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Movable singularities of ODEs: a topological approach

Monodromy

Here we discuss briey the example f (x, y) = x p y q for coprime positive integers p, q. In that situation the singular ber is the union S = {x = 0}∪{y = 0} of two lines.

Holomorphic foliations

We use the duality between vector elds and 1-form elds in the planar situation. (It is customary to also identify vector elds with derivations.)

X = A B A ∂ ∂x + B ∂ ∂y ω = Ady -Bdx
The identity ω (X) = 0 means that the integral curves of X, which are the range of maximal trajectories solving ẋ (t) = A (x (t) , y (t)) ẏ (t) = B (x (t) , y (t)) , t ∈ (C, 0) , coincides with the graph of a solution to the dierential equation A (x, y) dy dx = B (x, y) .

The geometric object obtained by partitioning the space into such integral curves γ is called a holomorphic foliation. For convenience we write F X or F ω the induced foliation.

• Either γ = {pt} is a stationary point of X: a singularity of F X . Their set is written Sing (F X ).

• Either γ is non-constant, it is a Riemann surface: a leaf of F X .

In the holomorphic world we can always assume that codim Sing (F X ) = 2, so that Sing (F X ) is discrete for planar foliations.

Local structure near a regular point

Because of the theorem of vector eld rectication, if X (p) = 0 then there exists a holomorphic change of coordinates

Ψ : C 2 , 0 -→ C 2 , p
conjugating X to, say, ∂ ∂x :

Ψ * X := DΨ -1 (X • Ψ) = ∂ ∂x .
What it means is that the leaves of the foliation Ψ * F X are given by the discs {x ∈ εD, y = cst} or, in other words, that the function f : (x, y) -→ y is a rst-integral of Ψ * X. Therefore, near a regular point the leaves of F X are given by the level sets of the holomorphic submersion Ψ * f .

Elementary singular points

Take a stationary point p of X, say p = (0, 0). The linear part of X can be identied with a matrix (ax + by + . . .) ∂ ∂x + (cx + dy + . . .) ∂ ∂y a b c d =: D 0 X.

Its spectrum {λ 1 , λ 2 } ⊂ C contains dominant data about the dynamics of X near p.

Denition.

1. When D 0 X is not nilpotent, say λ 2 = 0, we dene the eigenratio of X at p as the quotient λ := λ 1 λ 2 .

2. In that case, we say that p is an elementary singularity of X if λ / ∈ Q >0 . This covers the following cases:

(a) hyperbolic singularity: λ / ∈ R;

(b) node singularity: λ > 0;

(c) saddle singularity: λ < 0 (quasi-resonant when λ / ∈ Q);

(d) saddle-node singularity: λ = 0. The λ 2 -eigenspace is called the strong eigendirection.

Reduction

Every singularity p ∈ C 2 of a holomorphic foliation F can be reduced through a proper rational map (see e.g. A. Seidenberg algorithm [START_REF] Seidenberg | Reduction of singularities of the dierential equation A dy = B dx[END_REF])

E : M → C 2 , p
where M is a conformal neighborhood of a tree E -1 (0) of divisors P 1 (C) with normal crossings (at points called corners). The pull-back E * F only possesses reduced singularity. It may also happen that E * F admit dicritic components: the foliation is regular and transverse to some divisor.

An important ingredient to anything pertaining to foliations F with an invariant curve S is the Camacho-Sad index of an elementary singular point p. Generically speaking, the index CS (F, S, p) is given by the eigenratio λ1 λ2 of F at p if S is the eigendirection of λ 2 .

Theorem (Camacho-Sad index formula [START_REF] Camacho | Invariant varieties through singularities of holomorphic vector elds[END_REF]). If F is a reduced foliation on a neighborhood V of a compact invariant curve S, then p∈Sing(F) CS (F, S, p) = chern (S → V) .

Movable singularities in polynomial foliations: Painlevé property

Take two polynomials P, Q and consider the 1-form ω := P dy -Qdx.

Example. Saddle-nodes x dy dx = y k+1 .

