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The Newtonian gravitational constant G is still not known to high levels of accuracy after approximately two hundred years of experimental work. This presents a problem since G is one of the most fundamental constants in physics. We will attempt to advance the study of G by establishing a new method that relates it to the Fermi coupling constant. This will be done via a formulaic representation of G depending only on muonic and tauonic parameters, respectively. The first formula relates G with the muon Compton wavelength, mass and mean lifetime as well as the running value of the fine structure constant on the muonic scale. The second formula uses parameters of tau leptons. Using the mean lifetime of muons we rewrite the formula and establish the aforementioned relation between G and the Fermi coupling constant after which we proceed to account for the weak corrections on the muon mean lifetime. The results obtain by the two formulas for muons and tau leptons, respectively, are 98.11% and 99.9% in agreement with the value of G provided by NIST. It is concluded that there is a possibility for the "running" of G thus requiring the calculation of an effective value.

Introduction

In the Minkowskian metric in which time-like momenta squared are positive, the Lagrangian relevant for the calculation of the muon mean lifetime in the Fermi theory is:

ℒ F = ℒ QED + ℒ W + ℒ QCD
Here ℒ QED is the usual bare QED Lagrangian responsible for electromagnetic interactions and ℒ QCD is the bare QCD Lagrangian responsible for strong interactions. The Fermi contact interaction that mediates muon decay is:

ℒ W = -2√2G F [𝜓 ̅ 𝑣 𝜇 0 𝛾 𝜆 𝛾 𝐿 𝜓 𝜇 0 ] , [𝜓 ̅ 𝑒 0 𝛾 𝜆 𝛾 𝐿 𝜓 𝑣 𝑒 0 ]
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in which 𝜓 𝜇 , 𝜓 𝑒 , 𝜓 𝑣 𝜇 and 𝜓 𝑣 𝑒 are the wavefunctions for the muon, electron and their associated neutrinos respectively, and 𝛾 𝐿 denotes the usual Dirac left hand projection operator. The relationship between the Fermi coupling constant G F and the muon mean lifetime τ 𝜇 is:

τ 𝜇 -1 ≡ G F 2 m 𝜇 5 192π 3 (1 + ∆q)
where m 𝜇 is the muon mass and ∆q encapsulates the higher order QED corrections and can be expressed as a power series expansion in the renormalized electromagnetic coupling constant α:

∆q = ∑ ∆q 𝑖 ∞ 𝑖=0
in which the index 𝑖 gives the power of α that appears in ∆q 𝑖 . Although ℒ F is not renormalizable, the ∆q 𝑖 can be shown to be finite 1 . We can calculate ∆q using ℒ F therefore expressing the Fermi coupling constant in arbitrary accuracy in terms of the physically observable quantities such as the fine structure constant as well as masses of electrons and muons and its mean lifetime. The Fermi coupling constant is sometimes defined via the formula 2 :

τ 𝜇 -1 = G F 2 m 𝜇 5 192π 3 𝐹 ( m 𝑒 2 m 𝜇 2 ) (1 + 3m 𝜇 2 5M 𝑊 2 ) [1 + α(M 𝜇 ) 2π ( 25 4 -π 2 )]
Where the inverse value of α on the muonic scale can be expressed as:

α -1 (M 𝜇 ) = α -1 + 2 3π ln ( m 𝑒 m 𝜇 ) + 1 6π ≅ 136
In as far as this can be derived from ℒ F it provides an adequate definition but it contains a number of features that become out of place at higher orders. The function 𝐹, coming from phase space integration, does not factorize in this way at higher orders. The factor

1 + 3m 𝜇 2 5M 𝑊 2 ⁄
is the effect of the W boson propagator and is not generated by the ℒ F . It is more naturally included along with the weak corrections in ∆r as is described in the section 2.2. Its presence is an historical artifact of an attempt to reconcile the observed muon and neutron beta decay rates with universality of weak interactions before the advent of the Cabibbo angle 3 . The expression for α(m 𝜇 ) used in the above definition contains a term 1/6π that comes from 𝑊 boson loops in the photon self-energy. Since these don't come from ℒ F they should be omitted so as not to risk double counting when G F is used as input in electroweak calculations. It is sometimes suggested that equation (5) should be viewed as an exact definition of the Fermi coupling constant however as pointed out in Ref. 4 this would be very inconvenient as one would prefer to deal with quantities from which QED has been eliminated as far as possible. Tau lepton mean lifetime is defined in a very similar way to the muon mean lifetime from eq. ( 3), with the difference being that we have to account for different decay modes of the tau lepton since it can decay both to other, lighter leptons as well as some hadrons such as pions.

