyium(s,y)

〉
=:

n∑
i=2

〈
∆i,Fm(τ, s,θms,t(ξ),y), Dyium(s,y)

〉
.(2.17)

Under the current assumptions, we do not expect to have uniform controls w.r.t. to the smoothing parameter
m for the derivatives (Dyium)i∈[[2,n]] in the degenerate directions. Our strategy will first consist for those terms
in performing an integration by parts leading to:∣∣∣ n∑

i=2

∫ T

t

ds

∫
Rnd

dyD2
x1
p̃m,(τ,ξ)(t, s,x,y)

〈
∆i,Fm(τ, s,θms,t(ξ),y), Dyium(s,y)

〉∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤
n∑
i=2

∫ T

t

ds
∣∣∣ ∫

Rnd
dyDyi ·

((
D2

x1
p̃m,(τ,ξ)(t, s,x,y)⊗∆i,Fm(τ, s,θms,t(ξ),y)

))
um(s,y)

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

,

(2.18)

where the notation “⊗” stands for the usual tensor product. In particular, the term
(
D2

x1
p̃m,(τ,ξ)(t, s,x,y) ⊗

∆i,Fm(τ, s,θms,t(ξ),y)
)

is a tensor lying in (Rd)⊗3. Furthermore, Dyi · refers to an extended form of the diver-

gence over the ith variable (yi ∈ Rd). Precisely, from (2.18), we rewrite for all i ∈ [[2, n]], (s,y) ∈ [t, T ]× Rnd:

Dyi ·
((
D2

x1
p̃m,(τ,ξ)(t, s,x,y)⊗∆i,Fm(τ, s,θms,t(ξ),y)

))
=

d∑
j=1

∂yji

(
D2

x1
p̃m,(τ,ξ)(t, s,x,y)

(
∆i,Fm(τ, s,θms,t(ξ),y)

)
j

)
,

with yi = (y1
i , · · · ,yni ). In other words, this “enhanced” divergence form decreases by one the order of the input

tensor. As a particular case, if d = 1, ∆i,Fm(τ, s,θms,t(ξ),y) is a scalar and the divergence form corresponds to
the standard differentiation, i.e. Dyi · = ∂yi .

Introduce now for notational convenience, for a multi-index ϑ ∈ Nn the quantity:

Θm,ϑ
i,(t,x)(s,y) := Dϑ

x p̃
m,(τ,ξ)(t, s,x,y)⊗∆i,Fm(τ, s,θms,t(ξ),y).

With this notation at hand equation (2.18) rewrites:∣∣∣ n∑
i=2

∫ T

t

ds

∫
Rnd

dyD2
x1
p̃m,(τ,ξ)(t, s,x,y)

〈
∆i,Fm(τ, s,θms,t(ξ),y), Dyium(s,y)

〉∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

=

n∑
i=2

∫ T

t

ds
∣∣∣ ∫

Rnd
dyDyi ·

(
Θm,ϑ
i,(t,x)(s,y)

)
um(s,y)

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

,(2.19)

with ϑ = (2, 0, · · · , 0), i.e. the multi-index here involves the second order derivatives of the frozen heat-kernel
w.r.t. to its non-degenerate components.

In view of our main estimates in Theorem 1, we will use the duality between suitable Besov spaces to
derive bounds for the spatial integrals in (2.19). Introduce, for each fixed i ∈ [[2, n]] and any spatial point
(y1, · · · ,yi−1,yi+1, · · · ,yn) =: (y1:i−1,yi+1:n) ∈ R(n−1)d the mappings

ui,(s,y1:i−1,yi+1:n)
m : yi 7→ um(s,y1:i−1,yi,yi+1:n),

Ψm,ϑ
i,(t,x),(s,y1:i−1,yi+1:n) : yi 7→ Dyi ·

(
Θm,ϑ
i,(t,x)(s,y)

)
.(2.20)

The underlying idea is that we actually want, for the ith variable, to control uniformly in m the Hölder modulus

[u
i,(s,y1:i−1,yi+1:n)
m ] 2+γ

2i−1
uniformly in (s,y1:i−1,yi+1:n) ∈ [t, T ]× R(n−1)d. To prove this property we recall that,

setting α̃i := 2+γ
2i−1 , Cα̃ib (Rd,R) = Bα̃i∞,∞(Rd,R) with the usual notations for Besov spaces (see e.g. Triebel [31]).



12 PAUL-ÉRIC CHAUDRU DE RAYNAL, IGOR HONORÉ AND STÉPHANE MENOZZI

Let us now recall some definitions/characterizations from Section 2.6.4 of Triebel [31]. For α̃ ∈ R, q ∈
(0,+∞], p ∈ (0,∞], Bα̃p,q(Rd) := {f ∈ S ′(Rd) : ‖f‖Hα̃p,q < +∞} where S(Rd) stands for the Schwarz class and

(2.21) ‖f‖Hα̃p,q := ‖ϕ(D)f‖Lp(Rd) +
(∫ 1

0

dv

v
v(m− α̃2 )q‖∂mv hv ? f‖

q
Lp(Rd)

) 1
q

,

with ϕ ∈ C∞0 (Rd) (smooth function with compact support) is s.t. ϕ(0) 6= 0, ϕ(D)f := (ϕf̂)∨ where f̂

and (ϕf̂)∨ respectively denote the Fourier transform of f and the inverse Fourier transform of ϕf̂ . When
α̃ > d(1/p− 1)∨ 0 then ‖ϕ(D)f‖Lp(Rd) in (2.21) can be replaced by ‖f‖Lp(Rd). The parameter m is an integer

s.t. m > α̃
2 and for v > 0, z ∈ Rd, hv(z) := 1

(2πv)
d
2

exp
(
− |z|

2

2v

)
is the usual heat kernel of Rd. We point out

that the quantities in (2.21) are well defined for q < ∞. The modifications for q = +∞ are obvious and can
be written passing to the limit.

Observe that the quantity ‖f‖Hα̃p,q , where the subscript H stands to indicate the dependence on the heat-

kernel, depends on the considered function ϕ and the chosen m ∈ N. It also defines a quasi-norm on Bsp,q(Rd).
The previous definition of Bα̃p,q(Rd) is known as the thermic characterization of Besov spaces and is particularly
well adapted to our current framework. By abuse of notation we will write as soon as this quantity is finite
‖f‖Hα̃p,q =: ‖f‖Bα̃p,q .

As indicated above, it is easily seen from (2.21) that Cα̃ib (Rd,R) = Bα̃i∞,∞(Rd,R). It is also well known that

Bα̃i∞,∞(Rd,R) and B−α̃i1,1 (Rd,R) are in duality (see e.g. Proposition 3.6 in [20]). Namely Bα̃i∞,∞ is the dual of

the closure of the Schwartz class S in B−α̃i1,1 . But S is dense in B−α̃i1,1 (see for instance Theorem 4.1.3 in [1]).

We will therefore write from (2.18) and with the notations of (2.20)

n∑
i=2

∫ T

t

ds
∣∣∣ ∫

Rnd
dyDyi ·

(
Θm,ϑ
i,(t,x)(s,y)

)
um(s,y)

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤
n∑
i=2

∫ T

t

ds

∫
R(n−1)d

d(y1:i−1,yi+1:n)‖Ψm,ϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖B−α̃i1,1

‖ui,(s,y1:i−1,yi+1:n)
m ‖

B
α̃i
∞,∞

≤ C‖um‖L∞(C2+γ
b,d )

n∑
i=2

∫ T

t

ds

∫
R(n−1)d

d(y1:i−1,yi+1:n)‖Ψm,ϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖B−α̃i1,1

.(2.22)

Exploiting the thermic characterization of Besov spaces (see again (2.21) and Section 4.2), it will be shown in
Lemma 11 below that there exists a constant Λ := Λ((A), T ) as in Remark 3 s.t. for all i ∈ [[2, n]] and m ∈ N:

(2.23)

∫
R(n−1)d

d(y1:i−1,yi+1:n)‖Ψm,ϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖B−α̃i1,1

≤ Λ

(s− t)1− γ2
.

Therefore:

(2.24)

n∑
i=2

∫ T

t

ds

∫
R(n−1)d

d(y1:i−1,yi+1:n)‖Ψm,ϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖B−α̃i1,1

≤ Λ(T − t)
γ
2 ,

which plugged into (2.22) eventually gives the following global smoothing effect for the degenerate contributions.
Namely, ∣∣∣ n∑

i=2

∫ T

t

ds

∫
Rnd

dyD2
x1
p̃m,(τ,ξ)(t, s,x,y)

〈
∆i,Fm(τ, s,θms,t(ξ),y)Dyium(s,y)

〉∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤ Λ(T − t)
γ
2 ‖um‖L∞(C2+γ

b,d ),(2.25)

which is precisely homogeneous to the bound obtained for the non-degenerate variables in (2.16). In both

cases, the contribution (T − t)
γ
2 derives from the assumed smoothness of the coefficients a,F w.r.t. d which

exactly leads to the same global control for the a priori most singular part of expansion (2.12).
From the previous bounds and (2.12) we thus obtain:

(2.26) |D2
x1
um(t,x)| ≤

(
|D2

x1
P̃
m,(τ,ξ)
T,t gm(x)|+ |D2

x1
G̃m,(τ,ξ)fm(t,x)|

)∣∣∣
(τ,ξ)=(t,x)

+ Λ(T − t)
γ
2 ‖um‖L∞(C2+γ

b,d ).

Since P̃
m,(τ,ξ)
T,t is a true semi-group, and G̃m,(τ,ξ) the associated Green kernel (precisely because we used a

forward perturbative expansion), it will be derived in Lemma 12 (thanks to cancellation techniques) that there
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exists C := C((A)) s.t. for any (t,x) ∈ [0, T ]× Rnd:(
|D2

x1
P̃
m,(τ,ξ)
T,t gm(x)|+ |D2

x1
G̃m,(τ,ξ)fm(t,x)|

)∣∣∣
(τ,ξ)=(t,x)

≤ C(‖gm‖C2+γ
b,d

+ (T − t)
γ
2 ‖fm‖L∞(Cγb,d))

≤ C(‖g‖C2+γ
b,d

+ (T − t)
γ
2 ‖f‖L∞(Cγb,d)).

(2.27)

Equation (2.27) eventually leads to the following estimate on |D2
x1
um(t,x)|:

(2.28) |D2
x1
um(t,x)| ≤ C

(
‖g‖C2+γ

b,d
+ (T − t)

γ
2 (‖f‖L∞(Cγb,d)

)
+ Λ(T − t)

γ
2 ‖um‖L∞(C2+γ

b,d ).

For T small enough, this equation would be compatible with the estimates of Theorem 1. Equation (2.28)
might even seem too strong since it also exhibits, additionally to the control of the term associated with the
perturbation, a small contribution (in (T − t)

γ
2 for a small enough T ) w.r.t. to the source fm. This is precisely

because ‖D2
x1
um(t, ·)‖L∞ is not one of the critical terms in the Hölder norm ‖um(t, ·)‖C2+γ

b,d
, i.e. the regularity

of the coefficients still gives that it can be viewed as a remainder at first sight.

2.4. Estimates on the Hölder modulus of the second order derivative w.r.t. the non degenerate
variables: introduction of the various change of regime of the system. Now, a typical critical term of
the Hölder norm, for which we precisely exploit totally the spatial regularity of the coefficients, is [D2

x1
um(t, ·)]γd

(see assumption (S) and (1.15)). Let us now detail how we can handle it and in which sense it can be viewed
as critical.

Of course, if g = 0, for t ∈ [0, T ] and given spatial points (x,x′) ∈ (Rnd)2 we can assume w.l.o.g. that, for

some constant c0 to be specified later on and meant to be small , c
1
2
0 d(x,x′) ≤ (T−t) 1

2 , i.e. the spatial points are

close w.r.t. the characteristic time scale (T−t) 1
2 for the homogeneous metric d. Indeed, if c

1
2
0 d(x,x′) > (T−t) 1

2 ,
equation (2.28) readily gives:

|D2
x1
um(t,x)−D2

x1
um(t,x′)| ≤ |D2

x1
um(t,x)|+ |D2

x1
um(t,x′)|

≤ 2(T − t)
γ
2 (C‖f‖L∞(Cγb,d) + Λ‖um‖L∞(C2+γ

b,d ))

≤ 2c
γ
2
0 dγ(x,x′)(C‖f‖L∞(Cγb,d) + Λ‖um‖L∞(C2+γ

b,d )).(2.29)

Note that the above bound is now critical in the sense discussed above. Let us now focus, as before, on the

Hölder control associated with the perturbative contribution in (2.12) when c
1
2
0 d(x,x′) ≤ (T − t) 1

2 . Namely,

D2
x1

∆τ,ξ,ξ′

m (t, T,x,x′) :=

∫ T

t

ds

∫
Rnd

D2
x1
p̃m,(τ,ξ)(t, s,x,y)(Lms − L̃m,(τ,ξ)

s )um(s,y)dy

−
∫ T

t

ds

∫
Rnd

D2
x1
p̃m,(τ,ξ

′)(t, s,x′,y)(Lms − L̃m,(τ,ξ
′)

s )um(s,y)dy,(2.30)

where we recall that a priori the spatial freezing points (ξ, ξ′) in (2.30) (see also (2.12)) should be different
for x and x′ and depend on the position of d(x,x′) w.r.t. the current characteristic time scale in the time
integral. Following the terminology of heat kernels, we will say that at time s ∈ [t, T ] the points x,x′ are in
the diagonal regime if c0d

2(x,x′) ≤ s − t, i.e. their homogeneous distance is small w.r.t. the characteristic
time for a parameter c0 to be specified later on.

We insist again that we have the usual equivalence between time and space, i.e. time has to be compared
with the square of the spatial metric d. Similarly, we will say that the off-diagonal regime holds when
c0d

2(x,x′) > (s − t). Observing that in the diagonal case s ≥ t + c0d
2(x,x′) (and in the off-diagonal one

s < t+ c0d
2(x,x′)) we split the time integral in (2.30) as:

∆τ,ξ,ξ′

m (t, T,x,x′) := ∆τ,ξ,ξ′

m,diag(t, T,x,x′) + ∆τ,ξ,ξ′

m,off-diag(t,x,x′),
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with

∆τ,ξ,ξ′

m,off-diag(t,x,x′) :=

∫ t+c0d2(x,x′)

t

ds

∫
Rnd

p̃m,(τ,ξ)(t, s,x,y)(Lms − L̃m,(τ,ξ)
s )um(s,y)dy

−
∫ t+c0d2(x,x′)

t

ds

∫
Rnd

p̃m,(τ,ξ
′)(t, s,x′,y)(Lms − L̃m,(τ,ξ

′)
s )um(s,y)dy,

∆τ,ξ,ξ′

m,diag(t, T,x,x′) :=

∫ T

t+c0d2(x,x′)

ds

∫
Rnd

p̃m,(τ,ξ)(t, s,x,y)(Lms − L̃m,(τ,ξ)
s )um(s,y)dy

−
∫ T

t+c0d2(x,x′)

ds

∫
Rnd

p̃m,(τ,ξ
′)(t, s,x′,y)(Lms − L̃m,(τ,ξ

′)
s )um(s,y)dy.

(2.31)

Intuitively, for the term D2
x1

∆τ,ξ,ξ′

m,off-diag(t,x,x′), since x,x′ are far at the characteristic time scale (s − t) 1
2 ,

there is no expectable gain in expanding D2
x1
p̃m,(τ,ξ

′)(t, s,x′,y)−D2
x1
p̃m,(τ,ξ)(t, s,x,y). One therefore writes:

|D2
x1

∆τ,ξ,ξ′

m,off-diag(t,x,x′)|

≤ |
∫ t+c0d2(x,x′)

t

ds

∫
Rnd

D2
x1
p̃m,(τ,ξ)(t, s,x,y)(Lms − L̃m,(τ,ξ)

s )um(s,y)dy|

+|
∫ t+c0d2(x,x′)

t

ds

∫
Rnd

D2
x1
p̃m,(τ,ξ

′)(t, s,x′,y)(Lms − L̃m,(τ,ξ
′)

s )um(s,y)dy|.

Now, provided ξ = x, ξ′ = x′ one derives from the previous equation, similarly to (2.22), (2.23), that

(2.32) |D2
x1

∆τ,ξ,ξ′

m,off-diag(t,x,x′)| ≤ Λ‖um‖L∞(C2+γ
b,d )

∫ t+c0d2(x,x′)

t

ds

(s− t)1− γ2
≤ Λ‖um‖L∞(C2+γ

b,d )c
γ
2
0 dγ(x,x′).

For c0 small enough, we obtain again an estimate that would be compatible with the global bound on
‖um‖L∞(C2+γ

b,d ) stated in Theorem 1.

Turning now to D2
x1

∆τ,ξ,ξ′

m,diag(t, T,x,x′) one would therefore be tempted to carry on the analysis with the

previous freezing points ξ = x, ξ′ = x′. Intuitively, in the diagonal regime this should not have too much
impact. This is only partly true, since if we proceed so we will be led to investigate the difference of operators
at different freezing spatial points and this leads to compare quantities like θms,t(x)−θms,t(x

′) for which we want
a uniform control w.r.t. m. Since the initial (unmollified) coefficients a,F are only Hölder continuous in space,
this quantity is typically controlled (see Lemma 7) as:

(2.33) d
(
θms,t(x),θms,t(x

′)
)
≤ C

(
d(x,x′) + (s− t) 1

2

)
,

where the time contribution is precisely due to the quasi-distance d (see the proof of Lemma 7 in Appendix
A.1.1).

Unfortunately, this approach would lead to a final control of order
(
d(x,x′) + (s − t) 1

2

)γ ≤ C
(
dγ(x,x′) +

(s − t)
γ
2

)
which is not enough on the considered integration set. Recall indeed that, in the diagonal regime

c0d
2(x,x′) ≤ (s−t) and the term (s−t)

γ
2 in the previous r.h.s. is too big. This means that for ∆τ,ξ,ξ′

m,diag(t, T,x,x′),

it would be more appropriate to consider the same spatial freezing point. In that case, taking ξ = ξ′ = x and
expanding the difference of the derivatives of the frozen Gaussian densities yields:

∆τ,ξ,ξ′

m,diag(t, T,x,x′)

= −
n∑
j=1

∫ T

t+c0d2(x,x′)

ds

∫
Rnd

dy

∫ 1

0

dµDxjD
2
x1
p̃m,(τ,ξ)(t, s,x + µ(x′ − x),y) · (x′ − x)j

(Lms − L̃m,(τ,ξ)
s )um(s,y)

= −
n∑
j=1

∫ T

t+c0d2(x,x′)

ds

∫
Rnd

dy

∫ 1

0

dµDxjD
2
x1
p̃m,(τ,ξ)(t, s,x + µ(x′ − x),y) · (x′ − x)j(

∆1,Fm,σm(t, s,θms,t(x),y, um) +

n∑
i=2

〈
∆i,Fm,σm(t, s,θms,t(x),y)Dyium(s,y)

〉)
,

(2.34)
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using the notations introduced in (2.13) and (2.17) for the last equality. In the previous identities (2.34)
and from now on, the symbol “·” between two tensors means the usual tensor contraction. In particular
DxjD

2
x1
p̃m,(τ,ξ)(t, s,x + µ(x′ − x),y) · (x′ − x)j is a d× d matrix.

In the current diagonal regime, it can be shown from (2.8) and the homogeneity of the distance d that there
is C > 1 such that for (τ, ξ) = (t,x):

|DxjD
2
x1
p̃m,(τ,ξ)(t, s,x + µ(x′ − x),y)|

∣∣∣
(τ,ξ)=(t,x)

≤ C

(s− t)j− 1
2 +1+n2d

2

exp(−C−1(s− t)|T−1
s−t(m

m,(τ,x)
s,t (x + µ(x′ − x))− y|2)

∣∣∣
(τ,ξ)=(t,x)

≤ C

(s− t)j− 1
2 +1+n2d

2

exp(C−1(s− t)|T−1
s−t(m

m,(τ,ξ)
s,t (x− x′))|2)

× exp(−C
−1

2
(s− t)|T−1

s−t(m
m,(τ,ξ)
s,t (x))− y|2)

∣∣∣
(τ,ξ)=(t,x)

≤ C

(s− t)j− 1
2 +1+n2d

2

exp(−C
−1

2
(s− t)|T−1

s−t(θ
m
s,t(x))− y|2),(2.35)

using for the last inequality that m
m,(τ,ξ)
s,t (x)|(τ,ξ)=(t,x) = θms,t(x) and the fact that, from the linear struc-

ture of ODE satisfied by m
m,(τ,ξ)
s,t (x) (which can be read from system (2.6) taking the expectation), (s −

t)
1
2 |T−1

s−t(m
m,(τ,ξ)
s,t )(x− x′)|2 ≤ C(s− t) 1

2 |T−1
s−t(x− x′)|. Since c0d

2(x,x′) ≤ s− t⇔ c0d
2
(
(s− t) 1

2T−1
s−tx, (s−

t)
1
2T−1

s−tx
′) ≤ 1, we readily derive from the definition of d in (1.9) that (s − t)|T−1

s−t(m
m,(τ,ξ)
s,t )(x − x′)|2 ≤ C.

These points are thoroughly discussed in Sections 3.
From (2.34), (2.35) reproducing the previously described analysis, we finally derive:

D2
x1

∆τ,ξ,ξ′

m,diag(t, T,x,x′)

≤ Λ‖um‖L∞(C2+γ
b,d )

n∑
j=1

∫ T

t+c0d2(x,x′)

ds

(s− t)1+(j− 1
2 )− γ2

|(x− x′)j |

≤ Λ‖um‖L∞(C2+γ
b,d )

n∑
j=1

|(x− x′)j |
(c0d2(x,x′))j−

1
2−

γ
2

≤ Λ

c
n− 1

2−
γ
2

0

‖um‖L∞(C2+γ
b,d )d

γ(x,x′),(2.36)

using again the definition of d in (1.9) for the last inequality and where Λ is an in Remark 3. We have again
globally gained, thanks to the smoothness of the coefficients, a power γ

2 in the time singularities of equation
(2.35).

From the previous discussion we now have to specify how to modify the freezing parameter depending on
the position of the current time variable w.r.t. to the homogeneous spatial distance between the considered
points. This can actually been done from the Duhamel formulation up to an additional discontinuity term.
Restarting from (2.11) we can indeed rewrite for given (t,x′) ∈ [0, T ]× Rnd and all r ∈ (t, T ], ξ′ ∈ Rnd:

um(t,x′) = P̃
m,(τ,ξ′)
r,t um(r,x′) + G̃

m,(τ,ξ′)
r,t fm(t,x′)

+

∫ r

t

ds

∫
Rnd

dyp̃m,(τ,ξ
′)(t, s,x′,y)(Lms − L̃m,(τ,ξ

′)
s )um(s,y),(2.37)

∀0 ≤ v < r ≤ T, G̃m,(τ,ξ
′)

r,v fm(t,x) =

∫ r

v

ds

∫
Rnd

dyp̃m,(τ,ξ
′)(t, s,x′,y)fm(s,y).

Differentiating the above expression in r ∈ (t, T ] yields for any ξ′ ∈ Rnd:

0 = ∂rP̃
m,(τ,ξ′)
r,t um(r,x′) +

∫
Rnd

dyp̃m,(τ,ξ
′)(t, r,x′,y)fm(r,y)

+

∫
Rnd

dyp̃m,(τ,ξ
′)(t, r,x′,y)(Lmr − L̃m,(τ,ξ

′)
r )um(r,y)dy.(2.38)
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Integrating (2.38) between t and t0 ∈ (t, T ] for a first given ξ′ and between t0 and T with a possibly different

ξ̃
′

yields:

0 = P̃
m,(τ,ξ′)
t0,t um(t0,x

′)− um(t,x′) +

∫ t0

t

ds

∫
Rnd

dyp̃m,(τ,ξ
′)(t, s,x′,y)fm(s,y)

+

∫ t0

t

ds

∫
Rnd

dyp̃m,(τ,ξ
′)(t, s,x′,y)(Lms − L̃m,(τ,ξ

′)
s )um(s,y)

+P̃
m,(τ,ξ̃

′
)

T,t um(T,x′)− P̃m,(τ,ξ̃
′
)

t0,t um(t0,x
′) +

∫ T

t0

ds

∫
Rnd

dyp̃m,(τ,ξ̃
′
)(t, s,x′,y)fm(s,y)

+

∫ T

t0

ds

∫
Rnd

dyp̃m,(τ,ξ̃
′
)(t, s,x′,y)(Lms − L̃m,(τ,ξ̃

′
)

s )um(s,y).

Recalling that um(T,x′) = gm(x′) (terminal condition), and with the notations of (2.37) the above equation
becomes:

um(t,x′) = P̃
m,(τ,ξ̃

′
)

T,t gm(x′) + G̃
m,(τ,ξ′)
t0,t fm(t,x′) + G̃

m,(τ,ξ̃
′
)

T,t0
fm(t,x′)

+P̃
m,(τ,ξ′)
t0,t um(t0,x

′)− P̃m,(τ,ξ̃
′
)

t0,t um(t0,x
′)

+

∫ T

t

ds

∫
Rnd

dy
(
Is≤t0 p̃m,(τ,ξ

′)(t, s,x′,y)(Lms − L̃m,(τ,ξ
′)

s )

+Is>t0 p̃m,(τ,ξ̃
′
)(t, s,x′,y)(Lms − L̃m,(τ,ξ̃

′
)

s )
)
um(s,y).(2.39)

We see that for ξ′ 6= ξ̃
′

we have an additional discontinuity term deriving from the change of freezing point
along the time variable. Of course expression (2.39) can be differentiated in space and taking then

(2.40) t0 = t+ c0d
2(x,x′),

i.e. t0 precisely corresponds to the critical time at which a change of regime occurs, and ξ′ = x′, ξ̃
′

= x
precisely allows, when expanding D2

x1
um(t,x)−D2

x1
um(t,x′) using (2.12) for the first term and (2.39) for the

second one, to exploit the previous analysis that led to (2.32) and (2.36) and which relied on the suitable choice
of freezing point. We again insist on the fact that, in the analysis, t0 is an additional freezing parameter, which
is a posteriori chosen according to (2.40) as a function of (t,x,x′). In particular the parameter t0 does not
intervene in the various possible differentiations of the considered perturbative expansions.

This approach eventually leads to:

|D2
x1
um(t,x)−D2

x1
um(t,x′)|

≤ dγ(x,x′)
[
C
(
‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)

)
+ Λ

(
c
−n+ 1

2 + γ
2

0 + c
γ
2
0

)
‖um‖L∞(C2+γ

b,d )

]
+
∣∣∣(D2

x1
P̃
m,(τ,ξ′)
t0,t um(t0,x

′)−D2
x1
P̃
m,(τ,ξ̃

′
)

t0,t um(t0,x
′)
)∣∣
t0=t+c0d2(x,x′)

∣∣∣.(2.41)

The last contribution can be controlled through cancellation techniques and the key estimate (2.33) on the
difference of the flows. The specific choice of t0 = t + c0d

2(x,x′) then precisely provides the required order
leading to:

|D2
x1
um(t,x)−D2

x1
um(t,x′)|

≤ dγ(x,x′)
[
C
(
‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)

)
+
(

Λ
(
c
−n+ 1

2 + γ
2

0 + c
γ
2
0

)
+ Cc

γ
2n−1

0

)
‖um‖L∞(C2+γ

b,d )

]
.

We refer to Lemma 17 for results associated with the discontinuity term in (2.41).

2.5. Conclusion and outline of the derivation of estimate in Theorem 1. We have detailed up to now
what happens with the second order derivatives w.r.t. the non-degenerate variables. The previous procedure
can be applied as well to control the Hölder moduli w.r.t. the degenerate ones. We therefore end up with the
following kind of estimate:

‖um‖L∞(C2+γ
b,d ) ≤ C

(
‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)

)
+ ‖um‖L∞(C2+γ

b,d )

[
Λ
(
c
−n+ 1

2 + γ
2

0 + c
γ
2
0 + T

γ
2

)
+ Cc

γ
2n−1

0

]
.