Denition. We say that the polynomial dierential equation ω = 0 has the Painlevé property if the analytic continuation (along some path) of any solution x → y (x) may only have singularities of the following type:

• either the singularity (x * , y (x * )) is a singularity of F ω (a xed singularity);

• or locally y (x) = a

x-x * + holomorphic (a movable singularity which is moreover a pole of order

1).

More generally we may speak of a ramied movable pole or essential movable singularity etc.

by providing corresponding local expressions for the analytic continuation near x * .

Remark. Such singularities are deemed movable because the location of x * is a non-constant function of the leaf.

Theorem. [START_REF] Loray | Sur les thà c oròmes I et II de Painlevà c[END_REF][START_REF] Painlevé | Oeuvres de Paul Painlevé. Tome I[END_REF] 1. If all solutions to ω = 0 have no movable singularity then the equation is ane, i.e. deg Q ≤ 1.

2. If ω = 0 has the Painlevé property then it is (at most) a Riccati equation, i.e. deg Q ≤ 2.

3. There are no essential movable singularities.

1.3 Why go to complex domain?

The topology of leaves is richer: it encodes more information. Such as:

1. the monodromy of linear systems: Galoisian considerations; Denition. F stands for a germ of a holomorphic foliation near a singular point (0, 0), say on a small Euclidean ball B. We say that F is incompressible if there exists:

• a nite union S ⊂ B of F-invariant, analytic curves containing the singularity, say S = {f = 0}

for some analytic f , called distinguished separatrices;

• a family of Milnor tubes (T η ) 0<η≤η0 for S (as before: T η = f -1 (ηD)), on which F is holomorphic;

• a neighborhood U of (0, 0); such that:

1. U ⊂ T η0 and the inclusion induces an isomorphism between fundamental groups π 1 (U\S) π 1 (T \S);

2. T η ⊂ U for all η small enough;

3. for every leaf L of F| U \S the canonical morphism induced by ι : L → U\S

ι * : π 1 (L) -→ π 1 (U\S) is injective.
Remark. Condition (1) means that the topology of the ambient space must be as simple as possible:

one is not allowed to take complicated neighborhoods to compensate for the potential complicated topology of the leaves.

Motivations: nonlinear monodromy

Incompressibility ensures the existence of a foliated universal covering: the universal covering π U : U\S → U\S is also (by restriction) a universal covering for each leaf of F. The automorphisms group of this covering then consists in symmetries of the foliation π * U F, and therefore naturally acts on its leaves space ΩU :

m U : Aut (π U ) -→ Aut ΩU
which is called the monodromy of (F, U, S). The quotient Ω U := ΩU /m U can be canonically identied with the leaves space of F.

Heuristically, the analytic structure of the space of leaves up to dieomorphism is in bijection with the local analytic class of the singularity. D. Marín and J.-F. Mattei proved that the germication of (F, U, S) as η 0 → 0 is a complete modulus of local classication for generic foliations [START_REF] Marín | Topology of singular holomorphic foliations along a compact divisor[END_REF].

If one wishes to endow Ω U with a structure of a (non Hausdor ) analytic variety, then one needs the existence of a curve C (not necessarily irreducible) which fullls the following denition.

Denition. A germ of analytic curve C (not necessarily irreducible) is a completely connected transverse of F if there exists a pair (U, S) in which F is incompressible and such that:

1. C\S is a smooth analytic curve transverse to the leaves of F;

2. Sat F (U ∩ C\S) = U\S, 3. each leaf of π * F intersects at most once each connected component of π -1 (C).
Observe that there always exists a curve C satisfying (1) and (2) [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF]p161]. A corollary of the theorem of MarínMattei is the existence of such a curve C [MM08, Théorème 6.1.1, p900] Remark. As for the linear context, it is expected that the non-linear monodromy carries Galoisian information about solvability by quadratures of the underlying ODE.

