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Abstract

The ChaLearn AutoML Challenge1 (NIPS 2015 - ICML 2016) consisted of six rounds of
a machine learning competition of progressive difficulty, subject to limited computational
resources. It was followed by one round of AutoML challenge (PAKDD 2018).

The AutoML setting differs from former model selection/hyper-parameter selection
challenges, such as the one we previously organized for NIPS 2006: the participants aim
to develop fully automated and computationally efficient systems, capable of being trained
and tested without human intervention, with code submission.

This paper analyzes the results of these competitions and provides details about the
datasets, which were not revealed to the participants. The solutions of the winners are
systematically benchmarked over all datasets of all rounds and compared with canonical
machine learning algorithms available in scikit-learn. All materials discussed in this paper
(data and code) have been made publicly available at http://automl.chalearn.org/.

1. The authors are in alphabetical order of last name, except the first author who did most of the writing
and the second author who produced most of the numerical analyses and plots.
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1. Introduction

Until about ten years ago, machine learning (ML) was a discipline little known to the public.
For ML scientists, it was a “sellers market”: they were producing hosts of algorithms in
search for applications and were constantly looking for new interesting datasets. Large
internet corporations accumulating massive amounts of data such as Google, Facebook,
Microsoft and Amazon have popularized the use of ML and data science competitions have
engaged a new generation of young scientists in this wake. Nowadays, government and
corporations keep identifying new applications of ML and with the increased availability
of open data, we have switched to a “buyers market”: everyone seems to be in need of a
learning machine. Unfortunately however, learning machines are not yet fully automatic: it
is still difficult to figure out which software applies to which problem, how to horseshoe-fit
data into a software and how to select properly (hyper-)parameters. The ambition of the
ChaLearn AutoML challenge series is to channel the energy of the ML community to reduce
step by step the need for human intervention in applying ML to a wide variety of practical
problems.

Full automation is an unbounded problem since there can always be novel settings,
which have never been encountered before. Our first challenges AutoML1 were limited to:

• Supervised learning problems (classification and regression).

• Feature vector representations.

• Homogeneous datasets (same distribution in the training, validation, and test set).

• Medium size datasets of less than 200 MBytes.

• Limited computer resources with execution times of less than 20 minutes per
dataset on an 8 core x86 64 machine with 56 GB RAM.

By doing that, we excluded unsupervised learning, active learning, transfer learning, and
causal discovery problems, which are all very dear to us and have been addressed in past
ChaLearn challenges (Guyon, 2011-2016), but which require each a different evaluation
setting, thus making result comparisons very difficult. We did not exclude the treatment of
video, images, text, and more generally time series and the selected datasets actually contain
several instances of such modalities. However, they were first preprocessed in a feature
representation, thus de-emphasizing feature learning. Still, learning from data pre-processed
in feature-based representations already covers a lot of grounds and a fully automated
method resolving this restricted problem would already be a major advance in the field.

Within this constrained setting, we included a variety of difficulties:

• Different data distributions: the intrinsic/geometrical complexity of the dataset.

• Different tasks: regression, binary classification, multi-class classification, multi-
label classification.

• Different scoring metrics: AUC, BAC, MSE, F1, etc. (see Section 4.2).
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• Class balance: Balanced or unbalanced class proportions.

• Sparsity: Full matrices or sparse matrices.

• Missing values: Presence or absence of missing values.

• Categorical variables: Presence or absence of categorical variables.

• Irrelevant variables: Presence or absence of additional irrelevant variables (distrac-
tors).

• Number Ptr of training examples: Small or large number of training examples.

• Number N of variables/features: Small or large number of variables.

• Ratio Ptr/N of the training data matrix: Ptr � N,Ptr = N or Ptr � N .

In this setting, the participants had to face many modeling/hyper-parameter choices. Some
other, equally important, aspects of automating machine learning were not addressed in this
challenge and are left for future research. Those include data “ingestion” and formatting,
pre-processing and feature/representation learning, detection and handling of skewed/biased
data, inhomogeneous, drifting, multi-modal, or multi-view data (hinging on transfer learn-
ing), matching algorithms to problems (which may include supervised, unsupervised, or
reinforcement learning, or other settings), acquisition of new data (active learning, query
learning, reinforcement learning, causal experimentation), management of large volumes of
data including the creation of appropriately sized and stratified training, validation, and
test sets, selection of algorithms that satisfy arbitrary resource constraints at training and
run time, the ability to generate and reuse workflows, and generating explicative reports.

This challenge series started with the NIPS 2006 “model selection game”2 (Guyon et al.,
2011), where the participants were provided with a machine learning toolbox based on the
Matlab toolkit CLOP (Alamdari and Guyon, 2006) built on top of “the Spider” pack-
age (Weston et al., 2007). The toolkit provided a flexible way of building models by
combining preprocessing, feature selection, classification and post-processing modules, also
enabling the building of ensembles of classifiers. The goal of the game was to build the
best hyper-model: the focus was on model selection, not on the development of new algo-
rithms. All problems were feature-based binary classification problems. Five datasets were
provided. The participants had to submit the schema of their model. The model selection
game confirmed the effectiveness of cross-validation (the winner invented a new variant
called cross-indexing) and pre-figured the need to focus more on search effectiveness with
the deployment by novel search techniques such as particle swarm optimization.

New in the 2015/2016 AutoML challenge, we introduced the notion of “task”: each
dataset was supplied with a particular scoring metric to be optimized and a time budget. We
initially intended to vary widely the time budget from dataset to dataset in an arbitrary way.
We ended up fixing it to 20 minutes for practical reasons (Except for Round 0 where the time
budget ranged from 100 to 300 seconds). However, because the datasets varied in size, this
put pressure on the participants to manage their allotted time. Other elements of novelty
included the freedom of submitting any Linux executable. This was made possible by using
automatic execution on the open-source platform Codalab3. To help the participants we

2. http://clopinet.com/isabelle/Projects/NIPS2006/

3. http://competitions.codalab.org
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provided a starting kit in Python based on the scikit-learn library (Pedregosa et al., 2011)4.
This induced many of them to write a wrapper around scikit-learn. This has been the
strategy of the winning entry “auto-sklearn” (Feurer et al., 2015a,b,c, 2018)5. Following the
AutoML challenge, we organized a “beat auto-sklearn” game on a single dataset (madeline),
in which the participants could provide hyper-parameters “by hand” to try to beat auto-
sklearn. But nobody could beat auto-sklearn! Not even their designers. The participants
could submit a json file which describes a sklearn model and hyper-parameter settings, via a
GUI interface. This interface usefully allows researchers who want to compare their search
methods with auto-sklearn to use the exact same set of hyper-models.

A large number of satellite events including bootcamps, summer schools, and workshops
have been organized in 2015/2016 around the AutoML challenge.6 The AutoML challenge
was part of the official selection of the competition program of IJCNN 2015 and 2016 and
the results were discussed at the AutoML and CiML workshops at ICML and NIPS in
2015 and 2016. Several publications accompanied these events: in (Guyon et al., 2015b)
we describe the details of the design of the AutoML challenge7. In (Guyon et al., 2015a)
and (Guyon et al., 2016) we review milestone and final results presented at the ICML 2015
and 2016 AutoML workshops. The 2015/2016 AutoML challenge had 6 rounds introducing
5 datasets each. We also organized a follow-up event for the PAKDD conference 20188 in
only 2 phases, with 5 datasets in the development phase and 5 datasets in the final “blind
test” round.

Going beyond the former published analyses, this paper presents systematic studies of
the winning solutions on all the datasets of the challenge and conducts comparisons with
commonly used learning machines implemented in scikit-learn. It provides unpublished
details about the datasets and reflective analyses.

2. Problem Formalization and Overview

2.1. Scope of the Problem

This challenge series focuses on supervised learning in ML and, in particular, solving clas-
sification and regression problems, without any further human intervention, within given
constraints. To this end, we released a large number of datasets pre-formatted in given fea-
ture representations (i.e., each example consists of a fixed number of numerical coefficients;
more in Section 3).

The distinction between input and output variables is not always made in ML appli-
cations. For instance, in recommender systems, the problem is often stated as making
predictions of missing values for every variable rather than predicting the values of a partic-
ular variable (Ricci et al., 2011). In unsupervised learning (Ghahramani, 2004), the purpose
is to explain data in a simple and compact way, eventually involving inferred latent variables
(e.g., class membership produced by a clustering algorithm).

4. http://scikit-learn.org/

5. https://automl.github.io/auto-sklearn/stable/

6. See http://automl.chalearn.org.
7. http://codalab.org/AutoML

8. https://www.4paradigm.com/competition/pakdd2018
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In the following, only the strict supervised learning setting where data present themselves
as identically and independently distributed input-output pairs, is considered. The models
used are limited to fixed-length vectorial representations, excluding problems of time series
prediction. Text, speech, and video processing tasks included in the challenge have been
preprocessed in suitable fixed-length vectorial representations.

The difficulty of the proposed tasks lies on the data complexity (class imbalance, spar-
sity, missing values, categorical variables). The testbed is composed of data from a wide
variety of domains. Although there exist ML toolkits that can tackle all these problems, it
still requires considerable human effort to find, for a given dataset, task, evaluation metric,
the methods and hyper-parameter settings that maximize performance subject to a compu-
tational constraint. The participant challenge is to create the perfect black box that removes
human interaction, alleviating the shortage of data scientists in the coming decade.

2.2. Full Model Selection

In what follows, we refer to participant solutions as hyper-models to indicate that they
are built from simpler components. For instance, for classification problems, participants
might consider a hyper-model that combines several classification techniques such as near-
est neighbors, linear models, kernel methods, neural networks, and random forests. More
complex hyper-models may also include preprocessing, feature construction, and feature
selection modules.

Generally, a predictive model of the form y = f(x;α) has:
• a set of parameters α = [α0, α1, α2, ..., αn];

• a learning algorithm (referred to as trainer), which serves to optimize the parameters
using training data;

• a trained model (referred to as predictor) of the form y = f(x) produced by the trainer;

• a clear objective function J(f), which can be used to assess the model’s performance on
test data.

Consider now the model hypothesis space defined by a vector θ = [θ1, θ2, ..., θn] of hyper-
parameters. The hyper-parameter vector may include not only variables corresponding to
switching between alternative models, but also modeling choices such as preprocessing pa-
rameters, type of kernel in a kernel method, number of units and layers in a neural network,
or training algorithm regularization parameters (Schölkopf and Smola, 2001). Some au-
thors refer to this problem as full model selection (Escalante et al., 2009; Sun et al., 2012),
others as the CASH problem (Combined Algorithm Selection and Hyperparameter opti-
mization) (Thornton et al., 2012). We will then denote hyper-models as

y = f(x;θ) = f(x;α(θ),θ), (1)

where the model parameter vector α is an implicit function of the hyper-parameter vector
θ obtained by using a trainer for a fixed value of θ, and training data composed of input-
output pairs {xi, yi}. The participants have to devise algorithms capable of training the
hyper-parameters θ. This may require intelligent sampling of the hyper-parameter space
and splitting the available training data into subsets for both training and evaluating the
predictive power of solutions—one or multiple times.

5



Guyon et al.

Input

Output

Hyperparameters

Parameters

(a)

Hyperparameters (θ)
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Figure 1: Bi-level optimization. (a) Representation of a learning machine with parameters and

hyper-parameters to be adjusted. (b) De-coupling of parameter and hyper-parameter

adjustment in two levels. The upper level objective J2 optimizes the hyper-parameters

θ; the lower objective J1 optimizes the parameters α.

As an optimization problem, model selection is a bi-level optimization program (Colson
et al., 2007; Dempe, 2002; Bennett et al., 2008); there is a lower objective J1 to train the
parameters α of the model, and an upper objective J2 to train the hyper-parameters θ,
both optimized simultaneously (see Figure 1). As a statistics problem, model selection is a
problem of multiple testing in which error bars on performance prediction ε degrade with the
number of models/hyper-parameters tried or, more generally, the complexity of the hyper-
model C2(θ). A key aspect of AutoML is to avoid overfitting the upper-level objective J2

by regularizing it, much in the same way as lower level objectives J1 are regularized.
The problem setting also lends itself to using ensemble methods, which let several “sim-

ple” models vote to make the final decision (Breiman, 2001; Friedman, 2001; Caruana et al.,
2004). In this case, the parameters θ may be interpreted as voting weights. For simplicity
we lump all parameters in a single vector, but more elaborate structures, such as trees or
graphs can be used to define the hyper-parameter space (Thornton et al., 2013).

2.3. Optimization of Hyper-parameters

Everyone who has modeled data has had to face some common modeling choices: scaling,
normalization, missing value imputation, variable coding (for categorical variables), vari-
able discretization, degree of nonlinearity and model architecture, among others. ML has
managed to reduce the number of hyper-parameters and produce black-boxes to perform
tasks such as classification and regression (Hastie et al., 2001; Duda et al., 2001). Still, any
real-world problem requires at least some preparation of the data before it can be fitted
into an “automatic” method, hence requiring some modeling choices. There has been much
progress on end-to-end automatic ML for more complex tasks such as text, image, video,
and speech processing with deep-learning methods (Bengio et al., 2013). However, even
these methods have many modeling choices and hyper-parameters.
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Figure 2: Approaches to two-level inference. (a) Filter methods select the hyper-parameters

without adjusting the learner parameters. (No arrows indicates no parameter training.)

(b) Wrapper methods select the hyper-parameters using trained learners, treating

them as black-boxes. (c) Embedded methods use knowledge of the learner structure

and/or parameters to guide the hyper-parameter search.

While producing models for a diverse range of applications has been a focus of the ML
community, little effort has been devoted to the optimization of hyper-parameters. Com-
mon practices that include trial and error and grid search may lead to overfitting data for
small datasets or underfitting data for large datasets. By overfitting we mean producing
models that perform well on training data but perform poorly on unseen data, i.e., models
that do not generalize. By underfitting we mean selecting too simple a model, which does
not capture the complexity of the data, and hence performs poorly both on training and
test data. Despite well-optimized off-the-shelf algorithms for optimizing parameters, end-
users are still responsible for organizing their numerical experiments to identify the best of
a number of models under consideration. Due to lack of time and resources, they often per-
form model/hyper-parameter selection with ad hoc techniques. (Ioannidis, 2005; Langford,
2005) examine fundamental, common mistakes such as poor construction of training/test
splits, inappropriate model complexity, hyper-parameter selection using test sets, misuse of
computational resources, and misleading test metrics, which may invalidate an entire study.
Participants must avoid these flaws and devise systems that can be blind tested.

An additional twist of our problem setting is that code is tested with limited computa-
tional resources. That is, for each task an arbitrary limit on execution time is fixed and a
maximum amount of memory is provided. This places a constraint on the participant to
produce a solution in a given time, and hence to optimize the model search from a com-
putational point of view. In summary, participants have to jointly address the problem
of over-fitting/under-fitting and the problem of efficient search for an optimal solution, as
stated in (Jordan, 2013). In practice, the computational contraints have turned out to be
far more challenging to challenge participants than the problem of overfitting. Thus the
main contributions have been to devise novel efficient search techniques with cutting edge
optimization methods.
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2.4. Strategies of Model Search

Most practitioners use heuristics such as grid search or uniform sampling to sample θ space,
and use k-fold cross-validation as the upper-level objective J2 (Dietterich, 1998). In this
framework, the optimization of θ is not performed sequentially (Bergstra and Bengio, 2012).
All the parameters are sampled along a regular scheme, usually in linear or log scale. This
leads to a number of possibilities that exponentially increases with the dimension of θ.
k-fold cross-validation consists of splitting the dataset into k folds; (k − 1) folds are used
for training and the remaining fold is used for testing; eventually, the average of the test
scores obtained on the k folds is reported. Note that some ML toolkits currently support
cross-validation. There is a lack of principled guidelines to determine the number of grid
points and the value of k (with the exception of Dietterich (1998)), and there is no guidance
for regularizing J2, yet this simple method is a good baseline approach.

Efforts have been made to optimize continuous hyper-parameters with bilevel optimiza-
tion methods, using either the k-fold cross-validation estimator (Bennett et al., 2008; Moore
et al., 2011) or the leave-one-out estimator as the upper-level objective J2. The leave-one-
out estimator may be efficiently computed, in closed form, as a by-product of training
only one predictor on all the training examples (e.g., virtual-leave-one-out (Guyon et al.,
2006b)). The method was improved by adding a regularization of J2 (Cawley and Talbot,
2007). Gradient descent has been used to accelerate the search, by making a local quadratic
approximation of J2 (Keerthi et al., 2007). In some cases, the full J2(θ) can be computed
from a few key examples (Hastie et al., 2004; Park and Hastie, 2007). Other approaches
minimize an approximation or an upper bound of the leave-one-out error, instead of its exact
form (Opper and Winther, 2000; Vapnik and Chapelle, 2000). Nevertheless, these methods
are still limited to specific models and continuous hyper-parameters.

An early attempt at full model selection was the pattern search method that uses k-
fold cross-validation for J2. It explores the hyper-parameter space by steps of the same
magnitude, and when no change in any parameter further decreases J2, the step size is
halved and the process repeated until the steps are deemed sufficiently small (Momma
and Bennett, 2002). (Escalante et al., 2009) addressed the full model selection problem
using Particle Swarm Optimization, which optimizes a problem by having a population
of candidate solutions (particles), and moving these particles around the hyper-parameter
space using the particle’s position and velocity. k-fold cross-validation is also used for
J2. This approach retrieved the winning model in ∼ 76% of the cases. Overfitting was
controlled heuristically with early stopping and the proportion of training and validation
data was not optimized. Although progress has been made in experimental design to reduce
the risk of overfitting (Ioannidis, 2005; Langford, 2005), in particular by splitting data in a
principled way (Statnikov et al., 2008), to our knowledge, no one has addressed the problem
of optimally splitting data.

While regularizing the second level of inference is a recent addition to the frequentist ML
community, it has been an intrinsic part of Bayesian modeling via the notion of hyper-prior.
Some methods of multi-level optimization combine importance sampling and Monte-Carlo
Markov Chains (Andrieu et al., 1999). The field of Bayesian hyper-parameter optimiza-
tion has rapidly developed and yielded promising results, in particular by using Gaussian
processes to model generalization performance (Snoek et al., 2012; Swersky et al., 2013).
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But Tree-structured Parzen Estimator (TPE) approaches modeling P (x|y) and P (y) rather
than modeling P (y|x) directly (Bergstra et al., 2011, 2013) have been found to outperform
GP-based Bayesian optimization for structured optimization problems with many hyper-
parameters including discrete ones (Eggensperger et al., 2013). The central idea of these
methods is to fit J2(θ) to a smooth function in an attempt to reduce variance and to esti-
mate the variance in regions of the hyper-parameter space that are under-sampled to guide
the search towards regions of high variance. These methods are inspirational and some of
the ideas can be adopted in the frequentist setting. For instance, the random-forest-based
SMAC algorithm (Hutter et al., 2011), which has helped speed up both local search and
tree search algorithms by orders of magnitude on certain instance distributions, has also
been found to be very effective for the hyper-parameter optimization of machine learning
algorithms, scaling better to high dimensions and discrete input dimensions than other al-
gorithms (Eggensperger et al., 2013). We also notice that Bayesian optimization methods
often combine with other techniques such as meta-learning and ensemble methods (Feurer
et al., 2015b) in order to gain advantage in some challenge settings with time budget limit
(Guyon et al., 2015a). Some of these methods consider jointly the two-level optimization
and take time cost as a critical guidance for hyper-parameter search (Swersky et al., 2014;
Klein et al., 2017).

Besides Bayesian optimization, several other families of approaches exist in the litera-
ture and have gained much attention with the recent rise of deep learning. Ideas borrowed
from reinforcement learning have recently been used to construct optimal neural network
architectures (Zoph and Le, 2016; Baker et al., 2016). These approaches formulate the
hyper-parameter optimization problem in a reinforcement learning flavor, with for example
states being the actual hyper-parameter setting (e.g., network architecture), actions being
added or deleting a module (e.g., a CNN layer or a pooling layer), and reward being the
validation accuracy. They can then apply off-the-shelf reinforcement learning algorithms
(e.g., RENFORCE, Q-learning, Monte-Carlo Tree Search) to solve the problem. Other ar-
chitecture search methods use evolutionary algorithms (Real et al., 2017; Assunção et al.,
2018). These approaches consider a set (population) of hyper-parameter settings (individu-
als), modify (mutate and reproduce) and eliminate unpromising settings according to their
cross-validation score (fitness). After several generations, the global quality of the popu-
lation increases. One important common point of reinforcement learning and evolutionary
algorithms is that they both deal with the exploration-exploitation trade-off. Despite the
impressive results, these approaches require huge amount of computational resources and
some (especially evolutionary algorithms) are hard to scale. (Pham et al., 2018) recently
proposed the weight sharing among child models to largely speed up (Zoph and Le, 2016)
while achieving comparable results.