(2.42)

Equation (2.42) would provide exactly the expected control if Λ and c0 are small enough. On the one hand, the
final parameter c0 can always be chosen small enough (cutting threshold). On the other hand, it will appear
from the proofs that the constant Λ in (2.42) actually depends on the Hölder norms of the considered coefficients
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(see again Remark 3). If these quantities are small, i.e. the coefficients do not vary much and the components

that transmit the noise are almost linear, then Λ will be small. For
[
Λ
(
c
−n+ 1

2 + γ
2

0 +c
γ
2
0 +T

γ
2

)
+Cc

γ
2n−1

0

]
≤ k0 < 1,

we eventually derive:

(2.43) ‖um‖L∞(C2+γ
b,d ) ≤

C

1− k0

(
‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)

)
,

which is precisely the expected control. The general case, is proved through a scaling argument which also
allows to balance the opposite effects of c0 (meant to be small, in particular c0 ≤ 1) in the above bounds. This
last point will be discussed in Section 6.

2.6. Organization of this paper. The remaining part of this article is organized as follows. We prove in
Section 3 various properties for the density of the linearized Gaussian proxy: precise pointwise estimates for the
density itself and its derivatives (see equation (2.8)) and some useful controls allowing cancellation arguments
in our perturbative analysis. Section 4 is then devoted to the control of the supremum norms of the non-
degenerate derivatives, corresponding to the previous equation (2.28). Section 5 addresses the issues of Hölder
controls. Section 6 is concerned with the above mentioned scaling issues and we also conclude there the final
proof of Theorem 1. Eventually, some auxiliary, but crucial, technical results are proved in Appendix A for
the regularity of the flow and the mean, in Appendix B for the regularity of the resolvent and the covariance,
and in Appendix C for the technical points related to the scaling analysis.

3. Gaussian proxy and associated controls

We first aim here at proving the control of equation (2.8). We recall that our point is to control the density

of (X̃
m,(τ,ξ)
s )s∈(t,T ] satisfying (2.6).

WARNING: for notational simplicity, for the rest of the document we drop the sub and superscripts in
m associated with the regularizations. We rewrite, with some notational abuse, for fixed (τ, ξ) ∈ [0, T ]× Rnd,
the dynamics in (2.6) as:

dX̃(τ,ξ)
v = [F(v,θv,τ (ξ)) +DF(v,θv,τ (ξ))(X̃(τ,ξ)

v − θv,τ (ξ))]dv +Bσ(v,θv,τ (ξ))dWv,

∀v ∈ [t, s], X̃
(τ,ξ)
t = x,(3.1)

keeping in mind that F,θ, σ in (3.1) are smooth coefficients. We will give in the next subsection some key-
controls to investigate the terms appearing the perturbative expansions (2.11) and (2.12).

3.1. Controls for the frozen density. We explicitly integrate (3.1) to obtain for any v ∈ [t, s]:

X̃(τ,ξ)
v = R̃(τ,ξ)(v, t)x +

∫ v

t

R̃(τ,ξ)(v, u)
(
F(u,θu,τ (ξ))−DF(u,θu,τ (ξ))θu,τ (ξ)

)
du

+

∫ v

t

R̃(τ,ξ)(v, u)Bσ(u,θu,τ (ξ))dWu

=: m
(τ,ξ)
v,t (x) +

∫ v

t

R̃(τ,ξ)(v, u)Bσ(u,θu,τ (ξ))dWu,

where (R̃(τ,ξ)(v, u))t≤u,v≤s stands for the resolvent associated with the collection of partial gradients in
(DF(v,θv,τ (ξ)))v∈[t,s], introduced in (2.7), which satisfies for v ∈ [t, s]:

∂vR̃
(τ,ξ)(v, t) = DF(v,θv,τ (ξ))R̃(τ,ξ)(v, t), R̃(τ,ξ)(t, t) = Ind,nd.(3.2)

Note in particular that since the partial gradients are subdiagonal det(R̃(τ,ξ)(v, t)) = 1.

Also, for v ∈ [t, s], we recall that m
(τ,ξ)
v,t (x) stands for the mean of X̃

(τ,ξ)
v and corresponds as well to the

solution of (3.1) when σ = 0 and the starting point is x. We write:

(3.3) X̃(τ,ξ)
v = m

(τ,ξ)
v,t (x) +

∫ v

t

R̃(τ,ξ)(v, u)Bσ(u,θu,τ (ξ))dWu, v ∈ [t, s].

Importantly, we point out that x ∈ Rnd 7→ m
(τ,ξ)
v,t (x) is affine w.r.t. the starting point x. Precisely, for

x,x′ ∈ Rnd:

(3.4) m
(τ,ξ)
v,t (x + x′) = R̃(τ,ξ)(v, t)x′ + m

(τ,ξ)
v,t (x).

We first give in the next proposition a key estimate on the covariance matrix associated with (3.3) and its
properties w.r.t. a suitable scaling of the system.
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Proposition 2 (Good Scaling Properties of the Covariance Matrix). The covariance matrix of X̃
(τ,ξ)
v in (3.3)

writes:

K̃
(τ,ξ)
v,t :=

∫ v

t

R̃(τ,ξ)(v, u)Ba(u,θu,τ (ξ))B∗R̃(τ,ξ)(v, u)∗du.

Uniformly in (τ, ξ) ∈ [0, T ] × Rnd and s ∈ [0, T ], it satisfies a good scaling property in the sense of Definition
3.2 in [7] (see also Proposition 3.4 of that reference). That is, for any fixed T > 0, there exists C3.5 :=
C3.5((A), T ) ≥ 1 s.t. for all 0 ≤ t < v ≤ s ≤ T , (τ, ξ) ∈ [0, T ]× Rnd:

(3.5) ∀ζ ∈ Rnd, C−1
3.5(v − t)−1|Tv−tζ|2 ≤ 〈K̃(τ,ξ)

v,t ζ, ζ〉 ≤ C3.5(v − t)−1|Tv−tζ|2,

where for any u > 0, we denote by Tu the intrinsic scale matrix introduced in (2.9). Namely:

Tu =


uId,d 0d,d · · · 0d,d

0d,d u2Id,d 0d,d
...

...
. . .

. . .
...

0d,d · · · 0d,d unId,d

 .

The proof of the above proposition readily follows from Proposition 3.3 and Lemma 3.6 in [7]. We now state
some important density bounds for the linearized model.

Proposition 3 (Density of the linearized dynamics). Under (A), we have that, for any s ∈ (t, T ] the random

variable X̃
(τ,ξ)
s in (3.3) admits a Gaussian density p̃(τ,ξ)(t, s,x, ·) which writes for any y ∈ Rnd:

(3.6) p̃(τ,ξ)(t, s,x,y) :=
1

(2π)
nd
2 det(K̃

(τ,ξ)
s,t )

1
2

exp

(
−1

2

〈
(K̃

(τ,ξ)
s,t )−1(m

(τ,ξ)
s,t (x)− y),m

(τ,ξ)
s,t (x)− y

〉)
,

with K̃
(τ,ξ)
s,t as in Proposition 2. Also, there exists C := C((A), T ) > 0 s.t. for each multi-index ϑ =

(ϑ1, · · · , ϑn) ∈ Nn, |ϑ| ≤ 3 and denoting by Dϑ
x := Dϑ1

x1
· · ·Dϑn

xn , we have:

|Dϑ
x p̃

(τ,ξ)(t, s,x,y)| ≤ C

(s− t)
∑n
i=1 ϑi(i−

1
2 )+n2d

2

exp
(
−C−1(s− t)

∣∣T−1
s−t
(
m

(τ,ξ)
s,t (x)− y

)∣∣2)
=:

C

(s− t)
∑n
i=1 ϑi(i−

1
2 )
p̄

(τ,ξ)
C−1 (t, s,x,y),(3.7)

with
∫
Rnd dyp̄

(τ,ξ)
C−1 (t, s,x,y), up to a modification of the constants in (3.7).

Remark 4 (A slight abuse of notation). To ease the reading we denote, when there is no possible ambiguity,

p̄C−1(t, s,x,y) := p̄
(t,x)
C−1 (t, s,x,y).

Remark 5 (Regularizing effect of the quasi-distance). From equation (3.7), we derive from the definition of
d in (1.9) that for any given β > 0, there exists Cβ s.t.

(3.8) dβ
(
(s− t) 1

2T−1
s−tm

(τ,ξ)
s,t (x), (s− t) 1

2T−1
s−ty

)
|Dϑ

x p̃
(τ,ξ)(t, s,x,y)| ≤ Cβ

(s− t)
∑n
i=1 ϑi(i−

1
2 )− β2

p̄
(τ,ξ)

C−1
β

(t, s,x,y),

i.e. equation (3.8) quantifies the regularizing effect of the scaled arguments in the quasi-distance.

Proof. Expression (3.6) readily follows from (3.2) and (3.3). Differentiating w.r.t. x recalling from (3.4) that

x 7→m
(τ,ξ)
s,t (x) is affine yields:

Dxj p̃
(τ,ξ)(t, s,x,y) = −

[[
R̃(τ,ξ)(s, t)

]∗
(K̃

(τ,ξ)
s,t )−1(m

(τ,ξ)
s,t (x)− y)

]
j
p̃(τ,ξ)(t, s,x,y).(3.9)

The point is now to use scaling arguments. We can first rewrite

(3.10)
[
R̃(τ,ξ)(s, t)

]∗
(K̃

(τ,ξ)
s,t )−1 = (s− t)

[
R̃(τ,ξ)(s, t)

]∗T−1
s−t(

̂̃Ks,t
1 )−1T−1

s−t,

where ̂̃Ks,t
1 is the covariance matrix of the rescaled process

(
(s− t) 1

2T−1
s−tX̃

t,x
t+v(s−t)

)
v∈[0,1]

at time 1. From the

good-scaling property of Proposition 2, it is plain to derive that ̂̃Ks,t
1 a non-degenerate bounded matrix, i.e.

there exists Ĉ ≥ 1 s.t. for any ζ ∈ Rnd, (Ĉ)−1|ζ|2 ≤ 〈̂̃Ks,t
1 ζ, ζ〉 ≤ Ĉ|ζ|2. A similar rescaling argument yields

on the deterministic system (3.2) of the resolvent yields that R̃(τ,ξ)(s, t) can also be written as:

(3.11) [R̃(τ,ξ)(s, t)]∗ = T−1
s−t

[ ̂̃R(τ,ξ),s,t

(1, 0)
]∗
Ts−t,
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where again ̂̃R(τ,ξ),s,t

(1, 0) is the resolvent at time 1 of the rescaled system(
Ts−t[R̃(τ,ξ)(t+ v(s− t), t)]∗T−1

s−t

)
v∈[0,1]

=
([ ̂̃R(τ,ξ),s,t

(v, 0)
]∗)

v∈[0,1]

associated with (3.2). From the analysis performed in Lemma 5.1 in [12] (see also the proof of Proposition 3.7

in [7]) one derives that there exists Ĉ1 s.t. for any ζ ∈ Rnd,

(3.12) |
[ ̂̃R(τ,ξ),s,t

(1, 0)
]∗
ζ| ≤ Ĉ1|ζ|.

Equations (3.9), (3.10) and (3.11) therefore yield:

|Dxj p̃
(τ,ξ)(t, s,x,y)|

≤ (s− t)−j+ 1
2

∣∣∣∣∣
([ ̂̃R(τ,ξ),s,t

(1, 0)
]∗( ̂̃Ks,t

1

)−1(
(s− t) 1

2T−1
s−t(m

(τ,ξ)
s,t (x)− y)

))
j

∣∣∣∣∣p̃(τ,ξ)(t, s,x,y)

≤ C(s− t)−j+ 1
2 (s− t) 1

2 |T−1
s−t(m

(τ,ξ)
s,t (x)− y)|p̃(τ,ξ)(t, s,x,y).

From the explicit expression (3.6), Proposition 2 and the above equation, we eventually derive:

|Dxj p̃
(τ,ξ)(t, s,x,y)|

≤ C

(s− t)j− 1
2

(
(s− t) 1

2 |T−1
s−t(m

(τ,ξ)
s,t (x)− y)|

) 1

(s− t)n
2d
2

exp
(
−C−1(s− t)|T−1

s−t(m
(τ,ξ)
s,t (x)− y)|2

)
≤ C

(s− t)j− 1
2

p̄C−1(t, s,x,y),

up to a modification of C, which gives the statement for one partial derivative. The controls on the higher order
derivatives are obtained similarly (see e.g. the proof of Lemma 5.5 of [7] for the bounds on D2

x1
p̃(τ,ξ)(t, s,x,y)).

�

As a direct consequence of Proposition 3 we have the following result for the semi-group P̃ (τ,ξ) associated
with (3.3):

Lemma 4. For γ ∈ (0, 1), under (A), there exists C := C((A), T ), s.t. for any function ψ ∈ Cγb,d(Rnd,R),

and any given multi-index ϑ, |ϑ| ∈ [[1, 3]], for all 0 ≤ t < s ≤ T, x ∈ Rnd:

(3.13) |Dϑ
xP̃

(τ,ξ)
s,t ψ(x)|

∣∣
ξ=x
≤ C‖ψ‖Cγd (s− t)−

∑n
i=1 |ϑi|(i−

1
2 )+ γ

2 .

Proof. It suffices to write:

Dϑ
xP̃

(τ,ξ)
s,t ψ(x) =

∫
Rnd

dyDϑ
x p̃

(τ,ξ)(t, s,x,y)ψ(y) =

∫
Rnd

dyDϑ
x p̃

(τ,ξ)(t, s,x,y)[ψ(y)− ψ(m
(τ,ξ)
s,t (x))],

so that from Proposition 3 and the smoothness of ψ:

|Dϑ
xP̃

(τ,ξ)
s,t ψ(x)| ≤ C

(s− t)
∑n
i=1 ϑi(i−

1
2 )
‖ψ‖Cγd

∫
Rnd

p̄
(τ,ξ)
C−1 (t, s,x,y)dγ(y,m

(τ,ξ)
s,t (x)),

which yields the result thanks to Remark 5 recalling from the homogeneity of d that dγ(y,m
(τ,ξ)
s,t (x)) =[

(s− t) 1
2 d((s− t) 1

2T−1
s−ty, (s− t)

1
2T−1

s−tm
(τ,ξ)
s,t (x))

]γ
. �

Note carefully that in the above lemma |ϑ| ≥ 1. Indeed, if |ϑ| = 0 we cannot benefit from any regularizing
effects which are precisely due to cancellation techniques.

We now give some useful controls involving the previous Gaussian kernel which will be used in our pertur-
bative analysis. The main interest of the estimates below is that they precisely allow to exploit cancellation
techniques.
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Proposition 5. For all 0 ≤ t ≤ s ≤ T , (x, ξ) ∈ Rnd × Rnd, the following identities hold:∫
Rnd

p̃(τ,ξ)(t, s,x,y)(y −m
(τ,ξ)
s,t (x))⊗2

1 dy = [K̃
(τ,ξ)
s,t ]1,1,(3.14) ∫

Rnd
D2

x1
p̃(τ,ξ)(t, s,x,y)(y −m

(τ,ξ)
s,t (x))1dy = 0d,(3.15) ∫

Rnd
DxkD

2
x1
p̃(τ,ξ)(t, s,x,y) · (y −m

(τ,ξ)
s,t (x))1dy = 0d,d, k ∈ [[1, n]],(3.16) ∫

Rnd
D2

x1
p̃(τ,ξ)(t, s,x,y)Tr

(
M(y −m

(τ,ξ)
s,t (x))⊗2

1

)
dy = 2M, M ∈ Rd ⊗ Rd,(3.17) ∫

Rnd
DxkD

2
x1
p̃(τ,ξ)(t, s,x,y)Tr

(
M(y −m

(τ,ξ)
s,t (x))⊗2

1

)
dy = 0d,d,d, k ∈ [[1, n]],M ∈ Rd ⊗ Rd.

(3.18)

Where, in (3.14), we define for all (i, j) ∈ [[1, n]]2 and M ∈ (Rnd)⊗2 , [M ]i,j is the d × d block matrix
corresponding to the entry of M on the ith line and the jth column.

Proof. First of all, remark that equation (3.14) simply follows from a direct covariance computation.

Observe now that from Proposition 3, we have
∫
Rnd p̃

(τ,ξ)(t, s,x,y)(y−m
(τ,ξ)
s,t (x))1dy = 0d. Differentiating

twice this expression w.r.t. x1 and using the Leibniz formula (recalling as well the identity (3.4) which yields

Dx1
[m

(τ,ξ)
s,t (x)]1 = [R̃(τ,ξ)(s, t)]1,1 = Id,d) gives (3.15). Iterating the differentiation w.r.t. Dxk then yields

(3.16) (observing again that Dxk [m
(τ,ξ)
s,t (x)]1 = [R̃(τ,ξ)(s, t)]1,k, i.e. Dxk [m

(τ,ξ)
s,t (x)]1) = Id,d if k = 1 and 0d,d

for k > 1). Observe that Dx1

∫
Rnd Tr

(
M(y −m

(τ,ξ)
s,t (x))⊗2

1

)
p̃(τ,ξ)(t, s,x,y)dy = Dx1

Tr
(
M[K̃

(τ,ξ)
s,t ]1,1

)
= 0d.

Differentiating again w.r.t. Dx1
, the Leibniz formula and identity Dx1

[m
(τ,ξ)
s,t (x)]1 = [R̃(τ,ξ)(s, t)]1,1 = Id,d

yield (3.17). Eventually, (3.18) can be derived again from derivation or observing that the sum of the length
of the multi-derivation index, here 3, and the power integrated, here 2, is an odd number. �

3.2. Additional sensitivity controls : covariance, (mollified) flow, mean. We now state three impor-
tant estimates associated with our proxy. The first one concerns the sensitivity of the covariance w.r.t. the
frozen point, the second and third one concern the linearization or sensitivity w.r.t. the initial point for the
frozen (mollified) differential system (2.5). For the sake of simplicity, their proofs are postponed to appendixes
A and B. We have:

Lemma 6 (Sensitivities of the covariance). There exists Λ := Λ((A), T ) as in Remark 3 s.t. for given
(ξ, ξ′) ∈ (Rnd)2 and 0 ≤ t < s ≤ T , (x,x′) ∈ (Rnd)2:

(3.19) |[K̃(τ,ξ)
s,t ]1,1 − [K̃

(τ,ξ′)
s,t ]1,1| ≤ Λ(s− t)

(
dγ(ξ, ξ′) + (s− t)

γ
2

)
.

The proof is given in Appendix B.2.1. We importantly point out that, in Lemma 6, the constant Λ mainly
depends on the Hölder norms of the coefficients and is small provided the coefficients do not vary much.
Precisely, it can be shown that Λ writes:

(3.20) Λ := C̃
(
‖a‖L∞(Cγd) +

n∑
i=2

‖Fi‖L∞(C2i−3+γ
d,H )

)
for some universal constant C̃, where, in the above equation, we write with the notation of Section 1.4:

‖Fi‖L∞(C2i−3+γ
d,H ) := sup

(t,z)∈[0,T ]×R(n−i+2)d

‖(Dxi−1Fi)i−1(t, z, ·)‖
C

γ
2(i−1)−1 (Rd,Rd⊗Rd)

+

n∑
j=i

sup
(t,z)∈[0,T ]×R(n−i+2)d

‖(Fi)j(t, z, ·)‖
C

2i−3+γ
2j−1 (Rd,Rd)

.(3.21)

Namely, the quantity ‖Fi‖L∞(C2i−3+γ
d,H ) gathers the Hölder moduli of Fi at the intrinsic associated scales accord-

ing to the distance d in the variables j ∈ [[i, n]] as well as the Hölder norm of the gradient w.r.t. the component

which transmits the noise (but importantly not its supremum norm). Said differently, the L∞(C2i−3+γ
d,H ) semi-

norm of Fi gathers the Hölder norms of the fractional parts of
(
D
b 2i−3+γ

2j−1 c
xj Fi

)
j∈[[i−1,n]]

in the jth variable with

corresponding Hölder index 2i−3+γ
2j−1 −b

2i−3+γ
2j−1 c, where b·c stands for the integer part. Eventually, observe as well

that, with respect to the notation (1.14) of Section 1.4, ‖Fi‖L∞(C2i−3+γ
d,H ) = ‖Fi‖L∞(C2i−3+γ

d )−‖Dxi−1
Fi‖L∞(L∞).
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We again refer to Appendix A for a precise statement and proof of this assertion (3.20) (See also Lemma 19
below and its proof for similar properties).

The second result is the following.

Lemma 7. There exists C := C((A)) s.t. for all 0 ≤ t ≤ s ≤ T , (x,x′) ∈ Rnd × Rnd:

d(θs,t(x),θs,t(x
′)) ≤ C

(
d(x,x′) + (s− t) 1

2

)
.

The proof of Lemma 7 is postponed to Appendix A.1.1.

Eventually, this last lemma concerns the impact of the freezing point in the linearization procedure. Namely,

Lemma 8 (Sensitivity of the linearized flow w.r.t. the freezing parameter ). There exists C := C((A)) s.t. for
all τ = t, (x,x′) ∈ (Rnd)2 at the change of regime time t0 defined in (2.40) (i.e. t0 = (t+ c0d

2(x,x′)) ∧ T ):

d
(
m

(τ,x)
t0,t (x′),m

(τ,x′)
t0,t (x′)

)
= d

(
m

(τ,x)
t0,t (x′),θt0,t(x

′)
)
≤ Cc

1
2n−1

0 d(x,x′).

Again, the proof of Lemma 8 is postponed to Appendix A.1.2.

4. Control of the supremum of the derivatives w.r.t. the non-degenerate variables

WARNING: for notational simplicity, we drop from now on the sub and superscripts τ associated with the
linearization since, as soon as the function u in (2.11) is evaluated at time t in [0, T ], we choose this parameter

to be equal to t. For example, p̃(τ,ξ),m
(τ,ξ)
s,t ,θu,τ become respectively p̃ξ,mξ

s,t,θu,t. Recall as well that we
decided to omit the dependence of such a function u in the regularization parameter m. This dependence is
implicitly assumed and we will derive the desired control uniformly in m.

The result we aim at proving in this section concerns the supremum norm of the derivatives w.r.t. the non
degenerate variables. Namely, we here prove the following result.

Proposition 9. Let γ ∈ (0, 1) be given. Suppose that (A) is in force and that the terminal condition g and

source term f of the Cauchy problem (1.1) satisfy: g ∈ C2+γ
b,d (Rnd,R) and f ∈ L∞

(
[0, T ], Cγb,d(Rnd,R)

)
. Then,

there exist C := C((A), T ) and Λ as in Remark 3 such that for any (t,x) ∈ [0, T ]× Rnd,

(4.1) |u(t,x)|+ |Dx1
u(t,x)|+ |D2

x1
u(t,x)| ≤ C

{
‖g‖C2+γ

b,d
+ (T − t)

γ
2 ‖f‖L∞(Cγb,d)

}
+ Λ(T − t)

γ
2 ‖u‖L∞(C2+γ

b,d ).

Note first that the control for the function itself readily follows from (A) and the Feynman-Kac represen-

tation of the solution of (2.4) under (A), i.e. recall from (2.3) that u(t,x) = E[g(Xt,x
T )] +

∫ T
t
dsE[f(s,Xt,x

s )]
and that T ≤ 1.

For the derivatives, let us now start from (2.11) to control pointwise the second order derivative of u in the
non-degenerate variable, i.e. ‖D2

x1
u‖L∞ . The first one can be controlled similarly and more directly. Write for

any (t,x) ∈ [0, T ]× Rnd:

|D2
x1
u(t,x)| ≤ ‖D2

x1
P̃ ξ
T,tg‖L∞ + ‖D2

x1
G̃ξf‖L∞

+
∣∣∣ ∫ T

t

ds

∫
Rnd

D2
x1
p̃ξ(t, s,x,y)∆1,F,σ(t, s,θs,t(ξ),y, u)dy

∣∣∣
+
∣∣∣ n∑
i=2

∫ T

t

ds

∫
Rnd

Dyi ·
((
D2

x1
p̃ξ(t, s,x,y)⊗∆i,F(t, s,θs,t(ξ),y)

))
u(s,y)dy

∣∣∣,(4.2)

where we recall from (2.13) and (2.17) that:

∆1,F,σ(t, s,θs,t(ξ),y, u) = 〈
(
F1(s,y)− F1(s,θs,t(ξ))

)
, Dy1

u(s,y)〉

+
1

2
Tr
((
a(s,y)− a(s,θs,t(ξ))

)
D2

y1
u(s,y)

)
,

∆i,F(t, s,θs,t(ξ),y) = Fi(s,y)− Fi(s,θs,t(ξ))−Dxi−1Fi(s,θs,t(ξ))(y − θs,t(ξ))i−1.(4.3)

This section is then organized as follows: we first estimate the non degenerate part of (4.2) (first term in
the r.h.s. of the equation) thanks to Lemma 10 in Section 4.1, we then estimate the degenerate part of (4.2)
(second term in the r.h.s. of the equation) thanks to Lemma 11 in Section 4.2 and eventually estimate the
remainder of (4.2) (third and fourth terms in the r.h.s. of the equation) thanks to Lemma 12 in Section 4.3.
Proposition 13 then follows from the previous Lemmas. �
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4.1. Control of the non-degenerate part of the perturbative term. The aim of this section is to prove
identity (2.16) appearing in the detailed guide to the proof. To this end, we provide a general differentiation
result, which will be useful as well in Section 5 to deal with the Hölder norms. Under the current assumptions
on a,F, the following lemma holds.

Lemma 10. There exists Λ := Λ((A), T ) as in Remark 3 s.t. for each multi-index ϑ = (ϑ1, . . . , ϑn) ∈ Nn,
|ϑ| ≤ 3:

(4.4)
∣∣∣ ∫

Rnd
Dϑ

x p̃
ξ(t, s,x,y)∆1,F,σ(t, s,θs,t(ξ),y, u)dy

∣∣∣∣∣∣∣
ξ=x

≤ Λ‖u‖L∞(C2+γ
b,d )(s− t)

−
∑n
j=1 ϑj(j−

1
2 )+ γ

2 .

Proof of Lemma 10. We first recall the control (2.14)

|∆1,F,σ(t, s,y,θs,t(ξ), u)| ≤
(

[F1]d,γ‖Dx1u(s, ·)‖L∞ +
1

2
[a(s, ·)]d,γ‖D2

x1
u(s, ·)‖L∞

)
dγ(y,θs,t(ξ)).

From this control and Proposition 3, we directly obtain:∣∣∣ ∫
Rnd

Dϑ
x p̃

ξ(t, s,x,y)∆1,F,σ(t, s,θs,t(ξ),y, u)dy
∣∣∣∣∣∣∣
ξ=x

≤
(∫

Rnd
|Dϑ

x p̃
ξ(t, s,x,y)| dγ

(
y,θs,t(ξ)

)(
‖F1‖L∞(Cγd)‖Dx1

u‖L∞ + ‖a‖L∞(Cγd)‖D2
x1
u‖L∞

)
dy
)∣∣∣

ξ=x

≤ Λ‖u‖L∞(C2+γ
b,d )(s− t)

−
∑n
j=1 ϑj(j−

1
2 )

∫
Rnd

p̄C−1(s, t,x,y)dγ(θs,t(x),y)dy

≤ Λ‖u‖L∞(C2+γ
b,d )(s− t)

−
∑n
j=1 ϑj(j−

1
2 )+ γ

2 ,

with the notations of Remark 4 for the last but one inequality. �

Equation (2.16) readily follows from Lemma 10 taking ϑ = (2, 0, . . . , 0). Namely:∣∣∣ ∫ T

t

ds

∫
Rnd

Dϑ
x p̃

ξ(t, s,x,y)∆1,F,σ(t, s,θs,t(ξ),y, u)dy
∣∣∣ ∣∣∣∣∣

ξ=x

≤ Λ‖u‖L∞(C2+γ
b,d )

∫ T

t

ds

(s− t)1− γ2

≤ Λ‖u‖L∞(C2+γ
b,d )(T − t)

γ
2 .(4.5)

4.2. Control of the degenerate part of the perturbative term. The point is here to control the terms∑n
i=2

∫ T
t
ds
∫
Rnd D

2
x1
p̃ξ(t, s,x,y)

〈
∆i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉
dy appearing in equation (2.18) of the de-

tailed guide to the proof. We precisely want to derive equation (2.25).
The bound will actually follow from the more general following result, which will again be useful for the

Hölder norm in Section 5.