Statement

Theorem (MarínMattei). [START_REF] Marín | Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers[END_REF][START_REF] Marín | Topology of singular holomorphic foliations along a compact divisor[END_REF] Every foliation whose singular reduction does not contain any saddle-node or quasi-resonant, non-linearizable saddle [+ technical assumption about dead branches ] is incompressible.

Remark.

1. It is possible to describe explicitly a set S: it is the union of the closure of the separatrices of E * F crossing non-dicritic components of the exceptional divisor, plus a leaf per dicritic component.

2. The hypothesis about the local type of singularities is generic once the combinatorial data of the reduction tree and the number of nal elementary singularities is xed.

End of rst course

The principal aim of this course is to establish the following three theorems.

Theorem A. A germ of a saddle-node or a quasi-resonant saddle is incompressible.

One may then hope that MarínMattei theorem holds true in all generality. Unfortunately this is not the case.

Theorem B. There exists singular, non-dicritic foliations which are compressible.

It is possible, though, to weaken the assumptions in MarínMattei theorem: incompressibility and existence of a completely connected transverse will depend crucially on how the saddle-nodes are placed and oriented in the reduction. 1. A foliation F is presentable if it is incompressible and admits a completely connected transverse.

2. F is strongly presentable if the strong eigendirection of any saddle-node in a (minimal) reduction of F never coincides with a divisor.

Theorem C. Every germ of a strongly presentable foliation is presentable.

Although this is not a criterion, failure to be strongly presentable should bring suspicion about presentability. Completely characterizing presentable foliations seems to be a hard task, for these are global constraints although strongly presentability only deals with local properties of the singularities.

Proof

We work in the reduced foliation E * F which, for simplicity reasons, we just write F.

The construction consists in gluing together nitely many pairwise distinct local blocks (B α ) α∈A , each one containing an elementary singularity, with blocks covering the regular part. A result à la Van Kampen allows to localize in the blocks B α all the diculty.

These blocks cannot be arbitrary: they must comply with the requirements we give below. Additionally, they must possess one degree of freedom, related to their size, allowing to control the resulting neighborhood of the special set S.

Blocks assembly is done by induction, by picking a component of the exceptional divisor then by browsing through the reduction tree. We get to another component D j+1 by passing through a corner, and we arrive there with a outbound size specied by the component D j , and we assemble the blocks living on D j+1 to this one by adjusting their size.

All this is only partially correct, since some special regular blocks (those containing the so-called dead branches, see below) do not possess a degree of freedom. A technical obstruction therefore appears when D j+1 is attached to at least two dead branches and does not have any other singularity save for those shared with D j . Therefore, the construction must start from D j+1 . Obviously, we should not want more than one such component.

In the following sections we sketch the ingredients that ensures that Theorems A and C are true.

1-connectedness and localization of the proof

Denition. [MM08, Dénition 1.2.2, p861]Let a foliation F be given on a domain U and let A ⊂ B be subsets of U. We say that A is 1connected in B (relatively to F) if for each leaf L of F and all paths α from A and β of B ∩ L which are homotopic in B, there exists a path in A ∩ L which is homotopic to both α in A and β in B ∩ L.

Denition. [MM08, Denition 2.1.1, p864]The notation ∂A stands for the closed set cl (A\int (A)).

1. We say that B α is an adapted foliated block if:

(FB1) each connected component of ∂B α is incompressible in B α ; (FB2) F is transverse to ∂B α ; (FB3) F is incompressible in B α ; (FB4) each connected component of ∂B α is 1connected in B α .
2. We will say that the collection of adapted foliated blocks (B α ) α∈A is an adjusted assembly if:

• for every α, β ∈ A the intersection B α ∩ B β is either empty or a connected component of ∂B α and of ∂B β ; • E α∈A B α is a neighborhood U of the singularity with a deleted special set S.

Here is the localization theorem.

Theorem. [MM08, Théorème 2.1.2, p864] If (B α ) α∈A is an adjusted assembly relatively to F then F is incompressible in (U, S).

Dead branches and initial component

Denition.