Note that splitting the problem of parameter fitting into two levels can be extended to
multiple levels, at the expense of extra complexity—i.e., need for a hierarchy of data splits
to perform multiple or nested cross-validation (Efron, 1983), insufficient data to train and
validate at the different levels, and increase of the computational load.

Table 1 shows a typical example of multi-level parameter optimization in a frequentist
setting. We assume that we are using an ML toolbox with two learning machines: Kridge
(kernel ridge regression) and Neural (a neural network a.k.a. “deep learning” model). At
the top level we use a test procedure to assess the performance of the final model (this is not

9
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Table 1:
Typical example of multi-level inference algorithm. The top-level algorithm Valida-

tion({GridCV(Kridge, MSE), GridCV(Neural, MSE)}, MSE) is decomposed into its elements recur-

sively. Calling the method “train” on it using data DTrV a results in a function f , then tested with

test(f,MSE,DTe). The notation [.]CV indicates that results are averages over multiple data splits (cross-

validation). NA means “not applicable”. A model family F of parameters α and hyper-parameters θ is

represented as f(θ,α). We derogate to the usual convention of putting hyper-parameters last, the hyper-

parameters are listed in decreasing order of inference level. F , thought of as a bottom level algorithm, does

not perform any training: train(f(θ,α)) just returns the function f(x;θ,α).

Level Algorithm Parameters Optimization Data
Fixed Varying performed split

NA f All All Performance assessment
(no inference).

DTe

4 Validation None All Final algorithm selection
using validation data.

D =
[DTr, DV a]

3 GridCV model
index i

θ, γ,α 10-fold CV on regularly
sampled values of θ.

DTr =
[Dtr, Dva]CV

2 Kridge(θ)
Neural(θ)

i,θ γ,α Virtual LOO CV to select
regularization parameter γ

Dtr =
[D
\{d}
tr , d]CV

1 Kridge(θ, γ)
Neural(θ, γ)

i,θ, γ α Matrix inversion of gradi-
ent descent to compute α.

Dtr

0 Kridge(θ, γ,α)
Neural(θ, γ,α)

All None NA NA

10
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an inference level). The top-level inference algorithm Validation({GridCV(Kridge, MSE),
GridCV(Neural, MSE)}, MSE) is decomposed into its elements recursively. Validation
uses the data split D = [DTr, DV a] to compare the learning machines Kridge and Neural
(trained using DTr on the validation set DV a, using the mean-square error (MSE) evaluation
function. The algorithm GridCV, a grid search with 10-fold cross-validation (CV) MSE
evaluation function, then optimizes the hyper-parameters θ. Internally, both Kridge and
Neural use virtual leave-one-out (LOO) cross-validation to adjust γ and a classical L2

regularized risk functional to adjust α.
Borrowing from the conventional classification of feature selection methods (Kohavi and

John, 1997; Blum and Langley, 1997; Guyon et al., 2006b), model search strategies can
be categorized into filters, wrappers, and embedded methods (see Figure 2). Filters are
methods for narrowing down the model space, without training the learner. Such meth-
ods include preprocessing, feature construction, kernel design, architecture design, choice
of prior or regularizers, choice of noise model, and filter methods for feature selection. Al-
though some filters use training data, many incorporate human prior knowledge of the task
or knowledge compiled from previous tasks. Recently, (Bardenet et al., 2013) proposed
to apply collaborative filtering methods to model search. Wrapper methods consider
learners as a black-box capable of learning from examples and making predictions once
trained. They operate with a search algorithm in the hyper-parameter space (grid search
or stochastic search) and an evaluation function assessing the trained learner’s performance
(cross-validation error or Bayesian evidence). Embedded methods are similar to wrap-
pers, but they exploit the knowledge of the learning machine algorithm to make the search
more efficient. For instance, some embedded methods compute the leave-one-out solution
in a closed form, without leaving anything out, i.e., by performing a single model training
on all the training data (e.g., (Guyon et al., 2006b)). Other embedded methods jointly
optimize parameters and hyper-parameters (Keerthi et al., 2007; Moore et al., 2009, 2011).

In summary, many authors focus only on the efficiency of search, ignoring the problem of
overfitting the second level objective J2, which is often chosen to be k-fold cross-validation
with an arbitrary value for k. Bayesian methods introduce techniques of overfitting avoid-
ance via the notion of hyper-priors, but at the expense of making assumptions on how the
data were generated and without providing guarantees of performance. In all the prior ap-
proaches to full model selection we know of, there is no attempt to treat the problem as the
optimization of a regularized functional J2 with respect to both (1) modeling choices and
(2) data split. Much remains to be done to jointly address statistical and computational
issues. The AutoML challenge series offers benchmarks to compare and contrast methods
addressing these problems, free of the inventor/evaluator bias.

3. Data

We gathered a first pool of 70 datasets during the summer 2014 with the help of numerous
collaborators and ended up selecting 30 datasets for the 2015/2016 challenge (see Table 2
and Appendix B), chosen to illustrate a wide variety of domains of applications: biology and
medicine, ecology, energy and sustainability management, image, text, audio, speech, video
and other sensor data processing, Internet social media management and advertising, market
analysis and financial prediction. We preprocessed data to obtain feature representations
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Phase DATASET Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

1 1 ADA 1 0.67 0 0 0 41471 415 4147 48 86.39
1 2 ARCENE 0.22 0.54 0 0 0 700 100 100 10000 0.01
1 3 GINA 1 0.03 0.31 0 0 31532 315 3153 970 3.25
1 4 GUILLERMO 0.33 0.53 0 0 0 5000 5000 20000 4296 4.65
1 5 RL 0.10 0 0.11 1 0 24803 0 31406 22 1427.5

2 1 PM 0.01 0 0.11 1 0 20000 0 29964 89 224.71
2 2 RH 0.04 0.41 0 1 0 28544 0 31498 76 414.44
2 3 RI 0.02 0.09 0.26 1 0 26744 0 30562 113 270.46
2 4 RICCARDO 0.67 0.51 0 0 0 5000 5000 20000 4296 4.65
2 5 RM 0.001 0 0.11 1 0 26961 0 28278 89 317.73

Table 3: Datasets of the 2018 AutoML challenge. All tasks are binary classification
problems. The metric is the AUC for all tasks. The time budget is also the same
for all datasets: 1200 s. Phase 1 was the development phase and phase 2 the final
“blind test” phase.

(i.e., each example consists of a fixed number of numerical coefficients). Text, speech, and
video processing tasks were included in the challenge, but not in their native variable length
representations.

For the 2018 challenge, three datasets from the first pool (but unused in the first chal-
lenge) were selected and 7 new datasets collected by the new organizers and sponsors were
added (see Table 3 and Appendix C).

Some datasets were obtained from public sources, but they were reformatted into new
representations to conceal their identity, except for the final round of the 2015/2016 chal-
lenge and the final phase of the 2018 challenge, which included completely new data.

In the 2015/2016 challenge, data difficulty progressively increased from round to round.
Round 0 introduced five (public) datasets from previous challenges illustrating the various
difficulties encountered in subsequent rounds:
Novice. Binary classification problems only. No missing data; no categorical features;
moderate number of features (< 2, 000); balanced classes. Challenge lies in dealing with
sparse and full matrices, presence of irrelevant variables, and various Ptr/N .

Intermediate. Binary and multi-class classification problems. Challenge lies in dealing
with unbalanced classes, number of classes, missing values, categorical variables, and up to
7,000 features.

Advanced. Binary, multi-class, and multi-label classification problems. Challenge lies in
dealing with up to 300,000 features.

Expert. Classification and regression problems. Challenge lies in dealing with the entire
range of data complexity.

Master. Classification and regression problems of all difficulties. Challenge lies in learning
from completely new datasets.

The datasets of the 2018 challenge were all binary classification problems. Validation
partitions were not used because of the design of this challenge, even when they were
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available for some tasks. The three reused datasets had similar difficulty as those of rounds
1 and 2 of the 2015/2016 challenge. However, the 7 new data sets introduced difficulties
that were not present in the former challenge. Most notably an extreme class imbalance,
presence of categorical features and a temporal dependency among instances that could be
exploited by participants to develop their methods9. The datasets from both challenges are
downloadable from http://automl.chalearn.org/data.

4. Challenge Protocol

In this section, we describe design choices we made to ensure the thoroughness and fairness of
the evaluation. As previously indicated, we focus on supervised learning tasks (classification
and regression problems), without any human intervention, within given time and computer
resource constraints (Section 4.1), and given a particular metric (Section 4.2), which varies
from dataset to dataset. During the challenges, the identity and description of the datasets
is concealed (except in the very first round or phase where sample data is distributed) to
avoid the use of domain knowledge and to push participants to design fully automated ML
solutions. In the 2015/2016 AutoML challenge, the datasets were introduced in a series
of rounds (Section 4.3), alternating periods of code development (Tweakathon phases) and
blind tests of code without human intervention (AutoML phases). Either results or code
could be submitted during development phases, but code had to be submitted to be part
of the AutoML “blind test” ranking. In the 2018 edition of the AutoML challenge, the
protocol was simplified. We had only one round in two phases: a development phase in
which 5 datasets were released for practice purposes, and a final “blind test” phase with 5
new datasets that were never used before.

4.1. Time Budget and computational resources

The Codalab platform provides computational resources shared by all participants. We
used up to 10 compute workers processing in parallel the queue of submissions made by
participants. Each compute worker was equipped with 8 cores x86 64. Memory was in-
creased from 24 GB to 56 GB after round 3 of the 2015/2016 AutoML challenge. For the
2018 AutoML challenge computing resources were reduced, as we wanted to motivate the
development of more efficient yet effective AutoML solutions. We used 6 compute workers
processing in parallel the queue of submissions. Each compute worker was equipped with 2
cores x86 64 and 8 GB of memory.

To ensure fairness, when a code submission was evaluated, a compute worker was ded-
icated to processing that submission only, and its execution time was limited to a given
time budget (which may vary from dataset to dataset). The time budget was provided
to the participants with each dataset in its info file. It was generally set to 1200 seconds
(20 minutes) per dataset, for practical reasons, except in the first phase of the first round.
However, the participants did not know this ahead of time and therefore their code had
to be capable to manage a given time budget. The participants who submitted results
—instead of code— were not constrained by the time budget since their code was run on

9. In RL, PM, RH, RI and RM datasets instances were chronologically sorted, this information was made
available to participants and could be used for developing their methods.
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their own platform. This was potentially advantageous for entries counting towards the
Final phases (immediately following a Tweakathon). Participants wishing to also enter the
AutoML (blind testing) phases, which required submitting code, could submit both results
and code (simultaneously). When results were submitted, they were used as entries in the
on-going phase. They did not need to be produced by the submitted code; i.e. if a partici-
pant did not want to share personal code, he/she could submit the sample code provided by
the organizers together with his/her results. The code was automatically forwarded to the
AutoML phases for “blind testing”. In AutoML phases, result submission was not possible.

The participants were encouraged to save and submit intermediate results so we could
draw learning curves. This was not exploited during the challenge. But we study learn-
ing curves in this paper to evaluate the capabilities of algorithms to quickly attain good
performances.

4.2. Scoring Metrics

The scores are computed by comparing submitted predictions to reference target values.
For each sample i, i = 1 : P (where P is the size of the validation set or of the test set),
the target value is a continuous numeric coefficient yi for regression problems, a binary
indicator in {0, 1} for two-class problems, or a vector of binary indicators [yil] in {0, 1} for
multi-class or multi-label classification problems (one per class l). The participants had to
submit prediction values matching as closely as possible the target values, in the form of a
continuous numeric coefficient qi for regression problems and a vector of numeric coefficients
[qil] in the range [0, 1] for multi-class or multi-label classification problems (one per class l).

The provided starting kit contains an implementation in Python of all scoring metrics
used to evaluate the entries. Each dataset has its own scoring criterion specified in its
info file. All scores are normalized such that the expected value of the score for a random
prediction, based on class prior probabilities, is 0 and the optimal score is 1. Multi-label
problems are treated as multiple binary classification problems and are evaluated using the
average of the scores of each binary classification subproblem.

We first define the notation 〈·〉 for the average over all samples P indexed by i. That is,

〈yi〉 = (1/P )
P∑
i=1

(yi). (2)

The score metrics are defined as follows:
R2. The coefficient of determination is used for regression problems only. The metric is
based on the mean squared error (MSE) and the variance (VAR), and computed as

R2 = 1−MSE/VAR, (3)

where MSE = 〈(yi − qi)2〉 and VAR = 〈(yi −m)2〉, with m = 〈yi〉.
ABS. This coefficient is similar to R2 but based on the mean absolute error (MAE) and
the mean absolute deviation (MAD), and computed as

ABS = 1−MAE/MAD , (4)

where MAE = 〈abs(yi − qi)〉 and MAD = 〈abs(yi −m)〉.
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BAC. Balanced accuracy is the average of class-wise accuracy for classification problems—
and the average of sensitivity (true positive rate) and specificity (true negative rate) for
binary classification:

BAC =


1
2 [TP

P + TN
N ], for binary

1
C

C∑
i=1

TP i
Ni
, for multi-class

(5)

where P (N ) is the number of positive (negative) examples, TP (TN ) is the number of well
classified positive (negative) examples, C is the number of classes, TP i is the number of
well classified examples of class i and Ni the number of examples of class i.

For binary classification problems, the class-wise accuracy is the fraction of correct class
predictions when qi is thresholded at 0.5, for each class. For multi-label problems, the
class-wise accuracy is averaged over all classes. For multi-class problems, the predictions
are binarized by selecting the class with maximum prediction value arg maxl qil before com-
puting the class-wise accuracy.

We normalize the metric as follows:

|BAC | = (BAC −R)/(1−R), (6)

where R is the expected value of BAC for random predictions (i.e., R = 0.5 for binary
classification and R = (1/C) for C-class problems).

AUC. The area under the ROC curve is used for ranking and binary classification problems.
The ROC curve is the curve of sensitivity vs. 1-specificity at various prediction thresholds.
The AUC and BAC values are the same for binary predictions. The AUC is calculated for
each class separately before averaging over all classes. We normalize the metric as

|AUC| = 2AUC − 1. (7)

F1 score. The harmonic mean of precision and recall is computed as

F1 = 2 ∗ (precision ∗ recall)/(precision + recall), (8)

precision = true positive/(true positive + false positive) (9)

recall = true positive/(true positive + false negative) (10)

Prediction thresholding and class averaging is handled similarly as in BAC. We normalize
the metric as follows:

|F1| = (F1−R)/(1−R), (11)

where R is the expected value of F1 for random predictions (see BAC).

PAC. Probabilistic accuracy is based on the cross-entropy (or log loss) and computed as

PAC = exp(−CE ), (12)

CE =


average

∑
l log(qil), for multi-class

−〈yi log(qi),

+(1− yi) log(1− qi)〉, for binary and multi-label

(13)
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Class averaging is performed after taking the exponential in the multi-label case. We
normalize the metric as follows:

|PAC | = (PAC −R)/(1−R), (14)

where R is the score obtained using qi = 〈yi〉 or qil = 〈yil〉 (i.e., using as predictions the
fraction of positive class examples, as an estimate of the prior probability).

Note that the normalization of R2, ABS, and PAC uses the average target value qi = 〈yi〉
or qil = 〈yil〉. In contrast, the normalization of BAC, AUC, and F1 uses a random prediction
of one of the classes with uniform probability.

Only R2 and ABS are meaningful for regression; we compute the other metrics for
completeness by replacing the target values with binary values after thresholding them in
the mid-range.

Table 4: Phases of round n in the 2015/2016 challenge. For each dataset, one labeled training
set is provided and two unlabeled sets (validation set and test set) are provided for testing.

Phase in Goal Duration Submissions Data Leader- Prizes
round [n] board

scores
* AutoML[n] Blind Short NONE New datasets, Test Yes

test (code not set
of code migrated) downloadable results

Tweakathon[n] Manual Months Code and/ Datasets Validation No
tweaking or results downloadable set results

* Final[n] Results of Short NONE NA Test Yes
Tweakathon (results set
revealed migrated) results

4.3. Rounds and Phases in the 2015/2016 challenge

The 2015/2016 challenge was run in multiple phases grouped in six rounds. Round 0
(Preparation) was a practice round using publicly available datasets. It was followed by
five rounds of progressive difficulty (Novice, Intermediate, Advanced, Expert, and Master).
Except for rounds 0 and 5, all rounds included three phases that alternated AutoML and
Tweakathons contests. These phases are described in Table 4.

Submissions were made in Tweakathon phases only. The results of the latest submission
were shown on the leaderboard and such submission automatically migrated to the following
phase. In this way, the code of participants who abandoned before the end of the challenge
had a chance to be tested in subsequent rounds and phases. New participants could enter
at any time. Prizes were awarded in phases marked with a * during which there was no
submission. To participate in phase AutoML[n], code had to be submitted in Tweakathon[n-
1].

In order to encourage participants to try GPUs and deep learning, a GPU track spon-
sored by NVIDIA was included in Round 4.

To participate in the Final[n], code or results had to be submitted in Tweakathon[n].
If both code and (well-formatted) results were submitted, the results were used for scoring
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rather than rerunning the code in Tweakathon[n] and Final[n]. The code was executed
when results were unavailable or not well formatted. Thus, there was no disadvantage in
submitting both results and code. If a participant submitted both results and code, different
methods could be used to enter the Tweakathon/Final phases and the AutoML phases.
Submissions were made only during Tweakathons, with a maximum of five submissions
per day. Immediate feedback was provided on the leaderboard on validation data. The
participants were ranked on the basis of test performance during the Final and AutoML
phases.

We provided baseline software using the ML library Scikit-learn (Pedregosa et al., 2011).
It uses ensemble methods, which improve over time by adding more base learners. Other
than the number of base learners, the default hyper-parameter settings were used. The
participants were not obliged to use the Python language nor the main Python script we
gave as an example. However, most participants found convenient to use the main python
script, which managed the sparse format, the any-time learning settings and the scoring
metrics. Many limited themselves to search for the best model in the scikit-learn library.
This shows the importance of providing a good starting kit, but also the danger of biasing
results towards particular solutions.

4.4. Phases in the 2018 challenge

The 2015/2016 AutoML challenge was very long and few teams participated in all rounds.
Further, even though there was no obligation to participate in previous rounds to enter new
rounds, new potential participants felt they would be at a disadvantage. Hence, we believe
it is preferable to organize recurrent yearly events, each with their own workshop and pub-
lication opportunity. This provides a good balance between competition and collaboration.

In 2018, we organized a single round of AutoML competition in two phases. In this
simplified protocol, the participants could practice on five datasets during the first (devel-
opment) phase, by either submitting code or results. Their performances were revealed
immediately, as they became available, on the leaderboard.

The last submission of the development phase was automatically forwarded to the sec-
ond phase: the AutoML “blind test” phase. In this second phase, which was the only
one counting towards the prizes, the participants’ code was automatically evaluated on
five new datasets on the Codalab platform. The datasets were not revealed to the partic-
ipants. Hence, submissions that did not include code capable of being trained and tested
automatically were not ranked in the final phase and could not compete towards the prizes.

We provided the same starting kit as in the AutoML 2015/2016 challenge, but the
participants also had access to the code of the winners of the previous challenge.

5. Results

This section provides a brief description of the results obtained during both challenges,
explains the methods used by the participants and their elements of novelty, and provides
the analysis of post-challenge experiments conducted to answer specific questions on the
effectiveness of model search techniques.
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Table 5: Results of the 2015/2016 challenge winners. < R > is the average rank over all five data sets
of the round and it was used to rank the participants. < S > is the average score over the five data
sets of the round. UP is the percent increase in performance between the average performance of the
winners in the AutoML phase and the Final phase of the same round. The GPU track was run in
round 4. Team names are abbreviated as follows: aad=aad freiburg; djaj=djajetic; marc=marc.boulle;
tadej=tadejs; abhi=abhishek4; ideal=ideal.intel.analytics; mat=matthias.vonrohr; lisheng=lise sun;
asml=amsl.intel.com; jlr44 = backstreet.bayes; post = postech.mlg exbrain; ref=reference.