Lemma 11 (First Besov Control Lemma). There exists Λ := Λ((A), T ) as in Remark 3 s.t. for each multi-
index ϑ = (ϑ1, . . . , ϑn) ∈ Nn, |ϑ| ≤ 3:
(4.6)

n∑
i=2

∣∣∣ ∫
Rnd

Dϑ
x p̃

ξ(t, s,x,y)
〈
∆i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉
dy
∣∣∣∣∣∣∣
ξ=x

≤Λ‖u‖L∞(C2+γ
b,d )(s− t)

−
∑n
j=1 ϑj(j−

1
2 )+ γ

2.

Proof of Lemma 11. Let us first emphasize that from the Hölder continuity assumption (S)-(iii) (w.r.t. the
underlying homogeneous metric d) on Fi :

|∆i,F(t, s,θs,t(ξ),y)| ≤ [Fi(s, ·)]d,2i−3+γd
2i−3+γ(y,θs,t(ξ)).(4.7)

Similarly to (2.19),we take for each i ∈ [[2, n]],

(4.8) Dyi ·
(
Θϑ
i,(t,x)(s,y)

)
= Dyi ·

(
Dϑ

x p̃
ξ(t, s,x,y)⊗∆i,F(t, s,θs,t(ξ),y)

)
.

The contribution of the l.h.s. in (4.6) then rewrites:
(4.9)
n∑
i=2

∣∣∣ ∫
Rnd

Dϑ
x p̃

(t,ξ)(t, s,x,y)
〈
∆i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉
dy
∣∣∣∣∣∣∣
ξ=x

=

n∑
i=2

∣∣∣ ∫
Rnd

[
Dyi ·

(
Θϑ
i,(t,x)(s,y)

)]
u(s,y)dy

∣∣∣.
The point now is to observe that for any fixed i ∈ [[2, n]] and z = (z1, · · · , zi−1, zi+1, · · · , zn) ∈ R(n−1)d the

mapping yi 7→ u(s, z1:i−1,yi, zi+1:n) is in C
2+γ
2i−1

b (Rd) = B
2+γ
2i−1
∞,∞(Rd) using the Besov space terminology, see e.g.
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Triebel [31], uniformly in s ∈ [0, T ]. We can hence put in duality the mappings yi 7→ u(s,y1:i−1,yi,yi+1:n)
and

(4.10) Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n) : yi 7→ Dyi ·

(
Θϑ
i,(t,x)(s,y)

)
,

see e.g. Proposition 3.6 in [20]. To do so, we thus have to prove that Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n) lies in the

suitable Besov space, namely Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n) ∈ B

− 2+γ
2i−1

1,1 (Rd) and to control the associated norm. We will

actually prove that those norms provide an integrable quantity w.r.t. y1:i−1,yi+1:n as well as an integrable
time singularity. This will be done through the thermic characterization of Besov spaces, see e.g. Section 2.6.4
in [31] as well as (2.21) above. Precisely, we recall that for a function ψ : Rd → R in B−α̃i1,1 (Rd), α̃i := 2+γ

2i−1 a
quasi-norm is given by:

(4.11) ‖ψ‖
B
−α̃i
1,1 (Rd)

:= ‖ϕ(D)ψ‖L1(Rd,R) +

∫ 1

0

dv

v
v
α̃i
2 ‖hv ?ψ‖L1(Rd,R), ∀z ∈ Rd, hv(z) :=

1

(2πv)
d
2

exp
(
− |z|

2

v

)
,

h being the usual heat kernel of Rd, “?” standing for the usual convolution on Rd for ϕ ∈ C∞0 (Rd,R) s.t.
ϕ(0) 6= 0.

Taking ψ = Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n) in the above characterization and from definition (4.10), the main advan-

tage of using (4.11) consists in rebalancing the derivative appearing in the definition (4.10) to the heat kernel or
to the smooth compactly supported function ϕ. Namely, focusing on the L1 norm of the convolution product
in (4.11), we write:

‖hv ?Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R) =

∫
Rd

∣∣∣ ∫
Rd
hv(z − yi)Dyi ·

(
Θϑ
i,(t,x)(s,y)

)
dyi

∣∣∣dz
=

∫
Rd

∣∣∣ ∫
Rd
Dϑ

x p̃
ξ(t, s,x,y)

〈
∆i,F(t, s,θs,t(ξ),y), Dzhv(z − yi)

〉
dyi

∣∣∣dz.(4.12)

To estimate ‖Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖B−α̃i1,1

, we split the time integral in (4.11) into two parts writing:

∫ 1

0

dv

v
v
α̃i
2 ‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)

=

∫ (s−t)βi

0

dv

v
v
α̃i
2 ‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)+

∫ 1

(s−t)βi

dv

v
v
α̃i
2 ‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)

(4.13)

for a parameter βi > 0 to be specified. Precisely, in order to have a similar smoothing effect in time than for
the terms appearing in (4.5), we now want to calibrate βi to obtain:

(4.14)

∫ 1

(s−t)βi

dv

v
v
α̃i
2 ‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R) ≤
Λ

(s− t)
∑
j=1 ϑj(j−

1
2 )− γ2

q̂c\i(t, s,x, (y1:i−1,yi+1:n)),

where introducing:

p̄c−1(t, s,x,y) =:

n∏
j=1

Nc(s−t)2j−1

(
(θs,t(x)− y)j

)
,

where for ς > 0, z ∈ Rd,Nς(z) = 1

(2πς)
d
2

exp
(
− |z|

2

2ς

)
stands for the standard Gaussian density of Rd with

covariance matrix ςId,d, we introduce:

q̂c\i(t, s,x, (y1:i−1,yi+1:n)) =
∏

j∈[[1,n]],j 6=i

Nc(s−t)2j−1

(
(θs,t(x)− y)j

)
.(4.15)
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To choose properly the parameter βi leading to (4.14), we now write from (4.12):

∫ 1

(s−t)βi

dv

v
v
α̃i
2 ‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)

≤
∫ 1

(s−t)βi

dv

v
v
α̃i
2

∫
Rd
dz
∣∣∣ ∫

Rd
Dϑ

x p̃
ξ(t, s,x,y)

〈
∆i,F(t, s,θs,t(ξ),y), Dzhv(z − yi)

〉
dyi

∣∣∣∣∣∣∣
ξ=x

≤ Λ

∫ 1

(s−t)βi

dv

v
v
α̃i
2

∫
Rd
dz

∫
Rd
dyi

hcv(z − yi)

v
1
2

p̄c−1(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )

d2i−3+γ(θs,t(x),y)

≤ Λ

∫ 1

(s−t)βi

dv

v
v
α̃i
2

∫
Rd
dz

∫
Rd
dyi

hcv(z − yi)

v
1
2

p̄c−1(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )

(s− t)
2i−3+γ

2

≤ Λq̂c\i(t, s,x, (y1:i−1,yi+1:n))

∫ 1

(s−t)βi
dvv−

3
2 +

α̃i
2 (s− t)−

∑n
j=1 ϑj(j−

1
2 )+ 2i−3+γ

2

≤ Λq̂c\i(t, s,x, (y1:i−1,yi+1:n))(s− t)[− 1
2 +

α̃i
2 ]βi−

∑n
j=1 ϑj(j−

1
2 )+ 2i−3+γ

2

using (4.7), Proposition 3 for the third inequality (see also Remark 5, equation (3.8)) recalling as well that
0 ≤ t < s ≤ T is small.

To obtain (4.14), we then take:

(4.16) [−1

2
+
α̃i
2

]βi −
n∑
j=1

ϑj(j −
1

2
) +

2i− 3 + γ

2
= −

n∑
j=1

ϑj(j −
1

2
) +

γ

2
⇐⇒ βi =

(2i− 3)(2i− 1)

2i− 3− γ
.

The key point is now to check that the previous choice of βi also yields a bound similar to (4.14) for the
contribution in (4.13) associated with v ∈ [0, (s − t)βi ]. To this end, we restart from identity (4.12), which
allows to exploit partial cancellations w.r.t. the integration variable yi. Namely, write:

∫
Rd
hv(z − yi)Dyi ·Θϑ

i,(t,x)(s,y)dyi

=

∫
Rd
hv(z − yi)Dyi ·

(
Θϑ
i,(t,x)(s,y)−Θϑ

i,(t,x)(s,y1:i−1, z,yi+1:n)
)
dyi

=

∫
Rd
Dϑ

x p̃
ξ(t, s,x,y)

〈
Fi(s,y)− Fi(s,y1:i−1, z,yi+1:n), Dzhv(z − yi)

〉
dyi

+

∫
Rd

(
Dϑ

x p̃
ξ(t, s,x,y)−Dϑ

x p̃
ξ(t, s,x,y1:i−1, z,yi+1:n)

)
〈
Fi(s,y1:i−1, z,yi+1:n)− Fi(s,θs,t(ξ))−Dxi−1

Fi(s,θs,t(ξ))(y − θs,t(ξ))i−1, Dzhv(z − yi)
〉
dyi

=:
(
T1 + T2

)(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
,(4.17)

using the definition in (4.8) and (4.12) for the last decomposition. Write now from Proposition 3 and the
Hölder regularity assumed on Fi from (S)-(iii):

|T1

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
| ≤ Λ

∫
Rd

hcv(z − yi)

v
1
2

p̄c−1(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )
|z − yi|

2i−3+γ
2i−1 dyi

≤ Λ

∫
Rd

hcv(z − yi)

v
2−γ
4i−2

p̄c−1(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )
dyi.(4.18)

We thus derive from (4.18):

|T1

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
|

≤ Λ

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )
q̂c\i(t, s,x, (y1:i−1,yi+1:n))Ncv+(s−t)2i−1

(
z − θs,t(x)i

)
.(4.19)
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We now deal with the term |T2

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
| in (4.17). From the Taylor formula applied to the

ith variable for the difference of the derivatives of the densities we obtain:

|T2

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
|

≤ C

∫
Rd
dyi

hcv(z − yi)

v
1
2

∫ 1

0

dµ
p̄c−1(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

×|yi − z|
(∣∣∣Fi(s,y1:i−1, z,yi+1:n)− Fi(s,y1:i−1,θs,t(x)i:n)

∣∣∣
+
∣∣∣Fi(s,y1:i−1,θs,t(x)i:n)− Fi(s,θs,t(ξ))−Dxi−1

Fi(s,θs,t(x))(y − θs,t(x))i−1

∣∣∣)
≤ Λ

∫
Rd
dyihcv(z − yi)

∫ 1

0

dµ
p̄c−1(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

×

(
|z − θs,t(x)i|

2i−3+γ
2i−1 + |(θs,t(x)− y)i−1|1+ γ

2(i−1)−1 +

n∑
k=i+1

|(θs,t(x)− y)k|
2i−3+γ
2k−1

)
.

Writing, for any µ ∈ [0, 1],

|z − θs,t(x)i| ≤ µ|z − yi|+ |z + µ(yi − z)− (θs,t(x))i|,

we thus derive

|T2

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
|

≤ Λ

∫
Rd
dyihcv(z − yi)

∫ 1

0

dµ
p̄c−1(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

×
(
|yi − z|

2i−3+γ
2i−1 + d2i−3+γ

(
θs,t(x), (y1:i−1, z + µ(yi − z),yi+1:n)

))
≤ Λ

∫
Rd
dyihcv(z − yi)

∫ 1

0

dµp̄c−1(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

×

(
v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)

≤ Λq̂c\i(t, s,x,y1:i−1,yi+1:n)

∫ 1

0

dµ

∫
Rd
hcv(z − yi)Nc(s−t)2i−1(z + µ(yi − z)− (θs,t(x))i)dyi

×

(
v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
,(4.20)

using again (3.8) for the second inequality. From (4.17), (4.19) and (4.20) we derive, with the notation
introduced in (4.15):

‖hv ?Ψϑ
i,(t,x),(s,y1:i−1,yi+1)‖L1(Rd,R)

≤

(
1

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )

+
v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)

×Λq̂c\i(t, s,x, (y1:i−1,yi+1:n))

∫ 1

0

dµ

∫
Rd
dz

∫
Rd
dyihcv(z − yi)Nc(s−t)2i−1(z + µ(yi − z)− (θs,t(x))i)

≤ Λq̂c\i(t, s,x, (y1:i−1,yi+1:n))

×

(
1

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )

+
v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
,
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using the change of variable (w1, w2) = (z − yi, z + µ(yi − z) − (θs,t(x))i) for the last inequality. From the
above computations and with the notations of (4.13), we derive:∫ (s−t)βi

0

dvv
α̃i
2 −1‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1)‖L1(Rd,R)

≤ Λq̂c\i(t, s,x, (y1:i−1,yi+1:n))

∫ (s−t)βi

0

dv

v
v
α̃i
2

×

(
1

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )

+
v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
=: Λq̂c\i(t, s,x, (y1:i−1,yi+1:n))Bϑ,βi(t, s).

Let us now prove that for βi = (2i−3)(2i−1)
2i−3−γ defined in (4.16), we have:

(4.21) Bϑ,βi(t, s) ≤
C

(s− t)
∑n
j=1 ϑj(j−

1
2 )− γ2

.

To prove (4.21), we now write:

Bϑ,βi(t, s)

≤ C
[ v

α̃i
2 −

2−γ
4i−2

(s− t)
∑n
j=1 ϑj(j−

1
2 )

+
v
α̃i
2 + 2i−3+γ

2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
v
α̃i
2

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

]v=(s−t)βi

v=0

≤ C
[
(s− t)βi(

α̃i
2 −

2−γ
4i−2 )−

∑n
j=1 ϑj(j−

1
2 ) + (s− t)βi(

α̃i
2 + 2i−3+γ

2(2i−1)
)−(

∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2 )

+(s− t)βi
α̃i
2 −

∑n
j=1 ϑj(j−

1
2 )−1+ γ

2

]
.

From the above equation, (4.21) holds as soon as βi can be chosen so that the three following conditions hold:

βi

(
α̃i
2
− 2− γ

4i− 2

)
− γ

2
≥ 0, βi

(
α̃i
2

+
2i− 3 + γ

2(2i− 1)

)
− 2i− 1

2
− γ

2
≥ 0, βi

α̃i
2
− 1 ≥ 0.

Recalling that α̃i
2 =

1+ γ
2

2i−1 and for the previous choice of βi, the above conditions rewrite:(
(2i− 3)(2i− 1)

2i− 3− γ

)(
1 + γ

2

2i− 1
−

1− γ
2

2i− 1

)
− γ

2
≥ 0 ⇐⇒ (2i− 3)

2i− 3− γ
γ − γ

2
≥ 0,(

(2i− 3)(2i− 1)

2i− 3− γ

)(
2 + γ

2(2i− 1)
+

2i− 3 + γ

2(2i− 1)

)
− 2i− 1

2
− γ

2
≥ 0

⇐⇒
(

2i− 3

2i− 3− γ

)
(2i− 1 + 2γ)− (2i− 1 + γ) ≥ 0,(

(2i− 3)(2i− 1)

2i− 3− γ

)
1 + γ

2

2i− 1
− 1 ≥ 0 ⇐⇒

(
2i− 3

2i− 3− γ

)
(1 +

γ

2
)− 1 ≥ 0.

All the above conditions are true for i ∈ [[2, n]], γ ∈ (0, 1]. Note that the chosen βi seems to be rather sharp in
the sense that letting γ go to 0 the above constraints become equalities. This proves (4.21). We finally get:

(4.22)

∫ 1

0

dv

v
v
α̃i
2 ‖hv ?Ψϑ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R) ≤
Λ

(s− t)
∑n
j=1 ϑj(j−

1
2 )− γ2

q̂c\i(t, s,x, (y1:i−1,yi+1:n)).

Reproducing the previous computations we also write for a C∞ compactly supported function ϕ:

‖ϕ(D)Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)

≤
∫
Rd

∣∣∣ ∫
Rd
Dyiϕ

∨(z − yi) ·
(
Dϑ

x p̃
ξ(t, s,x,y)⊗∆i,F(t, s,θs,t(ξ),y)〉dyi

∣∣∣dz∣∣∣∣
ξ=x

≤ Λ

(s− t)
∑n
j=1 ϑj(j−

1
2 )

∫
Rd
p̄c−1(t, s,x,y)d2i−3+γ(θs,t(x),y)dyi

≤ Λ

(s− t)
∑n
j=1 ϑj(j−

1
2 )−(i− 3

2 + γ
2 )
q̂c\i(t, s,x, (y1:i−1,yi+1:n)).

From (4.11) and (4.22), we finally obtain:

(4.23) ‖Ψϑ
i,(t,x),(s,y1:i−1,yi+1:n)‖B−α̃i1,1

≤ Λ

(s− t)
∑n
j=1 ϑj(j−

1
2 )− γ2

q̂c\i(t, s,x, (y1:i−1,yi+1:n)),
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which together with (4.9) and (4.10) gives the result. �

Equation (2.26) now follows from Lemma 11 taking ϑ = (2, 0, . . . , 0). Namely,

(4.24)
∣∣∣ n∑
i=2

∫ T

t

ds

∫
Rnd

D2
x1
p̃ξ(t, s,x,y)

〈
∆i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉)∣∣∣∣∣∣∣
ξ=x

≤ Λ(T − t)
γ
2 ‖u‖L∞(C2+γ

b,d ).

4.3. Non-degenerate derivatives for the frozen semi-group : terminal condition and source. The
main result of this section is the following lemma.

Lemma 12 (Derivatives of frozen semi-group and Green kernel). There exists a constant C := C((A)) s.t.
for any (t,x) ∈ [0, T ]× Rnd,

|D2
x1
P̃ ξ
T,tg(x)|

∣∣∣
ξ=x

≤ C‖D2
x1
g‖L∞ ≤ C‖g‖C2+γ

b,d
,

|D2
x1
G̃ξf(t,x)|

∣∣∣
ξ=x

≤ C(T − t)
γ
2 ‖f‖L∞(Cγb,d).

Proof of Lemma 12. Note first that,∣∣D2
x1
P̃ ξ
T,tg(x)

∣∣∣∣∣
ξ=x

=
∣∣∣ ∫

Rnd
D2

x1
p̃ξ(t, T,x,y)[g(y)− g(mξ

T,t(x))]dy
∣∣∣∣∣∣∣
ξ=x

≤
∣∣∣ ∫

Rnd
D2

x1
p̃ξ(t, T,x,y)[g(y)− g(y1,m

ξ
T,t(x)2:n)]dy

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫

Rnd
D2

x1
p̃ξ(t, T,x,y)[g(y1, (m

ξ
T,t(x))2:n)− g(mξ

T,t(x))]dy
∣∣∣∣∣∣∣
ξ=x

.(4.25)

The first term in the r.h.s. of the previous identity is readily controlled thanks to Proposition 3∣∣∣ ∫
Rnd

D2
x1
p̃ξ(t, T,x,y)[g(y)− g(y1, (m

ξ
T,t(x))2:n)]dy

∣∣∣∣∣∣∣
ξ=x

≤ C‖g‖C2+γ
b,d

∫
Rnd

(T − t)−1p̄C−1(t, T,x,y)d2+γ(mξ
T,t(x),y)dy

∣∣∣
ξ=x

≤ C(T − t)
γ
2 ‖g‖C2+γ

b,d
.(4.26)

The second term of (4.25) is more subtle. We need to expand g(y1, (m
ξ
T,t(x))2:n) in its non-degenerate variable

to take advantage of the corresponding regularity of g. Namely, recalling from Proposition 5 that∫
Rd
dyD2

x1
p̃m,ξ(t, T,x,y)

〈
Dx1g(mξ

T,t(x)), (y −mξ
T,t(x))1

〉∣∣∣
ξ=x

= 0d,d,

we obtain ∣∣∣ ∫
Rnd

D2
x1
p̃ξ(t, T,x,y)[g(y1, (m

ξ
T,t(x))2:n)− g(mξ

T,t(x))]dy
∣∣∣∣∣∣∣
ξ=x

=

∣∣∣∣ ∫
Rnd

D2
x1
p̃ξ(t, T,x,y)

(〈
Dx1

g(mξ
T,t(x)), (y −mξ

T,t(x))1

〉
+

∫ 1

0

dµ(1− µ)Tr
(

D2
x1

g
(
mξ

T,t(x)1 + µ(y −mξ
T,t(x))1, (m

ξ
T,t(x))2:n

)(
y −mξ

T,t(x)
)⊗2

1

))
dy

∣∣∣∣
∣∣∣∣∣
ξ=x

≤ C‖D2
x1
g‖L∞

∫
Rnd

p̄C−1(t, T,x,y)

T − t
|(y −mξ

T,t(x))1|2dy
∣∣∣∣
ξ=x

≤ C‖g‖C2+γ
b,d

.(4.27)

Gathering identities (4.26), (4.27) into (4.25), we obtain the stated control for |D2
x1
P̃ ξ
T,tg(x)|

∣∣∣
ξ=x

.

Let us now turn to the Green kernel. We directly get from Proposition 3:

|D2
x1
G̃ξf(t,x)|

∣∣∣
ξ=x

≤
∣∣∣ ∫ T

t

ds

∫
Rnd

D2
x1
p̃ξ(t, s,x,y)[f(s,y)− f(s,θs,t(ξ))]dy

∣∣∣∣∣∣
ξ=x

≤ C‖f‖L∞(Cγd)

∫ T

t

ds

∫
Rnd

1

s− t
p̄C−1(s, t,x,y)d(θs,t(x),y)γdy

≤ C‖f‖L∞(Cγd)(T − t)
γ
2 ,
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which gives the result.
�

5. Hölder controls

In this section, we aim at giving suitable controls on the Hölder moduli [D2
x1
u(t, ·)]γ,d and supz∈Rd [u(t, z, ·)]2+γ,d

in order to derive our main Schauder estimate of Theorem 1. Namely, we want to establish the following result.

Proposition 13. Let γ ∈ (0, 1) be given. Suppose that (A) is in force and that the terminal condition g

and source term f of the Cauchy problem (1.1) satisfy: g ∈ C2+γ
b,d (Rnd,R) and f ∈ L∞

(
[0, T ], Cγb,d(Rnd,R)

)
.

Then, there exists C := C((A), T ) and Λ := Λ((A)) as in Remark 3 such that for any c0 ∈ (0, 1]:
(5.1)

[D2
x1
u(t, ·)]γ,d+ sup

z∈Rd
[u(t, z, ·)]2+γ,d ≤ C

{
‖g‖C2+γ

b,d
+‖f‖L∞(Cγb,d)

}
+
(

Λ(c
−(n− 1

2 )+ γ
2

0 +c
γ
2
0 )+Cc

γ
2n−1

0

)
‖u‖L∞(C2+γ

b,d ).

To prove this result the point is to consider for a fixed time t ∈ [0, T ] and for fixed x ∈ Rnd the perturbative
expansion (2.11) and for another spatial point x′ ∈ Rnd, the possibly more refined version provided by equation
(2.39) which precisely allows to take into account the various regimes depending on d(x,x′) and (s− t)1/2, s ∈
[t, T ] detailed in the previous detailed guide to the proof (see Section 2 paragraph 2.4).

Hence, we will address separately two cases. For a constant c0 to be specified later on (but formally meant
to be small), we consider:

• The globally off-diagonal regime T − t < c0d
2(x,x′). In that case, the spatial points x,x′ are globally far for

the corresponding homogeneous distance d over the time horizon s ∈ [t, T ]. Hence, there is no specific need to
exploit (2.39). Expanding the quantities D2

x1
u(t,x)−D2

x1
u(t,x′) and u(t, z,x2:n)− u(t, z,x′2:n) with (2.11) is

enough to get the result.
Indeed, writing from (2.11) the for any (x,x′) ∈ (Rnd)2 s.t. (T − t) < c0d

2(x,x′),

D2
x1
u(t,x)−D2

x1
u(t,x′)

=

{
D2

x1
P̃ ξ
T,tg(x)−D2

x′1
P̃ ξ′

T,tg(x′) +D2
x1
G̃ξf(t,x)−D2

x1
G̃ξ′f(t,x′)

+

∫ T

t

ds

∫
Rnd

(
D2

x1
p̃ξ(t, s,x,y)(Ls − L̃ξ

s)u(s,y)−D2
x1
p̃ξ
′
(t, s,x′,y)(Ls − L̃ξ′

s )u(s,y)
)
dy

}∣∣∣∣∣
(ξ,ξ′)=(x,x′)

,(5.2)

and similarly, for any z ∈ Rd,

u
(
t, (z,x2:n)

)
− u
(
t, (z,x′2:n)

)
=

{
P̃ ξ
T,tg(z,x2:n)− P̃ ξ′

T,tg(z,x′2:n) + G̃ξf
(
t, (z,x2:n)

)
− G̃ξ′f

(
t, (z,x′2:n)

)
+

∫ T

t

ds

∫
Rnd

(
p̃ξ(t, s, (z,x2:n),y)(Ls − L̃ξ

s)u(s,y)

−p̃ξ
′
(t, s, (z,x′2:n),y)(Ls − L̃ξ′

s )u(s,y)
)
dy

}∣∣∣∣∣
(ξ,ξ′)=

(
(z,x2:n),(z,x′2:n)

).(5.3)

In this case, we derive from Lemmas 10, 11, 12 and equation (4.2) that:

|D2
x1
u(t,x)−D2

x1
u(t,x′)|

≤ C
[
|D2

x1
P̃ ξ
T,tg(x)−D2

x′1
P̃ ξ′

T,tg(x′)|
∣∣
(ξ,ξ′)=(x,x′)

+
(
‖f‖L∞(Cγb,d) + Λ‖u‖L∞(C2+γ

b,d )

)
(T − t)

γ
2

]
≤ C

[
|D2

x1
P̃ ξ
T,tg(x)−D2

x′1
P̃ ξ′

T,tg(x′)|
∣∣
(ξ,ξ′)=(x,x′)

+
(
‖f‖L∞(Cγb,d) + Λ‖u‖L∞(C2+γ

b,d )

)
c
γ
2
0 dγ(x,x′)

]
,

and

|u
(
t, (z,x2:n)

)
− u
(
t, (z,x′2:n)

)
|

≤ C

(
|P̃ ξ
T,tg(z,x2:n)− P̃ ξ′

T,tg(z,x′2:n)|
∣∣
(ξ,ξ′)=

(
(z,x2:n),(z,x′2:n)

)
+|G̃ξf

(
t, (z,x2:n)

)
− G̃ξ′f

(
t, (z,x′2:n)

)
|
∣∣
(ξ,ξ′)=

(
(z,x2:n),(z,x′2:n)

) + ‖u‖L∞(C2+γ
b,d )c

γ
2
0 dγ(x,x′)

)
.
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Therefore, these equations give the expected controls up to appropriate estimates for the Hölder moduli of the
frozen semigroup and Green kernel (which are obtained below, for the so-called mixed regime).

• The mixed regime T − t ≥ c0d
2(x,x′). In that case, up to the transition time t0 defined in (2.40), s − t <

c0d
2(x,x′), i.e. the off-diagonal regime holds for the times s close to t. Things are hence more involved. In

particular, it is then crucial to exploit the more refined perturbative expansion (2.39) to derive suitable bounds
for D2

x1
u(t,x)−D2

x1
u(t,x′) and u

(
t, (z,x2:n)

)
− u
(
t, (z,x′2:n)

)
. In particular, this leads to handle carefully the

additional terms appearing from the change of freezing parameter.
To handle our controls in such a case, we will start from identity (2.39) for the expansion of u(t,x′), where

we have chosen ξ′ = x′ and ξ̃
′

= x. Namely,

u(t,x′) = P̃ ξ̃
′

T,tg(x′) + G̃ξ′

t0,tf(t,x′) + G̃ξ̃
′

T,t0
f(t,x′) + P̃ ξ′

t0,tu(t0,x
′)− P̃ ξ̃

′

t0,tu(t0,x
′)

+

∫ T

t

ds

∫
Rnd

dy
(
Is≤t0 p̃ξ

′
(t, s,x′,y)(Ls − L̃ξ′

s ) + Is>t0pξ̃
′
(t, s,x′,y)(Ls − L̃ξ̃

′

s )
)
u(s,y).

Again, t0 must be here seen as a frozen parameter, which is a posteriori, i.e. after possible differentiation,
chosen as in (2.40).