1. A dead branch B of F is a maximal union of neighboring components of the exceptional divisor, each one being of one the following types:

• there are at most two corners and no other singularity of F (a link of B);

• there is exactly one corner and no other singularity of F (the end of B),

• there is exactly one corner and one singularity of F (the anchoring component of B),

in such a way that B has exactly one end and one anchoring component. The incidence graph of B is therefore a tree having the combinatorial structure of a chain.

2. An initial component of F is a non-dicritic component C of E -1 (0) to which is anchored at least two dead branches and having a single additional singularity of F.

It is well-known [MM08, p866] that for a non-dicritic generalized curve (a foliation reduced by the desingularization morphism of its separatrix set) there is at most a single initial component, which allows for the inductive proof to work. Moreover this initial component has exactly two dead branches anchored to it, one of which has an end which is the divisor being created by the rst blow-up.

This property can be restated word for word in the case of strongly presentable foliations, which allows to get rid of the [technical assumption about dead branches ] in MarínMattei theorem.

Theorem. Let F be a germ of strongly presentable foliation, reduced by a minimal morphism E :

M → C 2 , 0 . Then E -1 (0) contains at most one initial component.
When it exists, this component has exactly two dead branches anchored to it. Each corner singularity are linearizable rational saddles. The end of one of these branches is the rst divisor created by the reduction.

Let us present examples of non-strongly presentable foliations having a lot of dead branches.

Example. Let us start with F ω1 (a resonant node):

ω 1 (x, y) := (x -y) dx + xdy .
The foliation is reduced after one blow-up and its reduction contains a single singularity: a saddle-node in formal normal form t 2 dy -y (1 -t) dt.

More generally one easily checks that for every n ∈ N >0 the 1form

ω n (x, y) := x n -y n dx + nxy n-1 dy
is reduced after n blow-ups and its reduction is a dead branch with n components. When n > 1, the last blow-up creates a divisor having a corner and a saddle-node in normal form ωn (t, y) := t 2 dy + y 1 -1 n t dt through which passes the strict transform of the unique separatrix {x = 0} of F ωn .

B 1 as many dead branches as we wish. We consider a neighborhood of a divisor D with Chern class -1 containing m ∈ N >0 singularities (p j ) 1≤j≤m , each one of which is locally conjugate to F ωj (given in the previous example) and a resonant-saddle p 0 which we describe below in more details. The divisor D will be the rst one created when reducing the foliation F.

• • • • • • -1 -2 -2 -2 -2 -2 -2 -2 -j -1 B 2
After reduction of each p j , exactly m dead branches are anchored to D and its Chern class has become

c := -1 - m j=1 n j ∈ Z <-1 .
The resulting anchoring singularity of the dead branch at p j is a saddle-node whose strong direction coincides with D: its Camacho-Sad index with respect to D is 0. Let us write ∆ j its strong holonomy (tangent-to-identity).

At p 0 we put a resonant-saddle with linear part cxdy -ydx in a local chart where D = {x = 0}, whose holonomy along D

∆ 0 (h) = exp (2iπc) h + • • • = h + • • • is the inverse of m j=1 ∆ j .
It is possible to nd such a foliation near p 0 because of the realization part of MartinetRamis theorem [START_REF] Martinet | Classication analytique des équations diérentielles non linéaires résonnantes du premier ordre[END_REF].

The fact that all these local ingredients can be glued together to form the reduction of a foliation in C 2 , 0 follows from a slightly more general discussion than the one presented further down in Section 2.4, but is nonetheless folklorally true (we refer to [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF] for details).

Adapted foliated block for non-degenerate elementary singularities

We will not go into full details, and content ourselves with proving that a solitary non-degenerate elementary singularity is incompressible. The construction of a full-edged foliated adapted block containing this singular point can become technical, and can be safely ignored for these singularities.

The main point is that for any leaf L the trace of cl (L) on the boundary of a block is connected, which guarantees 1-connectedness (FB4).