The new Method for measuring the Newtonian Gravitational Constant G

The new methodology for measuring the Newtonian gravitational constant that will be presented below is an empirical formula that uses Compton wavelengths, masses and mean lifetimes of muons and tau leptons respectively, and the fine structure constant. Having in mind that the running of the (6) (

(3) fine structure constant is a well proven phenomenon, we will have to calculate the effective QED coupling on both scales of muons and tau leptons, respectively.

Muon and tau lepton formulas for the Newtonian gravitational constant G

The Newtonian Gravitational constant can be defined with an empirical formula that relates it to muonic and tauonic parameters, respectively:

G = ∑ (2 (n+1) π) -1 (n+1) λ 𝐶,𝑙 3 α 2n+(n+1) (Q) m 𝑙 τ 𝑙 2 2 n=1
where n = 1, 2 corresponds to lepton flavors 𝑙 = 𝜇, 𝜏 respectively and λ 𝐶,𝑙 is the Compton wavelength of the unstable charged lepton, α(Q) is the running value of the fine structure constant on the Q scale, m 𝑙 is the mass of the unstable charged lepton and τ 𝑙 is the mean lifetime of the aforementioned lepton.

When n = 1 and 𝑙 = 𝜇 the formula becomes:

G = 4π λ 𝐶,𝜇 3 α 4 (M 𝜇 ) m 𝜇 τ 𝜇 2
obtaining us the formulaic definition of the Newtonian gravitational constant dependent only on muonic parameters, namely its Compton wavelength, mass and mean lifetime. When n = 2 and 𝑙 = 𝜏 we get:

G = λ 𝐶,𝜏 3 α 7 (M 𝜏 ) 8π m 𝜏 τ 𝜏 2
The scale Q increasing requires us to use the MS ̅̅̅̅ renormalization scheme, in the results section bellow, to calculate the effective value of the QED coupling.

Weak corrections to the muon mean lifetime

We can establish a clear connection between the Newtonian gravitational constant and the Fermi coupling constant by combining eq. ( 8) with eq. ( 3) and subsequently eq. ( 5):

G = 4π λ 𝐶,𝜇 3 α 4 (M 𝜇 ) m 𝜇 [ G F 2 m 𝜇 5 192π 3 (1 + ∆q)] 2
The weak corrections to the muon mean lifetime may be encapsulated in a quantity ∆r mentioned earlier:

G F √2 = 𝑔 2 8M 𝑊 2 (1 + ∆r)
where 𝑔 is the SU(2) L coupling constant. We can express ∆r in an analogous way to ∆q:

(11) (10) (9) (8) (7) 
∆r = ∑ ∆r 𝑖 ∞ 𝑖=0
Starting from the full electroweak theory, the separation of contributions to ∆q and ∆r is made automatic at least up to 𝒪(α m 𝜇 2 M 𝑊 2 ⁄ ) 5,6 . In the analysis of electroweak data the numerical values of the renormalized parameters of the theory are initially obtained from a set of simultaneous equations for the physical observables as calculated from the full electroweak Lagrangian. Rewriting eq. ( 10) up to one-loop 5,6 provides the formula:

G = 4π λ 𝐶,𝜇 3 α 4 (M 𝜇 ) m 𝜇 [ m 𝜇 5 192π 3 { √2𝑔 2 8M 𝑊 2 (1 + ∆r)} 2 (1 + ∆q)] 2
Establishing the connection between the Newtonian Gravitational constant and the SU(2) L coupling constant 𝑔.