According to the notations of the detailed guide to the proof (see eq. (2.31) and (2.30) in Section 2), the
terms to control then write for the Hölder norm of the derivatives w.r.t. the non-degenerate variables:

D2
x1
u(t,x)−D2

x1
u(t,x′)

=

{(
D2

x1
P̃ ξ
T,tg(x)−D2

x′1
P̃ ξ
T,tg(x′)

)
+
(
D2

x1
G̃ξ
t0,tf(t,x)−D2

x1
G̃ξ′

t0,tf(t,x′)
)

+
(
D2

x1
G̃ξ
T,t0

f(t,x)−D2
x1
G̃ξ
t0,tf(t,x′)

)
+
(
D2

x1
P̃ ξ′

t0,tu(t0,x
′)−D2

x1
P̃ ξ
t0,tu(t0,x

′)
)

+D2
x1

∆ξ,ξ̃
′

diag(t, T,x,x′) +D2
x1

∆ξ,ξ′

off-diag(t,x,x′)

}∣∣∣∣∣
(ξ,ξ′,ξ̃

′
)=(x,x′,x)

,(5.4)

with

∆ξ,ξ′

off-diag(t,x,x′) =

∫ T

t

ds

∫
Rnd

dyp̃ξ(t, s,x,y)Is≤t0(Ls − L̃ξ
s)u(s,y)

−
∫ T

t

ds

∫
Rnd

dyp̃ξ
′
(t, s,x′,y)Is≤t0(Ls − L̃ξ′

s )u(s,y),

∆ξ,ξ̃
′

diag(t, T,x,x′) =

∫ T

t

ds

∫
Rnd

dyp̃ξ(t, s,x,y)Is>t0(Ls − L̃ξ
s)u(s,y)

−
∫ T

t

ds

∫
Rnd

dyp̃ξ̃
′
(t, s,x′,y)Is>t0(Ls − L̃ξ̃

′

s )u(s,y),(5.5)

and

u
(
t, (z,x2:n)

)
− u
(
t, (z,x′2:n)

)
=

{(
P̃ ξ
T,tg

(
z,x2:n

)
− P̃ ξ

T,tg
(
z,x′2:n

))
+
(
G̃ξ
t0,tf

(
t, (z,x2:n)

)
− G̃ξ′

t0,tf
(
t, (z,x′2:n)

))
+
(
G̃ξ
T,t0

f
(
t, (z,x2:n)

)
− G̃ξ

t0,tf
(
t, (z,x2:n)

))
+
(
P̃ ξ′

t0,tu
(
t0, (z,x

′
2:n)
)
− P̃ ξ

t0,tu
(
t0, (z,x

′
2:n)
))

+∆ξ,ξ̃
′

diag(t, T, (z,x2:n), (z,x′2:n)) + ∆ξ,ξ′

off-diag(t, (z,x2:n), (z,x′2:n))

}∣∣∣∣∣
(ξ,ξ′,ξ̃

′
)=((z,x2:n),(z,x′2:n),(z,x2:n))

.

(5.6)

for the Hölder moduli w.r.t. the degenerate variables according to the previously introduced notations.
To derive the expected bounds we will then devote a subsection to the Hölder controls for the frozen

semi-group (see Lemma 14 in Section 5.1), for the frozen Green kernel (see Lemma 15 in Section 5.2), for
the discontinuity term coming from the change of freezing point (see Lemma 17 in Section 5.4) and for the
perturbative contribution (see Lemma 5.3 in Section 5.3). Aggregating the previously mentioned lemmas
directly yields Proposition 13. �
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5.1. Hölder norms for the frozen semi-group. We precisely want to establish the following result.

Lemma 14. There exists C := C((A)) s.t. for any (t,x,x′) ∈ [0, T ]× Rnd × Rnd, taking

(ξ, ξ′) =

{
(x,x′), if (T − t)1/2 < c0d(x,x′),

(x,x), if (T − t)1/2 ≥ c0d(x,x′),

one has: ∣∣D2
x1
P̃ ξ
T,tg(x)−D2

x1
P̃ ξ′

T,tg(x′)
∣∣ ≤ C‖g‖C2+γ

b,d
dγ(x,x′),∣∣P̃ ξ

T,tg(x)− P̃ ξ′

T,tg(x′)
∣∣ ≤ C‖g‖C2+γ

b,d
d2+γ(x,x′), for x1 = x′1.

Before entering into the proof of such a result, let us emphasize that, as suggested by the above off-diagonal
and diagonal splitting, the constants C appearing in the r.h.s. of the above equations should depend on c0.
This is true, but since these terms are not planned to be passed in the r.h.s. of the final estimate, see (2.42)
and the associated comments, we do not keep track of this dependence.

5.1.1. Hölder norms of the derivatives w.r.t. the non-degenerate variables. Let us deal with the first inequality
of Lemma 14, i.e. the Hölder norms of the derivatives w.r.t. the non-degenerate variables x1. For the frozen
semi-group, we say that the off-diagonal regime (resp. diagonal regime) holds when T − t ≤ c0d2(x,x′) (resp.
T − t ≥ c0d2(x,x′)).

• Off-diagonal regime. If T − t ≤ c0d2(x,x′), like in (4.25), we write:

D2
x1
P̃ ξ
T,tg(x)−D2

x1
P̃ ξ′

T,tg(x′)

=

[ ∫
Rnd

D2
x1
p̃ξ(t, T,x,y)[g(y)− g(y1, (m

ξ
T,t(x))2:n)]dy

−
∫
Rnd

D2
x1
p̃ξ
′
(t, T,x′,y)[g(y)− g(y1(,mξ′

T,t(x
′))2:n)]dy

]
+

[ ∫
Rnd

D2
x1
p̃ξ(t, T,x,y)[g(y1, (m

ξ
T,t(x))2:n)− g(mξ

T,t(x))]dy

−
∫
Rnd

D2
x1
p̃ξ
′
(t, T,x′,y)[g(y1, (m

ξ′

T,t(x
′))2:n)− g(mξ′

T,t(x
′))]dy

]
=: ∆t,T,ξ,ξ′D

2
x1
P̃1g(x,x′) + ∆t,T,ξ,ξ′D

2
x1
P̃2g(x,x′).(5.7)

The first term, which is associated with the degenerate variables, is controlled directly thanks to (4.26), which
again readily follows from Proposition 3 (see as well Remark 3.8), for (ξ, ξ′) = (x,x′). One hence gets:

(5.8)
∣∣∣∆t,T,ξ,ξ′D

2
x1
P̃1g(x,x′)

∣∣∣∣∣∣
ξ=x
≤ 2C(T − t)

γ
2 ‖g‖C2+γ

b,d
≤ 2Cc

γ
2
0 ‖g‖C2+γ

b,d
dγ(x,x′).

The second term is more delicate, we proceed like in (4.27):

∆t,T,ξ,ξ′D
2
x1
P̃2g(x,x′)

=

[∫
Rnd

D2
x1
p̃ξ(t, T,x,y)

∫ 1

0

dµ(1− µ)

Tr
([
D2

x1
g
(
mξ
T,t(x)1 + µ(y −mξ

T,t(x))1, (m
ξ
T,t(x))2:n

)
−D2

x1
g
(
mξ
T,t(x)

)](
y −mξ

T,t(x)
)⊗2

1

)
dy

−
∫
Rnd

D2
x1
p̃ξ
′
(t, T,x′,y)

∫ 1

0

dµ(1− µ)

Tr
([
D2

x1
g
(
mξ′

T,t(x
′)1 + µ(y −mξ′

T,t(x
′))1, (m

ξ′

T,t(x
′))2:n

)
−D2

x1
g
(
mξ′

T,t(x
′)
)](

y −mξ′

T,t(x
′)
)⊗2

1

)
dy

]

+

[
1

2

∫
Rnd

D2
x1
p̃ξ(t, T,x,y)Tr

(
D2

x1
g(mξ

T,t(x))(y −mξ
T,t(x))⊗2

1

)
dy

− 1

2

∫
Rnd

D2
x1
p̃ξ
′
(t, T,x′,y)Tr

(
D2

x1
g(mξ′

T,t(x
′))(y −mξ′

T,t(x
′))⊗2

1 dy

]
=: ∆t,T,ξ,ξ′D

2
x1
P̃21g(x,x′) + ∆t,T,ξ,ξ′D

2
x1
P̃22g(x,x′).(5.9)
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The first contribution of the previous identity is handled exploiting the smoothness of D2
x1
g and Proposition

3. Namely,

|∆t,T,ξ,ξ′D
2
x1
P̃21g(x,x′)| ≤ C[D2

x1
g]γd

∫
Rnd

dy

(T − t)

(
p̄ξC−1(t, T,x,y)|(y −mξ

T,t(x))1|2+γ

+p̄ξ
′

C−1(t, T,x′,y)|(y −mξ′

T,t(x
′))1|2+γ

)∣∣∣
(ξ,ξ′)=(x,x′)

.

Hence,

(5.10)
∣∣∣∆t,T,ξ,ξ′D

2
x1
P̃21g(x,x′)

∣∣∣
(ξ,ξ′)=(x,x′)

≤ 2C(T − t)
γ
2 ‖g‖C2+γ

b,d
≤ 2Cc

γ
2
0 ‖g‖C2+γ

b,d
dγ(x,x′).

Let us now decompose the last contribution of (5.9):∣∣∣∆t,T,ξ,ξ′D
2
x1
P̃22g(x,x′)

∣∣∣
(ξ,ξ′)=(x,x′)

≤

{
1

2

∫
Rnd

dy

(s− t)
p̄ξC−1(t, T,x,y)|D2

x1
g(mξ

T,t(x))−D2
x1
g(mξ′

T,t(x
′))||(y −mξ

T,t(x))1|2

+
1

2

∣∣∣ ∫
Rnd

D2
x1
p̃ξ(t, T,x,y)Tr

(
D2

x1
g(mξ′

T,t(x
′))(y −mξ

T,t(x))⊗2
1

)
−D2

x1
p̃ξ
′
(t, T,x′,y)Tr

(
〈D2

x1
g(mξ′

T,t(x
′))(y −mξ′

T,t(x
′))⊗2

1

)
dy
∣∣∣}∣∣∣∣∣

(ξ,ξ′)=(x,x′)

≤ C|D2
x1
g(mξ

T,t(x))−D2
x1
g(mξ′

T,t(x
′))|
∣∣
(ξ,ξ′)=(x,x′)

= C
∣∣(D2

x1
g
)
(θT,t(x))−

(
D2

x1
g
)
(θT,t(x

′))
∣∣,(5.11)

exploiting Proposition 3 and equation (3.17) in Proposition 5 to observe that the second contribution of the
first inequality above vanishes and recalling as well (2.15) for the last equality to identify the linearized flows,
respectively frozen in ξ = x, ξ′ = x′, with the initial non-linear ones.

From Lemma 7, we derive that for T − t ≤ c0d2(x,x′):

(5.12)
∣∣∣∆t,T,ξ,ξ′D

2
x1
P̃22g(x,x′)

∣∣∣
(ξ,ξ′)=(x,x′)

≤ C‖g‖C2+γ
b,d

(
dγ(x,x′) + (T − t)

γ
2

)
.

Plugging (5.8), (5.10), (5.12) into (5.7) yields the result.

• Diagonal regime. If T − t > c0d
2(x,x′), we directly write:

|D2
x1
P̃ ξ
T,tg(x)−D2

x1
P̃ ξ
T,tg(x′)|

≤
∣∣ ∫

Rnd
[D2

x1
p̃ξ(t, T,x,y)−D2

x1
p̃ξ(t, T,x′,y)]g(y)dy

∣∣
≤

n∑
k=1

∣∣ ∫
Rnd

DxkD
2
x1
p̃ξ(t, T,x′ + µ(x− x′),y) · (x− x′)kg(y)dy

∣∣
This contribution is dealt through the cancellation tools of Proposition 5 (see equations (3.16), (3.18)). We get
from the above estimate that:

|D2
x1
P̃ ξ
T,tg(x)−D2

x1
P̃ ξ
T,tg(x′)|

≤
n∑
k=1

∣∣∣∣ ∫
Rnd

DxkD
2
x1
p̃ξ(t, T,x′ + µ(x− x′),y) · (x− x′)k

[
g
(
y
)
− g
(
mξ
T,t

(
x′ + µ(x− x′)

))
−
〈
Dx1g

(
mξ
T,t(x

′ + µ(x− x′))
)
,
(
y −mξ

T,t(x
′ + µ(x− x′))

)
1

〉
−1

2
Tr
(
D2

x1
g
(
mξ
T,t

(
x′ + µ(x− x′)

)(
y −mξ

T,t(x
′ + µ(x− x′))

)⊗2

1

)]
dy

∣∣∣∣.(5.13)
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Because g ∈ C2+γ
b,d (Rnd,R), we readily deduce, reproducing the Taylor expansion on g employed for equations

(5.7)-(5.9) above, that:∣∣∣∣g(y)− g(mξ
T,t

(
x′ + µ(x− x′)

))
−
〈
Dx1

g(mξ
T,t(x

′ + µ(x− x′))), (y −mξ
T,t(x

′ + µ(x− x′)))1

〉
−1

2
Tr

(
D2

x1
g
(
mξ
T,t

(
x′ + µ(x− x′)

))(
y −mξ

T,t

(
x′ + µ(x− x′)

))⊗2

1

)∣∣∣∣
∣∣∣∣∣
ξ=x

≤ ‖g‖C2+γ
b,d

d2+γ
(
y,mξ

T,t

(
x′ + µ(x− x′)

))∣∣∣
ξ=x

.(5.14)

Plugging this inequality into (5.13) yields:

|D2
x1
P̃ ξ
T,tg(x)−D2

x1
P̃ ξ
T,tg(x′)|

∣∣
ξ=x

≤ C‖g‖L∞(C2+γ
b,d )

n∑
k=1

∫
Rnd

(T − t)−1−(k− 1
2 )
{
p̄ξC−1(t, T,x′ + µ(x− x′),y)|(x− x′)k|

×d2+γ
(
y,mξ

T,t(x
′ + µ(x− x′)

)}∣∣∣
ξ=x

≤ C‖g‖L∞(C2+γ
b,d )

n∑
k=1

(T − t)−(k− 1
2 )+ γ

2 |(x− x′)k|

≤ C‖g‖C2+γ ,dγ(x,x′),(5.15)

using (3.8) for the second inequality and recalling that, since c0d
2(x,x′) < (T − t), we indeed have (T −

t)−(k− 1
2 )+ γ

2 |(x − x′)k| ≤ (c0d
2(x,x′))−(k− 1

2 )+ γ
2 d2k−1(x,x′) ≤ Cdγ(x,x′).This concludes the proof of the first

inequality of Lemma 14.

5.1.2. Hölder control for the degenerate variables. We are here interested in proving the second estimate in
Lemma 14 relying on the Hölder regularity of the frozen semi-group w.r.t. the degenerate variables. This proof
is also based on the previous techniques. In particular, we still take advantage of cancellation tools. For the
whole paragraph we consider two arbitrary given spatial points (x,x′) ∈ (Rnd)2 s.t. x1 = x′1, i.e. their first
entry, corresponding to the non-degenerate variable, coincide.

• Off-diagonal regime. If T − t ≤ c0d
2(x,x′), we proceed to an expansion similar to (5.7) for D2

x1
P̃x
T,tg(x).

In particular, with the notations introduced in (5.7), we write:

(5.16) P̃ ξ
T,tg(x)− P̃ ξ′

T,tg(x′) =: ∆t,T,ξ,ξ′ P̃1g(x,x′) + ∆t,T,ξ,ξP̃2g(x,x′).

We directly obtain from the Proposition 3, similarly to (5.8), that:

(5.17)
∣∣∣∆t,T,ξ,ξ′ P̃1g(x,x′)

∣∣∣∣∣∣
ξ=x
≤ 2C(T − t)

2+γ
2 ‖g‖C2+γ

b,d
≤ 2C‖g‖C2+γ

b,d
d2+γ(x,x′).

We indeed recall that the difference w.r.t. (5.8) is that we do not have anymore the time-singularities coming
therein from the spatial derivatives.

With the notations of (5.9), the second contribution of (5.16) writes:

∆t,T,ξ,ξ′ P̃2g(x,x′) = ∆t,T,ξ,ξ′ P̃21g(x,x′) + ∆t,T,ξ,ξ′ P̃22g(x,x′).

Proposition 3 again yields, similarly to (5.10), that:

(5.18)
∣∣∣∆t,T,ξ,ξ′ P̃21g(x,x′)

∣∣∣
(ξ,ξ′)=(x,ξ′)

≤ 2C(T − t)
2+γ
2 ‖g‖C2+γ

b,d
≤ 2C‖g‖C2+γ

b,d
d2+γ(x,x′).

On the other hand, we readily get from Proposition 5 that:

∆t,T,ξ,ξ′ P̃22g(x,x′) =
1

2
Tr
(
D2

x1
g(mξ

T,t(x))[K̃ξ
T,t]1,1 −D

2
x1
g(mξ′

T,t(x
′))[K̃ξ′

T,t]1,1

)
.

Write now:

∆t,T,ξ,ξ′ P̃22g(x,x′) =
1

2
Tr
(

[D2
x1
g(mξ

T,t(x))−D2
x1
g(mξ′

T,t(x
′))][K̃ξ

T,t]1,1

)
+

1

2
Tr
(
D2

x1
g(mξ′

T,t(x
′))
[
[K̃ξ

T,t]1,1 − [K̃ξ′

T,t]1,1
])
.(5.19)
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Since T − t ≤ c0d
2(x,x′), recalling as well that for ξ = x, ξ′ = x′, mξ

T,t(x) = θT,t(x), mξ′

T,t(x
′) = θT,t(x

′),
we readily deduce from Proposition 2 and Lemma 7 that:

1

2

∣∣∣[D2
x1
g(mξ

T,t(x))−D2
x1
g(mξ′

T,t(x
′))][K̃ξ

T,t]1,1

∣∣∣∣∣∣∣
(ξ,ξ′)=(x,x′)

≤ C‖g‖C2+γ
b,d

dγ
(
θT,t(x),θT,t(x

′)
)
(T − t)

≤ C‖g‖C2+γ
b,d

d2+γ(x,x′).(5.20)

For the last contribution, we directly obtain from Lemma 6 (equation (3.19) for j = 1):

∣∣1
2
D2

x1
g(mξ

T,t(x
′))
(
[K̃ξ

T,t]1,1 − [K̃ξ′

T,t]1,1
)∣∣∣∣∣

(ξ,ξ′)=(x,x′)
≤ C‖g‖C2+γ

b,d

(
(T − t)

2+γ
2 + (T − t)dγ(x,x′)

)
≤ C‖g‖C2+γ

b,d
d2+γ(x,x′),(5.21)

using again that T − t ≤ c0d2(x,x′) for the last inequality. Plugging (5.20) and (5.21) into (5.19) gives∣∣∣∆t,T,ξ,ξ′ P̃22g(x,x′)
∣∣∣
(ξ,ξ′)=(x,x′)

≤ C‖g‖C2+γ
b,d

d2+γ(x,x′).(5.22)

Bringing together (5.18), (5.22) and (5.17) in (5.16) yields the result.

• Diagonal regime. If T − t ≥ c0d2(x,x′), we write:

|P̃x
T,tg(x)− P̃x

T,tg(x′)|

≤
∣∣ ∫

Rnd
[p̃ξ(t, T,x,y)− p̃ξ(t, T,x′,y)]g(y)dy

∣∣∣∣∣
ξ=x

≤
∣∣∣∣ ∫ 1

0

dµ

∫
Rnd
〈Dp̃ξ(t, T,x′ + µ(x− x′),y), (x− x′)〉

[
g
(
y
)
− g
(
mξ
T,t

(
x′ + µ(x− x′)

))
−
〈
Dx1

g(mξ
T,t(x

′ + µ(x− x′))), (y −mξ
T,t(x

′ + µ(x− x′)))1

〉
−1

2
Tr
(
D2

x1
g(mξ

T,t(x
′ + µ(x− x′)))(y −mξ

T,t(x
′ + µ(x− x′)))⊗2

1

)]
dy

∣∣∣∣
∣∣∣∣∣
ξ=x

,

with the same cancellation argument as in (5.13). Observe anyhow that the cancellation involving the gradient
in the above equation is possible precisely because x1 = x′1 and therefore Dp̃ξ(t, T,x′+µ(x−x′),y) · (x−x′) =
Dx2:n

p̃ξ(t, T,x′ + µ(x− x′),y) · (x− x′)2:n. We then obtain thanks to the previous identity and (5.14):

|P̃x
T,tg(x)− P̃x

T,tg(x′)|

≤ ‖g‖C2+γ
b,d

n∑
k=2

∫
Rnd

∣∣Dxk p̃
ξ(t, T,x′ + µ(x− x′),y)

∣∣|xk − x′k|d2+γ
(
y,mξ

T,t

(
x′ + µ(x− x′)

))
dy

≤ ‖g‖C2+γ
b,d

n∑
k=2

∫
Rnd

C

(T − t)1+(k− 1
2 )− 2+γ

2

p̄x
C−1(t, T,mx

T,t(x
′ + µ(x− x′)),y)|xk − x′k|dy

≤ C‖g‖C2+γ
b,d

d2+γ(x,x′),(5.23)

reproducing the arguments used to establish (5.15) for the last inequality. This concludes the proof of the
second assertion in Lemma 14.

5.2. Hölder norms associated with the Green kernel. Let us recall that in (2.39), for a source f ∈
L∞
(
[0, T ], Cγb,d(Rnd,R)

)
, we have to control the Hölder norms of the Green kernel which we split into two

parts according to the position of the time integration variable w.r.t. the change of regime time t0 (see (2.40))
a posteriori chosen to be t0 :=

(
t + c0d

2(x,x′)
)
∧ T. This is again the splitting according to the off-diagonal

and diagonal regime. The point is that for the Green kernel, if t0 < T both regimes appear.
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Lemma 15. Under (A), for fixed spatial points (x,x′) ∈ (Rnd)2, we have that there exists a constant C :=
C((A), T ), s.t. for any f ∈ L∞

(
[0, T ], Cγb,d(Rnd,R)

)
:

sup
t∈[0,T ]

(
|D2

x1
G̃ξ
t0,tf(t,x)−D2

x1
G̃ξ′

t0,tf(t,x′)|+ |D2
x1
G̃ξ
T,t0

f(t,x)−D2
x1
G̃ξ̃
′

T,t0
f(t,x′)|

)
≤ C‖f‖L∞(Cγb,d)d

γ(x,x′),

and

sup
t∈[0,T ]

(
|G̃ξ

t0,tf(t,x)− G̃ξ′

t0,tf(t,x′)|+ |G̃ξ
T,t0

f(t,x)− G̃ξ̃
′

T,t0
f(t,x′)|

)
≤ C‖f‖L∞(Cγb,d)d

2+γ(x,x′), if x1 = x′1,

where ξ = x, ξ′ = x′, ξ̃
′

= x.

Proof of Lemma 15. Let us begin with the statement concerning the second order derivatives of the frozen
Green kernel w.r.t. the non-degenerate variable x1.

For the off-diagonal regime, involving the term D2
x1
G̃ξ′

t0,tf(t,x′), we readily get from Lemma 4 that

∣∣D2
x1
G̃ξ
t0,tf(t,x)−D2

x1
G̃ξ′

t0,tf(t,x′)
∣∣∣∣∣

(ξ,ξ′)=(x,x′)

≤
∣∣∣ ∫ t0

t

dsD2
x1
P̃ ξ
s,tf(s,x)

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t0

t

dsD2
x1
P̃ ξ′

s,tf(s,x′)
∣∣∣∣∣∣∣
ξ′=x′

≤ C‖f‖L∞(Cγb,d)

∫ t0

t

ds(s− t)−1+ γ
2

≤ C‖f‖L∞(Cγb,d)d
γ(x,x′).(5.24)

For the diagonal regime, involving the term D2
x1
G̃ξ̃
′

T,t0
f(t,x′), we have to be more subtle and perform again a

Taylor expansion of D2
x1
P̃ ξ
s,tf(s, ·). Namely:

∣∣D2
x1
G̃ξ
T,t0

f(t,x)−D2
x1
G̃ξ̃
′

T,t0
f(t,x′)

∣∣∣∣∣
(ξ,ξ̃

′
)=(x,x)

≤
∫ T

t0

ds
∣∣∣ ∫ 1

0

dµDD2
x1
P̃ ξ
s,tf(s,x′ + µ(x− x′)) · (x− x′)

∣∣∣∣∣∣∣
ξ=x

≤
n∑
i=1

|(x− x′)i|
∫ T

t0

ds

∫ 1

0

dµ
∣∣∣DxiD

2
x1
P̃ ξ
s,tf
(
s,x′ + λ(x− x′)

)∣∣∣∣∣∣∣
ξ=x

≤ C‖f‖L∞(Cγb,d)

n∑
i=1

|(x− x′)i|
∫ T

t0

ds(s− t)−1−(i− 1
2 )+ γ

2 ,

using again Lemma 4 and the arguments of (5.15) for the last inequality. This finally yields, recalling the
definition of d in (1.9) (especially that |(x − x′)i| ≤ d(x,x′)2i−1) and the fact that we chose now t0 =(
t+ c0d

2(x,x′)
)
∧ T :

∣∣D2
x1
G̃ξ
T,t0

f(t,x)−D2
x′1
G̃ξ′

T,t0
f(t,x′)

∣∣∣∣∣
(ξ,ξ′)=(x,x)

≤ C‖f‖L∞(Cγb,d)

n∑
i=1

|(x− x′)i|(d2(x,x′))−(i− 1
2 )+ γ

2

≤ C‖f‖L∞(Cγb,d)d
γ(x,x′).(5.25)

Gathering (5.24) and (5.25) gives the first estimate of the lemma.
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Let us now turn to the Hölder controls on the degenerate variables. The idea is here again to perform a
Taylor expansion at order one for x1 = x′1. Namely, from Lemma 4, the diagonal control is direct. We get∣∣G̃ξ

T,t0
f(t,x)−G̃ξ̃

′

T,t0
f(t,x′)

∣∣∣∣∣
(ξ,ξ̃

′
)=(x,x)

≤
∫ T

t0

ds

∫ 1

0

dµ
∣∣〈DP̃ ξ

s,tf
(
s,x′ + µ(x− x′)

)
, (x− x′)

〉∣∣
≤ C‖f‖L∞(Cγb,d)

∫ T

(t+c0d2(x,x′))∧T
ds

n∑
i=2

|(x− x′)i|(s− t)−(i− 1
2 )+ γ

2

≤ C‖f‖L∞(Cγb,d)

n∑
i=2

|(x− x′)i|d(x,x′)2−(2i−1)+γ

≤ C‖f‖L∞(Cγb,d)d
2+γ(x,x′).(5.26)

Now, for the off-diagonal bound, associated with the term G̃ξ
t0,tf(t, ·), we precisely need to exploit the

smoothness of f associated to the fact that the semi-group P̃ ξ
s,t has a density. Indeed, we cannot take advantage

of the cancellation tools of Lemma 4, but we have for all x,x′ ∈ Rnd s.t. x1 = x′1:∣∣∣ ∫ t0

t

ds
(
P̃ ξ
s,tf(s,x)− P̃ ξ′

s,tf(s,x′)
)∣∣∣∣∣∣∣

(ξ,ξ′)=(x,x′)

(5.27)

≤
∣∣∣ ∫ t0

t

dsP̃ ξ
s,tf(s,x)− f(s,mξ

t0,t(x))
∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t0

t

dsP̃ ξ′

s,tf(s,x′)− f(s,mξ′

t0,t(x
′))
∣∣∣∣∣∣
ξ′=x′

+
∣∣∣ ∫ t0

t

dsf(s,mξ
t0,t(x))− f(s,mξ′

t0,t(x
′))
∣∣∣∣∣∣∣

(ξ,ξ′)=(x,x′)

.