Up to change the local variables, we may assume that a foliation F with non-zero eigenratio λ is induced by

ω R := λxdy -y (1 + R) dx
where R ∈ xC {x, y}. Let V be a polydisk ρ 0 D × r 0 D so small that:

• R is holomorphic on a neighborhood of cl (V);

• ||R|| V < 1.
We consider the domain

V * := V\ {x = 0} ,
on which F is everywhere transverse to the bers of Π : (x, y) -→ x, and go the universal covering Proposition. For each 0 < ρ ≤ ρ 0 and 0 < r ≤ r 0 we set U (ρ, r) := ρD × rD. Every leaf of F := E * F| U (ρ,r) is simply connected.

E : Ṽ -→ V * (z, y) -→ (exp z, y) .
Here the local separatrix set S of F coincides with B ∩ {xy = 0}, so that the Milnor tubes T η are simple to describe and they obviously satisfy the properties required by the incompressibility denition.

Therefore it only remains to prove the proposition for V := U (ρ, r).

Denition. Being given z * ∈ Π Ṽ we call stability beam of vertex z * and opening π 2 > δ > 0 the region of Ṽ given by

S λ (z * , δ) := z * -tθ λ |λ| : |arg θ| < δ , t ≥ 0 ∩ Π Ṽ z * .
The name of stability beam is justied by the following lemma.

Lemma. Take ρ > 0 and r > 0 such that M := sup Proof. It is a simple variational argument: because of the transversality between Π and F, it is sucient to ensure that a local solution z → y (z) never escapes rD. But this is clear since in a stability beam the modulus of y decreases.

Remark. Existence of stability beams impose a really strong condition on the shape of the boundary of a leaf: it cannot be too irregular (conic convexity). Therefore the universal covering of a typical leaf is very much alike Figure 5. Let us prove now the proposition (see Figure 6). For a loop γ within a leaf L of F we set γ := Π • γ its projection whose range is a compact contained in a strip {a ≤ (z) ≤ b} for two real numbers a ≤ b < ln ρ. Any stability beam S λ (γ (t) , δ) intersects one or the other line bounding the strip, say { (z) = a} to x ideas, by following a line of direction ϑ ∈ S 1 . For t ∈ [0, 1] we consider a parameterization s ∈ [0, 1] → h s (t) of the segment linking γ (t) to { (z) = a} following the direction ϑ ∈ S 1 . Then (h s ) s∈[0,1] is a free homotopy between γ and a path whose image is a segment I. Since the homotopy takes place in the union of stability beams it lifts in the leaf L as an homotopy between γ and a path tangent to F| Π-1 (I) . But the latter is a smooth real 1-dimensional foliation, transverse to the projection Π: since I is contractible its leaves also are, so that γ is homotopically trivial in L.

Adapted foliated block for (convergent) saddle-nodes

We repeat the same procedure as before but for saddle-nodes. Up to change the local variables, we may assume that the foliation F is induced by

ω R := x k+1 dy -y (1 + R) dx
where R ∈ xC {x, y} (we do not consider the case of a divergent saddle-node here).

Fix a point p * := (z * , y * ) ∈ Ṽ. For θ ∈ S 1 we build the path z θ : t ≥ 0 → z θ (t) solution of żθ (t) = -θ exp (kz θ (t))

with initial value z θ (0) = z * . Implicitly:

exp (kz θ (t)) = exp (kz * ) 1 + kθt exp (kz * )
.

Also:

(z θ (t)) ∼ t→+∞ -1 k ln t (z θ (t)) ∼ t→+∞ (z * ) -1 k arg θ .
Yet it may happen that before going to -∞ the real part of z θ exceed ln ρ (it is particularly the case when θ exp (kz * ) < 0 since then exp (kz θ ) admits a pole).

Denition. We call stability beam of vertex z * and opening π 2 > δ > 0 the region of Ũ (ρ, r) containing z * and given by S 0 (z * , δ) := z θ (t) : |arg θ| < δ , t ≥ 0 , (∀τ ≤ t) z θ (τ ) ∈ Ũ .

As before we can lift in a leaf any path included in a stability beam.