AutoML Final
Rnd Ended Winners < R > < S > Ended Winners < R > < S > UP (%)

1. ideal 1.40 0.8159
0 NA NA NA NA 02/14/15 2. abhi 3.60 0.7764 NA

3. aad 4.00 0.7714

1. aad 2.80 0.6401 1. aad 2.20 0.7479
1 02/15/15 2. jrl44 3.80 0.6226 06/14/15 2. ideal 3.20 0.7324 15

3. tadej 4.20 0.6456 3. amsl 4.60 0.7158

1. jrl44 1.80 0.4320 1. ideal 2.00 0.5180
2 06/15/15 2. aad 3.40 0.3529 11/14/15 2. djaj 2.20 0.5142 35

3. mat 4.40 0.3449 3. aad 3.20 0.4977

1. djaj 2.40 0.0901 1. aad 1.80 0.8071
3 11/15/15 2. NA NA NA 02/19/16 2. djaj 2.00 0.7912 481

3. NA NA NA 3. ideal 3.80 0.7547

1. aad 2.20 0.3881 1. aad 1.60 0.5238
4 02/20/16 2. djaj 2.20 0.3841 05/1/16 2. ideal 3.60 0.4998 31

3. marc 2.60 0.3815 3. abhi 5.40 0.4911
G 1. abhi 5.60 0.4913
P NA NA NA NA 05/1/16 2. djaj 6.20 0.4900 NA
U 3. aad 6.20 0.4884

1. aad 1.60 0.5282
5 05/1/16 2. djaj 2.60 0.5379 NA NA NA NA NA

3. post 4.60 0.4150

Table 6: Results of the 2018 challenge winners. Each phase was run on 5 different datasets. We show the
winners of the AutoML (blind test) phase and for comparison their performances in the Feedback phase.
The full tables can be found at https://competitions.codalab.org/competitions/17767.

2. AutoML phase 1. Feedback phase
Ended Winners < R > < S > Ended Performance < R > < S >

1. aad freiburg 2.80 0.4341 aad freiburg 9.0 0.7422
2. narnars0 3.80 0.4180 narnars0 4.40 0.7324

03/31/18 3. wlWangl 5.40 0.3857 03/12/18 wlWangl 4.40 0.8029
3. thanhdng 5.40 0.3874 thanhdng 14.0 0.6845
3. Malik 5.40 0.3863 Malik 13.8 0.7116

5.1. Scores obtained in the 2015/2016 challenge

The 2015/2016 challenge lasted 18 months (Dec. 8, 2014 to May 1, 2016). By the end of
the challenge, practical solutions were obtained and open-sourced, such as the solution of
the winners (Feurer et al., 2015b).
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(a) Leaderboard overfitting? (b) Gap AutoML/Tweakathon?

Figure 3: Performances of all participants in the 2015/2016 challenge. We show the last

entry of all participants in all phases of the 2015/2016 challenge on all datasets from

the competition leaderboards. The symbols are color coded by round, as in Table 5.

(a) Overfitting in Tweakathons? We plot the performance on the final test set vs.

the performance on the validation set. The validation performances were visible to the

participants on the leaderboard while they were tuning their models. The final test set

performances were only revealed at the end of the Tweakathon. Except for a few out-

liers, most participants did not overfit the leaderboard. (b) Gap between AutoML

and Tweakathons? We plot the Tweakathons vs. AutoML performance to visual-

ize improvements obtained by manual tweaking and additional computational resources

available in Tweakathons. Points above the diagonal indicate such improvements.

Table 5 presents the results on the test set in the AutoML phases (blind testing) and
the Final phases (one time testing on the test set revealed at the end of the Tweakathon
phases). Ties were broken by giving preference to the participant who submitted first. The
table only reports the results of the top ranking participants. We also show in Figure 3 a
comparison of the leaderboard performances of all participants. We plot in Figure 3(a) the
Tweakathon performances on the final test set vs. those on the validation set, which reveals
no significant overfitting to the validation set, except for a few outliers. In Figure 3(b)
we report the performance in AutoML result (blind testing) vs. Tweakathon final test
results (manual adjustments possible). We see that many entries were made in phase 1
(binary classification) and then participation declined as the tasks became harder. Some
participants put a lot of effort in Tweakathons and far exceeded their AutoML performances
(e.g. Djajetic and AAD Freiburg).

There is still room for improvement, as revealed by the significant differences remaining
between Tweakathon and AutoML (blind testing) results (Table 5 and Figure 3-b). In
Round 3, all but one participant failed to turn in working solutions during blind testing,
because of the introduction of sparse datasets. Fortunately, the participants recovered,
and, by the end of the challenge, several submissions were capable of returning solutions
on all the datasets of the challenge. But learning schemas can still be optimized because,
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(a) AutoML (test set) (b) Tweakathon (test set)

Figure 4: Distribution of performance on the datasets of the 2015/2016 challenge (vi-

olon plots). We show for each dataset the performances of participants at the end

of AutoML and Tweakathon phases, as revealed on the leaderboard. The median and

quartiles are represented by horizontal notches. The distribution profile (as fitted with a

kernel method) and its mirror image are represented vertically by the gray shaded area.

This is a slightly more refined version of the classical box plots. We show in red the me-

dian perfromance over all datasets and the corresponding quartiles. (a) AutoML (blind

testing). The first 5 datasets were provided for development purpose only and were not

used for blind testingin an AutoML phase. In round 3, the code of many participants

failed because of computational limits. (b) Tweakathon (manual tweaking). The

last five datasets were only used for final blind testing and the data were never revealed

for a Tweakathon. Round 3 was not particularly difficult with additional compute power

and memory.

even discarding Round 3, there is a 15 to 35% performance gap between AutoML phases
(blind testing with computational constraints) and Tweakathon phases (human intervention
and additional compute power). The GPU track offered (in round 4 only) a platform for
trying Deep Learning methods. This allowed the participants to demonstrate that, given
additional compute power, deep learning methods were competitive with the best solutions
of the CPU track. However, no Deep Learning method was competitive with the limited
compute power and time budget offered in the CPU track.

5.2. Scores obtained in the 2018 challenge

The 2018 challenge lasted 4 months (Nov. 30, 2017 to March 31, 2018). As in the previous
challenge, top ranked solutions were obtained and open sourced. Table 6 shows the results
of both phases of the 2018 challenge. As a reminder, this challenge had a feedback phase
and a blind test phase, the performances of the winners in each phase are reported.

Performance in this challenge was slightly lower than that observed in the previous
edition. This was due to the difficulty of the tasks (see below) and the fact that data sets
in the feedback phase included three deceiving datasets (associated to tasks from previous
challenges, but not necessarily similar to the data sets used in the blind test phase) out
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Figure 5: Difficulty of tasks in the 2015/2016 challenge. We consider two indicators of task

difficulty (dataset, metric, and time budget are factored into the task): Intrinsic diffi-

culty estimated by (1-the performance of the winners) and modeling difficulty (difference

between the performance of the winner and the a baseline method, here SNB=Selective

Naive Bayes). The best tasks should have a relatively low intrinsic difficulty and a high

modeling difficulty to separate well participants.

of five. We decided to proceed this way to emulate a realistic AutoML setting. Although
harder, several teams succeeded at returning submissions performing better than chance.

The winner of the challenge was the same team that won the 2015/2016 AutoML chal-
lenge: AAD Freiburg (Feurer et al., 2018). Hence, the 2018 challenge helped to incremen-
tally improve the solution devised by such team in the former challenge edition. Interest-
ingly, the second place of the challenge proposed a solution that is similar in spirit to that
of the winning team. For this challenge, there was a triple tie in the third place, prizes were
split among the tied teams. Among the winners, two teams used the starting kit. Among
other teams that participated in the challenge, most of them used either the starting kit or
the solution open sourced by the AAD Freiburg team in the 2015/2016 challenge.

5.3. Difficulty of datasets/tasks

In this section, we assess dataset difficulty, or rather task difficulty since the participants had
to solve prediction problems for given datasets, performance metrics, and computational
time constraints. The tasks of the challenge presented a variety of difficulties, but those
were not equally represented (Tables 2,3):

• Categorical variables and missing data: Few datasets had categorical variables
in the 2015/2016 challenge (ADULT, ALBERT, and WALDO), and not very many
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(a) Leaderboard overfitting? (b) Gap AutoML/Tweakathon?

Figure 6: Modeling Difficulty vs. intrinsic difficulty. For the AutoML phases of the
2015/2016 challenge, we plot an indicator of modeling difficulty vs. and indicator
of intrinsic difficulty of datasets (leaderboard highest score). (a) Modeling diffi-
culty is estimated by the score of the best untuned model (over KNN, NaiveBayes,
RandomForest and SGD(LINEAR)). (b) Modeling difficulty is estimated by the
score of the Selective Naive Bayes (SNB) model. In all cases, higher scores are
better and negative / NaN scores are replaced by zero. The horizontal and ver-
tical separation lines represent the medians. The lower right quadrant represents
the datasets with low intrinsic difficulty and high modeling difficulty: those are
the best datasets for benchmarking purposes.

variables were categorical in those datasets. Likewise, very few datasets had missing
values (ADULT and ALBERT) and those included only a few missing values. So nei-
ther categorical variables nor missing data presented a real difficulty in this challenge,
though ALBERT turned out to be one of the most difficult datasets because it was
also one of the largest ones. This situation changed drastically for the 2018 challenge
where five out of the ten datasets included categorical variables (RL, PM, RI, RH and
RM) and missing values (GINA, PM, RL, RI and RM). These were among the main
aspects that caused the low performance of most methods in the blind test phase.

• Large number of classes. Only one dataset had a large number of classes (DIONIS
with 355 classes). This dataset turned out to be difficult for participants, particularly
because it is also large and has unbalanced classes. However, datasets with large
number of classes are not well represented in this challenge. HELENA, which has
the second largest number of classes (100 classes), did not stand out as a particularly
difficult dataset. However, in general, multi-class problems were found more difficult
than binary classification problems.

• Regression. We had only four regression problems: CADATA, FLORA, YOLANDA,
PABLO.
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Figure 7: Meta-features most predictive of dataset intrinsic difficulty (2015/2016 chal-

lenge data). Meta-feature GINI importances are computed by a random forest regres-

sor, trained to predict the highest participant leaderboard score using meta-features of

datasets. Description of these meta-features can be found in Table 1 of the supplemen-

tary material of Feurer et al. (2015b). Blue and red colors respectively correspond to

positive and negative correlations (Pearson correlations between meta features and score

medians).

• Sparse data. A significant number of datasets had sparse data (DOROTHEA,
FABERT, ALEXIS, WALLIS, GRIGORIS, EVITA, FLORA, TANIA, ARTURO, MARCO).
Several of them turned out to be difficult, particularly ALEXIS, WALLIS, and GRIG-
ORIS, which are large datasets in sparse format, which cause memory problems when
they were introduced in round 3 of the 2015/2016 challenge. We later increased the
amount of memory on the servers and similar datasets introduced in later phases
caused less difficulty.

• Large datasets. We expected the ratio of the number N of features over the number
Ptr of training examples to be a particular difficulty (because of the risk of overfitting),
but modern machine learning algorithm are robust against overfitting. The main dif-
ficulty was rather the PRODUCT N ∗ Ptr. Most participants attempted to load the
entire dataset in memory and convert sparse matrices into full matrices. This took
very long and then caused loss in performances or program failures. Large datasets
with N ∗ Ptr > 20.106 include ALBERT, ALEXIS, DIONIS, GRIGORIS, WAL-
LIS, EVITA, FLORA, TANIA, MARCO, GINA, GUILLERMO, PM, RH, RI,
RICCARDO, RM. Those overlap significantly with the datasets with sparse data (in
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bold). For the 2018 challenge, all data sets in the final phase exceeded this threshold,
and this was the reason of why the code from several teams failed to finish within the
time budget. Only ALBERT and DIONIS were “truly” large (few features, but over
400,000 training examples).

• Presence of probes: Some datasets had a certain proportion of distractor features or
irrelevant variables (probes). Those were obtained by randomly permuting the values
of real features. Two-third of the datasets contained probes ADULT, CADATA, DIG-
ITS, DOROTHEA, CHRISTINE, JASMINE, MADELINE, PHILIPPINE, SYLVINE,
ALBERT, DILBERT, FABERT, JANNIS, EVITA, FLORA, YOLANDA, ARTURO,
CARLO, PABLO, WALDO. This allowed us in part to make datasets that were in
the public domain less recognizable.

• Type of metric: we used 6 metrics, as defined in section 4.2. The distribution of
tasks in which they were used was not uniform: BAC (11), AUC (6), F1 (3), and PAC
(6) for classification, and R2 (2) and ABS (2) for regression. This is because not all
metrics lend themselves naturally to all types of applications.

• Time budget: Although in round 0 we experimented with giving different time
budgets for the various datasets, we ended up assigning 1200 seconds (20 min) to
all datasets in all other rounds. Because the datasets varied in size, this put more
constraints on large datasets.

• Class imbalance: This was not a difficulty found in the 2015/2016 datasets. How-
ever, extreme class imbalance was the main difficulty for the 2018 edition. Imbalance
ratios lower or equal to 1 to 10 were present in RL, PM, RH, RI, and RM datasets, in
the latter data set class imbalance was as extreme as 1 to 1000. This was the reason
why the performance of teams was low.

Figure 4 gives a first view of dataset/task difficulty for the 2015/2016 challenge. It
captures, in a schematic way, the distribution of the participants’ performance in all rounds
on test data, in both AutoML and Tweakathon phases. One can see that the median
performance over all datasets improves between AutoML and Tweakathon, as can be ex-
pected. Correspondingly, the average spread in performance (quartile) decreases. Let us
take a closer look at the AutoML phases: The “accident” of round 3 in which many meth-
ods failed in blind testing is visible (introduction of sparse matrices and larger datasets)10.
Round 2 (multi-class classification) appears to have also introduced a significantly higher
degree of difficulty than round 1 (binary classification). In round 4, two regression problems
were introduced (FLORA and YOLANDA), but it does not seem that regression was found
significantly harder than multiclass classification. In round 5 no novelty was introduced.
We can observe that, after round 3, the dataset median scores are scattered around the
overall median. Looking at the corresponding scores in the Tweakathon phases, one can re-
mark that, once the participants recovered from their surprise, round 3 was not particularly
difficult for them. Rounds 2 and 4 were comparatively more difficult.

For the datasets used in the 2018 challenge, the tasks difficulty was clearly associated
to extreme class imbalance, inclusion of categorical variables and high dimensionality in

10. Examples of sparse datasets were provided in round 0, but they were of smaller size.
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terms of N × Ptr. However, for the 2015/2016 challenge data sets we found that is was
generally difficult to guess what makes a task easy or hard, except for dataset size, which
pushed participants to the frontier of the hardware capabilities and forced them to improve
the computational efficacy of their methods. Binary classification problems (and multi-
label problems) are intrinsically “easier” than multiclass problems, for which “guessing”
has a lower probablity of success. This partially explains the higher median performance
in rounds 1 and 3, which are dominated by binary and multi-label classification problems.
There is not a large enough number of datasets illustrating each type of other difficulties to
draw other conclusions.

We ventured however to try to find summary statistics capturing overall taks difficulty.
If one assumes that data are generated from an i.i.d.11 process of the type:

y = F (x, noise)

where y is the target value, x is the input feature vector, F is a function, and noise is
some random noise drawn from an unknown distribution, then the difficuty of the learning
problem can be separated in two aspects:

1. Intrinsic difficulty, linked to the amount of noise or the signal to noise ratio. Given
an infinite amount of data and an unbiased learning machine F̂ capable of identifying
F , the prediction performances cannot exceed a given maximum value, corresponding
to F̂ = F .

2. Modeling difficulty, linked to the bias and variance of estimators F̂ , in connection
with the limited amount of training data and limited computational resources, and
the possibly large number or parameters and hyper-parameters to estimate.

Evaluating the intrinsic difficulty is impossible unless we know F (but we don’t). Our
best approximation of F is the winners’ solution. We therefore use the winners’ per-
formance as an estimator of the best achievable performance. This estimator may
have both bias and variance: it is possibly biased because the winners may be under-fitting
training data; it may have variance because of the limited amount of test data. Under-
fitting is difficult to test. Its symptoms may be that the variance or the entropy of the
predictions are less than those of the target values.

Evaluating the modeling difficulty is also impossible unless we know F and the model
class. In the absence of knowledge on the model class, data scientists often use generic
predictive models, agnostic with respect to the data generating process. Such models range
from very basic highly biased models towards “simplicity” and smoothness of predictions
(e.g. regularized linear models) to highly versatile unbiased models that can learn any func-
tion given enough data (e.g. ensembles of decision trees). To indirectly assess modeling
difficulty, we resorted to use the difference in performance between the method of the chal-
lenge winner and that of (a) the best of four “untuned” basic models (taken from classical
techniques provided in the scikit-learn library (Pedregosa et al., 2011) with default hyper-
parameters) or (b) Selective Naive Bayes (SNB) (Boullé, 2007, 2009), a highly regularized
model (biased towards simplicity), providing a very robust and simple baseline.

11. Independently and Identically Distributed samples.
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Figures 5 and 6 give representations of our estimates of intrinsic and modeling difficulties
for the 2015/2016 challenge datasets. It can be seen that the datasets of round 0 were among
the easiest (except perhaps NEWSGROUP). Those were relatively small (and well-known)
datasets. Surprisingly, the datasets of round 3 were also rather easy, despite the fact that
most participants failed on them when they were introduced (largely because of memory
limitations: scikit-learn algorithms were not optimized for sparse datasets and it was not
possible to fit in memory the data matrix converted to a dense matrix). Two datasets have
a small intrinsic difficulty but a large modeling difficulty: MADELINE and DILBERT.
MADELINE is an artificial dataset very non-linear (clusters or 2 classes positionned on
the vertices of a hyper-cube in a 5 dimensional space) so very hard for Naive Bayes and
DILBERT is an image recognition dataset with images of objects rotated in all sorts of
positions, also very hard for Naive Bayes. The datasets of the last 2 phases seem to have
a large intrinsic difficulty compared to the modeling difficulty. But this can be deceiving
because the datasets are new to the machine learning community and the performances of
the winners may still be far from the best attainable performance.

We attempted to predict the intrinsic difficulty (as measured by the winners’ perfor-
mance) from the set of meta features used by AAD Freiburg for meta-learning (Feurer
et al., 2015b), which are part of OpenML (Vanschoren et al., 2014), using a Random Forest
classifier and ranked the meta features in order of importance (most selected by RF). The
list of meta features is provided in Appendix A. The three meta-features that predict best
dataset difficulty (Figure 7) are:

• LandmarkDecisionTree: performance of the decision tree classifier.

• Landmark1NN: performance of the nearest neighbor classifier.

• SkewnessMin: min over skewness of all features. Skewness measures the symmetry of
a distribution. A positive skewness valuemeans that there is more weight in the left
tail of the distribution.

5.4. Hyper-parameter optimization

Many participants used the scikit-learn (sklearn) package, including the winning group
AAD Freiburg, which produced the auto-sklearn software. We used the auto-sklearn API
to conduct post-challenge systematic studies of the effectiveness of hyper-parameter opti-
mization. We compared the performances obtained with default hyper-parameter settings
in scikit-learn and with hyper-parameters optimized with auto-sklearn12, both within the
time budgets as imposed during the challenge, for four “representative” basic methods:
k-nearest neighbors (KNN), naive Bayes (NB), Random Forest (RF), and a linear model
trained with stochastic gradient descent (SGD-linear13). The results are shown in Figure 8.
We see that hyper-parameter optimization usually improves performance, but not always.
The advantage of hyperparameter tuning comes mostly from its flexibility of switching the
optimization metric to the one imposed by the task and from finding hyperparameters that
work well given the current dataset and metric. However, in some cases it was not possible

12. we use sklearn 0.16.1 to mimic the challenge environment, and auto-sklearn 0.4.0.
13. we set the loss of SGD to be ‘log’ in scikit-learn for these experiments
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to perform hyperparameter optimization within the time budget due to the data set size
(score ≤ 0). Thus, there remains future work on how to perform thorough hyperparameter
tuning given rigid time constraints and huge datasets.

Figure 8: Hyper-parameter tuning (2015/2016 challenge data). We compare the perfor-

mances obtained with default hyper-parameters and those with hyper-parameters opti-

mized with auto-sklearn, within the same time budgets as given during the challenge.

The performances of predictors which failed to return results in the alloted time are re-

placed by zero. Note that returning a prediction of chance level also resulted in a score

of zero.