Note that the first two terms in the r.h.s. of inequality (5.27) are handled like in the previous section. Precisely,
we write for the first contribution:∣∣∣ ∫ t0

t

dsP̃ ξ
s,tf(s,x)− f(s,mξ

t0,t(x))dy
∣∣∣∣∣∣∣
ξ=x

=
∣∣∣ ∫ t0

t

ds

∫
Rnd

p̃ξ(t, T,x,y)[f(s,y)− f(s,θt0,t(x)]
∣∣∣∣∣∣∣
ξ=x

≤ ‖f‖L∞(Cγb,d)

∫ t0

t

ds

∫
Rnd

p̃ξ(t, T,x,y)dγ(y,θt0,t(x))dy
∣∣∣
ξ=x

≤ C‖f‖L∞(Cγb,d)

∫ t0

t

ds(s− t)
γ
2 dy

≤ C‖f‖L∞(Cγb,d)d
2+γ(x,x′),

by definition of t0 in (2.40). The second term of (5.27) is handled similarly. We thus obtain:∣∣∣ ∫ t0

t

dsP̃ ξ
s,tf(s,x)− f(s,mξ

t0,t(x)dy
∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t0

t

dsP̃ ξ′

s,tf(s,x′)− f(s,mξ′

t0,t(x
′)dy

∣∣∣∣∣∣∣
ξ′=x′

≤ C‖f‖L∞(Cγb,d)d
2+γ(x,x′).(5.28)

For the last contribution in (5.27), we have directly that:

(5.29)
∣∣∣ ∫ t0

t

dsf(s,mξ
t0,t(x))− f(s,mξ′

t0,t(x
′))
∣∣∣∣∣∣∣

(ξ,ξ′)=(x,x′)

≤ C‖f‖L∞(Cγb,d)

∫ t0

t

dsdγ
(
θt0,t(x),θt0,t(x

′)
)
.

Lemma 7 and (5.29) eventually yield:∣∣∣ ∫ t0

t

dsf(s,mξ
t0,t(x))− f(s,mξ

t0,t(x
′))
∣∣∣∣∣∣∣

(ξ,ξ′)=(x,x′)

≤ C‖f‖L∞(Cγb,d)

(
(t0 − t)1+ γ

2 + (t0 − t)dγ(x,x′)
)

= 2C‖f‖L∞(Cγb,d)d
2+γ(x,x′).

This, together with (5.26) gives the second estimate of the lemma. �
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5.3. Hölder norms of the perturbative contribution. This section is dedicated to the investigation of the
spatial Hölder continuity of the perturbative term in (5.4) and (5.6). Recalling the notations (5.5) introduced
at the beginning of this section, we prove the following lemma.

Lemma 16. Under (A), for fixed spatial points (x,x′) ∈ (Rnd)2, we have that there exists a constant Λ :=
Λ((A), T ) as in Remark 3, s.t.

|D2
x1

∆ξ,ξ̃
′

diag(t, T,x,x′)|
∣∣
(ξ,ξ̃

′
)=(x,x)

+ |D2
x1

∆ξ,ξ′

off−diag(t,x,x′)|
∣∣
(ξ,ξ′)=(x,x′)

≤ Λ(c
−(n− 1

2 )+ γ
2

0 + c
γ
2
0 )‖u‖L∞(C2+γ

b,d )d
γ(x,x′),(5.30)

and, if we assume in addition that x1 = x′1,
(5.31)

|∆ξ,ξ̃
′

diag(t, T,x,x′)|
∣∣
(ξ,ξ̃

′
)=(x,x)

+ |∆ξ,ξ′

off−diag(t,x,x′)|
∣∣
(ξ,ξ′)=(x,x′)

≤ Λ(c
−(n− 1

2 )+ γ
2

0 + c0)d2+γ(x,x′)‖u‖L∞(C2+γ
b,d ).

As already successfully used to establish in the previous sections to derive the regularity of the semi-group
and the Green kernel we split the investigations into two parts: the first one is done when the system is in the
off-diagonal regime (i.e. for time s ≤ t0) and the other one when the system is in the diagonal regime (i.e.
for time s > t0). We aslo recall that the critical time giving the change of regime is (chosen after potential
differentiation) t0 = t+ c0d

2(x,x′)∧T . We can assume here w.l.o.g. that t0 < T (otherwise there is a globally
off-diagonal regime and the analysis becomes easier).

• Control of (5.30). We decompose from definitions (2.31) and (2.39):

|D2
x1

∆ξ,ξ̃
′

diag(t, T,x,x′)|
∣∣∣
(ξ,ξ̃

′
)=(x,x)

≤
∣∣∣ ∫ T

t

ds

∫
Rnd

dy
[
D2

x1
p̃ξ(t, s,x,y)−D2

x1
p̃ξ(t, s,x′,y)

][
〈F1(s,y)− F1(s,θs,t(ξ)), Dy1〉

+
1

2
Tr
((
a(s,y)− a(s,θs,t(ξ))

)
D2

y1

)]
u(s,y)Is>t0

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ n∑
i=2

∫ T

t

ds

∫
Rnd

dy
[
D2

x1
p̃ξ(t, s,x,y)−D2

x1
p̃ξ(t, s,x′,y)Is>t0

]
×
〈
Fi(s,y)− [Fi(s,θs,t(ξ)) +Dxi−1Fi(s,θs,t(ξ))(y − θs,t(ξ))i−1], Dyiu(s,y)

〉
Is>t0

∣∣∣∣∣∣∣
ξ=x

,

which readily yields with the notations of (4.3) that:

|D2
x1

∆ξ,ξ̃
′

diag(t, T,x,x′)|
∣∣∣
(ξ,ξ̃

′
)=(x,x)

≤
∣∣∣ ∫ T

t

ds

∫
Rnd
dy

∫ 1

0

dµDD2
x1
p̃ξ(t, s,x + µ(x′ − x),y) · (x− x′)∆1,F,σ(t, s,y,θs,t(ξ), u)Is>t0

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ T

t

ds

∫
Rnd
dy

∫ 1

0

dµDD2
x1
p̃ξ(t, s,x + µ(x′ − x),y) · (x− x′)

〈
∆i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉
Is>t0

∣∣∣∣∣∣∣
ξ=x

=:
∣∣D2

x1
∆1

diag(t, T,x,x′)
∣∣+
∣∣D2

x1
∆2:n

diag(t, T,x,x′)
∣∣.

(5.32)

We will now control the first term of the above right hand side. In other words, we specify the control of (2.16).
We obtain directly thanks to the smoothness assumption (S) on the coefficients and Proposition 3 (see also
equation (3.8)) that for each k ∈ [[1, n]]:

|F1(s,y)− F1(s,θs,t(ξ))||DxkD
2
x1
p̃ξ(t, s,x + µ(x′ − x),y)|

∣∣∣
ξ=x

≤ C
(
‖F1(s, ·)‖Cγddγ

(
y,θs,t(ξ)

))
× (s− t)−1−(k− 1

2 )p̄C−1(t, s,x,y)
∣∣∣
ξ=x

≤ C‖F1‖L∞(Cγd)(s− t)−1−(k− 1
2 )+ γ

2 p̄C−1(t, s,x,y).(5.33)
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Similarly,

|a(s,y)− a(s,θs,t(ξ))||DxkD
2
x1
p̃ξ(t, s,x + µ(x′ − x),y)|

∣∣∣
ξ=x

≤ C
(
‖a(s, ·)‖Cγddγ

(
y,θs,t(ξ)

))
× (s− t)−1−(k− 1

2 )p̄C−1(t, s,x,y)
∣∣∣
ξ=x

≤ C‖a‖L∞(Cγd)(s− t)−1−(k− 1
2 )+ γ

2 p̄C−1(t, s,x,y).(5.34)

We carefully point-out that the indicated bound only depend on the supremum in time of the Hölder
modulus of the coefficients (denoted ‖F1‖L∞(Cγd), ‖a‖L∞(Cγd) respectively) and not on their supremum norm.

In particular, we get from (5.33), (5.34):

|D2
x1

∆1
diag(t, T,x,x′)| ≤

n∑
k=1

∫ T

t0

ds

∫
Rnd

dy(s− t)−1−(k− 1
2 )+ γ

2

×
(
‖Dx1

u‖L∞‖F1‖L∞(Cγd) + ‖D2
x1
u‖L∞‖a‖L∞(Cγd)

)
p̄C−1(t, s,x,y)|xk − x′k|

≤ Λ(‖Dx1
u‖L∞ + ‖D2

x1
u‖L∞)dγ(x,x′),(5.35)

where again the constant Λ is small provided the coefficients do not vary much. Thanks to Lemma 11 and the
previous analysis of Section 4.2, we directly deduce:

|D2
x1

∆2:n
diag(t, T,x,x′)|

≤
∣∣∣ n∑
i=2

∫ T

t

ds

∫
Rnd

dy

∫ 1

0

dµDyi ·
{(

DD2
x1
p̃ξ(t, s,x + µ(x′ − x),y) · (x− x′)

)
⊗
(
Fi(s,y)− [Fi(s,θs,t(ξ)) +Dxi−1

Fi(s,θs,t(ξ))(y − θs,t(ξ))i−1]
)}

u(s,y)Is>t0
∣∣∣∣∣∣∣
ξ=x

≤ Λ‖u‖L∞(C2+γ
b,d )

n∑
k=1

∫ T

t0

|xk − x′k|ds
(s− t)1+(k− 1

2 )− γ2

≤ Λc
−(n− 1

2 )+ γ
2

0 ‖u‖L∞(C2+γ
b,d )

n∑
k=1

dγ−(2k−1)(x,x′)|xk − x′k|

≤ Λc
−(n− 1

2 )+ γ
2

0 ‖u‖L∞(C2+γ
b,d )d

γ(x,x′).(5.36)

Plugging (5.35) and (5.36) into (5.32) yields the stated control for the diagonal contribution.

Let us now turn to the control of |D2
x1

∆ξ,ξ′

off-diag(t,x,x′)| in (5.5) (or (2.31) in the detailed guide). In the

off-diagonal case, we choose ξ = x and ξ′ = x′ and

|D2
x1

∆ξ,ξ′

off-diag(t,x,x′)|
∣∣
(ξ,ξ′)=(x,x′)

≤
∣∣∣ ∫ t0

t

ds

∫
Rnd
dyD2

x1
p̃ξ(t, s,x,y)(Ls − L̃ξ

s)u(s,y)
∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t0

t

ds

∫
Rnd
dyD2

x1
p̃ξ
′
(t, s,x′,y)(Ls − L̃ξ′

s )u(s,y)
∣∣∣∣∣∣∣
ξ′=x′

.(5.37)

We readily get thanks to Lemmas 10 and 11:

(5.38) |D2
x1

∆ξ,ξ′

off-diag(t,x,x′)|
∣∣
(ξ,ξ′)=(x,x′)

≤ Λ

n∑
i=2

∫ t0

t

ds

(s− t)1− γ2
‖u‖L∞(C2+γ

b,d ) ≤ Λc
γ
2
0 dγ(x,x′)‖u‖L∞(C2+γ

b,d ).

We point out from (5.36) and (5.38) that there are opposite impacts of the threshold c0 on the constants,
depending on the diagonal and off-diagonal regimes at hand.
We eventually get the estimate (5.30) plugging (5.35), (5.36) into (5.32) and (5.38) recalling that c0 ≤ 1.
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• Control of (5.31). We proceed as above from definitions (5.5) considering spatial points (x,x′) ∈ (Rnd)2

s.t. x1 = x′1. In the diagonal case, we also choose ξ = ξ̃
′

= x and we write similarly to (5.32):

|∆ξ,ξ′

diag(t, T,x,x′)|
∣∣∣
(ξ,ξ′)=(x,x)

≤
∣∣∣ ∫ T

t

ds

∫
Rnd
dy

∫ 1

0

dµ
〈
Dxp̃

ξ(t, s,x + µ(x′ − x),y),x− x′
〉
∆1,F,σ(t, s,y,θs,t(ξ))Is>t0

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ n∑
i=2

∫ T

t

ds

∫
Rnd
dy

∫ 1

0

dµ
〈
Dxp̃

ξ(t, s,x + µ(x′ − x),y),x− x′
〉
∆i,F(t, s,θs,t(ξ),y)Dyiu(s,y)Is>t0

∣∣∣∣∣∣∣
ξ=x

.(5.39)

We have an expression rather similar to the one that appeared for the control of [D2
x1
u(t, ·)]γ but with a weaker

time singularity.
In other words, thanks to identities (5.33), (5.34) and Lemma 11 we obtain:

∆ξ,ξ′

diag(t, T,x,x′)| ≤ Λ‖u‖L∞(C2+γ
b,d )

n∑
k=1

∫ T

t0

ds(s− t)−(k− 1
2 )+ γ

2 |xk − x′k|

≤ Λc
−(n− 1

2 )+ γ
2

0 ‖u‖L∞(C2+γ
b,d )

n∑
k=1

d2(1−(k− 1
2 )+ γ

2 )(x,x′)|xk − x′k|

≤ Λc
−(n− 1

2 )+ γ
2

0 ‖u‖L∞(C2+γ
b,d )d

2+γ(x,x′),(5.40)

where again the constant C is small if the Hölder moduli of the coefficients are small.
For the off-diagonal contribution, we get for x1 = x′1, ξ = x and ξ′ = x′:

|∆ξ,ξ′

off-diag(t, T,x,x′)|
∣∣
(ξ,ξ′)=(x,x′)

≤
∣∣∣ ∫ t0

t

ds

∫
Rnd
dyp̃ξ(t, s,x,y)(Ls − L̃ξ

s)u(s,y)
∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t0

t

ds

∫
Rnd
dyp̃ξ

′
(t, s,x′,y)(Ls − L̃ξ′

s )u(s,y)
∣∣∣∣∣∣∣
ξ′=x′

≤ Λ

n∑
k=2

∫ t0

t

ds(s− t)
γ
2 ‖u‖L∞(C2+γ

b,d )

= Λc0d
2+γ(x,x′)‖u‖L∞(C2+γ

b,d ).

(5.41)

The last but one inequality is a consequence of Lemmas 10 and 11. Equations (5.40) and (5.41) yield (5.31).
This concludes the proof of Lemma 16.

5.4. Controls of the discontinuity terms arising from the change of freezing point. It now remains
to control the contribution arising from the change of freezing point in equation (5.4). The main result of this
section is the following lemma.

Lemma 17 (Control of the discontinuity terms). There exists C := C((A)) s.t. for any (t,x,x′) ∈ [0, T ] ×
Rnd × Rnd taking ξ′ = x′, ξ̃

′
= x,

∣∣D2
x1
P̃ ξ′

t0,tu(t0,x
′)−D2

x1
P̃ ξ̃
′

t0,tu(t0,x
′)
∣∣ ≤ Cc

γ
(2n−1)

0 ‖u‖L∞(C2+γ
b,d )d

γ(x,x′),∣∣P̃ ξ′

t0,tu(t0,x
′)− P̃ ξ̃

′

t0,tu(t0,x
′)
∣∣ ≤ Cc0‖u‖L∞(C2+γ

b,d )d
2+γ(x,x′), for x1 = x′1.

We prove the above statement in the next paragraphs respectively dedicated to the control of the derivatives
w.r.t. the non-degenerate variables (first estimate) and the control of the Hölder moduli associated with the
degenerate ones (second estimate).
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5.4.1. Control of the derivatives w.r.t. the non-degenerate variables. As done in (5.7) and (5.9), we can write:

D2
x1
P̃ ξ′

t0,tu(t0,x
′)−D2

x1
P̃ ξ̃
′

t0,tu(t0,x
′)

=

[∫
Rnd

D2
x1
p̃ξ
′
(t, t0,x

′,y)[u(t0,y)− u(t0,y1,m
ξ′

t0,t(x
′)2:n)]dy

−
∫
Rnd

D2
x1
p̃ξ̃
′
(t, t0,x

′,y)[u(t0,y)− u(t0,y1,m
ξ̃
′

t0,t(x
′)2:n)]dy

]

+

[∫
Rnd

D2
x1
p̃ξ
′
(t, t0,x

′,y)

∫ 1

0

dµ(1− µ)

Tr
([
D2

x1
u
(
t0,m

ξ′

t0,t(x
′)1 + µ(y −mξ′

t0,t(x
′))1,m

ξ′

t0,t(x
′)2:n

)
−D2

x1
u
(
t0,m

ξ′

t0,t(x
′)
)](

y −mξ′

t0,t(x
′)
)⊗2

1

)
dy

−
∫
Rnd

D2
x1
p̃ξ̃
′
(t, t0,x

′,y)

∫ 1

0

dµ(1− µ)

Tr
([
D2

x1
u
(
t0,m

ξ̃
′

t0,t(x
′)1 + µ(y −mξ̃

′

t0,t(x
′))1,m

ξ̃
′

t0,t(x
′)2:n

)
−D2

x′1
u
(
t0,m

ξ′

t0,t(x
′)
)](

y −mξ̃
′

t0,t(x
′)
)⊗2

1

)
dy

]

+
1

2

[∫
Rnd

D2
x1
p̃ξ
′
(t, t0,x

′,y)Tr
(
D2

x1
u(t0,m

ξ′

t0,t(x
′))(y −mξ′

t0,t(x
′))⊗2

1

)
dy

−
∫
Rnd

D2
x1
p̃ξ̃
′
(t, t0,x

′,y)Tr
(
D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))(y −mξ̃

′

t0,t(x
′))⊗2

1

)
dy

]
=: ∆t,t0,ξ′,ξ̃

′D2
x1
P̃1u(t0,x,x

′) + ∆t,t0,ξ′,ξ̃
′D2

x1
P̃21u(t0,x,x

′) + ∆t,t0,ξ′,ξ̃
′D2

x1
P̃22u(t0,x,x

′).

(5.42)

We first directly write from (5.8) and (5.10):∣∣∣∆t,t0,ξ′,ξ̃
′D2

x1
P̃1u(t0,x,x

′) + ∆t,t0,ξ′,ξ̃
′D2

x1
P̃21u(t0,x,x

′)
∣∣∣∣∣∣∣

(ξ′,ξ̃
′
)=(x′,x)

≤ 2C(t0 − t)
γ
2 ‖u‖C2+γ

b,d

≤ Cc
γ
2
0 ‖u‖C2+γ

b,d
dγ(x,x′).(5.43)

Let us now deal with the last term in (5.42). We proceed similarly to equation (5.11) (control of the frozen
semigroup). Write:∣∣∣∆t,t0,ξ′,ξ̃

′D2
x1
P̃22u(t0,x,x

′)
∣∣∣
(ξ′,ξ̃

′
)=(x′,x)

≤
{

1

2

∫
Rnd

dy

(s− t)
p̄ξ
′

C−1(t, t0,x
′,y)|D2

x1
u(t0,m

ξ′

t0,t(x
′))−D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))||(y −mξ′

t0,t(x
′))1|2

+
1

2

∣∣∣ ∫
Rnd

D2
x1
p̃ξ
′
(t, t0,x

′,y)Tr
(
D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))(y −mξ′

t0,t(x
′))⊗2

1

)
−D2

x1
p̃ξ̃
′
(t, t0,x

′,y)Tr
(
D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))(y −mξ̃

′

t0,t(x
′))⊗2

1

)
dy
∣∣∣}∣∣∣∣

(ξ′,ξ̃
′
)=(x′,x)

≤ C|D2
x1
u(t0,m

ξ′

t0,t(x
′))−D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))|
∣∣∣
(ξ′,ξ̃

′
)=(x′,x)

,

exploiting Proposition 3 for the first contribution and identity (3.17) in Proposition 5 for the second contribution
in the last inequality.

From Lemma 8, we derive that for t0 − t = c0d
2(x,x′):

(5.44)
∣∣∣∆t,t0,ξ′,ξ̃

′D2
x1
P̃22u(t0,x,x

′)
∣∣∣
(ξ′,ξ̃

′
)=(x′,x)

≤ C‖u(t0, ·)‖C2+γ
b,d

c
γ

2n−1

0 dγ(x,x′).

Eventually, from (5.43) and (5.44), we get the following control:∣∣D2
x1
P̃ ξ′

t0,tu(t0,x
′)−D2

x1
P̃ ξ̃
′

t0,tu(t0,x
′)
∣∣∣∣∣

(ξ′,ξ̃
′
)=(x,x′)

≤ Cc
γ

2n−1

0 ‖u‖L∞(C2+γ
b,d )d

γ(x,x′),

which gives the first statement of Lemma 17 for the second order derivatives w.r.t. the non-degenerate variables.
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5.4.2. Hölder controls for the degenerate variables. Again, for the Hölder norm w.r.t. the degenerate variables,
the difficulty is that we cannot take any advantage of cancellation tools. We adapt here the arguments employed

in Section 5.1.2 for the frozen semigroup. Precisely, for any (x,x′) ∈ (Rnd)2, x1 = x′1, ξ′ = x′, ξ̃
′

= x, we have
similarly to (5.42) (but without the spatial derivatives D2

x1
):

P̃ ξ′

t0,tu(t0,x
′)− P̃ ξ̃

′

t0,tu(t0,x
′) = ∆t,t0,ξ′,ξ̃

′ P̃1u(t0,x
′,x′) + ∆t,t0,ξ′,ξ̃

′ P̃21u(t0,x
′,x′)

+
1

2
Tr
(

[D2
x1
u(t0,m

ξ′

t0,t(x
′))−D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))][K̃ξ′

t0,t]1,1

)
+

1

2
Tr
(
D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))
(
[K̃ξ′

t0,t]1,1 − [K̃ξ̃
′

t0,t]1,1
))
,(5.45)

where accordingly with (5.42):

∆t,t0,ξ′,ξ̃
′ P̃1u(t0,x

′,x′) :=

∫
Rnd

p̃ξ
′
(t, t0,x

′,y)[u(t0,y)− u(t0,y1,m
ξ′

t0,t(x
′)2:n)]dy

−
∫
Rnd

p̃ξ̃
′
(t, t0,x

′,y)[u(t0,y)− u(t0,y1,m
ξ̃
′

t0,t(x
′)2:n)]dy,

and

∆t,t0,ξ′,ξ̃
′ P̃21u(t0,x

′,x′)

:=

∫
Rnd

p̃ξ
′
(t, t0,x

′,y)

∫ 1

0

dµ(1− µ)

Tr
([
D2

x1
u
(
t0,m

ξ′

t0,t(x
′)1 + µ(y −mξ′

t0,t(x
′))1,m

ξ′

t0,t(x
′)2:n

)
−D2

x1
u
(
t0,m

ξ′

t0,t(x
′)
)](

y −mξ′

t0,t(x
′)
)⊗2

1

)
dy

−
∫
Rnd

p̃ξ̃
′
(t, t0,x

′,y)

∫ 1

0

dµ(1− µ)

Tr
([
D2

x1
u
(
t0,m

ξ̃
′

t0,t(x
′)1 + µ(y −mξ̃

′

t0,t(x
′))1,m

ξ̃
′

t0,t(x
′)2:n

)
−D2

x1
u
(
t0,m

ξ̃
′

t0,t(x
′)
)](

y −mξ̃
′

t0,t(x
′)
)⊗2

1

)
dy.

Reproducing the arguments that led to equations (5.17) and (5.18), we derive:∣∣∆t,t0,ξ′,ξ̃
′ P̃1u(t0,x

′,x′) + ∆t,t0,ξ′,ξ̃
′ P̃21u(t0,x

′,x′)
∣∣∣∣∣

(ξ′,ξ̃
′
)=(x′,x)

≤ C(t0 − t)
2+γ
2 ‖u‖C2+γ

b,d

≤ Cc
2+γ
2

0 ‖u‖L∞(C2+γ
b,d )d

2+γ(x,x′).(5.46)

Let us now turn to the last two contributions in (5.45). As done in (5.20), from Proposition 2 and Lemma 8
we obtain:

1

2

∣∣[D2
x1
u(t0,m

ξ′

t0,t(x
′))−D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))][K̃ξ′

t0,t]1,1
∣∣∣∣∣

(ξ′,ξ̃
′
)=(x′,x)

≤ C‖u‖L∞(C2+γ
b,d )(t0 − t)d

γ(mx
t0,t(x

′),θt0,t(x
′))

≤ Cc
1+ γ

2n−1

0 ‖u‖L∞(C2+γ
b,d )d

2+γ(x,x′).(5.47)

The last term of (5.45) is handled like in (5.21). Namely, by Lemma 6 (equation (3.19)), we obtain:∣∣1
2
D2

x1
u(t0,m

ξ̃
′

t0,t(x
′))
(
[K̃ξ′

t0,t]1,1 − [K̃ξ̃
′

t0,t]1,1
)∣∣∣∣∣

(ξ′,ξ̃
′
)=(x′,x)

≤ C‖u(t0, ·)‖C2+γ
b,d

(
(t0 − t)

2+γ
2 + (t0 − t)dγ(x,x′)

)
≤ Cc0‖u‖L∞(C2+γ

b,d )d
2+γ(x,x′).(5.48)

Plugging (5.46), (5.47) and (5.48) into (5.45), recalling as well that c0 < 1, we derive the second statement of
Lemma 17.

Remark 6 (Concluding remark concerning the a priori estimates). From the results of Sections 4 and 5,
i.e. Proposition 9 for the supremum norms and Proposition 13 for the Hölder norms, we actually derive the
following bound. There exist constants C := C((A)) and Λ := Λ((A), T ) as in Remark 3 s.t.

(5.49) ‖u‖L∞(C2+γ
b,d ) ≤ C(‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)) +

(
Λ
(
(c
−(n− 1

2 )+ γ
2

0 + c
γ
2
0 ) + T

γ
2

)
+ Cc

γ
2n−1

0

)
‖u‖L∞(C2+γ

b,d ).
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The above estimate then readily yields (2.43) provided c0 and Λ are small enough (also with Λ� c0). Recalling
from Remark 3 that Λ is small provided the coefficients do not vary much, the remaining delicate part consists
in getting rid of the small Hölder moduli constraint. This can be done through suitable scaling arguments that
are exposed in Section 6.

6. Scaling issues and final proof of Theorem 1

The purpose of this section is to first introduce a suitable scaling procedure for the system with mollified
coefficients for which we will be able to show equation (5.49). This intuitively means that the scaling has to
make the Hölder moduli of the considered coefficients small. The expected control is then obtained going back
to the initial variables through the inverse scaling procedure. Also, once the estimate is established for small
final time horizon T , it can be deduced through iteration up to an arbitrary given time precisely because it
provides a kind of stability for the solution in the space L∞([0, T ], C2+γ

b,d (Rnd,R)). We then conclude the proof
of our main result, Theorem 1 through compactness arguments.

6.1. Scaling settings and controls. We start here from the smooth solution u to equation (1.1) with mollified
coefficients (that we again denote by a slight abuse of notation without the mollifying parameter m). For an
additional parameter λ > 0 to be specified later (but meant to be small), introducing the scaled function
uλ(t,x) = u(t, λ−1/2Tλx), it is then clear that this latter satisfies

∂tu
λ(t,x) + 〈F(t, λ−1/2Tλx), λ1/2T−1

λ Duλ(t,x)〉
+λ−1

2 Tr
(
D2

x1
uλ(t,x)a(t, λ−1/2Tλx)

)
= −f(t, λ−1/2Tλx), (t,x) ∈ [0, T )× Rnd,

uλ(T,x) = g(λ−1/2Tλx), x ∈ Rnd.
(6.1)

This choice of rescaling is natural in view of the invariance by dilatation property (1.7), i.e. each single variable
xi is scaled by the parameter λ according to its corresponding intrinsic scale.

We rewrite in short form the above equation as for any x ∈ Rnd{
∂tu

λ(t,x) + 〈Fλ(t,x),Duλ(t,x)〉+ 1
2Tr
(
D2

x1
uλ(t,x)aλ(t,x)

)
= −fλ(t,x), t ∈ [0, T ),

uλ(T,x) = gλ(x),
(6.2)

where

fλ(t,x) := f(t, λ−1/2Tλx), gλ(x) := g(λ−1/2Tλx),

aλ(t,x) := λ−1a(t, λ−1/2Tλx),

Fλ(t,x) := λ1/2T−1
λ F(t, λ−1/2Tλx).(6.3)

Accordingly, we introduce the spatial operator (Lλs )s≥0 appearing in (6.2) which writes explicitly for any
ϕ ∈ C2

0 (Rnd,R) as:

Lλt ϕ = 〈Fλ(t, ·),Dϕ〉+
1

2
Tr
(
aλ(t, ·)D2

x1
ϕ
)
, λ > 0.

The dynamics of the SDE associated with the second order differential operator (Lλt )t∈[0,T ] appearing in

(6.1)-(6.2) writes for a given starting point (t,x) ∈ [0, T ]× Rnd:

(6.4) Xλ,t,x
s = x +

∫ s

t

Fλ(u,Xλ,t,x
u )du+

∫ s

t

Bσλ(u,Xλ,t,x
u )dWu, s ≥ t,

where (Wu)u≥0 is a d-dimensional Brownian motion on some filtered probability space (Ω,F , (Ft)t≥0,P) and
σλ is a square root of the diffusion matrix aλ introduced in (6.3).