Weak and Strong Corrections on the tau mean lifetime

Similarly to the muon, the tau formula for G from eq. ( 9) can be written as:

G = λ 𝐶,𝜏 3 α 7 (M 𝜏 ) 8π m 𝜏 [ R 𝜏 -C m 𝜏 5 m 𝜇 5 τ 𝜇 ] 2 = λ 𝐶,𝜏 3 α 7 (M 𝜏 ) 8π m 𝜏 [ R 𝜏 -C m 𝜏 5 G F 2 192π 3 (1 + ∆q)] 2 = λ 𝐶,𝜏 3 α 7 (M 𝜏 ) 8π m 𝜏 [ N c (|V 𝑢𝑑 | 2 + |V 𝑢𝑠 | 2 ) δ 𝐸𝑊 {1 + δ 𝑝 (α 𝑠 (M 𝜏 )) + δ 𝑁𝑃 + δ 𝐸𝑊 ′ } -C m 𝜏 5 G F 2 192π 3 (1 + ∆q)] 2 (14) 
where R 𝜏 is the ratio of the hadronic width to the leptonic width in tau decays. Assuming universal coupling constants of the different lepton species to the W boson tit can be expressed as:

R 𝜏 = m 𝜇 5 τ 𝜇 m 𝜏 5 τ 𝜏 -C = N c (|V 𝑢𝑑 | 2 + |V 𝑢𝑠 | 2 ) δ 𝐸𝑊 {1 + δ 𝑝 (α 𝑠 (M 𝜏 )) + δ 𝑁𝑃 + δ 𝐸𝑊 ′ }
where |V 𝑢𝑑 | and |V 𝑢𝑠 | are elements of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix 7,8 , δ 𝐸𝑊 = 1.0194 and δ 𝐸𝑊 ′ = 0.01 are electroweak radiative corrections 9,10 , δ 𝑁𝑃 are nonperturbative QCD contributions 8,11,12,13,14 and C = 1.9726 represents corrections resulting from phase-space, radiation and the W propagator. The value α 𝑠 (M 𝜏 ) = 0.319 (28) is the running strong coupling on the tau lepton scale, that is when Q = M 𝜏 . Following eq. ( 11) we can rewrite eq. ( 14) as:

G = λ 𝐶,𝜏 3 α 7 (M 𝜏 ) 8π m 𝜏 [ N c (|V 𝑢𝑑 | 2 + |V 𝑢𝑠 | 2 ) δ 𝐸𝑊 {1 + δ 𝑝 (α 𝑠 (M 𝜏 )) + δ 𝑁𝑃 + δ 𝐸𝑊 ′ } -C m 𝜏 5 { √2𝑔 2 8M 𝑊 2 (1 + ∆r)} 2 192π 3 (1 + ∆q) ] 2
where we have successfully combined all four interactions in a single empirical formula, namely gravitation (G), the electromagnetic interaction (α), the weak interaction (𝑔) 2 and the strong interaction (α). This is possible due to the relationship Planck mass has with the Newtonian 2 The electromagnetic and weak nuclear interactions are combined in one electroweak unification of the SU(2) 𝐿 × U(1) 𝑌 symmetry.

(

) (12) (15) 13 
gravitational constant G = ћc 8πM 𝑝 2 ⁄ . Some Grand unification theories and theories of everything, such as string theory, predict that the four fundamental interactions unite on the Planck scale. The formula from eq. *16( provides a supporting argument for such theories. Using eq. ( 15) we can rewrite the formula for muons, in eq. ( 13) to also include all the four fundamental interactions.

Results

In order to obtain the results for the formula in eq. ( 7) we must calculate the running of the fine structure constant on the scale of muons and tau leptons for eq. ( 8) and ( 9) respectively. We won't be using the formula from eq. ( 6) since, as mentioned above, it contains a number of features that become out of place at higher orders.

Renormalization of 𝜶 when 𝑸 = 𝑴 𝝁

When it comes to eq. ( 8), we have to calculate the α(M 𝜇 ) using the MS ̅̅̅̅ renormalization scheme. The effective value of the fine structure constant is obtained by using the equation:

α(Q) = α 1 -Π ̂(Q)
where Π ̂(Q) is the photon vacuum polarization function which can be written as:

Π ̂(Q) = ∑ Π ̂𝑖(Q) ∞ 𝑖=1
where each term receives contributions from all fermion flavors. . In the MS ̅̅̅̅ renormalization scheme the counter terms are chosen so that they only contain divergent pieces with the addition of certain constants. One-loop counter terms are proportional to:

∆= 1 ε -𝛾 E + ln(4π) + 𝑂(ε)
where 𝛾 E is the Euler-Mascheroni constant. An appropriate choice for the 't Hooft mass is 𝜇 = M 𝜇 and therefore we write α(Q) = α(M 𝜇 ). Ultimately we get the equation:

α(M 𝜇 ) = α 1 - α 3π ln ( m 𝜇 2 m 𝑒 2 ) + α 2 4π 2 ln ( m 𝜇 2 m 𝑒 2 )
The equation above provides a value of:

α -1 (M 𝜇 ) = 135.90(12)
Thus providing us with approximately 98.11% accuracy of agreement between the G from eq. ( 8) and the value provided by NIST G = 6.67408(31) × 10 -11 m 3 kg -1 s -2 .