We also compared the performances obtained with different scoring metrics (Figure 9).
Basic methods do not give a choice of metrics to be optimized, but auto-sklearn post-
fitted the metrics of the challenge tasks. Consequently, when “common metrics” (BAC and
R2) are used, the method of the challenge winners, which is not optimized for BAC/R2,
does not usually outperfom basic methods. Conversely, when the metrics of the challenge
are used, there is often a clear gap between the basic methods and the winners, but not
always (RF-auto usually shows a comparable performance, sometimes even outperforms the
winners).
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(a) Challenge metrics

(b) Common metrics

Figure 9: Comparison of metrics (2015/2016 challenge). (a) We used the metrics of the

challenge. (b) We used the normalized balanced accuracy for all classification problems

and the R2 metric for regression problems. By comparing the two figures, we can see

that the winner remains top ranking in most cases, regardless of the metric. There is

no basic method that dominates all others. Although RF-auto (Random Forest with

optimized HP) is very strong, it is sometimes outperformed by other methods. Plain

linear model SGD-def sometimes wins when common metrics are used, but the winners

perform better with the metrics of the challenge. Overall, the technique of the winners

proved to be effective.

5.5. Meta-learning

One question is whether meta-learning (Brazdil et al., 2008) is possible, that is learning
to predict whether a given classifier will perform well on future datasets (without actually
training it), based on its past performances on other datasets. We investigated whether
it is possible to predict which basic method will perform best based on the meta-learning
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(a)

(b)

Figure 10: Linear Discriminant Analysis. (a) Dataset scatter plot in principal axes. We

have trained a LDA using (X=meta features, except landmarks; y=which model won

of four basic models (NB, SGD-linear, KNN, RF). The performance of basic models

are measured using the common metrics. The models were trained with default hyper

parameters. In the space of the two first LDA components, each point represents one

dataset. The colors code for the winning basic models. The color transparency reflects

the scores of the corresponding winning model (better is darker). (b) Meta feature

importances computed as scaling factors of each LDA component
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features of auto-sklearn (see Appendix A). We removed the “Landmark” features from the
set of meta features because those are performances of basic predictors (albeit rather poor
ones with many missing values), which would lead to a form of “data leakage”.

We used four basic predictors:

• NB: Naive Bayes

• SGD-linear: Linear model (trained with stochastic gradient descent)

• KNN: K-nearest neighbors

• RF: Random Forest

We used the implementation of the scikit-learn library and with default hyper-parameter
settings. In Figure 10, we show the two first Linear Discriminant Analysis (LDA) compo-
nents, when training an LDA classifier on the meta-features to predict which basic classifier
will perform best. The methods separate in three well distinct clusters, one of them group-
ing the non-linear methods that are poorly separated (KNN and RF) and the two others
being NB and linear-SGD.

The features that are most predictive all have to do with “ClassProbability” and “Per-
centageOfMissingValues”, indicating that the class imbalance and/or large number of classes
(in a multi-class problem) and the percentage of missing value might be important, but there
is a high chance of overfitting as indicated by an instability of the top ranking features under
resampling of the training data.

5.6. Methods used in the challenges

A brief description of methods used in both challenges is provided in Appendices D
and E, together with the results of a survey on methods that we conducted after the chal-
lenges. In light of the overview of Section 2 and the results presented in the previous
section, we may wonder whether a dominant methodology for solving the AutoML problem
has emerged and whether particular technical solutions were widely adopted. In this section
we call “model space” the set of all models under consideration. We call “basic models”
(also called elsewhere “simple models”, “individual models”, “base learners”) the member
of a library of models from which our hyper-models of model ensembles are built.

Ensembling: dealing with over-fitting and any-time learning. Ensembling is
the big AutoML challenge series winner since it is used by over 80% of the participants
and by all the top ranking ones. While a few years ago the hottest issue in model selection
and hyper-parameter optimization was over-fitting, in present days the problem seems to
have been largely avoided by using ensembling techniques. In the 2015/2016 challenge,
we varied the ratio of number of training examples over number of variables (Ptr/N) by
several orders of magnitude. Five datasets had a ratio Ptr/N lower than one (dorothea,
newsgroup, grigoris, wallis, and flora), which is a case lending itself particularly to over-
fitting. Although Ptr/N is the most predictive variable of the median performance of the
participants, there is no indication that the datasets with Ptr/N < 1 were particularly
difficult to the participants (Figure 5). Ensembles of predictors have the additional benefit
of addressing in a simple way the “any-time learning” problem by growing progressively a
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bigger ensemble of predictors, improving performance over time. All trained predictors are
usually incorporated in the ensemble. For instance, if cross-validation is used, the predictors
of all folds are directly incorporated in the ensemble, which saves the computational time
of retraining a single model on the best HP selected and may yield more robust solutions
(though slightly more biased due to the smaller sample size). The approaches differ in
the way they weigh the contributions of the various predictors. Some methods use the
same weight for all predictors (this is the case of bagging methods such as Random Forest
and of Bayesian methods that sample predictors according to their posterior probability
in model space). Some methods assess the weights of the predictors as part of learning
(this is the case of boosting methods, for instance). One simple and effective method
to create ensembles of heterogenous models was proposed by (Caruana et al., 2004). It
was used successfully in several past challenges, e.g. (Niculescu-Mizil et al., 2009) and is
the method implemented by the aad freibug team, one of the strongest participants in
both challenges (Feurer et al., 2015b). The method consists in cycling several times over
all trained model and incorporating in the ensemble at each cycle the model which most
improves the performance of the ensemble. Models vote with weight 1, but they can be
incorporated multiple times, which de-facto results in weighting them. This method permits
to recompute very fast the weights of the models if cross-validated predictions are saved.
Moreover, the method allows optimizing the ensemble for any metric by post-fitting the
predictions of the ensemble to the desired metric (an aspect, which was important in this
challenge).

Model evaluation: cross-validation or simple validation. Evaluating the predic-
tive accuracy of models is a critical and necessary building block of any model selection of
ensembling method. Model selection criteria computed from the predictive accuracy of basic
models evaluated from training data, by training a single time on all the training data (pos-
sibly at the expense of minor additional calculations), such as performance bounds, were
not used at all, as was already the case in previous challenges we organized (Guyon et al.,
2006a).Cross-validation was widely used and particularly K-fold cross-validation. However,
basic models were often “cheaply” evaluated on just one fold to allow quickly discarding
non promising areas of model space. This is a technique used more and more frequently
to help speed-up search. Another speed-up strategy is to train on a subset of the training
examples and monitor the learning curve. The “freeze-thaw” strategy (Swersky et al., 2014)
halts training of models that do not look so promising on the basis of the learning curve,
but may restart training them at a later point. This was used e.g. by (Lloyd, 2016) in the
2015/2016 challenge.

Model space: Homogeneous vs. heterogeneous. An unsettled question is whether
one should search a large or small model space. The challenge did not allow us to give a
definite answer to this question. Most participants opted for searching a relatively large
model space, including a wide variety of models found in the scikit-learn library. Yet, one
of the strongest entrants (the Intel team) submitted results simply obtained with a boosted
decision tree (i.e. consisting of a homegeneous set of weak learners/basic models). Clearly,
it suffices to use just ONE learning machine that is a universal approximator to be able
to learn anything, given enough training data. So why include several? It is a question of
rate of convergence: how fast we climb the learning curve. Including stronger basic models
is one way to climb the learning curve faster. Our post-challenge experiments (Figure 9)
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reveal that the scikit-learn version of Random Forest (an ensemble of homogeneous basic
models – decision trees) does not usually perform as well as the winners’ version, hinting
that there is a lot of know-how in the Intel solution, which is also based on ensembles of
decision tree, that is not captured by a basic ensemble of decision trees such as RF. We
hope that more principled research will be conducted on this topic in the future.

Search strategies: Filter, wrapper, and embedded methods With the availabil-
ity of powerful machine learning toolkits like scikit-learn (on which the starting kit was
based), the temptation is great to implement all-wrapper methods to solve the CASH
(or “full model selection”) problem. Indeed, most participants went that route. Although
a number of ways of optimizing hyper-parameters with embedded methods for several
basic classifiers have been published (Guyon et al., 2006a), they each require changing
the implementation of the basic methods, which is time consuming and error prone com-
pared to using already debugged and well optimized library version of the methods. Hence
practitioners are reluctant to invest development time in the implementation of embedded
methods. A notable exception is the software of marc.boulle, which offers a self-contained
hyper-parameter free solution based on Naive Bayes, which includes re-coding of variables
(grouping or discretization) and variable selection. See Appendix D.

Multi-level optimization: Another interesting issue is whether multiple levels of
hyper-parameters should be considered for reasons of computational effectiveness or over-
fitting avoidance. In the Bayesian setting, for instance, it is quite feasible to consider a
hierarchy of parameters/hyper-parameters and several levels of priors/hyper-priors. How-
ever, it seems to be that for practical computational reasons, in the AutoML challenges, the
participants use a shallow organization of hyper-parameter space and avoid nested cross-
validation loops.

Time management: Exploration vs. exploitation tradeoff: With a tight time
budget, efficient search strategies must be put into place to monitor the tradeoff explo-
ration/exploitation. To compare strategies, we show in Appendix G learning curves for two
top ranking participants who adopted very different methods: Abhishek and aad freiburg.
The former uses heuristic methods based on prior human experience while the latter ini-
tializes search with models predicted to be best suited by a meta-learning machine, then
performs Bayesian optimization of hyper-parameters. Abhishek seems to often start with
a better solution but performs a less efficient exploration. In contrast, aad freiburg starts
lower but often ends up with a better solution. Some elements of randomness in the search
are useful to arrive at better solutions.

Preprocessing and feature selection: The datasets presented themselves with in-
trinsic difficulties that could be in part addressed by preprocessing or special modifications
of algorithms: Sparsity, missing values, categorical variables, and irrelevant variables. Yet
it appears that among the top ranking participants preprocessing has not been a focus of
attention. They relied on the simple heuristics provided in the starting kit: replacing miss-
ing values by the median and adding a missingness indicator variable, one-hot-encoding
of categorical variables. Simple normalizations were used. The irrelevant variables were
ignored by 2/3 of the participants and no use of feature selection was made by top rank-
ing participants. The methods used (involving ensembling) seem to be intrinsically robust
against irrelevant variables. More details from the fact sheets are found in Appendix D.
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Unsupervised learning: Despite the recent regain of interest in unsupervised learning
spurred by the Deep Learning community, in the AutoML challenge series, unsupervised
learning is not widely spread, except for the use of classical space dimensionality reduction
techniques such as ICA and PCA. See Appendix D for more details.

Transfer learning and meta learning: To our knowledge, only the aad freiburg
relied on meta-learning to initialize their hyper-parameter search. To that end, they used
datasets of OpenML14. The number of datasets released and the diversity of tasks did not
allow the participants to perform effective transfer learning or meta learning.

Deep learning: The type of computations resources available in AutoML phases ruled
out the use of Deep Learning, except in the GPU track. However, even in that track, the
Deep Learning methods did not come ahead. One exception is the aad freiburg, they used
Deep Learning in Tweakathon rounds three and four and found it to be helpful for the
datasets Alexis, Tania and Yolanda.

Task and metric optimization: There were four types of tasks (regression, binary
classification, multi-class classification, and multi-label classification) and six scoring metrics
(R2, ABS, BAC, AUC, F1, and PAC). Moreover, class balance and number of classes varied
a lot for classification problems. Moderate effort has been put into designing methods
optimizing specific metrics. Rather, generic methods were used and the outputs post-fitted
to the target metrics by cross-validation or through the ensembling method.

Engineering: One of the big lessons of the AutoML challenge series is that most
methods fail to return results in all cases, not a “good” result, but “any” reasonnable
result. Reasons for failure include “out of time” and “out of memory” or various other
failures (e.g. numerical instabilities). We are still very far from having “basic models” that
run on all datasets. One of the strength of auto-sklearn is to ignore those models that fail
and generally find at least one that returns a result.

Parallelism: The computers made available had several cores, so in principle, the
participants could make use of parallelism. One common strategy was just to rely on
numerical libraries that internally use such parallelism automatically. The aad freiburg
team used the differnt cores to lauch in parallel model search for different datasets (since
each round included 5 datasets). These different uses of computer resources are visible in
the learnign curves (see Appendix G).

6. Discussion

We briefly summarize the main questions we asked ourselves and the main findings:

1. Was the provided time budget sufficient to complete the tasks of the chal-
lenge? We drew learning curves as a function of time for the winning solution of
aad freiburg (auto-sklearn), see Appendix G). This revealed that for most dataset
performances still improved well beyond the time limit imposed by the organizers.
Although for about half the datasets the improvement is modest (no more that 20%
of the score obtained at the end of the imposed time limit), for some datasets the
improvement was very large (more than 2x the original score). The improvements
are usually gradual, but sudden performance improvements occur. For instance, for

14. https://www.openml.org/
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Wallis, the score doubled suddenly at 3x the time limit imposed in the challenge. As
also noted by the authors of the package (Feurer et al., 2015b) auto-sklearn has a slow
start but on the long run gets performances close to the best method.

2. Are there tasks that were significantly more difficult than others for the
participants? Yes, there was a very wide range of difficulties for the tasks as revealed
by the dispersion of the participants in terms of average (median) and variability (third
quartile) of their scores. Madeline, a synthetic dataset featuring a very non-linear
task, was very difficult for many participants. Other difficulties that caused failures
to return a solution included large memory requirements (particularly for methods
that attempted to convert sparse matrices to full matrices), and short time budget for
datasets with large number of training examples and/or features or with many classes
or labels.

3. Are there meta-features of datasets and methods providing useful insight to
recommend certain methods for certain types of datasets? The aad freiburg
team used a subset of 53 meta-features (a superset of the simple statistics provided
with the challenge datasets) to measure similarity between datasets. This allowed
them to conduct hyper-parameter search more effectively by initializing the search
with settings identical to those selected for similar datasets previously processed (a
form of meta-learning). Our own analysis revealed that it is very difficult to predict
the predictors’ performances from the meta-features, but it is possible to predict
relatively accurately which “basic method” will perform best. With LDA, we could
visualize how datasets recoup in two dimensions and show a clean separation between
datasets “preferring” Naive Bayes, linear SGD, or KNN, or RF. This deserves further
investigation.

4. Does hyper-parameter optimization really improve performance over us-
ing default values? The comparison we conducted reveals that optimizing hyper-
parameters rather than choosing default values for a set of four basic predictive mod-
els (K-nearest neighbors, Random Forests, linear SGD, and Naive Bayes) is generally
beneficial. In the majority of cases (but not always), hyper-parameter optimization
(hyper-opt) results in better performances than default values. Hyper-opt sometimes
fails because of time or memory limitations, which gives room for improvement.

5. How do winner’s solutions compare with basic scikit-learn models? They
compare favorably. For example, the results of basic models whose parameters have
been optimized do not yield generally as good results as running auto-sklearn. How-
ever, a basic model with default HP sometimes outperforms this same model tuned
by auto-sklearn.

7. Conclusion

We have analyzed the results of several rounds of AutoML challenges.
Our design of the first AutoML challenge (2015/2016) was satisfactory in many respects.

In particular, we attracted a large number of participants (over 600), attained results that
are statistically significant, and advanced the state-of-the-art to automate machine learning.
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Publicly available libraries have emerged as a result of this endeavor, including “auto-
sklearn”.

In particular, we designed a benchmark with a large number of diverse datasets, with
large enough test sets to separate top ranking participants. It is difficult to anticipate the
size of the test sets needed, because the error bars depend on the performances attained by
the participants, so we are pleased that we made reasonable guesses. Our simple rule-of-
thumb “N=50/E” where N is the number of test samples and E the error rate of the most
depleted class seems to be widely applicable. Also concerning the datasets, we made sure
that they were neither too easy nor too hard. This is important to be able to separate par-
ticipants. To quantify this, we introduced the notion of “intrinsic difficulty” and “modeling
difficulty”. Intrinsic difficulty can be quantified by the performance of the best method (as
a surrogate for the best attainable performance, i.e. the Bayes rate for classification prob-
lems). Modeling difficulty can be quantified by the spread in performance between methods.
Our best problems have relatively low “intrinsic difficulty” and high “modeling difficulty”.
However, the diversity of the 30 datasets of our first 2015/2016 challenge is both a feature
and a curse: it allows us to test the robustness of software across a variety of situations, but
is makes meta-learning very difficult, if not impossible (datasets being very little redundant
with respect to meta-features). Consequently, external meta-learning data must be used if
meta-learning is to be explored. This was the strategy adopted by the AAD Freiburg team,
which used the OpenML data for meta training. Likewise, we attached different metrics to
each dataset. This contributed to making the tasks more realistic and more difficult, but
also made meta-learning harder. In the second 2018 challenge, we diminished the variety
of datasets and used a single metric.

With respect to task design, we learned that the devil is in the details. The challenge
participants solve exactly the task proposed to the point that their solution may not be
adaptable to seemingly similar scenarios. In the case of the AutoML challenge, we pondered
whether the metric of the challenge should be the area under the learning curve or one point
on the learning curve (the performance obtained after a fixed maximum computational time
elapsed). We ended up favoring the second solution for practical reasons. Examining after
the challenge the learning curves of some participants, it is quite clear that the two problems
are radically different, particularly with respect to strategies mitigating “exploration” and
“exploitation”. This prompted us to think about the differences between “fixed time”
learning (the participants know in advance the time limit and are judged only on the
solution delivered at the end of that time) and “any time learning” (the participants can
be stopped at any time and asked to return a solution). Both scenarios are useful: the
first one is practical when models must be delivered continuously at a rapid pace, e.g. for
marketing applications; the second one is practical in environments when computational
resources are unreliable and interruption may be expected (e.g. people working remotely
via an unreliable connection). This will influence the design of future challenges.

Also regarding task design, the two versions of AutoML challenge we have run differ in
the difficulty of transfer learning. In the 2015/2016 challenge, round 0 introduced a sample
of all types of data and difficulties (types of targets, sparse data or not, missing data or
not, categorical variables of not, more examples than features or not). Then each round
ramped up difficulty. But in fact the datasets of round 0 were relatively easy. Then at each
round, the code of the participants was blind tested on data that were one notch harder
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than in the previous round. Hence transfer was quite hard. In the 2018 challenge, we had
2 phases, each with 5 datasets of similar difficulty and the datasets of the first phase were
each matched with one corresponding dataset on a similar task. As a result, transfer was
made simpler.

Concerning the starting kit and baseline methods, we provided code that ended up
being the basis of the solution of the majority of participants (with notable exceptions
from industry such as Intel and Orange who used their own “in house” packages). Thus,
we can question whether the software provided biased the approaches taken. Indeed, all
participants used some form of ensemble learning, similarly to the strategy used in the
starting kit. However, it can be argued that this is a “natural” strategy for this problem.
But, in general, the question of providing enough starting material to the participants
without biasing the challenge in a particular direction remains a delicate issue.

From the point of view of challenge protocol design, we learned that it is difficult to
keep teams focused for an extended period of time and go through many challenge phases.
We attained a large number of participants (over 600) over the whole course of the AutoML
challenge, which lasted over a year (2015/2016) and was punctuated by several events (such
as hackathons). However, it may be preferable to organize yearly events punctuated by
workshops. This is a natural way of balancing competition and cooperation since workshops
are a place of exchange. Participants are naturally rewarded by the recognition they gain
via the system of scientific publications. As a confirmation of this conjecture, the second
instance of the AutoML challenge (2017/2018) lasting only 4 months attracted nearly 300
participants.

One important novely of our challenge design was “code submission”. Having the code
of the participants executed on the same platform under rigorously similar conditions is a
great step towards fairness and reproducibility, as well as ensuring the viability of solution
from the computational point of view. We have imposed to the winners to release their code
under an open source licence to win their prizes. This was good enough an incentive to
obtain several publicly available software as the “product” of the challenges we organized.
In our second challenge (AutoML 2018), we have made use of dockers. Distributing the
docker makes it possible for anyone downloading the code of the participants to easily
reproduce the results without stumbling upon installation problems due to inconsistencies
in computer environments and libraries. Still the hardware may be different and we find
that, in post-challenge evaluations, changing computers may yield significant differences in
results. Hopefully, with the generalization of the use of cloud computing that is becoming
more affordable, this will become less of an issue.

The AutoML challenge series is only beginning. Several new avenues are under study.
For instance, we are preparing the NIPS 2018 Life Long Machine Learning challenge in
which participants will be exposed to data whose distribution slowly drifts over time. We
are also looking at a challenge of automatic machine learning where we will focus on transfer
from similar domains.
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Carine Hue and Marc Boullé. A new probabilistic approach in rank regression with optimal
bayesian partitioning. Journal of Machine Learning Research, 8:2727–2754, 2007. URL
http://dl.acm.org/citation.cfm?id=1390332.

F. Hutter, H. Hoos, K. Murphy, and S. Ramage. Sequential Model-based Algorithm Con-
figuration (SMAC). http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for gen-
eral algorithm configuration. In Proceedings of the conference on Learning and Intelligent
OptimizatioN (LION 5), 2011.

John P. A. Ioannidis. Why most published research findings are false. PLoS Medicine, 2
(8):e124, August 2005.