Equation (6.4) then naturally leads to consider, for fixed (s,y) ∈ [t, T ] × Rnd, and with the notations of
Section 3, the corresponding linearized model

dX̃ξ,λ
v = [Fλ(v,θλv,t(ξ

λ)) +DFλ(v,θλv,t(ξ
λ))(X̃ξ,λ

v − θλv,t(ξ
λ))]dv +Bσλ(v,θλv,t(ξ

λ))dWv, ∀v ∈ [t, s]

X̃ξ,λ
t = x,(6.5)

where θλv,t(ξ
λ) = λ

1
2T−1

λ θv,t(ξ
λ), ξλ = λ−

1
2Tλξ. The associated generator writes for ϕ ∈ C2

0 (Rnd,R) and

(s,y) ∈ [t, T ]× Rnd as:

L̃λ,ξs ϕ(y) = 〈Fλ(s,θλs,t(ξ
λ)) +DFλ(s,θλs,t(ξ

λ))(y − θλs,t(ξ
λ)),Dϕ(y)〉+

1

2
Tr
(
aλ(t,θλs,t(ξ

λ))D2
y1
ϕ(y)

)
.

Observe from (2.6) and (6.5) that the following very important correspondence holds:

(6.6) ∀v ∈ [t, T ], X̃ξ,λ
v := λ1/2T−1

λ X̃ξλ

v .
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We thus derive from Proposition 3 the following important correspondence for the densities. Denoting by

p̃ξλ(t, s,x,y) the density of X̃ξ,λ
v starting from x at time t at point y in s, and xλ = λ−

1
2Tλx, we have

p̃ξλ(t, s,x,y) = λ
n2d
2 p̃ξ

λ

(t, s, λ−
1
2Tλx, λ−

1
2Tλy)

=
λ
n2d
2

(2π)
nd
2 det(K̃ξλ

s,t)
1
2

exp

(
−λ
−1

2

〈[
Tλ(K̃ξλ

s,t)
−1Tλ

]
(λ

1
2T−1

λ mξλ

s,t(x
λ)− y), λ

1
2T−1

λ mξλ

s,t(x
λ)− y

〉)
.

(6.7)

In particular, for ξ = x one derives:

p̃ξλ(t, s,x,y) = λ
n2d
2 p̃ξ

λ

(t, s, λ−
1
2Tλx, λ−

1
2Tλy)

=
λ
n2d
2

(2π)
nd
2 det(K̃ξλ

s,t)
1
2

exp

(
−λ
−1

2

〈[
Tλ(K̃ξλ

s,t)
−1Tλ

]
(θλs,t(x

λ)− y),θλs,t(x
λ)− y

〉)
.

(6.8)

Equation (6.7) in turn yields the following important control:

|Dϑ
x p̃

ξ
λ(t, s,x,y)| ≤ C

(
λ

(s− t)

)∑n
i=1 ϑi(i−

1
2 )+n2d

2

exp

(
−C−1 (s− t)

λ

∣∣T−1
s−t
λ

(
λ

1
2T−1

λ mξλ

s,t(x
λ)− y

)∣∣2)
=: C

(
λ

(s− t)

)∑n
i=1 ϑi(i−

1
2 )

p̄ξC−1,λ(t, s,x,y).(6.9)

In the following, we will also denote p̄C−1,λ(t, s,x,y) := p̄ξC−1,λ(t, s,x,y)
∣∣∣
ξ=x

in (6.9).

Remark 7. We emphasize that (6.9) gives that, each derivation of the Gaussian kernel p̃ξλ makes the small
parameter λ appear. Hence, up to the additional time singularities, the iterated derivatives become smaller and
smaller.

6.2. Scaling properties. The point is now to reproduce the previous perturbative approach for the solution
of (6.2) in order to obtain ad hoc versions of Propositions 9 (Section 4) and 13 (Section 5). Such versions then
allow us to derive the analogous control of (5.49) in this rescaled setting involving precisely a positive exponent

of λ in front of the term Λc
−(n− 1

2 )+ γ
2

0 . As underlined in Remark 6, this type of control will give the expected
final bound provided the scaling parameter λ is small enough.

We will mainly focus on the Hölder norm of the remainder term (i.e. rescaled version of estimate (5.30) in
Lemma 16) associated with the second order derivatives w.r.t. the non-degenerate variables. It can indeed be
seen from the previous computations that the other contributions can be dealt similarly.

Hölder estimate on the rescaled remainder. According to the notations introduced in the beginning
of Section 5, we denote for λ > 0, (t,x,x′,x′) ∈ [0, T ]× (Rnd)2 the quantity:

D2
x1

(∆λ)ξ,ξ
′
(t,x,x′) :=

(∫ (t+c0λd2(x,x′))∧T

t

ds

∫
Rnd

(
D2

x1
p̃ξλ(t, s,x,y)(Lλs − L̃λ,ξs )uλ(s,y)

−D2
x1
p̃ξ
′

λ (t, s,x′,y)(Lλs − L̃λ,ξ
′

s )uλ(s,y)
)
dy

)∣∣∣∣∣
(ξ,ξ′)=(x,x′)

+

(∫ T

(t+c0λd2(x,x′))∧T
ds

∫
Rnd

(
D2

x1
p̃ξλ(t, s,x,y)(Lλs − L̃λ,ξs )uλ(s,y)

−D2
x1
p̃ξ
′

λ (t, s,x′,y)(Lλs − L̃λ,ξ
′

s )uλ(s,y)
)
dy

)∣∣∣∣∣
(ξ,ξ′)=(x,x)

=: D2
x1

(∆λ)ξ,ξ
′

off-diag(t,x,x′) +D2
x1

(∆λ)ξ,ξ
′

diag(t,x,x′),(6.10)

using again as in (5.4) different freezing points according to the spatial regime w.r.t. integration time s. Note
however carefully that the cutting threshold here depends on the scaling parameter λ. This is very important in
order to balance the various scales that will appear. Pay attention as well that the parameter c0 also remains.
Actually, a subtle balance between those two parameters will be needed to derive the expected control.
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Proceeding as in Section 5.3, we aim at showing that there exist constants C := C((A), T ) and Λ := Λ((A), T )
as in Remark 3 s.t. for any (x,x′) ∈ (Rnd)2:

(6.11) sup
t∈[0,T ]

|D2
x1

(∆λ)ξ,ξ
′
(t,x,x′)|

dγ(x,x′)
≤
(

Λ(c
−(n− 1

2 )+ γ
2

0 + c
γ
2
0 )λ

γ
2

)
‖uλ‖L∞(C2+γ

b,d ).

Proof. Let us first consider the diagonal term in (6.10) assuming w.l.o.g. that t+c0λd2(x,x′) ≤ T (otherwise
we only have the off-diagonal contribution) and recalling that in the diagonal regime we chose ξ′ = ξ = x.
Write:

|D2
x1

(∆λ)ξ,ξ
′

diag(t,x,x′)|
∣∣∣
ξ′=ξ=x

≤
∣∣∣ ∫ T

t+c0λd2(x,x′)

ds

∫
Rnd

dy
[
D2

x1
p̃ξλ(t, s,x,y)−D2

x1
p̃ξλ(t, s,x′,y)

][
〈Fλ,1(t,y)− Fλ,1(t,θλs,t(ξ

λ)), Dy1
〉

+
1

2
Tr
((
aλ(t,y)− aλ(t,θλs,t(ξ

λ))
)
D2

y1

)]
uλ(s,y)

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ n∑
i=2

∫ T

t+c0λd2(x,x′)

ds

∫
Rnd

dy
[
D2

x1
p̃ξλ(t, s,x,y)−D2

x1
p̃ξλ(t, s,x′,y)

]
〈
Fλ,i(t,y)− [Fλ,i(t,θ

λ
s,t(ξ

λ)) +DFλ,i(t,θ
λ
s,t(ξ

λ))(y − θλs,t(ξ
λ))i−1], Dyiu

λ(s,y)
〉∣∣∣∣∣∣∣

ξ=x

=
∣∣∣ ∫ T

t+c0λd2(x,x′)

ds

∫
Rnd

dy

∫ 1

0

dµDD2
x1
p̃ξλ(t, s,x + µ(x′ − x),y) · (x− x′)(〈

Fλ,1(t,y)− Fλ,1(t,θλs,t(ξ
λ)), Dy1

〉
+

1

2
Tr
((
aλ(t,y)− aλ(t,θλs,t(ξ

λ))
)
D2

y1

))
uλ(s,y)

∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ n∑
i=2

∫ T

t+c0λd2(x,x′)

ds

∫
Rnd

dy

∫ 1

0

dµDD2
x1
p̃ξλ(t, s,x + µ(x′ − x),y) · (x− x′)

〈
Fλ,i(t,y)− [Fλ,i(t,θ

λ
s,t(ξ

λ)) +DFλ,i(t,θ
λ
s,t(ξ

λ))(y − θλs,t(ξ
λ)i−1)], Dyiu

λ(s,y)
〉∣∣∣∣∣∣∣

ξ=x

=:
{
D2

x1
(∆λ)ξ,1diag(t,x,x′) +D2

x1
(∆λ)ξ,2:n

diag (t,x,x′)
}∣∣∣∣

ξ=x

.

(6.12)

We will now control the first term of the above right hand side. A key point for the analysis is to observe that,

on the considered diagonal regime, we actually have from equations (6.8)-(6.9), recalling that z 7→ mξλ

s,t(z) is
affine and using the good scaling property in (3.5) and (3.11), that:

|DxkD
2
x1
p̃ξλ(t, s,x + µ(x′ − x),y)| ≤ Cλ1+(k− 1

2 )

(s− t)1+(k− 1
2 )
p̄C−1,λ(t, s,x,y) exp

( n∑
j=1

|(x− x′)j |2λ2j−1

(s− t)2j−1

)
≤ Cλ1+(k− 1

2 )

(s− t)1+(k− 1
2 )
p̄C−1,λ(t, s,x,y).(6.13)

To obtain the last inequality, we indeed observe from the homogeneity of the metric (see (1.9)) that λ1/2d(x,x′) =

d
(
λ−1/2Tλx, λ−1/2Tλx′

)
=
∑n
j=1

∣∣(x − x′)jλ
(2j−1)/2

∣∣1/(2j−1)
. For the diagonal regime λd2(x,x′) ≤ (s − t) in

turn implies that for each j ∈ [[1, n]], (s− t)−2j+1|(x− x′)j |2λ2j−1 ≤ 1.

Another key point is to observe that the contribution (s − t)−1/2d
(
λ−1/2Tλy, λ−1/2Tλθλs,t(xλ)

)
is homo-

geneous to the argument of the exponential term in p̄C−1,λ(t, s,x,y). Namely, for any given β0 > 0 and
β ∈ (0, β0], there exists Cβ0

s.t.

(6.14)

(
d
(
λ−

1
2Tλy, λ−

1
2Tλθλs,t(xλ)

)
(s− t) 1

2

)β
p̄C−1,λ(t, s,x,y) ≤ Cβ0

p̄C−1
β0
,λ(t, s,x,y),

Equation (6.14) is a direct consequence of the expression of p̄t,xC−1,λ in Proposition 3 (see also (6.9)) and the

definition of d in (1.9).
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Hence, from the definition of aλ,Fλ in (6.3), equations (6.13) and (6.14), we derive that, under (A), for
each k ∈ [[1, n]]:{

|Fλ,1(t,y)− Fλ,1(t,θλs,t(ξ
λ))||DxkD

2
x1
p̃ξλ(t, s,x + µ(x′ − x),y)|

}∣∣∣
ξ=x

≤ C
{(
λ−

1
2 ‖F1(t, ·)‖Cγddγ

(
λ−

1
2Tλy, λ−

1
2Tλθλs,t(ξ

λ)
))
λ1+k− 1

2 (s− t)−1−(k− 1
2 )p̄C−1,λ(t, s,x,y)

}∣∣∣
ξ=x

≤ C‖F1‖L∞(Cγd)λ
k(s− t)−1−(k− 1

2 )+ γ
2 p̄C−1,λ(t, s,x,y).(6.15)

Similarly, {
|aλ(t,y)− aλ(t,θλs,t(ξ

λ))|DxkD
2
x1
p̃ξλ(t, s,x + µ(x′ − x),y)|

}∣∣∣
ξ=x

≤ C
{(
λ−1‖a(t, ·)‖Cγddγ

(
λ−

1
2Tλy, λ−

1
2Tλθλs,t(ξ

λ)
))
λ1+(k− 1

2 )(s− t)−1−(k− 1
2 )p̄C−1,λ(t, s,x,y)

}∣∣∣
ξ=x

≤ C‖a‖L∞(Cγd)λ
k− 1

2 (s− t)−1−(k− 1
2 )+ γ

2 p̄C−1,λ(t, s,x,y).(6.16)

Observe that both r.h.s. of (6.15) and (6.16) exhibit a positive power of λ. Hence, those quantities are
small provided λ is. The key point in the above computations is that the potentially explosive Hölder norms of

Fλ,1, aλ(when λ goes to zero) are compensated by the derivatives of p̃ξλ(s, t,x,y) (see equation (6.9)). We again
carefully point-out that the previous bounds only depend on the supremum in time of the Hölder moduli of
the coefficients (denoted ‖F1‖L∞(Cγd), ‖a‖L∞(Cγd) respectively) and not on their supremum norm. In particular,

we get from (6.15), (6.16) with the notation of (6.12):

|D2
x1

(∆λ)ξ,1diag(t,x,x′)|
∣∣∣
ξ=x

≤
n∑
k=1

∫ T

t+c0λd2(x,x)

ds

∫
Rnd

dyλk−
1
2 (s− t)−1−(k− 1

2 )+γ/2

×[λ
1
2 ‖Dx1u

λ‖L∞‖F1‖L∞(Cγd) + ‖D2
x1
uλ‖L∞‖a‖L∞(Cγd)]p̄C−1,λ(t, s,x,y)|xk − x′k|

≤ c
−(n− 1

2 )+ γ
2

0 Λ(‖Dx1
uλ‖L∞ + ‖D2

x1
uλ‖L∞)λ

γ
2 dγ(x,x′).(6.17)

Thanks to the inequality (4.24) and the previous analysis (to be performed according to the current scaling
procedure replacing (s− t) in Sections 4 and 5 by (s− t)/λ), we deduce:

|D2
x1

(∆λ)ξ,2:n
diag (t,x,x′)|

∣∣∣
ξ=x

≤
∣∣∣∣ n∑
i=2

∫ T

t+c0λd2(x,x′)

ds

∫
Rnd
dy

∫ 1

0

dµ
〈
Dyi

{(
Fλ,i(t,y)− [Fλ,i(t,θ

λ
s,t(ξ

λ)) +DFλ,i(t,θ
λ
s,t(ξ

λ))(y − θλs,t(ξ
λ))i−1]

)
×
(〈

x− x′, DxD
2
x1
p̃ξλ(t, s,x + µ(x′ − x),y)

〉)}
, uλ(s,y)

〉∣∣∣∣
∣∣∣∣∣
ξ=x

≤ Λ‖uλ‖L∞(C2+γ
b,d )

n∑
k=1

∫ T

t+c0λd2(x,x′)

ds
λk−

1
2 |xk − x′k|

(s− t)1+(k− 1
2 )− γ2

≤ Λ‖uλ‖L∞(C2+γ
b,d )

n∑
k=1

c
−(k− 1

2 )+ γ
2

0 λ(k− 1
2 )−(k− 1

2 )+ γ
2 dγ−(2k−1)(x,x′)|xk − x′k|

≤ Λ‖uλ‖L∞(C2+γ
b,d )

n∑
k=1

c
−(k− 1

2 )+ γ
2

0 λ
γ
2 dγ(x,x′) ≤

(
Λc
−(n− 1

2 )+ γ
2

0 λ
γ
2

)
‖uλ‖L∞(C2+γ

b,d )d
γ(x,x′).

(6.18)

Plugging (6.17) and (6.18) into (6.12) gives a diagonal control which precisely matches the r.h.s. of the expected
final bound (6.11).

It therefore remains to handle the off-diagonal contributions. With the notations of (6.10), we deduce from
the analysis of Section 5.3 (recall that in that case we chose (ξ, ξ′) = (x,x′) as freezing points) and the previous
arguments that:

|D2
x1

(∆λ)ξ,ξ
′

off-diag(t,x,x′)|
∣∣∣
(ξ,ξ′)=(x,x′)

≤ Λ‖uλ‖L∞(C2+γ
b,d )

∫ t+c0λd2(x,x′)

t

ds

(s− t)1− γ2
≤
(

Λc
γ
2
0 λ

γ
2

)
‖uλ‖L∞(C2+γ

b,d )d
γ(x,x′).(6.19)
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In some sense the controls in (6.18) and (6.19) can be seen as a mere consequence of the intrinsic scaling of
the system. This is indeed the case, but, in order to avoid any ambiguity, we provide in Appendix C a proof
of the rescaled key Besov control of Lemma 11. The bound of equation (6.19) completes the proof of (6.11). �

Now, using the notations of (6.10), it can be deduced from the same procedure (exploiting the control (B.13)
for the difference of the scaled covariances) that the following rescaled version of estimate (5.31) in Lemma 5
holds:

(6.20) sup
t∈[0,T ],(x,x′)∈(Rnd)2, x1=x′1

|(∆λ)ξ,ξ
′,ξ̃
′
(t,x,x′)|

∣∣∣
(ξ,ξ′,ξ̃

′
)=(x,x′x)

d2+γ(x,x′)
≤ Λλ

γ
2 (c
−(n− 1

2 )+ γ
2

0 + c0)‖uλ‖L∞(C2+γ
b,d ).

Hölder estimate for the semi group at the discontinuity point. We would also derive from (5.45)
and the same previous arguments by denoting t0 = t + c0λd2(x,x′) and using the bound of (A.15) for the
difference of the scaled flows, that the analogous of estimates in Lemma 14 :∣∣D2

x1
P̃ ξ′

t0,tu
λ(t0,x

′)−D2
x1
P̃ ξ̃
′

t0,tu
λ(t0,x

′)
∣∣∣∣∣

(ξ′,ξ̃
′
)=(x,x′)

≤ Cc
γ

2n−1

0 ‖uλ‖C2+γ
b,d

dγ(x,x′).(6.21)

and ∣∣P̃ ξ′

t0,tu
λ(t0,x

′)− P̃ ξ̃
′

t0,tu
λ(t0,x

′)
∣∣ ≤ Cc0‖uλ‖L∞(C2+γ

b,d )d
2+γ(x,x′), for x1 = x′1,

hold. Note that above we denoted with a slight abuse of notation

P̃ ξ′

t0,tu
λ(t0,x

′) =

∫
Rnd

dyp̃ξ
′

λ (t, t0,x
′,y)uλ(t0,y).

Hölder estimates for the frozen semi-group and associated Green kernel. It easily follows from
(1.8) that, in this rescaled setting, the ad hoc estimates in Lemmas 14 and 15 remain valid (i.e. with fλ, gλ
intead of f, g and for the Green and frozen kernel associated with the rescaled system (6.1) therein).

Estimates of the supremum of the derivates w.r.t. the non degenerate variable.
We importantly point out that for the Hölder moduli, we have benefitted from a regularizing effect in the

scaling parameter λ. Note carefully that this is not the case as far as supremum derivatives are concerned. We
indeed get, using the same previous arguments, that

|D2
x1
uλ(t,x)| = |

∫ T

t

ds

∫
Rnd

D2
x1
p̃ξλ(t, s,x,y)(Lλs − L̃λ,ξs )uλ(s,y)dy|

≤ C
(
‖g‖C2+γ

b,d
+ (T − t)

γ
2 ‖f‖L∞(Cγb,d)

)
+ Λ(T − t)

γ
2 ‖uλ‖L∞(C2+γ

b,d ).

The difference w.r.t. e.g. equations (6.17), (6.18) is that we have no additional spatial differentiations and no
cutting threshold in time which precisely allowed to make the scaling parameter appear. Equivalently, we have
to integrate in time the control (6.19) of the previous off-diagonal regime but on the whole time interval [t, T ].

Conclusion: Schauder estimate for the rescaled system. Gathering the above estimates, we eventu-
ally derive similarly to (5.49), recalling that c0 < 1, that:

(6.22) ‖uλ‖L∞(C2+γ
b,d ) ≤ C(‖gλ‖C2+γ

b,d
+ ‖fλ‖L∞(Cγb,d)) +

[
Λ
(
λ
γ
2 (c
−(n− 1

2 )
0 + c

γ
2
0 ) + T

γ
2

)
+Cc

1
2n−1

0

]
‖uλ‖L∞(C2+γ

b,d ).

Therefore, for T , c0 := c0((A), T ) and λ := λ((A), T ) small enough, with λ � c0 , i.e. such that c̄0 :=[
Λ
(
λ
γ
2 (c
−(n− 1

2 )
0 + c

γ
2
0 ) + T

γ
2

)
+ Cc

1
2n−1

0

]
< 1, the expect final control holds:

(6.23) ‖uλ‖L∞(C2+γ
b,d ) ≤

C

1− c̄0
(‖gλ‖C2+γ

b,d
+ ‖fλ‖L∞(Cγb,d)).

7. Conclusion: final proof of Theorem 1.

Equation (6.23) provides the expected Schauder estimate for the rescaled system with mollified coefficients
for a small time horizon T > 0. The scaling parameter λ must precisely be tuned w.r.t. Λ (associated with
the Hölder moduli of the coefficients, see Remark 3) in order that the above constant c̄0 be strictly less than
one. Recalling that uλ(t,x) = u(t, λ−1/2Tλx), we then derive from (6.23) and (6.3) that for T > 0 and λ small
enough there exists C̄0 := C̄0((A), T, λ) > 1 s.t.

(7.24) ‖u‖L∞(C2+γ
b,d ) ≤ C̄0(‖g‖C2+γ

b,d
+ ‖f‖L∞(Cγb,d)),

which precisely provides the required estimate for the initial system with mollified coefficients.
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The point is now to extend the previous bound to an arbitrary fixed time T > 0 not necessarily small. The
stability resulting from estimate (7.24) allows to proceed by simple iterative application of the bound changing
the final condition.

7.1. Schauder estimates for the mollified system for a general time. Equation (7.24) is valid for any
T < T0 with T0 ∈ (0,+∞) sufficiently small. Now, for a given T > 0 (not necessary small), we can solve
iteratively N = d TT0

e (where d·e is the ceiling function) Cauchy problems in the following way. Consider first:{
∂tu(1)(t,x) + 〈F(t,x),Du(1)(t,x)〉+ 1

2Tr
(
D2

x1
u(1)(t,x)a(t,x)

)
= −f(t,x), (t,x) ∈ [T (1− 1

N ), T )× Rnd,
u(1)(T,x) = g(x), x ∈ Rnd.

In other words, our previous analysis, and the previous inequalities, are still available for T − (1 − 1
N )T =

1
N T ≤ T0 small enough. Precisely, from (7.24):

(7.25) ‖u(1)

(
T (1− 1

N
), ·
)
‖C2+γ

b,d
≤ C̄0(‖g‖C2+γ

b,d
+ ‖f‖L∞([T (1− 1

N ),T ],Cγb,d)).

Also, for mollified coefficients, it is plain from the Feynman-Kac formula to identify u(1) and u on [T (1− 1
N ), T ]

where u solves (1.1) with mollified coefficients on [0, T ]. Hence, (7.25) gives in particular that u(1)

(
T (1− 1

N ), ·
)

=

u
(
T (1 − 1

N ), ·
)
∈ C2+γ

b,d (Rnd,R) so that it is in particular natural to consider the following second Cauchy

problem for any x ∈ Rnd:{
∂tu(2)(t,x) + 〈F(t,x),Du(2)(t,x)〉+ 1

2Tr
(
D2

x1
u(2)(t,x)a(t,x)

)
= −f(t,x), t ∈ [(1− 2

N )T, (1− 1
N )T ),

u(2)((1− 1
N )T,x) = u((1− 1

N )T,x).

Hence u(2) satisfies identity (7.24) for the corresponding time interval and the associated source and final

condition. It also coincides with u on [T (1− 2
N ), T (1− 1

N )]. We get:

‖u(2)‖L∞([T (1− 2
N ),T (1− 1

N )],C2+γ
b,d )

≤ C̄0(‖u(T (1− 1

N
), ·)‖C2+γ

b,d
+ ‖f‖L∞([T (1− 2

N ),T (1− 1
N )],Cγb,d))

≤ C̄0

(
C̄0(‖g‖C2+γ

b,d
+ ‖f‖L∞([T (1− 1

N ),T ],Cγb,d)) + ‖f‖L∞([T (1− 2
N ),T (1− 1

N )],Cγb,d)

)
≤ C̄2

0 (‖g‖C2+γ
b,d

+ ‖f‖L∞([T (1− 2
N ),T ],Cγb,d)).

Repeating the analysis N -times, introducing for k ∈ [[3, n]] the auxiliary Cauchy problems for any x ∈ Rnd:{
∂tu(k)(t,x) + 〈F(t,x),Du(k)(t,x)〉+ 1

2Tr
(
D2

x1
u(k)(t,x)a(t,x)

)
= −f(t,x), t,∈ [T (1− k

N ), T (1− k−1
N )),

u(k)((1− k−1
N )T,x) = u((1− k−1

N )T,x),

we derive that

(7.26) ‖u‖L∞([0,T ],C2+γ
b,d ) ≤ C̄

N
0 (‖g‖C2+γ

b,d
+ ‖f‖L∞([0,T ],Cγb,d)).

This precisely gives our main estimate for the system (1.1) with mollified coefficients. Again, even though the
coefficients are smooth, all the constants appearing in (7.26) only depend on the Hölder setting of assumption
(A).

Remark 8 (About the constants in the final estimate). We could actually have slightly better bounds than
those in (7.26). Namely a direct induction shows that the following control holds.

(7.27) ‖u‖L∞([0,T ],C2+γ
b,d ) ≤ C̄

N
0 ‖g‖C2+γ

b,d
+

N∑
i=1

Ci0‖f‖L∞([T (1−N−i+1
N ),T (1−N−iN )],Cγb,d)).

We chose to write the bound in the form of equation (7.26) for simplicity. Note however that in any case,
equation (7.26) or (7.27), we still have geometric constants coming from the iterative procedure. This is the
main drawback of our approach, which anyhow seems, to the best of our knowledge, the only available one to
consider degenerate Kolmogorov systems with non-linear drifts.
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7.2. Compactness arguments. We now make the mollifying parameter appear again using the notations
introduced in the detailed guide (see equation (2.4)). Equation (7.24) rewrites in the following way. There
exists a constant C0 s.t. for each m ∈ N:

(7.28) ‖um‖L∞([0,T ],C2+γ
b,d ) ≤ C̄0(‖g‖C2+γ

b,d
+ ‖f‖L∞([0,T ],Cγb,d)).

From Ascoli’s theorem we deduce that there exists a sequence (umk)k≥1 of smooth solutions of (2.4), with

mk →k +∞, satisfying (7.28) and s.t. umk →k u in L∞([0, T ], C2+γ−ε
b,d ), for all 0 < ε < γ. We then deduce

from the previous analysis that such a u also satisfies (7.28), and therefore lies in L∞([0, T ], C2+γ
b,d ). Since we

also have from [4] that umk(t,x) →k E[g(Xt,x
T )] +

∫ T
t
E[f(s,Xt,x

s )]ds where (Xt,x
s ) denotes the unique in law

solution to (1.4), we deduce that u(t,x) = E[g(Xt,x
T )]+

∫ T
t
E[f(s,Xt,x

s )]ds corresponds to the unique martingale,
or mild, solution of (1.1) which satisfies the stated Schauder estimate (7.24).

7.3. From mild to weak solutions. For this paragraph, we will consider the previous converging subsequence
obtained from the compactness argument and will still denote it by (um)m∈N for notational simplicity. Namely,
‖u− um‖L∞(C2+γ−ε

b,d ) −→m 0, ε ∈ (0, γ).