(

Renormalization of 𝜶 when 𝑸 = 𝑴 𝝉

Equation ( 9) also requires us to apply the MS ̅̅̅̅ renormalization scheme. The first step is the same, as it always is, as for muons in eq. ( 17) thus we'll skip it. The scale Q now equals the tau lepton mass Q = M 𝜏 and, as pointed out by A. A. Pivovarov in the paper: "Running electromagnetic coupling constant: low energy normalization and the value at M Z " in Ref. 15, the total finite renormalization between the fine structure constant and the MS ̅̅̅̅ renormalization scheme is given by: ∆ 4 (M 𝜏 ) = ∆ 𝑙 (M 𝜏 ) + ∆ 𝑢𝑑𝑠 (M 𝜏 ) + ∆ 𝑐 (M 𝜏 ) = 32.7889

where ∆ 𝑙 (M 𝜏 ) accounts for the lepton contribution, ∆ 𝑢𝑑𝑠 (M 𝜏 ) for the contribution of up, down and strange quarks and ∆ 𝑐 (M 𝜏 ) accounts for the charm quark contribution. This leads us to:

3π α(M 𝜏 ) = 3π α -∆ 4 (M 𝜏 )
provides us the the low energy normalization value

α -1 (M τ ) = 133.557(43)
The accuracy of agreement between the G from eq. ( 9) and the value provided by NIST is an astounding 99.9%. However, other sources, such as the paper "QCD analysis of the tau hadronic width" by E. Braaten, S. Narison and A. Pich in Ref. 16, provide a value α -1 (M 𝜏 ) = 133.29. In which case the accuracy of agreement is 98.7% although this paper is older, dating back to 1992, therefore the value from eq. ( 24) is more suitable.

Discussion

Equation (7) clearly establishes the connection between the Newtonian gravitational constant and the two generations of unstable charged leptons, muons being the second and tau leptons the third generation. Electrons are the first generation of leptons but they are exempt from the formula in eq. ( 7) because they are stable particles and therefore do not have a mean lifetime, with upper limits going above 6.6 × 10 28 years 17 . The formula in eq. ( 13) clearly establishes a relationship between the Newtonian gravitational constant and the Fermi coupling constant, then proceeding to rewrite the Fermi coupling constant in terms of the SU(2) L coupling constant 𝑔 thus connecting it with the Newtonian gravitational constant in eq. ( 13). Some authors have predicted the existence of such a relationship between G and G F , such as R. Onofrio 18,19 who argued for the existence of the gravitoweak or graviweak unification 20,21,22,23,24 . We have also established the same relationship for the tau lepton formula, with the addition of the strong coupling α 𝑠 .

Conclusion

The Newtonian constant of gravitation is defined by the formula in eq. ( 7) in the terms of muonic parameters, as shown in eq. ( 8) and tauonic parameters, as shown in eq. ( 9). Even though the Compton wavelength, mass and mean lifetime of muons are known to much higher accuracy than they are for its tau counterparts, we still achieved a better agreement with tauonic parameters and the NIST value of G. Having in mind that the Newtonian gravitational constant is not measured to a high accuracy, indeed the measurements usually tend to have a very high uncertainty 25,26 this new method of defining G might shed some much needed light on the subject. The newest results published by Qing Li et al. , see Ref. 27, managed to reduce the uncertainty but still obtained slightly different values of G using two separate, independent methods of measurement. They first used the sing torsion pendulum experiments with the time-of-swing method after which they used the angular-acceleration-feedback

(22) (23) (24) 
method and obtained two slightly different results. It is possible that there is such a thing as the "running of G", as discussed in Ref. 28 and 29, thus requiring the determination of an effective value albeit it is questionable if this might the case.