D. Jajetic. Djajetic Implementation. https://github.com/djajetic/AutoML5, 2016a.

D. Jajetic. GPU djajetic Implementation. https://github.com/djajetic/GPU_djajetic,
2016b.

41

http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
http://dl.acm.org/citation.cfm?id=1390332
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/djajetic/AutoML5
https://github.com/djajetic/GPU_djajetic


Guyon et al.

Michael I. Jordan. On statistics, computation and scalability. Bernoulli, 19(4):1378–1390,
September 2013.

S. Sathiya Keerthi, Vikas Sindhwani, and Olivier Chapelle. An efficient method for gradient-
based adaptation of hyperparameters in SVM models. In Advances in Neural Information
Processing Systems, 2007.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian hyperparameter
optimization on large datasets. In Electronic Journal of Statistics, volume 11, 2017.

Ron Kohavi and George H. John. Wrappers for feature selection. Artificial Intelligence, 97
(1-2):273–324, December 1997.

John Langford. Clever methods of overfitting, 2005. Blog post at http://hunch.net/?p=22.

J. Lloyd. Freeze Thaw Ensemble Construction. https://github.com/jamesrobertlloyd/
automl-phase-2, 2016.

H. Mendoza, A. Klein, M. Feurer, J. Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks. In ICML 2016 workshop on Au-
toML, June 2016. URL https://docs.google.com/viewer?a=v&pid=sites&srcid=

ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OjMzYjQ4OWNhNTFhNzlhNGE.

Michinari Momma and Kristin P. Bennett. A pattern search method for model selection
of support vector regression. In In Proceedings of the SIAM International Conference on
Data Mining. SIAM, 2002.

Gregory Moore, Charles Bergeron, and Kristin P. Bennett. Model selection for primal SVM.
Machine Learning, 85(1-2), October 2011.

Gregory M. Moore, Charles Bergeron, and Kristin P. Bennett. Nonsmooth bilevel program-
ming for hyperparameter selection. In IEEE International Conference on Data Mining
Workshops, pages 374–381, 2009.

Alexandru Niculescu-Mizil, Claudia Perlich, Grzegorz Swirszcz, Vikas Sindhwani, Yan Liu,
Prem Melville, Dong Wang, Jing Xiao, Jianying Hu, Moninder Singh, et al. Winning the
kdd cup orange challenge with ensemble selection. In Proceedings of the 2009 International
Conference on KDD-Cup 2009-Volume 7, pages 23–34. JMLR. org, 2009.

Manfred Opper and Ole Winther. Gaussian processes and SVM: Mean field results and
leave-one-out, pages 43–65. MIT, 10 2000. ISBN 0262194481. Massachusetts Institute of
Technology Press (MIT Press) Available on Google Books.

Mee Young Park and Trevor Hastie. L1-regularization path algorithm for generalized linear
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69
(4):659–677, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

42

https://github.com/jamesrobertlloyd/automl-phase-2
https://github.com/jamesrobertlloyd/automl-phase-2
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OjMzYjQ4OWNhNTFhNzlhNGE
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OjMzYjQ4OWNhNTFhNzlhNGE


AutoML Challenges

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017.

Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors. Recommender
Systems Handbook. Springer, 2011.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, 2001.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems 25,
pages 2951–2959. 2012.

Alexander Statnikov, Lily Wang, and Constantin F Aliferis. A comprehensive comparison
of random forests and support vector machines for microarray-based cancer classification.
BMC Bioinformatics, 9(1), 2008.

Quan Sun, Bernhard Pfahringer, and Michael Mayo. Full model selection in the space
of data mining operators. In Genetic and Evolutionary Computation Conference, pages
1503–1504, 2012.

L. Sun-Hosoya. Automl challenge: System description of lisheng sun. In ICML 2016
workshop on AutoML, June 2016. URL http://dx.doi.org/10.5281/zenodo.27878.

K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Advances in
Neural Information Processing Systems 26, pages 2004–2012, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimiza-
tion. arXiv preprint arXiv:1406.3896, 2014.

A. Thakur. AutoML challenge: Rules for selecting neural network archi-
tectures for automl-gpu challenge. In ICML 2016 workshop on AutoML,
June 2016. URL https://docs.google.com/viewer?a=v&pid=sites&srcid=

ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OjNmY2M0N2JhZGViZWY3ZDY.

A. Thakur and A. Krohn-Grimberghe. AutoCompete: A framework for machine
learning competitions. In Proceedings of the International Conference on Ma-
chine Learning 2015, Workshop on Automatic Machine Learning, 2015. URL
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=

Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDo3YThhNmNiNDA0M2Q2NjM5.

Theano Development Team. Theano: A Python framework for fast computation of mathe-
matical expressions. arXiv e-prints, abs/1605.02688, 2016.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: Au-
tomated selection and hyper-parameter optimization of classification algorithms. CoRR,
abs/1208.3719, 2012.

43

http://dx.doi.org/10.5281/zenodo.27878
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OjNmY2M0N2JhZGViZWY3ZDY
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OjNmY2M0N2JhZGViZWY3ZDY
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDo3YThhNmNiNDA0M2Q2NjM5
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDo3YThhNmNiNDA0M2Q2NjM5


Guyon et al.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka:
Combined selection and hyperparameter optimization of classification algorithms. In
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 847–855. ACM, 2013.

E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial
variables, and redundancy elimination. Journal of Machine Learning Research, 10:1341–
1366, January 2009.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Vladimir Vapnik and Olivier Chapelle. Bounds on error expectation for support vector
machines. Neural computation, 12(9):2013–2036, 2000.

Jason Weston, Andre Elisseeff, Goekhan BakIr, and Fabian Sinz. Spider, 2007. http:

//mloss.org/software/view/29/.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

Appendix A. Meta Features

We define the information and statistics provided in the public or private “info” files, re-
ported in Table 2.

PUBLIC INFO:

• task = ’binary.classification’, ’multiclass.classification’, ’multilabel.classification’, ’re-
gression’

• target type = ’Binary’, ’Categorical’,’Numerical’

• feat type = ’Binary’, ’Categorical’,’Numerical’

• metric = ’bac’, ’auc’, ’f1’, ’pac’, ’abs’, ’r2’

• feat num = number of features

• target num = number of columns of target file (one, except for multi-label problems)

• label num = number of labels (number of unique values of the targets)

• train num = number of trainign examples

• valid num = number of validation examples (development test set)

• test num = number of test examples (final test set)

• has categorical = whether there are categorical variable (yes=1, no=0)

44

http://mloss.org/software/view/29/
http://mloss.org/software/view/29/


AutoML Challenges

• has missing = whether there are missing values (yes=1, no=0)

• is sparse = whether the data are in sparse format (yes=1, no=0)

PRIVATE INFO:

• real feat num = number of real features

• probe num = number of fake features (probes)

• frac probes = fraction of probes i.e. probenum/(probe num+ real feat num)

• feat type freq = fraction of feature of each type ’Numerical’, ’Categorical’, or ’Bi-
nary’

• train label freq = frequency of each label in trainign data

• train label entropy = entropy of labels in training data

• train sparsity = sparsity of training data (fraction of occurence of zero values)

• train frac missing = fraction of missing values in training data

• The last 4 statistics are also calculated for the validation set and the test set

• train data aspect ratio = ratio of number of training examples over number of fea-
tures

We define the meta features as implemented in (Feurer et al., 2015a,b,c)15:

• ClassProbabilityMin = mini=1...n(p(Classi)) = mini=1...n(NumberOfInstances Classi
TotleNumberOfInstances )

• ClassProbabilityMax = maxi=1...n(p(Classi)) = maxi=1...n(NumberOfInstances Classi
TotleNumberOfInstances )

• ClassEntropy = mean(−
∑n

i=1 p(Classi)ln(p(Classi))) where p(Classi) is the proba-
bility of having an instance of Class i

• ClassOccurences = number of examples for each class

• ClassProbabilityMean = mean( ClassOcurrences
NumberOfClasses)

• ClassProbabilitySTD = std( ClassOcurrences
NumberOfClasses)

• DatasetRatio = NumberOfFeatures
NumberOfInstances

• InverseDatasetRatio = NumberOfInstances
NumberOfFeatures

• LogInverseDatasetRatio = log(DatasetRatio)

15. Kurtosis, Skewness, KurtosisPCA and SkewnessPCA are intermediate metafeatures used to calculate
some other metafeatures
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• Landmark[Some Model]: accuracy of [Some Model] applied on dataset.

• LandmarkDecisionNodeLearner & LandmarkRandomNodeLearner: Both are decision
tree with max depth=1. ‘DecisionNode’ considers all features when looking for best
split, and ‘RandomNode’ considers only 1 feature, where comes the term ‘random’.

• Skewnesses: Skewness of each numerical features. Skewness measures the symmetry
of a distribution. A skewness value > 0 means that there is more weight in the left
tail of the distribution. Computed by scipy.stats.skew.

• SkewnessMax / SkewnessMin / SkewnessMean / SkewnessSTD: max / min / mean /
std over skewness of all features.

• NumSymbols: Sizes of categorical features: for each categorical feature, compute its
size (number of values in the category).

• SymbolsMax / SymbolsMin / SymbolsMean / SymbolsSTD / SymbolsSum = max /
min / mean / std / sum over NumSymbols

• NumberOfCategoricalFeatures: Number of categorical features.

• NumberOfNumericFeatures: Number of numerical features

• RatioNumericalToNominal = NumberOfNumericFeatures
NumberOfCategoricalFeatures

• RatioNominalToNumerical = NumberOfCategoricalFeatures
NumberOfNumericFeatures

• Kurtosis = Fourth central moment divided by the square of the variance = E[(xi−E[xi])
4]

[E[(xi−E[xi])4]]2

where xi is the i-th feature. Computed using scipy.stats.kurtosis.

• KurtosisMax / KurtosisMin / KurtosisMean / KurtosisSTD = max / min / mean /
std of kurtosis over all features

• PCAKurtosis: Transform data by PCA, then compute the kurtosis

• NumberOfInstances = Number of examples

• NumberOfFeatures = Number of features

• NumberOfClasses = Number of classes

• LogNumberOfFeatures = log(NumberOfFeatures)

• LogNumberOfInstances = log(NumberOfInstances)

• MissingValues: Boolean matrix of dim (NumberOfInstances , NumberOfFeatures),
indicating if an element of is a missing value.

• NumberOfMissingValues: Total number of missing value

• NumberOfInstancesWithMissingValues: Number of examples containing missing val-
ues.
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• NumberOfFeaturesWithMissingValues: Number of features containing missing values.

• PCA: PCA decomposition of data.

• PCAFractionOfComponentsFor95PercentVariance: Fraction of PCA components ex-
plaining 95% of variance of the data.

• PCAKurtosisFirstPC: Kurtosis of the first PCA component.

• PCASkewnessFirstPC: Skewness of the first PCA component.

Appendix B. Datasets of the 2015/2016 AutoML challenge

ROUND 0

SET 0.1: ADULT

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multilabel F1 3 1 0.16 0.011 1 0.5 9768 4884 34190 24 1424.58

This dataset was prepared by Isabelle Guyon from original data extracted by Barry
Becker from the 1994 Census database. The data was donated to the UCI repository by
Ron Kohavi: ”Adult data set” (https://archive.ics.uci.edu/ml/datasets/Adult).

Past Usage: The Adult data set is among the most used marketing-style datasets. The
ADA dataset is a version of it that was used previously used in the Performance Prediction
challenge, the Model Selection game, and the Agnostic Learning vs. Prior Knowledge
(ALvsPK) challenge.

Description: The original prediction task was to determine whether a person makes
over 50K a year from census data. The problem was transformed into a multilabel problem
by adding sex and race in the target values (for race, separate white form others).

Preparation: A set of reasonably clean records was extracted using the following
conditions: ((AAGE > 16) and (AGI > 100) and (AFNLWGT > 1) and (HRSWK > 0)).

Representation: The features include age, workclass, education, etc.

SET 0.2: CADATA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

regression R2 0 NaN 0 0 0 0.5 10640 5000 5000 16 312.5

This dataset was prepared by Isabelle Guyon from original data provided by Kelley Pace
and Ronald Barry: ”California houses” (http://lib.stat.cmu.edu/datasets/).

Past Usage: Part of the StatLib datasets. Pace, R. Kelley and Ronald Barry, Sparse
Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297. It was sub-
mitted by Kelley Pace (kpace@unix1.sncc.lsu.edu). [9/Nov/99].

Description: These spatial data contain 20,640 observations on housing prices with 9
economic covariates.

Preparation: The original authors collected information on the variables using all
the block groups in California from the 1990 Census. In this sample a block group on
average includes 1425.5 individuals living in a geographically compact area. Naturally, the
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geographical area included varies inversely with the population density. They computed
distances among the centroids of each block group as measured in latitude and longitude.
The final data contained 20,640 observations on 9 variables. The dependent variable is
ln(median house value). For the purpose of the AutoML challenge, all samples were merged
and the data were freshly randomly split in three sets: training, validation, and test. The
order of the features was randomized, after adding a few distractor features (probes) that
are permuted versions of real features.

Representation: Features.

SET 0.3: DIGITS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass BAC 10 1 0.42 0 0 0.5 35000 20000 15000 1568 9.57

This dataset was prepared by Isabelle Guyon from original data provided by Yann
LeCun, Corinna Cortes, and Chris Burges: ”MNIST handwritten digit dataset” (http:
//yann.lecun.com/exdb/mnist/).

Past Usage: Many methods have been tried on the MNIST database, in its original
data split (60,000 training examples, 10,000 test examples, 10 classes). This dataset was
used in the NIPS 2003 Feature Selection Challenge under the name GISETTE and in the
WCCI 2006 Performance Prediction Challenge and the IJCNN 2007 Agnostic Learning vs.
Prior Knowledge Challenge under the name GINA, and in the ICML 2011 Unsupervised
and Transfer Learning Challenge under the name ULE.

Description: This is a dataset of handwritten digits. It is a subset of a larger set
made available from NIST. The digits in pixel representation have been size-normalized
and centered in a fixed-size image by the authors. The data are quantized on 256 gray level
values.

Preparation: For the purpose of the AutoML challenge, all samples were merged and
the data were freshly randomly split in three sets: training, validation, and test. The order
of the features (pixels) was also randomize, after adding a few distractor features (probes)
that are permuted versions of real features.

Representation: Pixels.

SET 0.4: DOROTHEA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.46 0.99 0 0 0.5 800 350 800 100000 0.01

This dataset was prepared by Isabelle Guyon from original data provided by DuPont
Pharmaceuticals: ”Feature selection challenge data” (http://www.cs.wisc.edu/~dpage/
kddcup2001/).

Past Usage: DOROTHEA was prepared for the NIPS 2003 variable and feature se-
lection benchmark by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA (is-
abelle@clopinet.com). The dataset with which DOROTHEA was created is one of the
KDD (Knowledge Discovery in Data Mining) Cup 2001. The original dataset and papers
of the winners of the competition are available at: http://www.cs.wisc.edu/~dpage/

kddcup2001/. DuPont Pharmaceuticals graciously provided this data set for the KDD Cup
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2001 competition. All publications referring to analysis of this data set should acknowledge
DuPont Pharmaceuticals Research Laboratories and KDD Cup 2001.

Description: Synopsis of the original data: One binary attribute (active A or inactive
I) must be predicted. Drugs are typically small organic molecules that achieve their desired
activity by binding to a target site on a receptor. The first step in the discovery of a new drug
is usually to identify and isolate the receptor to which it should bind, followed by testing
many small molecules for their ability to bind to the target site. This leaves researchers with
the task of determining what separates the active (binding) compounds from the inactive
(non-binding) ones. Such a determination can then be used in the design of new compounds
that not only bind, but also have all the other properties required for a drug (solubility, oral
absorption, lack of side effects, appropriate duration of action, toxicity, etc.). The original
training data set consisted of 1909 compounds tested for their ability to bind to a target site
on thrombin, a key receptor in blood clotting. The chemical structures of these compounds
are not necessary for our analysis and were not included. Of the training compounds, 42
are active (bind well) and the others are inactive. To simulate the real-world drug design
environment, the test set contained 634 additional compounds that were in fact generated
based on the assay results recorded for the training set. Of the test compounds, 150 bind
well and the others are inactive. The compounds in the test set were made after chemists
saw the activity results for the training set, so the test set had a higher fraction of actives
than did the training set in the original data split. Each compound is described by a single
feature vector comprised of a class value (A for active, I for inactive) and 139,351 binary
features, which describe three-dimensional properties of the molecule. The definitions of
the individual bits are not included we only know that they were generated in an internally
consistent manner for all 1909 compounds. Biological activity in general, and receptor
binding affinity in particular, correlate with various structural and physical properties of
small organic molecules. The task is to determine which of these properties are critical in
this case and to learn to accurately predict the class value. In evaluating the accuracy, a
differential cost model was used, so that the sum of the costs of the actives will be equal to
the sum of the costs of the inactives.

Preparation: To prepare the data, we used information from the analysis of the KDD
cup 2001 and the literature. There were 114 participants to the competition that turned
in results. The winner of the competition is Jie Cheng (Canadian Imperial Bank of Com-
merce). His presentation is available at: http://www.cs.wisc.edu/~dpage/kddcup2001/

Hayashi.pdf. The data was also studied by Weston and collaborators: J. Weston, F. Perez-
Cruz, O. Bousquet, O. Chapelle, A. Elisseeff and B. Schoelkopf. ”Feature Selection and
Transduction for Prediction of Molecular Bioactivity for Drug Design”. Bioinformatics. At
lot of information is available from Jason Weston s web page, including valuable statistics
about the data: http://www.kyb.tuebingen.mpg.de/bs/people/weston/kdd/kdd.html.
To outperform these results, the paper of Weston et al., 2002, utilizes the combination of
an efficient feature selection method and a classification strategy that capitalizes on the
differences in the distribution of the training and the test set. First they select a small
number of relevant features (less than 40) using an unbalanced correlation score that se-
lects features that have non-zero entries only for positive examples. This score encodes the
prior information that the data is unbalanced and that only positive correlations are likely
to be useful. The score has an information theoretic motivation, see the paper for details.
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Representation: The original data set was modified for the purpose of the feature
selection challenge: The original training and test sets were merged. The features were
sorted according to an unbalanced correlation critetion, computed using the original test
set (which is richer is positive examples). Only the top ranking 100000 original features were
kept. The all zero patterns were removed, except one that was given label ?1. For the second
half lowest ranked features, the order of the patterns was individually randomly permuted
(in order to create ”random probes” or distrator features). The order of the patterns and
the order of the features were globally randomly permuted to mix the original training and
the test patterns and remove the feature order. The data was split into training, validation,
and test set while respecting the same proportion of examples of the positive and negative
class in each set.

SET 0.5: NEWSGROUPS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass PAC 20 1 1 0 0 0 3755 1877 13142 61188 0.21

This dataset was prepared by Hugo Jair Escalante from original data provided by Ken
Lang. The version we used was obtained from Deng Cai.: ”TNW - 20 Newsgroups data
set” (http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html).

Past Usage: The 20 NewsGroups data set is among the most used data sets for text
categorization. It has been used to evaluate standard text categorization and recently it
has been also widely used for the evaluation of cross domain text categorization.

Description: In this version of the data set the training and test documents were
mixed in a single matrix, then plit into training, validation, and test set for the needs of
the challenge.

Preparation: The data is organized into 20 different newsgroups (each newsgroup
corresponds to a class), each corresponding to a different topic (see http://qwone.com/

~jason/20Newsgroups/). Some of the newsgroups are very closely related to each other
(e.g. comp.sys.ibm.pc.hardware / comp.sys.mac.hardware), while others are highly unre-
lated (e.g misc.forsale / soc.religion.christian). .

Representation: Documents are represented by their bag-of-words using a term-
frequency weighting scheme.

ROUND 1

SET 1.1: CHRISTINE

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary BAC 2 1 0.071 0 0 0.5 2084 834 5418 1636 3.31

This dataset was prepared by Isabelle Guyon from original data provided by Curt Bren-
eman, Charles Bergeron, and Kristin Bennett: ”Activation of pyruvate kynase” (http:
//www.causality.inf.ethz.ch/activelearning.php?page=datasets).

Past Usage: Active learning challenge, C dataset, see http://www.causality.inf.

ethz.ch/activelearning.php.
Description: The task is to predict chemical activity of molecules. This is a two-class

classification problems. The variables represent properties of the molecule inferred from its
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structure. The problem is therefore to relate structure to activity (a QSAR=quantitative
structure-activity relationship problem) to screen new compounds before actually testing
them (a HTS=high-throughput screening problem). The problem is to predict the activation
of pyruvate kynase, a well characterized enzyme, which regenerates ATP in glycolysis by
catalyzing phosphoryl transfer from phosphoenol pyruvate to ADP to yield pyruvate and
ATP.