Remark. Here again the boundary of a leaf has a conic convexity property. As a consequence the universal covering of a typical leaf looks like what happens in Figure 9. The presence of tongues with innite extent on the left comes from the saddle part. Indeed in the sectors

arg x k -π < π 2 ,
bounded by dashed lines in the gure, the y-coordinate of the leaf is of order exp -1

kx k and tends rapidly to innity when x nears the singularity. On the contrary the leaves over node sectors arg x k < π 2 tend atly to 0 (see e.g. [START_REF] Teyssier | Analytical classication of singular saddle-node vector elds[END_REF]). We prove now that a leaf of F ω R is simply connected. The strategy is similar to that of non- degenerate singularities, but the fact that the direction of a stability beam is not constant brings in more subtlety. It is sucient to build a free homotopy (h s ) s∈[0,1] between the projection γ := Π • γ of a tangent cycle γ and a path bounding a region with empty interior, such that for all xed t the path s → h s (t) lies in S λ (h 0 (t) , δ).

The process is depicted in Figure 10 and is done in two steps.

• Parts of the range of γ contained in the saddle strips {cos (k (z)) ≤ 0} are sent within {cos (kz) = 0} ∪ { (z) = ln ρ} by following paths z 1 .

• Parts of the range of γ contained within the node strips {cos (k (z)) ≥ 0} are sent within { (z) = a}∪Γ following paths z 1 , where Γ is the union of the ranges of trajectories z 1 emanating from the points ln ρ + i π /2k + i π /kZ.

Stubborn paths

We explain now why a saddle-node cannot be oriented arbitrarily in the reduction tree in order to invoke the localization theorem. It is because the horizontal component ∂U (ρ, r) ∩ {|y| = r} is not 1-connected in U (ρ, r).

Denition. A tangent path Γ having endpoints in a single transverse {y = cst} and whose lift Γ in the universal covering links two distinct components of cl L ∩ {|y| = r}, will be called a stubborn path. Because it will not let itself be pushed out of the block.

An example of a compressible foliation 2.4.1 Local construction

This example is based on the model saddle-node ω 0 (x, y) := x 2 dy -ydx , but the construction generalizes straightforwardly for higher codimension x k+1 dy -ydx. We exploit the fact that there exists stubborn paths (see previous Section), that is, paths which cannot be pushed to the boundary of leaves L because ∂L ∩ ∂B is not connected. 

Π(p) Π(q) Π( P ) Π( ~ ) Π( g ∆(P )) Π(p) Π(q)
Figure 11: Projection (in logarithmic coordinates) of a stubborn path Γ (bold path at the top of the left-hand picture), to be compared with the projection of a tangent path carrying the strong holonomy ∆ (bottom). The gray curves correspond to isoargument curves of the y-coordinate of the leaf, dashed ones indicating dierences of 2π. On the right-hand picture is depicted a path which is not stubborn: for x k * > 0 small enough the boundary of the leaf is connected. The foliation F ω0 admits a family (Γ c ) c∈]0,1[ of stubborn paths

Γ c : [-π, π] -→ cl (D × D) t -→ c exp (it) , exp - 1 c (1 + exp (-it))
.

The endpoint (-c , 1) belongs to the same transverse disk {y = 1}. The geometrical explanation for these stubborn paths is the presence in the equation

y dx dy = x 2
of a movable pole

x (y) = -c c log y + 1 .

Their projection on the {x = 0} line is shaped like a bean (say, if c > 1 π ), with 0 winding number around {y = 0} but with winding number 1 around the movable pole y c := exp -1 /c (see Figure 12). These cycles do not oer candidates for incompressibility failure since each Γ c is not homotopically trivial in cl (D × D) \ {x = 0}. By adjoining to them another singularity, though, we will be able to produce the expected cycles.

Let us pull-back ω 0 by the degree-2 mapping ψ : (x, y) -→ x, 1 -y 2 which brings ω 0 to ψ * ω 0 = y 2 -1 dx -2yx 2 dy . This foliation has three separatrices: {x = 0} and {y = ±1}. The path Γ c lifts through ψ as the pair of paths

Γ ± c : [-π, π] -→ D × C t -→ c exp (it) , ± 1 -exp - 1 c (1 + exp (-it))
.