Let ϕ be a smooth given function with compact support, i.e. ϕ ∈ C∞0 (Rnd,R). It is clear that for the
solution of (1.1) with mollified coefficients one indeed has:∫ T

0

dt

∫
Rnd

dxfm(t,x)ϕ(t,x) =

∫ T

0

dt

∫
Rnd

dxϕ(t,x)
(
∂t + Lmt

)
um(t,x).(7.29)

Indeed, both the solution and the coefficients are smooth. Integrating by parts yields:∫ T

0

dt

∫
Rnd

dxfm(t,x)ϕ(t,x) =

∫ T

0

dt

∫
Rnd

dx
(
− ∂t + (Lmt )∗

)
ϕ(t,x)um(t,x),

where (Lmt )∗ denotes the adjoint of Lmt .
Write now:∫ T

0

dt

∫
Rnd

dxfm(t,x)ϕ(t,x) =

∫ T

0

dt

∫
Rnd

dxf(t,x)ϕ(t,x) +

∫ T

0

dt

∫
Rnd

dx(fm − f)(t,x)ϕ(t,x)

=:

∫ T

0

dt

∫
Rnd

dxf(t,x)ϕ(t,x) +Rm(T, f).(7.30)

It is clear that under (A), recall that f ∈ L∞([0, T ], Cγb,d(Rnd,R)), Rm(T, f) −→
m

0. On the other hand, we

now decompose:

(7.31)

∫ T

0

dt

∫
Rnd

dx
(
− ∂t + (Lmt )∗

)
ϕ(t,x)um(t,x) =

∫ T

0

dt

∫
Rnd

dx
(
− ∂t + (Lt)

∗
)
ϕ(t,x)u(t,x) +Rm(T, u),

with

Rm(T, u)

:=

∫ T

0

dt

∫
Rnd

dx
(

(Lmt )∗ − L∗t
)
ϕ(t,x)um(t,x) +

∫ T

0

dt

∫
Rnd

dx
(
− ∂t + (Lt)

∗
)
ϕ(t,x)(um(t,x)− u(t,x))

=: (R1
m +R2

m)(T, u),

(7.32)

where L∗t is the formal adjoint of Lt. Observe first that:

R2
m,0(T, u) :=

∫ T

0

dt

∫
Rnd

dx∂tϕ(t,x)
(
um(t,x)− u(t,x)

)
−→
m

0,

since ‖u − um‖L∞(C2+γ−ε
b,d ) −→m 0 for any 0 < ε < γ. For the terms of R2

m(T, u) which involve the adjoint, the

point is again to use the Besov duality to control the remainders. Let 0 < ε < γ, from the previous analysis
we get that:

|R2
m,2:n(T, u)| := |

n∑
i=2

∫ T

0

dt

∫
Rnd

dxDxi

(
ϕ(t,x)Fi(t,x)

)(
um(t,x)− u(t,x)

)
|

≤
n∑
i=2

∫ T

0

dt

∫
R(n−1)d

∏
j 6=i

dxj‖Dxi

(
ϕFi(t,x\i, ·)

)
‖
B
− 2+γ−ε

2i−1
1,1 (Rd,R)

‖(um − u)(t,x\i, ·)‖
C

2+γ−ε
2i−1

b (Rd,R)
,



48 PAUL-ÉRIC CHAUDRU DE RAYNAL, IGOR HONORÉ AND STÉPHANE MENOZZI

denoting x\i = (x1, · · · ,xi−1,xi+1, · · · ,xn) and ϕFi(t,x\i, ·) : xi ∈ Rd 7→ ϕFi(t,x), (u − um)(t,x\i, ·) :

xi ∈ Rd 7→ (u − um)(t,x). On the one hand we know that ‖u − um‖L∞(C2+γ−ε
b,d ) −→m 0. On the other

hand, ϕ is a smooth test function and from (S) we have that DxiFi(t,x\i, ·) belongs to B
−2+γ
2i−1
∞,∞ (Rd,R). Since

− 2−γ
2i−1 ≥ −

2+γ−ε
2i−1 for any 0 < ε < 2γ we deduce from the arguments of the proof of Lemma 11 that there exists

C s.t. for each i ∈ [[2, n]], ‖Dxi

(
ϕFi(t,x\i, ·)

)
‖
B
− 2+γ−ε

2i−1
1,1 (Rd,R)

≤ Cψi(t,x\i) where ψi has compact support on

R(n−1)d.
We thus readily derive |R2

m,2:n(T, u)| −→
m

0.

Eventually,

|R2
m,1(T, u)| :=

∣∣∣ ∫ T

0

dt

∫
Rnd

dx
[
Dx1

(
ϕ(t,x)F1(t,x)

)
+D2

x1

(
ϕ(t,x)a(t,x)

)](
um(t,x)− u(t,x)

)∣∣∣
=

∣∣∣ ∫ T

0

dt

∫
Rnd

dx
[(
ϕ(t,x)F1(t,x)

)
Dx1

+
(
ϕ(t,x)a(t,x)

)
D2

x1

](
um(t,x)− u(t,x)

)∣∣∣,
which again tends to 0 with m since ‖u− um‖L∞(C2+γ−ε

b,d ) −→m 0 for any 0 < ε < γ.

The contributions involving
(
(Lmt )∗ − L∗t

)
ϕ in R1

m(T, u) defined in (7.32) can be handled as in the proof of

Lemma 11 exploiting that ‖a− am‖Cγb,d + ‖F1 −Fm,1‖Cγb,d +
∑n
i=2 ‖Fi −Fm,i‖C2i−3+γ

b,d
→m 0. We now deduce

from (7.31), (7.32) and the previous controls that Rm(T, u)→m 0. The same computations also give that the

term
∫ T

0
dt
∫
Rnd dx

(
− ∂t + (Lt)

∗
)
ϕ(t,x)u(t,x) is well defined under (A). From (7.30), (7.31), we thus finally

derive: ∫ T

0

dt

∫
Rnd

dxϕ(t,x)f(t,x) =

∫ T

0

dt

∫
Rnd

dx
(
− ∂t + (Lt)

∗)ϕ(t,x)u(t,x),

which gives the statement.

Appendix A. Proof of technical results

A.1. Technical results associated with the flow. We begin this paragraph stating and proving a key result
for the sensitivity of Hölder flows, i.e. when the coefficients satisfy (A). Those results are of course uniform
w.r.t. a mollification procedure of the coefficients as the one previously considered from Section 3 to 5. Also,
Lemma 7 is a direct consequence of Lemma 18 below and Young/convexity inequalities.

A.1.1. A first sensitivity result for the flow.

Lemma 18. Under (A), there exists C := C((A), T ) s.t. for all (x,x′) ∈ (Rnd)2, d(x,x′) ≤ 1, 0 ≤ t < s ≤ T
and i ∈ [[1, n]]:

|(θs,t(x)− θs,t(x
′))i| ≤ C

(
(s− t)i− 1

2 + d2i−1(x− x′)
)
.

The previous bound can be interpreted as follows. We somehow have the expected bound involving the
spatial points, up to an additional contribution in time, which is precisely due to the quasi-distance d. Indeed,
this type of result already appeared (for Lipschitz drifts) in Proposition 4.1 of [28]. Through an appropriate
mollifying procedure, this result remains unchanged.

Proof. The main idea to prove this control relies on Grönwall’s Lemma. However, under (A), the function F
is not Lipschitz (only Hölder continuous). We have then to mollify suitably F. Let us denote by δ ∈ Rn, a
vector with positive entries δi > 0 for i ∈ [[2, n]]. Define as well for all v ∈ [0, T ], z ∈ Rnd, i ∈ [[2, n]],

(A.1) Fδi (v, z
i−1:n) := Fi(v, ·) ? ρδi(z) =

∫
Rd

Fi(v, zi−1, zi − w, zi+1 · · · , zn)ρδi(w)dw,

with ρδi(w) := 1
δdi
ρ
(
w
δi

)
where ρ : Rd → R+ is a usual mollifier, namely ρ has compact support and∫

Rd ρ(z)dz = 1. Finally, we define Fδ(v, z) := (F1(v, z),Fδ2(v, z), · · · ,Fδn(v, z)). In this definition, we make
a slight abuse of notation since the first component F1 is not mollified. Due to the final control we want to
prove and the intrinsic scale of the first component, the sublinearity of F1 (implied by its Hölder property) is
enough and it is not needed to mollify this component.

To be at the good current time scale for the contributions associated with the mollification, we pick δi in
order to have C := C((A), T ) > 0 s.t. for all z ∈ Rnd, v ∈ [t, s]:∣∣∣(s− t) 1

2T−1
s−t

(
F(v, z)− Fδ(v, z)

)∣∣∣ ≤ C(s− t)−1.(A.2)
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By the previous definition of Fδ and assumptions (A), identity (A.2) is equivalent to:

n∑
i=2

(s− t) 1
2−iδ

2i−3+γ
2i−1

i ≤ C(s− t)−1.(A.3)

Hence, we choose from now on, for all i ∈ [[2, n]]:

(A.4) δi = (s− t)(i− 3
2 ) 2i−1

2i−3+γ .

Next, let us control the last components of the flow. By the definition of θs,t in (2.5), we get:

|(θs,t(x)− θs,t(x
′))n|

≤ |(x− x′)n|+
∫ s

t

(
|Fδn(v,θv,t(x))− Fδn(v,θv,t(x

′))|

+|Fδn(v,θv,t(x))− Fn(v,θv,t(x))|+ |Fδn(v,θv,t(x
′))− Fn(v,θv,t(x

′))|
)
dv

≤ |(x− x′)n|+ C

∫ s

t

(∣∣(θv,t(x)− θv,t(x
′)
)
n−1

∣∣+ δ
−1+ 2n−3+γ

2n−1
n

∣∣(θv,t(x)− θv,t(x
′)
)
n

∣∣)dv + (s− t)δ
2n−3+γ
2n−1

n .

Hence by Grönwall’ s Lemma, we get:

|(θs,t(x)− θs,t(x
′))n|

≤ C exp
(
C(s− t)δ−1+ 2n−3+γ

2n−1
n

)(
|(x− x′)n|+ (s− t)δ

2n−3+γ
2n−1

n +

∫ s

t

∣∣(θv,t(x)− θv,t(x
′)
)
n−1

∣∣dv)
≤ C exp

(
C(s− t)

γ
2

)(
|(x− x′)n|+ (s− t)n− 1

2 +

∫ s

t

∣∣(θv,t(x)− θv,t(x
′)
)
n−1

∣∣dv),(A.5)

using (A.3) for the last inequality. We proceed similarly for the (n− 1)th component, but in this case we have
to handle the non-Lipschitz continuity of Fδn−1 in its nth variable.

For the rescaled flows see e.g. Lemma 2 in [4] this difficulty could also be circumvented through mollification,
the situation is here slightly different and it seems that Young type controls are more appropriate. Write:

|(θs,t(x)− θs,t(x
′))n−1|

≤ C exp
(
C(s− t)δ

−1+
2(n−1)−3+γ
2(n−1)−1

n−1

)(
|(x− x′)n−1|+ (s− t)δ

2(n−1)−3+γ
2(n−1)−1

n−1

+

∫ s

t

{∣∣(θv,t(x)− θv,t(x
′)
)
n−2

∣∣+ |
(
θv,t(x)− θv,t(x

′)
)
n

∣∣ 2(n−1)−3+γ
2n−1

}
dv
)

≤ C exp(C(s− t)
γ
2 )
(
|(x− x′)n−1|+ (s− t)n− 3

2 +

∫ s

t

{∣∣(θv,t(x)− θv,t(x
′)
)
n−2

∣∣
+|(x− x′)n|

2(n−1)−3+γ
2n−1 + (v − t)

2(n−1)−3+γ
2 +

(∫ v

t

∣∣(θw,t(x)− θw,t(x
′)
)
n−1

∣∣dw) 2(n−1)−3+γ
2n−1

}
dv

)
.

(A.6)

The last inequality is a consequence of our choice of δn−1 in (A.4), identity (A.5) and convexity inequality.

We aim, now, to proceed with Grönwall’s Lemma. To do so, we first of all need to use a Young inequality.
Namely, we write for any δ̃n−1,n > 0 (where the two indexes in the subscript respectively denote the level of
the chain, i.e. n− 1, and the considered variable, i.e. n):(∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−1

∣∣dw) 2(n−1)−3+γ
2n−1

≤ C

((∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−1

∣∣dw)δ̃− 2n−1
2(n−1)−3+γ

n−1,n + δ̃
2n−1
4−γ
n−1,n

)
.

In order to obtain the suitable time scale, we choose δ̃n s.t.

δ̃
2n−1
4−γ
n−1,n = (v − t)

2(n−1)−3+γ
2 ⇐⇒ δ̃n−1,n = (v − t)

(2(n−1)−3+γ)(4−γ)
2(2n−1) ,

which also yields that(∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−1

∣∣dw)δ̃− 2n−1
2(n−1)−3+γ

n−1,n ≤
(∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−1

∣∣dw)(v − t)−
4−γ
2 .
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Hence we get from (A.6) and the previous controls that for any s̃ ∈ [t, s]:

|(θs̃,t(x)− θs̃,t(x
′))n−1|

≤ C exp(C(s̃− t)
γ
2 )
(
|(x− x′)n−1|+ (s̃− t)n− 3

2 +

∫ s̃

t

{∣∣(θv,t(x)− θv,t(x
′))
)
n−2

∣∣
+|(x− x′)n|

2(n−1)−3+γ
2n−1 + (v − t)

2(n−1)−3+γ
2 +

(∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−1

∣∣dw)(v − t)−
4−γ
2

}
dv

)
The point is now to take the supremum in s̃ ∈ [s, t] in the above equation. This yields:

sup
s̃∈[t,s]

|(θs̃,t(x)− θs̃,t(x
′))n−1|

≤ C exp(C(s− t)
γ
2 )
(
|(x− x′)n−1|+ (s− t)n− 3

2 +

∫ s

t

∣∣(θv,t(x)− θv,t(x
′))
)
n−2

∣∣dv
+|(x− x′)n|

2(n−1)−3+γ
2n−1 (s− t) + (s− t)1+

2(n−1)−3+γ
2

+
(∫ s

t

sup
w∈[t,v]

|
(
θw,t(x)− θw,t(x

′))
)
n−1

∣∣(v − t)1− 4−γ
2 dv

))
.

We get then by Grönwall’s Lemma:

|(θs,t(x)− θs,t(x
′))n−1|

≤ C exp(C(s− t)
γ
2 )

×
(
|(x− x′)n−1|+ (s− t)n− 3

2 +

∫ s

t

∣∣(θv,t(x)− θv,t(x
′))
)
n−2

∣∣dv + |(x− x′)n|
2(n−1)−3+γ

2n−1 (s− t)
)

≤ C exp(C(s− t)
γ
2 )
(
|(x− x′)n−1|+ (s− t)n− 3

2 +

∫ s

t

∣∣(θv,t(x)− θv,t(x
′))
)
n−2

∣∣dv + |(x− x′)n|
2n−3
2n−1

)
,

(A.7)

using again the Young inequality |(x−x′)n|
2(n−1)−3+γ

2n−1 (s− t) ≤ C((s− t)n− 3
2 + |(x−x′)n|

2(n−1)−3+γ
2n−1

2n−3
2n−5 ) for the

last identity, recalling as well that d(x,x′) ≤ 1, and therefore |(x− x′)n|
2(n−1)−3+γ

2n−5 ≤ |(x − x′)n|, for the last
identity. The purpose of (A.7) is that each entry of the difference of the starting points appears at its intrinsic
scale for the homogeneous distance d.

Plugging the above inequality into (A.5) we derive:

|(θs,t(x)− θs,t(x
′))n|

≤ C exp
(
C(s− t)

γ
2

)(
|(x− x′)n|+ (s− t)n− 1

2 + |(x− x′)n−1|(s− t)

+|(x− x′)n|
2n−3
2n−1 (s− t) +

∫ s

t

∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−2

∣∣dwdv)
≤ C exp

(
C(s− t)

γ
2

)(
|(x− x′)n|+ (s− t)n− 1

2 + |(x− x′)n−1|
2n−1
2n−3 +

∫ s

t

∫ v

t

∣∣(θw,t(x)− θw,t(x
′))
)
n−2

∣∣dwdv),
using again the Young inequalities |(x−x′)n|

2n−3
2n−1 (s− t) ≤ C(|(x−x′)n|+(s− t)n− 1

2 ) and |(x−x′)n−1|(s− t) ≤
C
(
|(x− x′)n−1|

2n−1
2n−3 + (s− t)n− 1

2

)
for the last bound. Iterating these computations, we obtain:

(A.8)

|(θs,t(x)− θs,t(x
′))n| ≤ C

(
(s− t)n− 1

2 +

n∑
j=2

|(x− x′)j |
2n−1
2j−1 +

∫ vn=s

t

dvn−1 . . .

∫ v2

t

dv1

∣∣(θv1,t(x′)− θv1,t(x)
)

1

∣∣).
Similarly, for i ∈ [[2, n]] we derive:

(A.9) |(θs,t(x)−θs,t(x′))i| ≤ C
(

(s−t)i− 1
2 +

n∑
j=2

|(x−x′)j |
2i−1
2j−1 +

∫ vi=s

t

dvi−1 . . .

∫ v2

t

dv1

∣∣(θv1,t(x′)−θv1,t(x)
)

1

∣∣).
Remark 9. We importantly point out that equations (A.8) and (A.9) actually hold not only for the fixed time
s but also for any v ∈ [t, T ].

The term for i = 1 is treated slightly differently. Namely, for any s̃ ∈ [t, s], write:

|(θs̃,t(x)− θs̃,t(x
′))1| ≤ |(x− x′)1|+ C

n∑
j=1

∫ s̃

t

|(θv,t(x)− θv,t(x
′))j |

γ
2j−1 dv,
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which in turn implies, using (A.9) and Remark 9,

sup
s̃∈[t,s]

|(θs̃,t(x)− θs̃,t(x
′))1|

≤ |(x− x′)1|+ C
(

(s− t)
(

sup
v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

)γ
+

n∑
j=2

∫ s

t

|(θv,t(x)− θv,t(x
′))j |

γ
2j−1 dv

)
≤ |(x− x′)1|+ C

(
(s− t)

(
sup
v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

)γ
+

n∑
j=2

Cj(s− t)
(

(s− t)j− 1
2 +

n∑
k=2

|(x− x′)k|
2j−1
2k−1 + (s− t)j−1 sup

v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

) γ
2j−1

)

≤ |(x− x′)1|+ C

(
(s− t)

(
sup
v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

)γ
+

n∑
j=2

Cj(s− t)
(

(s− t)
γ
2 +

n∑
k=2

|(x− x′)k|
γ

2k−1 + (s− t)(j−1) γ
2j−1 sup

v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

γ
2j−1

))
,

using as well convexity inequalities for the last bound. We now write,

sup
s̃∈[t,s]

|(θs̃,t(x)− θs̃,t(x
′))1|

≤ C

(
|(x− x′)1|+ (s− t)1+ γ

2 + (s− t)
n∑
k=2

|(x− x′)k|
γ

2k−1

+

n∑
j=1

(s− t)1+(j−1) γ
2j−1 sup

v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

γ
2j−1

)

≤ C(|(x− x′)1|+ (s− t) +

n∑
k=2

|(x− x′)k|
1

2k−1 )(A.10)

recalling that (s− t) ≤ T is small, and using again Young inequalities for the last bound. Namely,

(s− t)1+(j−1) γ
2j−1 sup

v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

γ
2j−1 ≤ C(s− t)

(
1 + sup

v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

)
,

and

(s− t)|(x− x′)k|
γ

2k−1 ≤ C((s− t)
1

1−γ + |(x− x′)k|
1

2k−1 ).

We eventually derive from (A.10) that:

sup
v∈[t,s]

|(θv,t(x)− θv,t(x
′))1| ≤ C

(
(s− t) 1

2 + d(x,x′)
)
,

which gives the stated bound for i = 1. It now remains to plug this control into (A.9). We obtain for each
i ∈ [[2, n]]:

|(θs,t(x)− θs,t(x
′))i| ≤ C

(
(s− t)i− 1

2 + d2i−1(x,x′) + (s− t)i−1 sup
v∈[t,s]

|(θv,t(x)− θv,t(x
′))1|

)
≤ C

(
(s− t)i− 1

2 + d2i−1(x,x′) + (s− t)i−1
(
(s− t) 1

2 + d(x,x′)
))

≤ C
(
(s− t)i− 1

2 + d2i−1(x,x′)
)
,

using again the Young inequality to derive that (s− t)i−1d(x,x′) ≤ C
(
(s− t)i− 1

2 + d2i−1(x,x′)
)
. The proof is

complete. �

Again, Lemma 7 is a direct consequence of the previous Lemma 18 and Young/convexity inequalities.

We are now in position to prove the sensitivity results for the linearized system w.r.t. the freezing parameter.

A.1.2. Sensitivity results for the mean.

Proof of the Technical Lemma 8. We assume w.l.o.g. that d(x,x′) ≤ 1. The idea of the proof is to separate
the term to control into two contributions. Namely, we write:

(A.11) mx
s,t(x

′)− θs,t(x
′) = [mx

s,t(x
′)− θs,t(x)] + [θs,t(x)− θs,t(x

′)].
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The definition of the proxy (3.1) yields that the mean value of X̃m,ξ
v , mξ

v,t is s.t.

(A.12) mx
s,t(x

′)− θs,t(x) = x′ − x +

∫ s

t

dvDF(v,θv,t(x))[mx
v,t(x

′)− θv,t(x)].

The sub-triangular structure of DF yields that for each i ∈ [[2, n]]:(
mx
s,t(x

′)− θs,t(x)
)
i

= x′i − xi +

∫ s

t

dvDi−1Fi(v,θv,t(x))[mx
v,t(x

′)i−1 − θv,t(x)i−1].

Also, since mx
v,t(x

′)1 = x′1 +
∫ s
t

F1(v,θv,t(x))dv, so that [mx
v,t(x

′)1 − θv,t(x)1] = x′1 − x1, we then obtain by
iteration that:(

mx
s,t(x

′)− θs,t(x)
)
i

= x′i − xi +

i∑
k=2

[ ∫ vi=s

t

dvi−1 . . .

∫ vk

t

dvk−1

i∏
j=k

Dj−1Fj(vj ,θvj ,t(x))
]
[x′k−1 − xk−1],

with the convention that for i = 1,
∑i
k=2 = 0. From the above control, equation (A.11) and the dynamics of

the flow, recalling that the starting points are the same, so that the contributions involving differences of the
spatial points or flows only appear in iterated time integrals, we derive:

|
(
mx
s,t(x

′)− θs,t(x
′)
)
i
|

≤
∣∣∣∣ i∑
k=2

[ ∫ vi=s

t

dvi−1 . . .

∫ vk

t

dvk−1

i∏
j=k

Dj−1Fj(vj ,θvj ,t(x))
]
[x′k−1 − xk−1]

∣∣∣∣
+

∫ s

t

|Fi(v,θv,t(x))− Fi(v,θv,t(x
′))|dv

≤ C
( i−1∑
k=2

(s− t)i−k|xk − x′k|+
∫ s

t

( n∑
j=i

∣∣(θv,t(x)− θv,t(x
′)
)
j

∣∣ 2i−3+γ
2j−1 +

∣∣(θv,t(x)− θv,t(x
′)
)
i−1

∣∣)dv).
From the previous Lemma 18, we thus obtain:

|
(
mx
s,t(x

′)− θs,t(x
′)
)
i
| ≤ C

( i−1∑
k=2

(s− t)i−k|xk − x′k|+ (s− t)
2i−3+γ

2 +1

+d2i−3+γ(x,x′)(s− t) +
(
(s− t)(i−1)− 1

2 + d2(i−1)−1(x,x′)
)
(s− t)

)
.(A.13)

In particular, for s = t0 = t+ c0d
2(x,x′) with c0 < 1, the previous equation yields:

|
(
mx
t0,t(x

′)− θt0,t(x
′)
)
i
| ≤ C

(
c0d

2i−1(x,x′) + (c
i− 1

2 + γ
2

0 + c0)d2i−1+γ(x,x′) + (c
i− 1

2
0 + c0)d2i−1(x,x′)

)
.

So, after summing and by convexity inequalities, for d(x,x′) ≤ 1:

d
(
mx
t0,t(x

′),θt0,t(x
′)
)
≤ Cc

1
2n−1

0 d(x,x′).

�

A.2. Sensitivities for the scaled flows. For the scaling analysis of Section 6 we also need the scaled versions
of the previous lemmas. Recalling the notations introduced therein, i.e. for λ > 0, 0 ≤ t ≤ v ≤ T , θλv,t(x

λ) =

λ
1
2T−1

λ θv,t(x
λ), xλ := λ−

1
2Tλx, we readily get:

(A.14) d
(
λ

1
2T−1

λ mxλ

v,t(x
′λ),θλv,t(x

′λ)
)

= λ−
1
2 d
(
mxλ

v,t(x
′λ),θv,t(x

′λ)
)
.

Now, the discontinuity term leads to consider v = t + c0λd2(x,x′) = t + c0d
2(xλ,x′

λ
). So, from (A.14), we

can readily apply Lemma 8 to the quantity d
(
mxλ

v,t(x
′λ),θv,t(x

′λ)
)

for the spatial points xλ,x′
λ

and the corre-

sponding critical time. This precisely yields d
(
mxλ

v,t(x
′λ),θv,t(x

′λ)
)
≤ Cc

1
2n−1

0 d(xλ,x′
λ
) = Cc

1
2n−1

0 λ
1
2 d(x,x′)

which plugged into (A.14) finally leads to:

(A.15) d
(
λ

1
2T−1

λ mxλ

v,t(x
′λ),θλv,t(x

′λ)
)
≤ Cc

1
2n−1

0 d(x,x′).

In other words, Lemma 8 is invariant for the scaled flows.
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Appendix B. Sensitivity results for the resolvent and covariance

B.1. Sensitivity Lemma for the Resolvent.

Lemma 19 (Controls of the Sensitivities for the Resolvent). There exists C̃ s.t. for all 0 ≤ t ≤ s ≤ T ,
(x,x′) ∈ (Rnd)2, the following control holds. For all 1 ≤ j < i ≤ n, with the notation of (3.21):∣∣[R̃(τ,x)(t, s)− R̃(τ,x′)(t, s)

]
i,j

∣∣ ≤ C̃(s− t)i−j
( n∑
k=2

‖Fk‖L∞(C2k−3+γ
d,H )

)(
(s− t)

γ
2 + dγ(x,x′)

)
≤ Λ(s− t)i−j

(
(s− t)

γ
2 + dγ(x,x′)

)
.

Proof of Lemma 19. From the scaling properties of the resolvent, see e.g. the proof of Proposition 3 or Lemma
6.2 in [28], we have that:

(B.1) R̃x(s, t) = Ts−t ̂̃Rs,t,x

1 T−1
s−t, R̃x′(s, t) = Ts−t ̂̃Rs,t,x′

1 T−1
s−t,

where ̂̃Rs,t,x

1 , ̂̃Rs,t,x′

1 are non-degenerate bounded matrices. We define then:

(B.2) ∆ ̂̃Rs,t,x,x′

1 := ̂̃Rs,t,x

1 − ̂̃Rs,t,x′

1 .

Hence, from (B.1) and the definitions in (B.2):

|∆ ̂̃Rs,t,x,x′

1 | = | ̂̃Rs,t,x

1 − ̂̃Rs,t,x′

1 | = |T−1
s−t(R̃

x − R̃x′)(s, t)Ts−t|

=
∣∣∣T−1
s−t

∫ s

t

(
DF(v,θv,t(x))R̃x(v, t)−DF(v,θv,t(x

′))R̃x′(v, t)
)
dvTs−t

∣∣∣
≤

∫ s

t

|T−1
s−tDF(v,θv,t(x))Ts−t||T−1

s−t(R̃
x − R̃x′)(v, t)Ts−t|dv

+

∫ s

t

∣∣∣T−1
s−t

(
DF(v,θv,t(x))−DF(v,θv,t(x

′))
)
Ts−t

∣∣∣|T−1
s−tR̃

x′(v, t)Ts−t|dv

=

∫ s

t

|T−1
s−tDF(v,θv,t(x))Ts−t||T−1

s−tTv−t∆
̂̃Rv,t,x,x′

1 T−1
v−tTs−t|dv

+

∫ s

t

∣∣∣T−1
s−t

(
DF(v,θv,t(x))−DF(v,θv,t(x

′))
)
Ts−t

∣∣∣|T−1
s−tR̃

x′(v, t)Ts−t|dv.