Preparation: We modified the original data split and added probes.
Representation: Features/Attributes representing properties of molecules.

SET 1.2: JASMINE

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary BAC 2 1 0.78 0 0 0.5 1756 526 2984 144 20.72

This dataset was prepared by Isabelle Guyon from original data provided by Reza Far-
rahi Moghaddam, Mathias Adankon, Kostyantyn Filonenko, Robert Wisnovsky, and Mo-
hamed Cheriet: ”Arabic manuscripts” (http://www.causality.inf.ethz.ch/activelearning.
php?page=datasets).

Past Usage: Active learning challenge, A dataset, see http://www.causality.inf.

ethz.ch/activelearning.php.
Description: The task is to classify cursive script subwords from data in a feature

representation extracted from Arabic Historical Manuscripts..
Preparation: We modified the original data split and added probes..
Representation: Features/Attributes.

SET 1.3: MADELINE

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary BAC 2 1 1.2e-06 0 0 0.92 3240 1080 3140 259 12.12

This dataset was prepared by Isabelle Guyon from original data provided by Isabelle
Guypn: ”Feature selection challenge data” (http://www.nipsfsc.ecs.soton.ac.uk/datasets/
;https://archive.ics.uci.edu/ml/datasets/Madelon).

Past Usage: NIPS 2003 feature selection challenge. See Result analysis of the NIPS
2003 feature selection challenge, Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, Gideon
Dror, 2004.

Description: MADELON is an artificial dataset containing data points grouped in
32 clusters placed on the vertices of a five dimensional hypercube and randomly labeled
+1 or −1. The five dimensions constitute 5 informative features. 15 linear combinations
of those features were added to form a set of 20 (redundant) informative features. Based
on those 20 features one must separate the examples into the 2 classes (corresponding
to the ±1 labels). We added a number of distractor feature called *probes* having no
predictive power. The order of the features and patterns were randomized. See http:

//www.nipsfsc.ecs.soton.ac.uk/papers/NIPS2003-Datasets.pdf.
Preparation: To draw random data, the program takes the following steps: (1) Each

class is composed of a number of Gaussian clusters. N(0,1) is used to draw for each clus-
ter num useful feat examples of independent features. (2) Some covariance is added by
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multiplying by a random matrix A, with uniformly distributed random numbers between
-1 and 1. (3) The clusters are then placed at random on the vertices of a hypercube in
a num useful feat dimensional space. The hypercube vertices are placed at values ±1
class sep. (4) Redundant features are added. They are obtained by multiplying the useful
features by a random matrix B, with uniformly distributed random numbers between -1
and 1. (5) Some of the previously drawn features are repeated by drawing randomly from
useful and redundant features. Useless features (random probes) are added using N(0,1).
(6)- All the features are then shifted and rescaled randomly to span 3 orders of magnitude.
(7) Random noise is then added to the features according to N(0,0.1). (8) A fraction flip y
of labels are randomly exchanged.

Representation: Continuous valued features.

SET 1.4: PHILIPPINE

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary BAC 2 1 0.0012 0 0 0.5 4664 1166 5832 308 18.94

This dataset was prepared by Isabelle Guyon from original data provided by Em-
manuel Faure, Thierry Savy, Louise Duloquin, Miguel Luengo Oroz, Benoit Lombardot,
Camilo Melani, Paul Bourgine, and Nadine Peyrieras: ”Mitosis classification” (http://
www.causality.inf.ethz.ch/activelearning.php?page=datasets).

Past Usage: Active learning challenge, E dataset, see http://www.causality.inf.

ethz.ch/activelearning.php.
Description: A feature representation of cells of zebrafish embryo to determine whether

they are in division (meiosis) or not. All the examples are manually annotated.
Preparation: We modified the original data split and added probes.
Representation: Features extracted from video data.

SET 1.5: SYLVINE

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary BAC 2 1 0.01 0 0 0.5 10244 5124 5124 20 256.2

This dataset was prepared by Isabelle Guyon from original data provided by Department
of Forest Sciences, Colorado: ”Forest cover types” (https://archive.ics.uci.edu/ml/
datasets/Covertype).

Past Usage: Active learning challenge, F dataset, see http://www.causality.inf.

ethz.ch/activelearning.php.
Description: The tasks is to classify forest cover types. The original multiclass problem

is brought back to Krummholz vs. other classes of trees.
Preparation: We modified the original data split and added probes.
Representation: Features/Attributes

ROUND 2

SET 2.1: ALBERT

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary F1 2 1 0.049 0.14 1 0.5 51048 25526 425240 78 5451.79
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This dataset was prepared by Hugo Jair Escalante from original data provided by Olivier
Chapelle (CRITEO): ”Criteos Delayed Feedback in Display Advertising” (https://www.
kaggle.com/c/criteo-display-ad-challenge/details/about-criteo?).

Past Usage: The data set used for the AutoML challenge was taken from the training-
set partition of Criteos-Kaggle challenge. The challenge is runing and there are about 350
teams registered. A closely related data set is described in: O. Chapelle. Modeling delayed
feedback in display advertising. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM Press, 2014.

Description: The data set is a small subset of the training set provided for the above
mentioned challenge. The data set has been balanced (originally the class imbalance ratio
was 70/30). .

Preparation: For the purpose of the AutoML challenge, missing values are denoted
with NaN, the meaning of the variables has not been described yet (it contains sensitive
data). Variables 1-13 are numeric, variables 14-39 are categorical.

Representation: Features related to click prediction, the semantics of the features has
not been described elsewhere.

SET 2.2: DILBERT

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass PAC 5 1 0 0 0 0.16 9720 4860 10000 2000 5

This dataset was prepared by Hugo Jair Escalante from original data provided by Fu
Jie Huang, Yann LeCun, Leon Bottou: ”NORB data set (2 feature maps)” (http://cs.
nyu.edu/~ylclab/data/norb-v1.0/).

Past Usage: This data set has been widely used for the evaluation of 3D object
classifcation, it has been very popular recently for deep learning computer vision, the paper
introducing the data set is: Yann LeCun, Fu Jie Huang, Leon Bottou. Learning methods
for generic object recognition with invariance to pose and lighting, CVPR, 2004. (google
scholar reports 380 citations).

Description: The data set has 48600 images comprising 5 categories, images come from
50 toys belonging to 5 categories. The objects were imaged by two cameras under 6 lighting
conditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every
20 degrees). Images have been represented with features derived with a convolutional neural
network. (TCNN with random weights).

Preparation: For the purpose of the AutoML challenge, all samples were merged
(the standard procedure uses half of the images for training and half for testing). Images
are represented with the upper layer of a (1-layer) Tiled Convolutional Neural Network
(TCNN), no pretraining was performed, random weights were used (see A. Saxe code:
http://web.stanford.edu/~asaxe/random_weights.html).

Representation: Features learned by a TCNN, we used 2 maps to erduce the dimen-
sionality of the representation, the inputs to the TCNN are the pixels from the two stereo
images, a 4x4 window wans considered.

SET 2.3: FABERT

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass PAC 7 0.96 0.99 0 0 0.5 2354 1177 8237 800 10.3
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This dataset was prepared by Sergio Escalera from original data provided by Sergio
Escalera, Xavier Baro, Jordi Gonzalez, Miguel A. Bautista, Meysam Madadi, Miguel Reyes,
Victor Ponce: ”LAP2014 Gesture Recognition Data set using Skeleton features” (http:
//sunai.uoc.edu/chalearn/).

Past Usage: The data from which the LAPSD was generated have been used by
several people in two challenges (Multimodal Gesture Recognition and Looking at People
Challenges), the number of registered participants exceeded 200 hundred (al least 20 people
participated throughout the final stages and developed highly competitive methods). More
information can be found in: Sergio Escalera et al. Multi-modal Gesture Recognition
Challenge 2013: Dataset and Results. Proc. of ICMI 2013, pp. 445-452, 2013, and in
Sergio Escalera et al. ChaLearn Looking at People Challenge 2014: Dataset and results,
ECCV- Chalearn workshop 2014.

Description: This is a dataset of gesture recognition. It comprises all of the samples
(training+validation+test) of the original data set, a total of 13845 samples. Skeleton
information was used to represent gestures (BOW formulation). The original data set has
20 gesture classes, for this data set, the 20 gestures are grouped into 10 different classes (0.
Perfetto and frieganiente, 1. Prendere, ok and noncenepiu, 2. Bounissimo, furbo, seipazo
and cosatifarei, 3. Chevoui, daccordo and combinato, 4. Sonostufo and messidaccordo, 5.
Vattene and Vieniqui, 6. Basta, 7. Fame, 8. Tantotempofa, 9. Cheduepalle.

Preparation: For the purpose of the AutoML challenge, all samples were merged.
Skeleton frames were first described by the difference of world-coordinates of joint points
and the head joint, and then clustered o generate a 400-words vocabulary, which was used
to represent the videos.

Representation: Bag-of-Visual-Words using Skeleton coordinates, vocabulary of 400
codewords was considered.

SET 2.4: ROBERT

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass BAC 10 1 0.01 0 0 0 5000 2000 10000 7200 1.39

This dataset was prepared by Isabelle Guyon from original data provided by Anto-
nio Torralba, Rob Fergus, and William T. Freeman, collected and made available publicly
the 80 million tiny image dataset. Vinod Nair and Geoffrey Hinton collected and made
available publicly the CIFAR datasets.: ”Image classification (from Unsupervised and
Transfer Learning Challenge)” (http://www.cs.toronto.edu/?kriz/cifar.html,http:
//groups.csail.mit.edu/vision/TinyImages/).

Past Usage: The data were used in the Unsupervised and Transfer Learning challenge:
http://www.causality.inf.ethz.ch/unsupervised-learning.php.

Description: These are small pictures of objects, animals. etc. We merged the CIFAR-
10 and the CIFAR-100 datasets. The CIFAR-10 dataset consists of 60000 32x32 colour
images in 10 classes, with 6000 images per class. The CIFAR-100 dataset is similar to the
CIFAR-10, except that it has 100 classes containing 600 images each. The 100 classes in
the CIFAR-100 are grouped into 20 superclasses..

Preparation: The raw data came as 32x32 tiny images coded with 8-bit RGB colors
(i.e. 3x32 features with 256 possible values). We converted RGB to HSV and quantized the
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results as 8-bit integers. This yielded 30x30x3 = 900 x 3 features. We then preprocessed the
gray level image to extract edges. This yielded 30 x 30 features (1 border pixel was removed).
We then cut the images into patches of 10x10 pixels and ran kmeans clustering (an on-line
version) to create 144 cluster centers. We used these cluster centers as a dictionary to create
features corresponding to the presence of one the 144 shapes at one of 25 positions on a
grid. This created another 144 x 25 = 3600 features. See http://jmlr.org/proceedings/

papers/v27/supplemental/datasetsutl12a.pdf for details..
Representation: Bag of word features.

SET 2.5: VOLKERT

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass PAC 10 0.89 0.34 0 0 0 7000 3500 58310 180 323.94

This dataset was prepared by Hugo Jair Escalante from original data provided by J.
Vogel and B. Schiele.: ”VOGEL data set - image classification” (http://ccc.inaoep.mx/

~hugojair/ebm/ebm_code_and_data.zip).
Past Usage: This data set has been used in a few publications for the evaluation of

region labeling and image retrieval techniques. The data set was introduced in: J. Vogel, B.
Schiele. Semantic Modeling of Natural Scenes for Content-Based Image Retrieval. Journal
of Computer Vision, Vol. 72(2):133–157, 2007, this paper has ben cited around 250 times
according to google scholar.

Description: Images are natural scenes from 6 different categories (coasts / rivers-lakes
/ forests / mountains / plains / sky-clouds). Each image has been divided in regions of
10x10 pixels each (grid segmentation), 100 regions per image were extracted. The goal of
the task is to classify the regions. Regions are represented by a set of visual descriptors,
and regions are labeled with one of 17 labels, associated to the scene categories.

Preparation: There are 70000 regions to be labeled with one of 17 labels, where every
100 regions (in the actual order of the X file) were extracted from the same image (each
image corresponds to a single natural scene category). In the past 10 fold CV has been
used for evaluation.

Representation: Images are represented by their edge and HSI-color histograms, as
well as by texture features extracted from the co-occurrence matrix.

ROUND 3

SET 3.1: ALEXIS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multilabel AUC 18 0.92 0.98 0 0 0 15569 7784 54491 5000 10.9

This dataset was prepared by Isabelle Guyon from original data provided by The dataset
was constructed from the KTH human action recognition dataset of Ivan Laptev and Bar-
bara Caputo and the Hollywood 2 dataset of human actions and scenes of Marcin Marsza-
lek, Ivan Laptev, and Cordelia Schmidt.: ”Action recognition (from Unsupervised and
Transfer Learning Challenge)” (http://www.nada.kth.se/cvap/actions/,http://www.
irisa.fr/vista/Equipe/People/Laptev/download.html).
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Past Usage: The data were used in the Unsupervised and Transfer Learning challenge:
http://www.causality.inf.ethz.ch/unsupervised-learning.php.

Description: The data include video clips of people performing actions. The identi-
fication and recognition of gestures, postures and human behaviors has gained importance
in applications such as video surveillance, gaming, marketing, computer interfaces and in-
terpretation of sign languages for the deaf.

Preparation: The data were preprocessed into STIP features using the code of Ivan
Laptev: http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.0-winlinux.
zip. The final representation is a ?bag of STIP features?. Details are found in the report
http://jmlr.org/proceedings/papers/v27/supplemental/datasetsutl12a.pdf.

Representation: Bag of word features.

SET 3.2: DIONIS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass BAC 355 1 0.11 0 0 0 12000 6000 416188 60 6936.47

This dataset was prepared by Mehreen Saeed from original data provided by Sar-
mad Hussain and Qurat ul Ain Akram: ”Urdu OCR dataset” (http://www.cle.org.pk/
clestore/imagecorpora.htm).

Past Usage: http://www.cle.org.pk/Publication/papers/2013/Binarization%20and%
20its%20Evaluation%20for%20Urdu%20Nastalique%20Document%20Images%208-3-1.pdf,

http://www.cle.org.pk/Publication/papers/2014/AdaptingTesseract%20for%20Complex%

20Scripts-%20an%20Example%20for%20Nastalique%203.10.pdf,www.UrduOCR.netandwww.

cle.org.pk/clestore/imagecorpora.htm.
Description: This is a dataset of Urdu printed ligatures shapes with diacritics stripped

off. The dataset has been derived from an original dataset found at : http://www.cle.org.
pk/clestore/imagecorpora.htm by generating new images from existing ones. A subset
of shapes is included in this dataset.

Preparation: For the purpose of the AutoML challenge, new shape images were created
using elastic deformations, rotations, shear and scaling. Features were then extracted from
the generated images.

Representation: DCT transform of image contours, spatial density computed by di-
viding each image in a 3x3 grid and computing the density for each cell, eigen values and
eigen vector of (x,y) coordinates of foreground shape pixels.

SET 3.3: GRIGORIS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multilabel AUC 91 0.87 1 0 0 0 9920 6486 45400 301561 0.15

This dataset was prepared by Grigorios Tsoumakas et al. from original data provided
by Grigorios Tsoumakas et al.: ”WISE 2014 - Greek Media Monitoring Multilabel Classifi-
cation” (https://www.kaggle.com/c/wise-2014).

Past Usage: The data set is being used in the WISE 2014 - Greek Media Monitoring
Multilabel Classification, the challenge is being managed in the Kaggle platform, at the
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moment of writing this file 121 teams have registered for the competition, these are teams
that have made at least one submission.

Description: This is a multi-label classification competition for articles coming from
Greek printed media. Raw data comes from the scanning of print media, article segmenta-
tion, and optical character segmentation, and therefore is quite noisy. Data was collected
by scanning a number of Greek print media from May 2013 to September 2013. There are
301561 numerical attributes corresponding to the tokens encountered inside the text of the
collected articles. Articles were manually annotated with one or more out of 203 labels (in
this version, there are considered 200 labels only).

Preparation: For the purpose of the AutoML challenge, only the training subset of
documents has been considered, a total of 200 labels are considered where each has at least
one example.

Representation: Text are represented by their bag-of-words with a tfidf weighting
scheme.

SET 3.4: JANNIS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass PAC 4 0.8 7.3e-05 0 0 0.5 9851 4926 83733 54 1550.61

This dataset was prepared by Hugo Jair Escalante from original data provided by Hugo
Jair Escalante, Michael Grubinger: ”SAIAPR TC12 benchmark - main-branches classifica-
tion” (http://imageclef.org/SIAPRdata).

Past Usage: Several methods for image annotation have been evaluated in the SAIAPR-
TC12 collection (see http://scholar.google.com/scholar?oi=bibs&hl=en&cites=8812357429744542982);
including region-level (this data) and image-level methods. A previous version of this col-
lection (IAPR-TC12) has been widely used to benchmark multimodal image retrieval tech-
niques in the CLEF forum. The data set is described in detail in the following publication:
H. J. Escalante, et al. The Segmented and Annotated IAPR-TC12 Benchmark. Computer
Vision and Image Understanding Journal, 114(4):419-428, 2010.

Description: In this version of the SAIAPR-TC 12 data set the goal is to classify
image regions into one of the 4-most populated branches (Animals, Man-made objects,
Persons, Landscape) of a hierarchy of concepts. Each instance is associated to a region of
an image. Regions in images have been segmented manually, each region is described by
a 27-dimensional verctor comprising the following visual-content attributes: area, bound-
ary/area, width and height of the region, average and standard deviation in x and y, con-
vexity, average, standard deviation and skewness in the RGB and CIE-Lab color spaces. In
the past, 10-fold cross validation has been used for evaluation.

Preparation: For the purpose of the AutoML challenge, all regions are labeled by the
first-level branch of the original labels.

Representation: Region area, boundary/area, width and height of the region, average
and standard deviation in x and y, convexity, average, standard deviation and skewness in
the RGB and CIE-Lab color spaces.

SET 3.5: WALLIS

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass BAC 11 0.91 1 0 0 0 8196 4098 10000 193731 0.05
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This dataset was prepared by Hugo Jair Escalante from original data provided by Ana
Cardoso Cachopo.: ”C12 - the CADE 12 data set” (http://web.ist.utl.pt/~acardoso/
datasets/).

Past Usage: This data set has been used to evaluate standard (single label) text
categorization. There are no too much references using this data set, most work has been
reported from Portuguese and Brazilian colleagues.

Description: The documents in the Cade12 correspond to a subset of web pages ex-
tracted from the CADE Web Directory, which points to Brazilian web pages classified by
human experts.

Preparation: The data is organized into 12 classes each corresponding to a different
webpage category (see http://web.ist.utl.pt/~acardoso/datasets/).

Representation: Documents are represented by their bag-of-words using a term-
frequency weighting scheme.

ROUND 4

SET 4.1: EVITA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.21 0.91 0 0 0.46 14000 8000 20000 3000 6.67

This dataset was prepared by Isabelle Guyon from original data provided by National
Cancer Institute (NCI)DTP AIDS Antiviral Screen program: ”HIV” (http://dtp.nci.
nih.gov/docs/aids/aids_data.html).

Past Usage: This data set has been previous use in several challenges including the
Performance Prediction Challenge under the name HIVA and the Causation and Prediction
Challenge under the name SIDO.

Description: This is a problem of drug activity classification. The data contains
descriptors of molecules, which have been tested against the AIDS HIV virus. The target
values indicate the molecular activity (+1 active, -1 inactive).

Preparation: The features were reshuffled and a fresh data split was made.
Representation: The molecular descriptors were generated programmatically from the

three dimensional description of the molecule, with several programs used by pharmaceutical
companies for QSAR studies (Quantitative Structure-Activity Relationship). For example,
a descriptor may be the number of carbon molecules, the presence of an aliphatic cycle.

SET 4.2: FLORA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

regression ABS 0 NaN 0.99 0 0 0.25 2000 2000 15000 200000 0.08

This dataset was prepared by C J Lin from original data provided by These data were
collected primarily by Bryan Routledge, Shimon Kogan, Jacob Sagi, and Noah Smith. This
version was obtained from C. J. Lin.: ”E2006-tfidf 10-K Corpus” (https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/regression.html).

Past Usage: https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD.
Description: Prediction of the release year of a song from audio features. Songs are

mostly western, commercial tracks ranging from 1922 to 2011, with a peak in the year 2000s.
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Preparation: The data were obtained by C J Lin. They respect the original represen-
tation..

Representation: Features: 12 = timbre average, 78 = timbre covariance.