Since the image of Γ c is contained in cl (D × D) we can consider a xed determination of the square-root on the cut C\R <0 . Consider next the loop

γ c : [-2π, 2π] -→ D × C t ≤ 0 -→ Γ - c (π + t) t ≥ 0 -→ Γ + c (π -t) .
By construction this loop does not wind around any branch of x y 2 -1 = 0 (see Figure 13). Being the concatenation of two distant stubborn paths it cannot be trivial in the leaf of F. Since c can be arbitrarily close to 0, the foliation F ψ * ω0 is not incompressible in any neighborhood of S := {x = 0}. 

Embedding the local model into a singularity reduction

Let us explain now how to glue together these two blocks around p 0 = (0, -1) and p 1 = (0, 1) so that F ψ * ω0 embeds in the reduction of a germ of a singular foliation near (0, 0). Obviously we need to conform to Camacho-Sad index formula, therefore we need a third singularity p 2 since CS F, S, p 0 = CS F, S, p 1 = 0 .

Besides, the holonomy of F ψ * ω0 along the loop γ :

t ∈ [0, 2π] → (0, 2 exp (it)) is conjugate to ∆ •2 0 ,
where ∆ 0 is the strong holonomy of ω 0 , and this holonomy must be the inverse of that of p 2 because γ winds -1 times around {y = 0}. We may choose p 2 to be a resonant-saddle tangent to xdy + ydx with holonomy ∆ •-2 0 (see the realization part of [START_REF] Martinet | Classication analytique des équations diérentielles non linéaires résonnantes du premier ordre[END_REF]).

We invoke now an upgraded form of a realization theorem by A. LinsNeto. This version has been written by F. Loray in [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF]. Instead of giving a general statement we provide one which is adapted to our framework.

Theorem. [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF]p159] Let G := ∆ 0 , • • • , ∆ n < Diff (C, 0) be given with n ∈ N >0 and such that n =0 ∆ = Id. Let a collection of reduced singular foliations F , each one with a distinguished separatrix S , so that in a convenient local coordinates the holonomy of F along S be precisely ∆ . Suppose nally that the identity n =0 CS (F , S , p ) = -1 holds. Then there exists a germ of a holomorphic non-dicritic foliation F such that:

1. F is reduced after one blow-up and admits n+1 singular points (p ) ≤n on the exceptional divisor D P 1 (C); We refer to Figure 14. Start from a H-like partially hollowed-out innite vertical cylinder (it contains disk × I for some open interval I) and send it in a C ∞ fashion to a full innite vertical cylinder C. Next, halve the cylinder to obtain two closed regions H ± whose union is C. Each one of these halves is naturally endowed with a C ∞ foliation F ± coming from the horizontal foliation by planes in the H-like domain. This foliation is transverse to the bers of Π.

If h is a C ∞ -dieomorphism of R which is the identity on I then we can glue the two halves by identifying a ber R Σ ⊂ H -to h (Σ) = Σ ⊂ H + and gluing together the corresponding leaves of F ± . We obtain a new C ∞ -cylinder in R 3 , endowed with a C ∞ foliation whose holonomy is essentially h.

This situation is morally wrong: one should expect non-trivial holonomy to be induced by some kind of singularity. For instance, it cannot happen with locally trivial brations over simply connected bases. We show below that in the (planar) holomorphic world morality is preserved from this heathen behaviors: parts of the denition set of the holonomy which corresponds to dierent holonomy dynamics are topologically isolated (they belong to dierent components).

Holonomy regions

We consider the following setting: a holomorphic foliation F on a product of analytic disks U × V, which is transverse everywhere to the bers of the projection Π : U × V -→ U (x, y) -→ x .

In particular F is regular. Up to uniformize the y-variable we may assume that V = D. In the following we x 0 < r < 1.