Using the Grönwall’s Lemma and the structure of the resolvent, we get:

|∆ ̂̃Rs,t,x,x′

1 | ≤ C
∫ s

t

(s− t)−1|DF(v,θv,t(x))−DF(v,θv,t(x
′)|dv.

Pay attention that we only know from our smoothness assumption (S) that for all i ∈ [[2, n]], zi:n =

(zi, · · · , zn) ∈ R(n−i+1)d, zi−1 7→ Dxi−1
Fi(zi−1, z

i:n) is C
γ

2(i−1)−1 (Rd,Rd ⊗ Rd)-Hölder continuous for η > 0.
Hence, we proceed carefully like in [4] and we obtain, from the above bound, that

|∆ ̂̃Rs,t,x,x′

1 | ≤ C

∫ s

t

(s− t)−1
n∑
i=2

(
|Di−1Fi(v,θv,t(x))−Di−1Fi(v,θv,t(x)i−1, (θv,t(x

′))i:n)|

+‖(Dxi−1
Fi)i−1‖L∞(Cγd)|(θv,t(x)− θv,t(x

′))i−1|ηi
)
dv

=: (R1 +R2)(s, t,x,x′),(B.3)

where ηi := γ
2(i−1)−1 and the notation (Dxi−1Fi)i−1 indicates that Dxi−1Fi is viewed as a function of its

variable (i − 1) and the supremum is taken over the other ones. From Lemma 7 and the definition of d (see
also Lemma 18), we readily get

|R2(s, t,x,y)| ≤ C‖DF‖L∞(Cγd)

n∑
i=2

∫ s

t

(s− t)−1
(

(v − t)(i−1− 1
2 ) + d2(i−1)−1(x,x′)

)ηi
dv

≤ C‖DF‖L∞(Cγd)

(
(s− t)

γ
2 + dγ(x,x′)

)
,(B.4)

denoting with a slight abuse of notation ‖DF‖L∞(Cγd) :=
∑n
i=2 ‖(Dxi−1Fi)i−1‖L∞(Cγd). To control the difference

of the gradients terms in R1(s, t,x,x′) in (B.3), we need the following result whose proof is postponed to
Appendix B.3.
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Lemma 20 (Reverse Taylor expansion). There is a constant C > 0 s.t, for all (z, z′) ∈ Rnd×Rnd, v ∈ [0, T ] :∣∣Dxi−1Fi(v, z)−Dxi−1Fi(v, z
′)
∣∣ ≤ C‖Fi‖L∞(C2i−3+γ

d,H )d(z, z′)γ ,

with the notations of equation (3.21).

From the reverse Taylor expansion of Lemma 20 and the definition in (B.3), we obtain:

|R1(s, t,x,y)| ≤ C(s− t)−1

∫ s

t

dv

n∑
i=2

‖Fi‖L∞(C2i−3+γ
d,H )d

γ(θv,t(x),θv,t(x
′))

≤ C

n∑
i=2

‖Fi‖L∞(C2i−3+γ
d,H )

(
(s− t)

γ
2 + dγ(x,x′)

)
,(B.5)

using again Lemma 7 for the last inequality. Gathering (B.4), (B.5) into (B.3) and recalling the definition in
(3.21), we obtain:

(B.6) |∆ ̂̃Rs,t,x,x′

1 | ≤ C
( n∑
i=2

‖Fi‖L∞(C2i−3+γ
d,H )

)(
(s− t)

γ
2 + dγ(x,x′)

)
.

The result follows from the previous bound, the definition in (B.2) and the scalings of equation (B.1). �

B.2. Sensitivity Lemma for the covariances.

B.2.1. Proof of Lemma 6. Let us first explicitly write the covariance matrices

(B.7) K̃ξ
s,t :=

∫ s

t

R̃ξ(s, v)Ba(v,θv,t(ξ))B∗R̃ξ(s, v)∗dv.

So, we have to control the term

K̃ξ
s,t − K̃ξ′

s,t =: ∆ξ,ξ′

1 (s, t) + ∆ξ,ξ′

2 (s, t),

∆ξ,ξ′

1 (s, t) :=

∫ s

t

dvR̃ξ(s, v)B∆va(θv,t(ξ),θv,t(ξ
′))B∗R̃ξ(s, v)∗,

∆va(θv,t(ξ),θv,t(ξ
′)) := a(v,θv,t(ξ))− a(v,θv,t(ξ

′)),

∆ξ,ξ′

2 (s, t) :=

∫ s

t

dv∆R̃ξ,ξ′(s, v)Ba(v,θv,t(ξ
′))B∗R̃ξ(s, v)∗

+

∫ s

t

dvR̃ξ′(s, v)Ba(v,θv,t(ξ
′))B∗∆R̃ξ,ξ′(s, v)∗,

∆R̃ξ,ξ′(s, v) = R̃ξ(s, v)− R̃ξ′(s, v).(B.8)

Hence, from the scalings of (B.1) and the definitions in (B.8), for all 1 ≤ j ≤ i ≤ n:

|[∆ξ,ξ′

1 (s, t)]i,j | ≤ C(s− t)−2

∫ s

t

|[Ts−tB∆va(θv,t(ξ),θv,t(ξ
′))B∗Ts−t]i,j |dv

≤ Λ(s− t)i+j−2

∫ s

t

d(θv,t(ξ),θv,t(ξ
′))γdv.

We deduce by Lemma 7, that

|[∆ξ,ξ′

1 (s, t)]i,j | ≤ Λ(s− t)i+j−1
(
(s− t)

γ
2 + dγ(ξ, ξ′)

)
.(B.9)

Still from (B.1) and the definitions in (B.8), write now that:

|[∆ξ,ξ′

2 (s, t)]i,j | ≤ C(s− t)−2

(∫ s

t

(
|[Ts−t( ̂̃Rs,v,ξ

1 − ̂̃Rs,v,ξ′

1 )Ba(v,θv,t(ξ
′))B∗( ̂̃Rs,v,ξ′

1 )∗Ts−t]i,j |

+|[Ts−t ̂̃Rs,v,ξ′

1 Ba(v,θv,t(ξ
′))B∗( ̂̃Rs,v,ξ′

1 − ̂̃Rs,v,ξ

1 )∗Ts−t]i,j |
)
dv

)
.(B.10)

Thanks to equation (B.6) in the proof of Lemma 19, we thus obtain:

|[∆ξ,ξ′

2 (s, t)]i,j | ≤ Λ(s− t)i+j−1
(
(s− t)

γ
2 + dγ(ξ, ξ′)

)
.(B.11)

Gathering (B.9) and (B.11) in (B.8) yields:

(B.12) |[K̃ξ
s,t]i,j − [K̃ξ′

s,t]i,j | ≤ Λ(s− t)i+j−1
(
(s− t)

γ
2 + dγ(ξ, ξ′)

)
,

which precisely gives (3.19) for i = j = 1 and then concludes the proof of Lemma 6. �
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B.2.2. Sensitivities for the scaled covariance. In connection with Section 6, we recall the identity in law (6.6),

i.e. X̃ξ,λ
v := λ1/2T−1

λ X̃ξλ

v , v ∈ [t, T ], which readily gives:

K̃ξ,λ
v,t := Cov(X̃ξ,λ

v ) = λT−1
λ K̃ξλ

v,tT
−1
λ .

In particular, we thus derive from the analysis of the previous paragraph:

[K̃ξ,λ
v,t ]1,1 ≤ Cλ−1(v − t),∣∣[K̃ξ,λ

v,t ]1,1 − [K̃ξ′,λ
v,t ]1,1

∣∣ ≤ Cλ−1(v − t)
(
dγ(ξλ, ξ′

λ
) + (v − t)

γ
2

)
≤ Cλ−1(v − t)

(
λ
γ
2 dγ(ξ, ξ′) + (v − t)

γ
2

)
,

recalling that ξλ = λ−
1
2Tλξ and using the homogeneity properties of d for the last inequality. Also, for

v = t+ c0λd2(x,x′) and taking ξ = x, ξ′ = x′, the above controls rewrite:

(B.13) [K̃ξ,λ
v,t ]1,1 ≤ Cc0d2(x,x′),

∣∣[K̃ξ,λ
v,t ]1,1 − [K̃ξ′,λ

v,t ]1,1
∣∣ ≤ Cc0λ γ2 d2+γ(x,x′).

Note that the sensitivity of the scaled covariance yields a contribution of the scaling coefficient in λ
γ
2 . Unlike

for the control of the scaled mean in (A.15), where, as previously noticed, we could not exploit the full regularity
of Fi w.r.t. the (i−1)th variable, we can here precisely take advantage of such a regularity. Indeed, this follows
from the expression of the covariance (B.7) which only involves Di−1Fi so that one can exploit the associated
γ

2i−3 -Hölder regulariry w.r.t. xi−1.

B.3. Reverse Taylor formula.

Proof of Lemma 20. We assume here, for the sake of simplicity and without loss of generality, that d = 1 (scalar
case). When d > 1, the proof below can be reproduced componentwise. Let us decompose the expression around
the variables which do/do not transmit the noise. Namely, we write for any δi > 0:

Dxi−1
Fi(v, z)−Dxi−1

Fi(v, z
′)

=

∫ 1

0

dµ{Dxi−1
Fi(v, z)−Dxi−1

Fi(v, zi−1 + µd(z, z′)δi , zi:n)}

+{Dxi−1Fi(v, zi−1 + µd(z, z′)δi , (z′)i:n)−Dxi−1Fi(v, z
′)}

+{Dxi−1
Fi(v, zi−1 + µd(z, z′)δi , zi:n)−Dxi−1

Fi(v, zi−1 + µd(z, z′)δi , (z′)i:n)}

=:

3∑
`=1

∆F`i(v, z, z
′).(B.14)

The first two terms can be dealt directly. From (A) we get:

(B.15) |∆F1
i (v, z, z

′)| ≤ ‖(Dxi−1
Fi)i−1‖L∞(Cγd)d(z, z′)δi

γ
2(i−1)−1 .

Similarly,

|∆F2
i (v, z, z

′)| ≤ ‖(Dxi−1
Fi)i−1‖L∞(Cγd)

(
d(z, z′)δi

γ
2(i−1)−1 + |(z− z′)i−1|

γ
2(i−1)−1

)
≤ C‖(Dxi−1

Fi)i−1‖L∞(Cγd)d(z, z′)δi
γ

2(i−1)−1 .(B.16)

For ∆F3
i (t, z, z

′), we use an explicit reverse Taylor expansion which yields together with the smoothness as-
sumption of Fi in (A):

|∆F3
i (t, z, z

′)| = d(z, z′)−δi
∣∣∣[Fi(t, zi−1 + d(z, z′)δi , zi:n)− Fi(t, zi−1 + d(z, z′)δi , (z′)i:n)

+Fi(t, zi−1, z
i:n)− Fi(t, zi−1, (z

′)i:n)
]∣∣∣

≤ 2‖Fi‖L∞(C2i−3+γ
d,H )d(z, z′)2i−3+γ−δi .(B.17)

Taking δi s.t. δi
γ

2(i−1)−1 = 2i− 3 + γ − δi, which implies that δi = 2i− 3, gives in (B.15), (B.16) and (B.17) a

global bound of order C‖Fi‖L∞(C2i−3+γ
d,H )d

γ(z, z′). The result then follows from (B.14).

�
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Appendix C. Scaling Control of the degenerate part of the perturbative term

This section is dedicated to the proof of the scaled version of the key Besov control of Lemma 11. We recall
that, with the definitions of Section 6, for all multi-index ϑ = (ϑ1, . . . , ϑn) ∈ Rnd, i ∈ [[2, n]], we aim to control
the terms ∫ T

t

ds

∫
Rnd

DϑD2
x1
p̃ξλ(t, s,x,y)

〈
∆λ
i,F(t, s,θs,t(ξ),y), Dyiu

λ(s,y)
〉
dy,

with
n∑
i=2

〈
Fλ,i(s,y)− Fλ,i(s,θ

λ
s,t(ξ))−Dxi−1

Fλ,i(s,θ
λ
s,t(ξ))(y − θλs,t(ξ))i−1, Dyiu

λ(s,y)
〉

=:

n∑
i=2

〈
∆λ
i,F(t, s,θλs,t(ξ),y), Dyiu

λ(s,y)
〉
,

which appear in equation (2.18) of the detailed guide for the scaled system. We precisely want to specify how
the scaling procedure impacts the constants in equation (2.36).

This is exactly what equations (6.18) and (6.19) reflect. Those controls actually follow from the more general
following result, which will again be useful for the Hölder norm in Section 5.

Lemma 21 (Scaled Besov Control Lemma). There exists Λ := Λ((A), T ) as in Remark 3 s.t. for each multi-
index ϑ = (ϑ1, . . . , ϑn) ∈ Nn:

n∑
i=2

∣∣∣ ∫
Rnd

Dϑp̃ξλ(t, s,x,y)
〈
∆λ
i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉
dy
∣∣∣∣∣∣∣
ξ=x

≤ Λλ−1+
∑n
j=1 ϑj(j−

1
2 )‖uλ‖L∞(C2+γ

b,d )(s− t)
−

∑n
j=1 ϑj(j−

1
2 )+ γ

2.(C.1)

With Lemma 21 at hand, we indeed readily derive (6.18) and (6.19) taking ϑ = (2, 0, · · · , 0) + ek (where ek
stands for the kth vector of the orthonormal basis) for each k ∈ [[2, n]] and ϑ = (2, 0, · · · , 0) respectively. Let
us now turn to the proof of the Lemma 21.

Proof of Lemma 21. The analysis of singularities is identical to the ones in the proof of Lemma 11. However,
here, we have to track the scalling coefficient λ through the identites. Note carefully, we write the upper-
script/sub-script λ to mean that we manage the scaled variables. In particular, we write:

(C.2) ϑϑ,λi,(t,x)(s,y) := Dyi ·
(
Dϑp̃ξλ(t, s,x,y)⊗∆λ

i,F(t, s,θs,t(ξ),y)
)

=: Dyi ·Θ
ϑ,λ
i,(t,x)(s,y),

and

(C.3) Ψϑ,λ
i,(t,x),(s,y1:i−1,yi+1:n) : yi 7→ Dyi ·

(
Θϑ,λ
i,(t,x)(s,y)

)
.

With these notations, we have:
(C.4)
n∑
i=2

∣∣∣ ∫
Rnd

Dϑp̃
(t,ξ)
λ (t, s,x,y)

〈
∆λ
i,F(t, s,θs,t(ξ),y), Dyiu(s,y)

〉
dy
∣∣∣∣∣∣∣
ξ=x

=

n∑
i=2

∣∣∣ ∫
Rnd

Dyi ·
(
Θϑ,λ
i,(t,x)(s,y)

)
uλ(s,y)dy

∣∣∣.
The point is here again to control, for each i ∈ [[2, n]], the quantity ‖Dyi ·

(
Θϑ,λ
i,(t,x)(s,y1:i−1, ·,yi+1:n)

)
‖
B
α̃i
1,1
, α̃i =

2+γ
2i−1 with the indicated bounds in the scaling parameter λ. Accordingly with what can be seen e.g. in (6.13),

the previous analysis of the proof of the (non-scaled) Lemma 11 can be adapted replacing (s − t) therein by
(s− t)/λ in the computations involving the thermic characterization of Besov spaces.

We also point out that, w.l.o.g., we assume that T/λ ≤ 1 so that in particular for 0 ≤ t < s ≤ T ,
λ−1(s − t) ≤ 1. Indeed, the parameter λ is meant to be small (at least λ ≤ 1) but macro as well. From
the previous analysis and the statement of Lemma 21 it can be seen that the optimal λ, i.e. the largest one,
actually depends on the Hölder moduli of the coefficients. Hence, the condition T/λ ≤ 1 is, up to a possible
modification of T , not restrictive.

Let us first introduce some notation:

q̂c,λ(t, s,x,y) :=

n∏
j=1

N
cλ

2j−1
2 (s−t)2j−1

(
(θs,t(x)− y)j

)
= p̄c−1(t, s,x,y),
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where for ς > 0, z ∈ Rd, like before Nς(z) = 1

(2πς)
d
2

exp
(
− |z|

2

2ς

)
is the standard Gaussian density of Rd with

covariance matrix ςId, and:

(C.5) q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n)) =
∏

j∈[[1,n]],j 6=i

N
cλ

2j−1
2 (s−t)2j−1

(
(θs,t(x)− y)j

)
.

We recall from (4.16), that the parameter βi = (2i−3)(2i−1)
2i−3−γ . The first contribution of the scaled Besov control

is:

∫ 1

[λ−1(s−t)]βi

dv

v
v
α̃i
2 ‖hv ?Ψϑ,λ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)

≤
∫ 1

[λ−1(s−t)]βi

dv

v
v
α̃i
2

∫
Rd
dz
∣∣∣ ∫

Rd
Dϑp̃ξλ(t, s,x,y)

〈
∆λ
i,F(t, s,θλs,t(ξ),y), Dzhv(z − yi)

〉
dyi

∣∣∣∣∣∣∣
ξ=x

≤ Λ

∫ 1

[λ−1(s−t)]βi

dv

v
v
α̃i
2

∫
Rd
dz

∫
Rd
dyi

hcv(z − yi)

v
1
2

λ
∑n
j=1 ϑj(j−

1
2 )q̂c,λ(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )

×λ−i+ 1
2 d2i−3+γ(λ−1/2Tλθλs,t(x), λ−1/2Tλy)

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )−(i− 1

2 )

∫ 1

[λ−1(s−t)]βi

dv

v
v
α̃i
2

∫
Rd
dz

∫
Rd
dyi

hcv(z − yi)

v
1
2

q̂c,λ(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )

(s− t)
2i−3+γ

2 ,

exploiting (6.13) for the last inequality. Then

∫ 1

[λ−1(s−t)]βi

dv

v
v
α̃i
2 ‖hv ?Ψϑ,λ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R)

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )−(i− 1

2 )q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))

∫ 1

[λ−1(s−t)]βi
dvv−

3
2 +

α̃i
2 (s− t)−

∑n
j=1 ϑj(j−

1
2 )+ 2i−3+γ

2

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )−(i− 1

2 )q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))λ[ 12−
α̃i
2 ]βi(s− t)[− 1

2 +
α̃i
2 ]βi−

∑n
j=1 ϑj(j−

1
2 )+ 2i−3+γ

2

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )−1q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))(s− t)−

∑n
j=1 ϑj(j−

1
2 )+ γ

2 ,

(C.6)

the third inequality is a consequence of Proposition 3, and the last identity comes from the pick of βi which in
particular gives −(i− 1

2 ) + [1− α̃i]βi2 = −1.

Let us now consider the second contribution of the scaled Besov control, i.e. we take v ∈
[
0, [λ−1(s− t)]βi

]
.

Write:

∫
Rd
hv(z − yi)Dyi ·

(
Θϑ,λ
i,(t,x)(s,y)

)
dyi

=

∫
Rd
hv(z − yi)Dyi ·

(
Θϑ,λ
i,(t,x)(s,y)−Θϑ,λ

i,(t,x)(s,y1:i−1, z,yi+1:n)
)
dyi

=

∫
Rd
Dϑp̃ξλ(t, s,x,y)

〈
Fλ,i(s,y)− Fλ,i(s,y1:i−1, z,yi+1:n), Dzhv(z − yi)

〉
dyi

+

∫
Rd

(
Dϑp̃ξλ(t, s,x,y)−Dϑp̃ξλ(t, s,x,y1:i−1, z,yi+1:n)

)
×
〈(

Fλ,i(s,y1:i−1, z,yi+1:n)− Fλ,i(s,θ
λ
s,t(ξ))−Dxi−1

Fλ,i(s,θ
λ
s,t(ξ))(y − θλs,t(ξ))i−1

)
, Dzhv(z − yi)

〉
dyi

=:
(
Tλ,1 + Tλ,2

)(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
,

(C.7)
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thanks to the definition in (C.2) for the last identity.

|Tλ,1

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
|

≤ Λ

∫
Rd

hcv(z − yi)

v
1
2

λ
∑n
j=1 ϑj(j−

1
2 )

(s− t)
∑n
j=1 ϑj(j−

1
2 )
q̂c,λ(t, s,x,y)λ−i+

1
2 (λ

2i−1
2 |z − yi|)

2i−3+γ
2i−1 dyi

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )−(i− 1

2 )+ 2i−3+γ
2

∫
Rd

hcv(z − yi)

v
2−γ
4i−2

q̂c,λ(t, s,x,y)

(s− t)
∑n
j=1 ϑj(j−

1
2 )
dyi.

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )−1+ γ

2

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )
q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))N

cv+λ
2i−1

2 (s−t)2i−1

(
z − θs,t(x)i

)
.(C.8)

Write now from (C.7):

|Tλ,2

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
|

≤ Λ

∫
Rd
dyi

hcv(z − yi)

v
1
2

∫ 1

0

dµ
λ
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2 q̂c,λ(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

×|yi − z|λ−i+
1
2

(∣∣∣Fi(s, λ− 1
2Tλ(y1:i−1, z,yi+1:n)

)
− Fi

(
s, λ−

1
2Tλ(y1:i−1,θs,t(x)i:n)

)∣∣∣
+
∣∣∣Fi(s, λ− 1

2Tλ(y1:i−1,θs,t(x)i:n)
)
− Fi

(
s, λ−

1
2Tλθs,t(ξ)

)
−Dxi−1

Fi
(
s, λ−

1
2Tλθs,t(x)

)(
λ−

1
2Tλ(y − θs,t(x))

)
i−1

∣∣∣)
≤ Λλ

∑n
j=1 ϑj(j−

1
2 )

∫
Rd
dyihcv(z − yi)

∫ 1

0

dµ
q̂c,λ(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

×
(

(λ
2i−1

2 |z − θs,t(x)i|)
2i−3+γ
2i−1 + (λ

2(i−1)−1
2 |(θs,t(x)− y)i−1|)1+ γ

2(i−1)−1

+

n∑
k=i+1

(λ
2j−1

2 |(θs,t(x)− y)k|)
2i−3+γ
2k−1

)
.

We have for any µ ∈ [0, 1],

|z − θs,t(x)i| ≤ µ|z − yi|+ |z + µ(yi − z)− (θs,t(x))i|,

we thus derive

|Tλ,2

(
v, t, s,x, (y1:i−1, z,yi+1:n)

)
|

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )

∫
Rd
dyihcv(z − yi)

∫ 1

0

dµ
q̂c,λ(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

×
(
λ

2i−3+γ
2 |yi − z|

2i−3+γ
2i−1 + d2i−3+γ

(
λ−1/2Tλθs,t(x), λ−1/2Tλ

(
y1:i−1, z + µ(yi − z),yi+1:n)

))
≤ Λλ

∑n
j=1 ϑj(j−

1
2 )

∫
Rd
dyihcv(z − yi)

∫ 1

0

dµq̂c,λ(t, s,x,y1:i−1, z + µ(yi − z),yi+1:n)

×
( λ

2i−3+γ
2 v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
≤ Λλ

∑n
j=1 ϑj(j−

1
2 )q̂c\i,λ(t, s,x,y1:i−1,yi+1:n)

×
∫ 1

0

dµ

∫
Rd
hcv(z − yi)N

cλ
2i−1

2 (s−t)2i−1
(z + µ(yi − z)− (θs,t(x))i)dyi

×
( λ

2i−3+γ
2 v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
.(C.9)
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From (C.7), (C.8) and (C.9) we deduce, with the notation of (C.5):

‖hv ?Ψϑ,λ
i,(t,x),(s,y1:i−1,yi+1)‖L1(Rd,R)

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))

×
(

λ−1+ γ
2

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )

+
λ

2i−3+γ
2 v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
×
∫ 1

0

dµ

∫
Rd
dz

∫
Rd
dyihcv(z − yi)N

cλ
2i−1

2 (s−t)2i−1
(z + µ(yi − z)− (θs,t(x))i)

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))

×
(

λ−1+ γ
2

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )

+
λ

2i−3+γ
2 v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
.

The last identity is a again consequence of the change of variable (w1, w2) = (z−yi, z+µ(yi− z)− (θs,t(x))i).
We now write:∫ [λ−1(s−t)]βi

0

dvv
α̃i
2 −1‖hv ?Ψϑ,λ

i,(t,x),(s,y1:i−1,yi+1)‖L1(Rd,R)

≤ Λλ
∑n
j=1 ϑj(j−

1
2 )q̂c\i(t, s,x, (y1:i−1,yi+1:n))

∫ [λ−1(s−t)]βi

0

dv

v
v
α̃i
2

×
(

λ−1+ γ
2

v
2−γ
4i−2 (s− t)

∑n
j=1 ϑj(j−

1
2 )

+
λ

2i−3+γ
2 v

2i−3+γ
2(2i−1)

(s− t)
∑n
j=1 ϑj(j−

1
2 )+ 2i−1

2

+
1

(s− t)
∑n
j=1 ϑj(j−

1
2 )+1− γ2

)
=: Λλ

∑n
j=1 ϑj(j−

1
2 )q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n))Bλϑ,βi(t, s).(C.10)

Let us now prove that

(C.11) Bλϑ,βi(t, s) ≤
Cλ−1

(s− t)
∑n
j=1 ϑj(j−

1
2 )− γ2

.

Integrating in v in (C.10) we derive:

Bλϑ,βi(t, s) ≤ C(s− t)−
∑n
j=1 ϑj(j−

1
2 )

[
λ−1+ γ

2 [λ−1(s− t)]βi(
α̃i
2 −

2−γ
4i−2 )

+λ
2i−3+γ

2 [λ−1(s− t)]βi(
α̃i
2 + 2i−3+γ

2(2i−1)
))(s− t)i− 1

2 + [λ−1(s− t)]βi
α̃i
2 (s− t)−1+ γ

2

]
.

Recall now from the proof of Lemma 11 that:

βi

(
α̃i
2
− 2− γ

4i− 2

)
− γ

2
≥ 0, βi

(
α̃i
2

+
2i− 3 + γ

2(2i− 1)

)
− 2i− 1

2
− γ

2
≥ 0, βi

α̃i
2
− 1 ≥ 0,

with βi = (2i−3)(2i−1)
2i−3−γ , α̃i = 2+γ

2i−1 . Therefore, since (s− t)/λ ≤ 1:

Bλϑ,βi(t, s) ≤ C(s− t)−
∑n
j=1 ϑj(j−

1
2 )

[
λ−1+ γ

2 [λ−1(s− t)]
γ
2 + λ−1+ γ

2 [λ−1(s− t)]
γ
2 + [λ−1(s− t)](s− t)−1+ γ

2

]
,

which precisely gives (C.11).
Plugging (C.11) into (C.10) and from (C.6) we eventually get:∫ 1

0

dv

v
v
α̃i
2 ‖hv ?Ψϑ,λ

i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R) ≤
Λλ

∑n
j=1 ϑj(j−

1
2 )−1

(s− t)
∑n
j=1 ϑj(j−

1
2 )− γ2

q̂c\i,λ(t, s,x, (y1:i−1,yi+1:n)),

which is precisely the stated control. The term ‖ϕ(D)Ψϑ,λ
i,(t,x),(s,y1:i−1,yi+1:n)‖L1(Rd,R) appearing in the Besov

norm could be handled similarly. The result is complete. �
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[23] L. Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete Contin. Dyn. Syst. Ser. S, 4(1):169–

191, 2011.

[24] A. Lunardi. Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn.
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24(1):133–164, 1997.

[25] L. Marino. Schauder estimates for degenerate stable kolmogorov equations, 2019.
[26] H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geometry, 1:43–69, 1967.
[27] S. Menozzi. Parametrix techniques and martingale problems for some degenerate Kolmogorov equations. Electronic Commu-

nications in Probability, 17:234–250, 2011.

[28] S. Menozzi. Martingale problems for some degenerate Kolmogorov equations. Stoc. Proc. Appl., 128-3:756–802, 2018.
[29] E. Priola. Global Schauder estimates for a class of degenerate Kolmogorov equations. Studia Math., 194(2):117–153, 2009.

[30] D.W. Stroock and S.R.S. Varadhan. Multidimensional diffusion processes. Springer-Verlag Berlin Heidelberg New-York, 1979.
[31] H. Triebel. Theory of function spaces, II. Birkhauser, 1983.
[32] X. Zhang. Stochastic Hamiltonian flows with singular coefficients. Sci. China Math., 61(8):1353–1384, 2018.