SET 4.3: HELENA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass BAC 100 0.9 6e-05 0 0 0 18628 9314 65196 27 2414.67

This dataset was prepared by Hugo Jair Escalante from original data provided by Hugo
Jair Escalante, Michael Grubinger: ”SAIAPR TC12 benchmark - top-100 frequent labels”
(http://imageclef.org/SIAPRdata).

Past Usage: Several methods for image annotation have been evaluated in the SAIAPR-
TC12 collection (see http://scholar.google.com/scholar?oi=bibs&hl=en&cites=8812357429744542982);
including region-level (this data) and image-level methods. A previous version of this col-
lection (IAPR-TC12) has been widely used to benchmark multimodal image retrieval tech-
niques in the CLEF forum. The data set is described in detail in the following publication:
H. J. Escalante, et al. The Segmented and Annotated IAPR-TC12 Benchmark. Computer
Vision and Image Understanding Journal, 114(4):419-428, 2010.

Description: In this version of the SAIAPR-TC 12 data set the goal is to classify
image regions into one of 100 labels (the top-100 more frequent ones). The original data
set has about 276 labels, organized into a hierarchy of concepts, in this version of the data
set the goal is to classify the leaf-labels of the hierarchy. Each instance is associated to
a region of an image. Regions in images have been segmented manually, each region is
described by a 27-dimensional verctor comprising the following visual-content attributes:
area, boundary/area, width and height of the region, average and standard deviation in x
and y, convexity, average, standard deviation and skewness in the RGB and CIE-Lab color
spaces. In the past, 10-fold cross validation has been used for evaluation.

Preparation: For the purpose of the AutoML challenge, all regions are labeled by their
leaf-label in the hierarchy of concepts.

Representation: Region area, boundary/area, width and height of the region, average
and standard deviation in x and y, convexity, average, standard deviation and skewness in
the RGB and CIE-Lab color spaces.

SET 4.4: TANIA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multilabel PAC 95 0.79 1 0 0 0 44635 22514 157599 47236 3.34

This dataset was prepared by Isabelle Guyon from original data provided by The original
data were donated by Reuters and downloaded from: Lewis, D. D. RCV1-v2/LYRL2004:
The LYRL2004 Distribution of the RCV1-v2 Text Categorization Test Collection (12-
Apr- 2004 Version).: ”Text classification (from REUTERS data)” (http://www.jmlr.org/
papers/volume5/lewis04a/lyrl2004_rcv1v2_README).

Past Usage: The data were used in the Unsupervised and Transfer Learning challenge:
http://www.causality.inf.ethz.ch/unsupervised-learning.php.
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Description: We used a subset of the 800,000 documents of the RCV1-v2 data collec-
tion.

Preparation: The data were formatted in a bag-of-words representation. The represen-
tation uses 47,236 unique stemmed tokens, see http://jmlr.org/proceedings/papers/

v27/supplemental/datasetsutl12a.pdf for details. We considered all levels of the hier-
archy to select the most promising categories.

Representation: Bag-of-word features.

SET 4.5: YOLANDA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

regression R2 0 NaN 1e-07 0 0 0.1 30000 30000 400000 100 4000

This dataset was prepared by T. Bertin-Mahieux from original data provided by This
data is a subset of the Million Song Dataset: http://labrosa.ee.columbia.edu/millionsong/
a collaboration between LabROSA (Columbia University) and The Echo Nest. Prepared
by T. Bertin-Mahieux. This version was obtained from C. J. Lin.: ”YearPredictionMSD
Data Set ” (https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD).

Past Usage: The Million Song Dataset. Thierry Bertin-Mahieux, Daniel P.W. El-
lis and Brian Whitman, Paul Lamere. https://archive.ics.uci.edu/ml/datasets/

YearPredictionMSD; http://ismir2011.ismir.net/papers/OS6-1.pdf.
Description: Prediction of the release year of a song from audio features. Songs are

mostly western, commercial tracks ranging from 1922 to 2011, with a peak in the year 2000s.
Preparation: The data were obtained by C J Lin. They respect the original represen-

tation.
Representation: Features: 12 = timbre average, 78 = timbre covariance.

ROUND 5

SET 5.1: ARTURO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass F1 20 1 0.82 0 0 0.5 2733 1366 9565 400 23.91

This dataset was prepared by Sergio Escalera from original data provided by Sergio
Escalera, Xavier Baro, Jordi Gonzalez, Miguel A. Bautista, Meysam Madadi, Miguel Reyes,
V?ctor Ponce: ”Multimodal Gesture Recognition Data set using audio features” (http:
//sunai.uoc.edu/chalearn/).

Past Usage: The data from which the ABGR was generated have been used by several
people in two challenges (Multimodal Gesture Recognition and Looking at People Chal-
lenges), the number of registered participants exceeded 200 hundred (al least 20 people
participated throughout the final stages and developed highly competitive methods). More
information can be found in: Sergio Escalera et al. Multi-modal Gesture Recognition Chal-
lenge 2013: Dataset and Results. Proc. of ICMI 2013, pp. 445-452, 2013, and in Sergio
Escalera et al. ChaLearn Looking at People Challenge 2014: Dataset and results, ECCV-
Chalearn workshop 2014.
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Description: This is a dataset of gesture recognition. It comprises all of the samples
(training+validation+test) of the original data set, a total of 13664 samples. 20 classes of
gestures were considered and only audio-based features are used to represent clips.

Preparation: For the purpose of the AutoML challenge, all samples were merged.
Frames of the clip were first described by the 13 MEL coefficients extracted from the audio
signal, and then clustered o generate a 200-words vocabulary, which was used to represent
the videos.

Representation: Bag-of-Visual-Words using Mel coefficients coordinates, vocabulary
of 200 codewords was considered.

SET 5.2: CARLO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary PAC 2 0.097 0.0027 0 0 0.5 10000 10000 50000 1070 46.73

This dataset was prepared by Bisakha Ray from original data provided by Bisakha Ray,
Javier Orlandi, Olav Stetter, Isabelle Guyon: ”Connectomics-features-normal-1” (http:
//www.kaggle.com/c/connectomics/leaderboard).

Past Usage: Used for Connectomics challenge at http://www.kaggle.com/c/connectomics/
leaderboard.

Description: This is a dataset of Connectomics Challenge. The outcome considered is
presence or absence of connection.

Preparation: For the purpose of the AutoML challenge, all samples were merged and
the data were freshly randomly split in three sets: training, validation, and test. The order
of the features (pixels) was also randomize, after adding a few distractor features (probes)
that are permuted versions of real features.

Representation: neuronal connection.

SET 5.3: MARCO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multilabel AUC 180 0.76 0.99 0 0 0 20482 20482 163860 15299 10.71

This dataset was prepared by Yin Aphinyanaphongs from original data provided by
William Hersh: ”Ohsumed TEXT dataset” (http://ir.ohsu.edu/ohsumed/ohsumed.html).

Past Usage: Many studies have used the ohsumed corpora for information retrieval
research in the biomedical literature. See http://scholar.google.com/scholar?es_sm=

91&um=1&ie=UTF-8&lr=&cites=13802943827211985373 for a listing of papers that cite this
work.

Description: See the dataset url for more information. To summarize, these are
biomedical articles from 1987 to 1991 from over 270 medical journals from the primary
literature that contain titles, abstracts, human-assigned MeSH terms, publication types,
authors, and source.

Preparation: The original dataset contains 348,566 references from MEDLINE. , the
on-line medical information database, consisting of titles and/or abstracts from 270 medical
journals over a five-year period (1987-1991). The available fields are title, abstract, MeSH
indexing terms, author, source, and publication type. We applied the following steps in
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order: (1) Filter references to contain an abstract, contain a title, and is of type ”journal
article.” (2) Concatonate title (.T), abstract (.W), Author (.A), and Source (.S). (3) Replace
all punctuation with blanks. (4) Remove stopwords defined in nltk.corpus. (5) Set minimum
token occurence to 50. (6) Apply tf-idf to the resulting corpus. The classification targets are
determined by ranking the top 200 mesh terms assigned to all the documents and building
independent classification tasks for each MeSH term. See Google sheet at https://docs.

google.com/spreadsheets/d/1Kihqtds6mYVWTwV4l5qRCNuUCZOnXkpM9zYbbtHT3ts/edit#

gid=1366784086 for initial performance estimates on the various classification tasks.
Representation: Bag-of-word features.

SET 5.4: PABLO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

regression ABS 0 NaN 0.11 0 0 0.5 23565 23565 188524 120 1571.03

This dataset was prepared by Bisakha Ray from original data provided by Jaume Bac-
ardit and Natalio Krasnogor: ”The ICOS PSP benchmarks repository” (http://icos.cs.
nott.ac.uk/datasets/psp_benchmark.html).

Past Usage: M. Stout, J. Bacardit, J.D. Hirst, N. Krasnogor Prediction of recursive
convex hull class assignments for protein residues in Bioinformatics, 24(7):916-923, April
2008.

Description: This is a dataset of PSP benchmark repository. The outcome considered
is protein structure prediction. It consists of 60 real-valued features for regression. The fold
considered is TrainFold09w1.

Preparation: For the purpose of the AutoML challenge, all samples were merged and
the data were freshly randomly split in three sets: training, validation, and test. The order
of the features (pixels) was also randomize, after adding a few distractor features (probes)
that are permuted versions of real features.

Representation: Protein structure features.

SET 5.5: WALDO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

multiclass BAC 4 1 0.029 0 1 0.5 2430 2430 19439 270 72

This dataset was prepared by Isabelle Guyon from original data prepared from vari-
ous sources, all in the feature representation designed by Jose Fonollosa: ”Cause-Effect
Pairs challenge data (in Jarfo representation)” (http://www.causality.inf.ethz.ch/
cause-effect.php?page=data).

Past Usage: The data were used in the cause-effet pairs challenge in their raw repre-
sentation.

Description: We provided hundreds of pairs of real variables with known causal rela-
tionships from domains as diverse as chemistry, climatology, ecology, economy, engineering,
epidemiology, genomics, medicine, physics. and sociology. Those were intermixed with
controls (pairs of independent variables and pairs of variables that are dependent but not
causally related) and semi-artificial cause-effect pairs (real variables mixed in various ways
to produce a given outcome). The goal is to classify the pairs in one of 4 classes ”A causes
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B”, B causes A”, ”A and B are independent” or ”A and B are dependent but not causally
related”.

Preparation: One of the participant extracted features of the joint distribution of the
variable pairs. Those feature (which we provide), include information theoretic features
such as conditional entropy and results of independence tests.

Representation: Features.

Appendix C. Datasets of the 2018 AutoML challenge

C.1. PHASE 1: development

SET 1.1: ADA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 1 0.33 0 0 0 41471 415 4147 48 86.39

This dataset is a version of the Adult data set used in round 0 of the 2015/2016 AutoML
challenge. It was prepared by Isabelle Guyon from original data extracted by Barry Becker
from the 1994 Census database. The data was donated to the UCI repository by Ron
Kohavi: ”Adult data set” (https://archive.ics.uci.edu/ml/datasets/Adult).

Past Usage: It was used previously used in the Performance Prediction challenge, the
Model Selection game, and the Agnostic Learning vs. Prior Knowledge (ALvsPK) challenge.
Adult, a version of ADA was used in round 0 of the 2015/2016 AutoML challenge.

Description: The task of ADA is to discover high revenue people from census data.
This is a two-class classification problem. The raw data from the census bureau is known
as the Adult database in the UCI machine-learning repository. The 14 original attributes
(features) include age, workclass, education, education, marital status, occupation, native
country, etc. Categorical features were eliminated and the original numerical features were
preprocessed to obtain 48 attributes.

Preparation: A set of reasonably clean records was extracted using the following
conditions: ((AAGE > 16) and (AGI > 100) and (AFNLWGT > 1) and (HRSWK > 0)).

Representation: The features include age, workclass, education, etc.

SET 1.2: ARCENE

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.78 0.54 0 0 0 700 100 100 10000 0.01

This dataset was made available by Isabelle Guyon. The tasks consist in distinguishing
cancer versus normal patterns from mass-spectrometric data. This is a two-class classifica-
tion problem with continuous input variables. More information on the dataset is available
from this link: https://archive.ics.uci.edu/ml/datasets/Arcene

Past Usage: The Arcene dataset has been used previously in the NIPS 2003 feature
selection challenge.

Description: The data were obtained from two sources: The National Cancer Institute
(NCI) and the Eastern Virginia Medical School (EVMS). All the data consist of mass-spectra
obtained with the SELDI technique. The samples include patients with cancer (ovarian or
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prostate cancer), and healthy or control patients. Ovarian cancer samples comprise 253
spectra, including 91 controls and 162 cancer spectra. Regarding the prostate cancer, there
are 253 normal samples and 69 disease samples. The number of original features is 15154.

Preparation: The samples were prepared as described in http://clopinet.com/

isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf. After preprocessing, 3000
informative features and 7000 probes were included in the data set.

Representation: See http://clopinet.com/isabelle/Projects/NIPS2003/Slides/
NIPS2003-Datasets.pdf.

SET 1.3: GINA

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 1 0.97 0.31 0 0 31532 315 3153 970 3.25

This dataset was prepared by Isabelle Guyon. The associated task is handwritten digit
recognition. Specifically, the problem of separating the odd numbers from even numbers.
This is a twoclass classification problem with sparse continuous input variables, in which
each class is composed of several clusters. It is a problems with heterogeneous classes.

Past Usage: It was used previously used in the Performance Prediction challenge, the
Model Selection game, and the Agnostic Learning vs. Prior Knowledge (ALvsPK) challenge.

Description: The dataset was formed with instances from the MNIST dataset that is
made available by Yann LeCun at http://yann.lecun.com/exdb/mnist/.

Preparation: The following process was followed for preparing the data: Pixels that
were 99% of the time white were removed. This reduced the original feature set of 784 pixels
to 485. The original resolution (256 gray levels) was kept. The feature names are the (i,j)
matrix coordinates of the pixels (in a 28x28 matrix). Two digit numbers were generated by
dividing the datasets into to parts and pairing the digits at random. The task is to separate
odd from even numbers. The digit of the tens being not informative, the features of that
digit act as distracters.

Representation: Pixels from the images were used as features. More information
on the dataset can be found in the following link: http://clopinet.com/isabelle/

Projects/agnostic/Dataset.pdf

SET 1.4: GUILLERMO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.67 0.53 0 0 0 5000 5000 20000 4296 4.65

This data set was prepared by Luis Pellegrin and Hugo Jair Escalante. It comprises
preprocessed image-text pairs. Original data was obtained from the SAIAPR TC12 bench-
mark, provided and prepared by Michael Grubinger and Hugo Jair Escalante (http://
imageclef.org/SIAPRdata).

Past Usage: The GUILLERMO data set was previously used in the RICATIM - Text
Image Matching challenge.

Description: The prediction task consists of determining whether a pair of image -
text is related. A word (text) is relevant to an image (and vice versa) if the word was used
as label for the image in the original SAIAPR TC12 benchmark. Thus, the image labeling
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problem is casted as one of binary classification. Images and words are encoded via learned
representations as described below, both representations are concatenated to generate the
input space of instances. Negative pairs were generated by sampling irrelevant labels.

Preparation: The data set was generated by sampling around 3,000 labeled images
from the SAIAPR TC12 data set (formed by 20,000 images). The data set is almost
balanced.

Representation: Images were represented by the response of a pretrained CNN (penul-
timate layer of VGG-16). Words were represented by their Word2Vec representation. An
embedding of 200 dimensions was considered, the embedding was trained with the Wikipedia
collection.

SET 1.5: RL

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.10 0.99 0.11 1 0 24803 0 31406 22 1427.5

This is a confidential dataset provided by the 4paradigm company, hence we cannot
disclose confidential information about it. Although this dataset is publicly available as it
was used for the feedback phase of the 2018 AutoML challenge.

Past Usage: This data set was specifically generated for the 2018 AutoML challenge.
Description: The RL data set is associated to a real-world recommendation task in-

volving real users. Items can be: video, audio and activities recommendations, and labels
are generated by clicks from users. Instances in this dataset are chronologically ordered,
real recommendations and clicks of users from a small time period were considered.

Preparation: A small sample from real recommendations-clicks was taken for preparing
this data set. The class imbalance ratio for this dataset was determined to resemble the
actual imbalance ratio observed in practice in the associated recommendation task.

Representation: Processed numerical and categorical features encoding descriptive
information were made available with this data set.

C.2. PHASE 2: final AutoML testing

SET 2.1: PM

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.01 1 0.11 1 0 20000 0 29964 89 224.71

This is a confidential dataset provided by the 4paradigm company, hence we cannot
disclose confidential information about it.

Past Usage: This data set was specifically generated for the 2018 AutoML challenge.
Description: The PM data set is associated to a real-world click prediction task in-

volving real users. More specifically a search-result-click through rate-prediction problem
is considered. Instances in this dataset are chronologically ordered, real clicks of users from
a small time period were considered.

Preparation: A small sample from real search-results-clicks was taken for preparing
this data set. The class imbalance ratio for this dataset was determined to resemble the
actual imbalance ratio observed in practice in the associated recommendation task.
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Representation: Processed categorical features encoding descriptive information were
made available with this data set.

SET 2.2: RH

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.04 0.59 0 1 0 28544 0 31498 76 414.44

This is a confidential dataset provided by the 4paradigm company, hence we cannot
disclose confidential information about it.

Past Usage: This data set was specifically generated for the 2018 AutoML challenge.
Description: The RH data set is associated to a real-world recommendation task

involving real users. Items can be: video, audio and activities recommendations, and labels
are generated by clicks from users. Instances in this dataset are chronologically ordered,
real recommendations and clicks of users from a small time period were considered.

Preparation: A small sample from real recommendations-clicks was taken for preparing
this data set. The class imbalance ratio for this dataset was determined to resemble the
actual imbalance ratio observed in practice in the associated recommendation task.

Representation: Processed numerical and categorical features encoding descriptive
information were made available with this data set.

SET 2.3: RI

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.02 0.91 0.26 1 0 26744 0 30562 113 270.46

This is a confidential dataset provided by the 4paradigm company, hence we cannot
disclose confidential information about it.

Past Usage: This data set was specifically generated for the 2018 AutoML challenge.
Description: The RI data set is associated to a real-world recommendation task in-

volving real users. Items can be: video, audio and activities recommendations, and labels
are generated by clicks from users. Instances in this dataset are chronologically ordered,
real recommendations and clicks of users from a small time period were considered.

Preparation: A small sample from real recommendations-clicks was taken for preparing
this data set. The class imbalance ratio for this dataset was determined to resemble the
actual imbalance ratio observed in practice in the associated recommendation task.

Representation: Processed numerical and categorical features encoding descriptive
information were made available with this data set.

SET 2.4: RICCARDO

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.33 0.51 0 0 0 5000 5000 20000 4296 4.65

This data set was prepared by Luis Pellegrin and Hugo Jair Escalante. It comprises
preprocessed image-text pairs. Original data was obtained from the common objects in
context collection (http://cocodataset.org/).
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Past Usage: This data set was specifically generated for the 2018 AutoML challenge.
It was built following a similar methodology as with the GUILLERMO data set above.

Description: The prediction task consists of determining whether a pair of image - text
is related. A text (text could be either a word or the caption accompanying an image) is
relevant to an image (and vice versa) if the text was used as caption (or word in the caption)
for the image in the original MS COCO benchmark. Thus, the image captioning/labeling
problem is casted as one of binary classification. Images and texts are encoded via learned
representations as described below, both representations are concatenated to generate the
input space of instances. Negative pairs were generated by sampling irrelevant labels.

Preparation: This data set was generated by sampling labeled images from the MS
COCO data set. Texts were generated by either captions or words appearing in the captions.
The data set is almost balanced.

Representation: Images were represented by the response of a pretrained CNN (penul-
timate layer of VGG-16). Texts were represented by their Word2Vec representation. An
embedding of 200 dimensions was considered, the embedding was trained with the Wikipedia
collection. For words, the direct embedding was used. For captions, the average embedding
(over words appearing in the caption) was considered.

SET 2.5: RM

Task Metric C Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

binary AUC 2 0.001 1 0.11 1 0 26961 0 28278 89 317.73

This is a confidential dataset provided by the 4paradigm company, hence we cannot
disclose confidential information about it.

Past Usage: This data set was specifically generated for the 2018 AutoML challenge.
Description: The RM data set is associated to a real-world click prediction task in-

volving real users. More specifically a search-result-click through rate-prediction problem
is considered. Instances in this dataset are chronologically ordered, real clicks of users from
a small time period were considered.

Preparation: A small sample from real search-results-clicks was taken for preparing
this data set. The class imbalance ratio for this dataset was determined to resemble the
actual imbalance ratio observed in practice in the associated recommendation task.