Denition. Being given a loop γ with range in U and base-point x * , we consider the holonomy region A γ ⊂ Π -1 (x * ) dened as the set of initial values y * ∈ rD such that the path γ lifts in the leaf Remark. For transversality reasons, this is equivalent to requiring that the lifted path does not reach U × rS 1 .

Proposition.

A γ is open and simply connected.

Proof.

Example. For simplicity take r := +∞ (i.e. V := C). We refer to Figure 15.

1. xdy = y k+1 dx yields the identity and rotations of period k.

2. dy = exp (y) dx yields the identity and translations by 2iπ.

Maximal ow-box theorem

For any loop γ ⊂ U we dene the analytic closed disc U γ as the simply connected compact region bounded by γ. What we observed in the previous examples is that the dierent connected components of A γ are separated by the trace in the transverse Π -1 (x * ) of the movable singularities crossing γ.

Let us make this statement more general.

Theorem. Take a leaf L 0 of F and a loop Γ ⊂ L 0 which is homotopically trivial in L 0 (therefore so is γ := Π • Γ in U γ ). Let (x * , y * ) be the base-point of Γ and consider the connected component A * of A γ containing y * . Let Ω * γ := Sat F| Uγ ×rD (A * ) ⊂ U × rD. 

Figure 1 :

 1 Figure 1: A saddle-node in a corner: not strongly presentable

Figure 2 :

 2 Figure 2: An initial component. Numbers indicate the Chern class of the components.

Figure 3 :

 3 Figure 3: A dead branch obtained by reducing a single curve (bold).

  Objects hatted with a ~ will indicate pulled-back objects in the universal covering, in particular we use the projection Π : (z, y) -→ z . f<(z) = ln ρg z * z * θ λ jλj 2δ S λ (z * ; δ)

Figure 4 :Figure 5 :

 45 Figure 4: A stability beam (grayed-out region).

(

  x,y)∈U (ρ,r) |R (x, y)| < 1 and let δ := arccos (M ). Then for all p * = (z * , y * ) ∈ Ũ, every path γ based at z * and included in S λ (z * , δ) lifts through Π in the leaf of F containing p * .

Figure 6 :

 6 Figure 6: Homotopy within stability beams from γ to I.

Figure 7 :Figure 8 :

 78 Figure 7: Integral curves z 1 . We obtain z θ by translating z 1 by -i arg θ k

  Figure 9: Universal covering of a typical leaf (complement of hatched regions).

γ

  Figure 10: Homotopy within stability beams from γ to Γ.

Figure 12 :

 12 Figure 12: Projection of Γ c on {y = 0} (left-hand picture) and on {x = 0} (right-hand picture).

Figure 13 :

 13 Figure 13: Projection of γ c on {y = 0} (left) and on {x = 0} (right).

Figure 14 :

 14 Figure 14: Basic piece of a Hector foliation

Figure 15 :

 15 Figure 15: Left: example 1. Right: example 2. The separating bold lines are the set of initial values in Π -1 (1) for which a movable singularity is encountered when lifting γ in the foliation.

2 .

 2 There exists a holomorphic mapping Ψ ∈ Diff Ω * γ → C 2 , bered in the x-variable, such thatΨ * F = F ∂ ∂x .Proof. It uses the maximum modulus principle to discard Hector-like situations.

  2. there exists a germ of a transverse disk Σ attached to D at a regular point p such that the

	projective holonomy representation
	π 1 (D\ {p : 0 ≤ ≤ n} , p) → Diff (Σ, p)
	coincides with G;
	3. the local analytical type of E

* F near p is F ; 4. each separatrix S is included in D.

Remark. The above sum is nothing else but CamachoSad index formula. It is in general rather easy to prove that it holds. Yet Y. Il'Yashenko

[Il'97] 

described a subgroup ∆ 1 , ∆ 2 , ∆ 3 spanned by non-linearizable quasi-resonant mappings, such that ∆ 1 • ∆ 2 • ∆ 3 = Id, but the sum of CamachoSad indices of any local realization as the holonomy of a foliation F is always less than -2.