Representation: Processed categorical features encoding descriptive information were
made available with this data set.

Appendix D. Methods of the 2015/2016 AutoML challenge

In this appendix, we first present the results of a survey we conduccted after the challenge,
then briefly summarize the best methods based on fact sheets and papers presented at the
ICML 2016 workshop where the winners presented their results.

D.1. Survey Analysis

Twenty-eight teams responded to a survey we conducted on methods used in the challenge.
Preprocessing. Preprocessing consisted in normalization, feature extraction, and dimen-
sionality reduction. About one half of the respondents performed classical preprocessing
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steps, including feature standardization, sample normalization, and replacement of missing
values. This is consistent with the frequent use of ensembles of decision trees based on
decision thresholds, which do not require complex preprocessing. Other preprocessing steps
included grouping modalities for categorical variables (20%) and discretization (4%). Few
participants also reported having used non-linear transforms such as log. Most participants
did not perform any feature engineering, which can largely be explained by the fact that
they did not know the application domain of the data sets. Those who reported using
feature extraction either relied on the (embedded) feature learning of their algorithm (21%)
or applied random functions (36%). More than 2/3 of the participants used dimensionality
reduction, linear manifold transformations (e.g., PCA, ICA) being the most popular (43%).
About 1/3 used feature selection alone. Other methods included non-linear dimensionality
reduction (e.g., KPCA, MDS, LLE, Laplacian Eigenmaps) and clustering (e.g., K-means).
Predictor. The methods most frequently used involved (ensembles of) decision trees; 75%
of the participants reported having used them, alone or in combination with other methods.
The challenge setting lent itself well to such methods because each individual base learner
trains rapidly and performance improves by increasing the number of learners, making
such methods ideal any-time learning machines. Almost 1/2 of the participants used linear
methods and about 1/3 used at least one of the following methods: Neural Nets, Nearest
Neighbor, and Naive Bayes. The logistic loss was frequently used (75%). This may be
due to the fact that producing probability-like scores is the most versatile when it comes
to being able to be judged with a variety of loss functions. About 2/3 of the participants
reported having used knowingly some form of regularization; two-norm regularization was
slightly more popular than one-norm regularization.
Model selection and ensembling. About 2/3 of the respondents used one form of cross-
validation for model selection; the rest used just the leaderboard. This may be due to the
fact that the validation sets were not small for the most part. While K-fold cross-validation
and leave-one-out remain the most popular, 20% of the respondents used the out-of-bag
estimator of bagging methods and 10% used bi-level optimization methods. 4% reported
transferring knowledge from phase to phase. However, such a strategy may be worth con-
sidering since both winners of phase AutoML5 used it. Only 18% of the respondents did
not choose ensemble methods. For those who did, boosting and bagging were the most
common—60% reported having used one of the two.
Implementation. Most respondents could not reliably evaluate how their methods scaled
computationally. We are at least assured that they delivered results in less than 20 minutes
on every data set, because this was the time limit for the execution. Most respondents
claimed to have developed a simple method, easy to implement and parallelize (75% used
multi-processor machines, 32% used algorithms run in parallel on different machines), but
few claimed that their method was original or principled, and most relied on third-party
libraries; scikit-learn, which was used in the starting kit, was frequently used. Luckily, this
also resulted in code that was made available as open source—with only 10% exceptions.
Python was used by 82% of the respondents. This is also explained by the fact that the
starting kit was in Python. Although Codalab allows users to submit any Linux executable,
the organizers provided no support for this. Even then, 25% used at least one of the following
languages: C/C++, Java, or R, sometimes in combination with Python. The fact that the
Codalab backend ran on Linux may also explain that 86% of the respondents ran on Linux;
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others used Windows or MacOS. Memory consumption was generally high (more than half
of the respondents used between 8 and 32 GB, and 18% used more that 32 GB). Indeed,
when we introduced sparse data in Round 3, the sample code was memory demanding and
we had to increase the memory on the server up to 56 GB. Unfortunately, this remained a
problem until the end of the challenge—which we traced to an inefficient implementation
of the data reader and of Random Forest for sparse matrices.

D.2. Fact Sheets

The methods of top ranking participants of the 2015/2016 challenge are briefly summarized.

ideal.intel.analytics and amsl.intel.com

The proprietary solution of the Intel team was presented by Eugene Tuv at the
CiML workshop at NIPS, Montreal, December 2015 16. It is a fast implementation of
tree-based methods in C/C++, which was developed to drive acceleration of yield learning
in semiconductor process development. Using this software, the Intel team consistently
has ranked high in ChaLearn challenges since 2003. The method is based on gradient
boosting of trees built on a random subspace dynamically adjusted to reflect learned features
relevance. A Huber loss function is used. No pre-processing was done, except for feature
selection (Tuv et al., 2009). The classification method called Stochastic Gradient Tree
and Feature Boosting selects a small sample of features at every step of the ensemble
construction. The sampling distribution is modified at every iteration to promote more
relevant features. The SGTFB complexity is of the order of NtreeNtrlogNtrlogNfeat, where
Ntree is the number of trees, Ntr the number of training examples, and Nfeat the number
of features.

aad freiburg

The open-source solution of AAD Freiburg uses a heterogeneous ensemble of
learning machines (auto-sklearn (Feurer et al., 2015a,c)) combining the machine learning
library scikit-learn (Pedregosa et al., 2011) with the state-of-the-art SMBO method SMAC
to find suitable machine learning pipelines for a data set at hand. This is essentially a
reimplementation of Auto-WEKA. To speed up the optimization process they employed a
meta-learning technique (Feurer et al., 2015b) which starts SMAC from promising config-
urations of scikit-learn. Furthermore, they used the outputs of all models and combined
these into an ensemble using ensemble selection. Their latest version uses a python reimple-
mentation of SMAC (Hutter et al.) of Bayesian Optimization with Random Forests applied
to a flexible configuration space describing scikit-learn. For the GPU version (Mendoza
et al., 2016), they used the Java version of SMAC to tune auto-sklearn and deep neural
networks implemented in Lasagne/Theano (Dieleman et al., 2015; Theano Development
Team, 2016).

jrl44, backstreet.bayes, and lise sun

16. http://ciml.chalearn.org/home
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Freeze Thaw Ensemble Construction (Lloyd, 2016) of J. Lloyd (a.k.a. jrl44 and
backstreet.bayes) is a modified version of the Freeze Thaw Bayesian optimization algo-
rithm (Swersky et al., 2014) for ensemble construction. The strategy is to keep training
the most promising members of an ensemble, while freezing the least promising ones, which
may be thawed later. Probabilistic models based on Gaussian processes and decision trees
are used to predict which ensemble member should be trained further. Joining late in
the challenge, L. Sun made an entry in AutoML5 that ranked third using a similar ap-
proach (Sun-Hosoya, 2016).

abhishek4

AutoCompete of (Thakur and Krohn-Grimberghe, 2015) is an automated machine learn-
ing framework for tackling Machine Learning competitions. This solution performed well
in late rounds of the AutoML challenge and won the GPU track (Thakur, 2016). The
pipeline includes (1) stratified data splitting, (2) building features, (3) feature selection,
(4) performing model and hyper-parameter selection (Random Forests, Logistic Regression,
Ridge Regression, Lasso, SVM, Naive Bayes, and Nearest Neighbors), and (5) ensembling
solutions. Search space is specified with prior knowledge on similar data sets (a form of
meta-learning). Thakur found that this strategy is faster and yields comparable results to
hyperopt.The underlying implementation is based purely on Python and scikit-learn with
some modules in Cython. Their GPU solution is an advanced version of the AutoCompete
solution, which uses Neural Networks built with Keras (Chollet, 2015).

djajetic

Djajetic (Jajetic, 2016a) is based on heterogeneous ensembles of models obtained by search-
ing through model-space and adjusting hyper-parameters (HP) without any communication
between models. Jajetic believes that this makes search more effective in non-convex search
spaces. This strategy lends itself well to efficient and simple parallelization. The search
space and ensembling properties for each individual model is defined in a separate Python
script. Each model is trained and explores its own parameter space and only communicates
its training error and best prediction results to the outside. The ensembling module oper-
ates in a hierarchical manner. It uses only the N best HP settings from each model, based
on the training error, and only M best models from each model group. For the GPU track,
Jajetic used a Neural Network (Jajetic, 2016b) based on the Lasagne and Theano libraries.

marc.boulle

Orange, the main French telecommunication operator, has developed the Khiops, which
they made avaiable for licensing. The software was designed to address the needs of Or-
ange to analyze their data accross a wide range of cases, without hyper-parameter tuning,
and provide solutions that are robust and understandable with modest computational re-
sources. Khiops exploits regularized methods for variable preprocessing, variable selection,
variable construction for multi-table data mining, correlation analysis via k-coclustering,
model averaging of selective naive Bayes classifiers and regressors. The classifier called Se-
lective Naive Bayes (SNB) (Boullé, 2007, 2009) extends the Naive Bayes classifier using an
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optimal estimation of the class conditional probabilities, a Bayesian variable selection and
a Compression-based Model Averaging. The same framework was extended to regression in
(Hue and Boullé, 2007). The Khiops tool was used throughout the challenge, using python
scripts to be compliant to the challenge settings. Beyond the necessary but easy adaptation
to the input/output requirements, the python scripts also had to manage the sparse format,
the any-time learning settings and the scoring metrics, which were specific to the AutoML
challenge and not supported by Khiops.

Appendix E. Methods of the 2018 AutoML challenge

E.1. Survey Analysis

Eleven teams responded to a survey we conducted on methods used in the 2018 challenge.
The answers to this survey were consistent with the one reported in Appendix D.1. In the
following we briefly summarize the main findings.
Preprocessing. 73% of teams applied feature standardization, 54% of teams applied a pre-
processing to replace missing values, and 37% applied data normalization. Interestingly, the
winning team applied data discretization and scaling in addition to the other preprocessing
procedures. Regarding feature extraction, most teams adopted either trained feature ex-
tractors or random functions in the same proportion. More than half of the surveyed teams
performed linear transformations of the input space, a third of teams performed feature se-
lection. Predictor. Decision trees was the predictive model adopted by most participants
(9 out of 11) that is 81%, the rest of teams used linear models. Hinge loss with 1 or 2 norm
regularization was adopted in by most of the teams. Model selection and ensembling.
As model selection criterion, the usual k−fold cross validation and the feedback obtained
from the leader board were adopted by 50% of the teams each. Interestingly, all teams that
filled in the survey adopted an ensemble methodology for generating the final predictor
(mostly boosting-based ensembles). This is consistent with the answers observed in the
previous edition of the challenge. Implementation. Python was used by all participants
and about 20% of teams reported using the scikit-learn library (we believe that most, if not
all, participants relied on this library, though).

E.2. Fact Sheets

The methods of the top ranking participants of the 2018 challenge are briefly summarized.

aad freiburg

PoSH Auto-sklearn (Portfolio Successive Halving combined with Auto-sklearn) is the
solution of the aad freiburg team, which obtained the best performance in the 2018 chal-
lenge. PoSH Auto-sklearn uses a fixed portfolio of machine learning pipeline configurations
on which it performs successive halving. If there is time left, it uses the outcome of these
runs to warmstart a combination of Bayesian optimization and successive halving. Greedy
submodular function maximization was used on a large performance matrix of ≈421 con-
figurations run on ≈421 datasets to obtain a portfolio of configurations that performs well
on a diverse set of datasets. To obtain the matrix, aad freiburg used SMAC (Hutter et al.)
to search the space of configurations offline, separately for each of the ≈421 datasets. The
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configuration space was a subspace of the Auto-sklearn configuration space: dataset pre-
processing (feature scaling, imputation of missing value, treatment of categorical values),
but no feature preprocessing (this constraint due to the short time limits / resources in
the competition), and one of SVM, Random Forest, Linear Classification (via SGD) or XG-
Boost. The combination of Bayesian optimization and successive halving is an adaptation of
a newly developed method dubbed BO-HB (Bayesian Optimization HyperBand) (Falkner
et al., 2018). The solution was further designed to yield robust results within the short
time limits as follows: the number of iterations was used as a budget, except for the SVM,
where the dataset size was the budget. If the dataset had less than 1000 data points, they
reverted to simple cross-validation instead of successive halving. If a dataset had more than
500 features, they used univariate feature selection to reduce the number of features to 500.
Lastly, for datasets with more than 45,000 data points, they capped the number of training
points to retain decent computational complexity.

narnars0

The narnars0 team proposed an Automated Machine Learning System for Voting
Classifier with Various Tree-Based Classifiers. This team based their solution in a
voting ensemble formed with the following tree-based classifiers: gradient boosting, random
forests, and extra-trees classifiers. They optimized the hyperparameters of tree-based clas-
sifiers by means of Bayesian optimization. Several machine learning models in scikit-learn
were used to implement this system, including narnars0’s own Bayesian optimization pack-
age, bayeso (https://github.com/jungtaekkim/bayeso), which was used to optimize a
selection of hyperparameters of classifiers.

wlWangl

An AutoML solution resembling Q-Learning in reinforcement learning was proposed by
the wlWangl team. This team considers the machine learning design pipeline as composed of
three phases: data preprocessing, feature selection, and classification. Each phase associated
to a set of methods. They view the candidate methods in each phase as the states of Q-
Learning. The classification performance of the pipeline representing the reward. This
team used Q-Learning to find the pipeline with the maximum reward. To further improve
efficiency and robustness of the proposed method, they integrated meta learning and the
ensemble learning into the method. Meta learning was used first to initialize the values of
Q-Table for Q-Learning. Then, after the Q-Learning, the good discovered pipelines where
ensembled with a stacking method.

thanhdng

The solution bt thanhdng was based on the ensemble solution provided as starting
kit for the competition. Basically, this team adjusted the parameters of the ensemble
(increasing the number of learning cycles and estimators).
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Appendix F. Result tables of all 30 dataset of the 2015/2016 challenge

In this appendix, we provide result tables on which several graphs are based. In Table 7,
we reran the code of the participants who made it available to us on all the datasets of
the 2015/2016 challenge (the last version of code submitted to the challenge platform). In
Figure 24 , we reran again these codes to compute their error bars with bootstrapping. In
Tables 8 and 9, we ran four “basic models” with default hyper-parameter settings and with
hyper-parameter optimization on all the datasets of the 2015/2016 challenge.

Table 7: Systematic study of participants’ methods: The team abbreviations are the same as in the previous
table. The colors indicate the rounds.

Datasets aad abhi djaj ideal jrl44 lisheng marc ref
ADULT 0.82 0.82 0.81 0.83 0.81 0.8 0.81 0.82
CADATA 0.8 0.79 0.78 0.81 0.09 0.79 0.64 0.76
DIGITS 0.95 0.94 0.83 0.96 0.73 0.95 0.86 0.87
DOROTHEA 0.66 0.87 0.82 0.89 0.82 0.84 0.79 0.7
NEWSGROUPS 0.48 0.46 0.64 0.59 0.33 0.05 0.38 0.56
CHRISTINE 0.49 0.46 0.48 0.55 0.48 0.46 0.45 0.42
JASMINE 0.63 0.61 0.62 0.65 0.62 0.61 0.56 0.56
MADELINE 0.82 0.59 0.64 0.81 0.57 0.58 0.18 0.53
PHILIPPINE 0.66 0.53 0.52 0.72 0.52 0.52 0.45 0.51
SYLVINE 0.9 0.87 0.89 0.93 0.89 0.87 0.83 0.89
ALBERT 0.38 0.32 0.36 0.37 0.32 0.34 0.35 0.32
DILBERT 0.94 0.79 0.75 0.98 0.21 0.24 0.46 0.79
FABERT 0.36 0.19 0.33 0.35 0.03 0.18 0.21 0.24
ROBERT 0.46 0.33 0.33 0.51 0.21 0.4 0.37 0.36
VOLKERT 0.33 0.26 0.28 0.37 0.11 0.15 0.14 0.25
ALEXIS 0.75 0.65 0.67 0.76 0.62 0.68 0.62 0.64
DIONIS 0.9 0.32 0.75 0.93 0.02 0.87 0.81 0.31
GRIGORIS 0.73 0.76 0.8 0.97 0.54 0.88 0.96 0.75
JANNIS 0.55 0.38 0.41 0.42 0.24 0.36 0.39 0.4
WALLIS 0.71 0.63 0.74 0.71 0.12 0.23 0.58 0.62
EVITA 0.59 0.59 0.58 0.61 0.59 0.59 0.52 0.41
FLORA 0.5 0.51 0.5 0.53 0.02 0.42 0.51 0.37
HELENA 0.22 0.23 0.15 0.25 0.06 0.2 0.19 0.08
TANIA 0.47 0.76 0.39 0.73 0.53 0.6 0.66 0.54
YOLANDA 0.32 0.37 0.29 0.39 0.02 0.24 0.19 0.26
ARTURO 0.75 0.8 0.78 0.77 0.3 0.72 0.7 0.77
CARLO 0.45 0.37 0.43 0.18 0.36 0.4 0.37 0.14
MARCO 0.55 0.71 0.69 0.54 0.66 0.54 0.68 0.25
PABLO 0.3 0.29 0.31 0.27 0.03 0.29 0.25 0.28
WALDO 0.59 0.56 0.57 0.61 0.56 0.56 0.46 0.56

Appendix G. Learning Curve of all 30 datasets of the 2015/2016
challenge

In this appendix we show learning curves on all 30 datasets for two top ranking methods:
auto-sklearn (aad freiburg), as a representative of a Bayesian search method and ab-
hishek as a representative of a heuristic method. In all figures (Figures G-G), we represent
in yellow the learning curve of auto-sklearn within the time budget of the challenge; they
are prolongated in green beyond the time budget. We represent in blue the learning curves
of abhishek (it was not trivial for us to modify the code of abhishek to extend the learning
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Table 8: Performances (original task metrics) of basic models using their scikit-learn de-
fault HP setting. All negative scores and NaN (due to the fact that algorithm
didn’t succeed in generating predictions within time limit) are brought to zero.

Rnd DATASET KNN NAIVE BAYES RANDOMFOREST SGD(LINEAR)

0 ADULT 0.66±0.01 0.72±0.01 0.786±0.009 0.74±0.01
0 CADATA 0.08±0.03 0.62±0.03 0.73±0.02 0.0±0.0
0 DIGITS 0.661±0.007 0.252±0.007 0.924±0.004 0.758±0.007
0 DOROTHEA 0.01±0.04 0.02±0.06 0.4±0.2 0.5±0.2
0 NEWSGROUPS 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
1 CHRISTINE 0.39±0.07 0.36±0.06 0.39±0.06 0.17±0.04
1 JASMINE 0.54±0.05 0.32±0.06 0.58±0.06 0.54±0.07
1 MADELINE 0.57±0.05 0.17±0.05 0.41±0.05 0.0±0.0
1 PHILIPPINE 0.23±0.04 0.36±0.04 0.46±0.05 0.23±0.03
1 SYLVINE 0.52±0.03 0.78±0.02 0.86±0.01 0.55±0.02
2 ALBERT 0.11±0.02 0.0±0.0 0.19±0.02 0.0±0.0
2 DILBERT 0.0±0.0 0.0±0.0 0.01±0.04 0.0±0.0
2 FABERT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
2 ROBERT 0.1±0.02 0.16±0.02 0.29±0.02 0.22±0.02
2 VOLKERT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
3 ALEXIS 0.002±0.001 0.38±0.01 0.001±0.001 0.42±0.01
3 DIONIS 0.02±0.01 0.017±0.009 0.033±0.009 0.0±0.01
3 GRIGORIS 0.04±0.02 0.0±0.0 0.0±0.02 0.62±0.03
3 JANNIS 0.13±0.02 0.29±0.04 0.32±0.01 0.22±0.01
3 WALLIS 0.21±0.02 0.04±0.01 0.34±0.02 0.39±0.02
4 EVITA 0.32±0.06 0.35±0.07 0.18±0.05 0.28±0.07
4 FLORA 0.42±0.04 0.43±0.04 0.29±0.04 0.0±0.0
4 HELENA 0.082±0.009 0.14±0.01 0.15±0.01 0.034±0.006
4 TANIA 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
4 YOLANDA 0.0±0.0 0.24±0.01 0.0±0.0 0.0±0.0
5 ARTURO 0.03±0.02 0.35±0.03 0.49±0.03 0.68±0.03
5 CARLO 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
5 MARCO 0.0±0.004 0.007±0.002 0.0006±0.0003 0.04±0.01
5 PABLO 0.09±0.01 0.25±0.01 0.25±0.01 0.15±0.01
5 WALDO 0.03±0.03 0.23±0.03 0.49±0.04 0.03±0.03

curves beyond the time budget). The scores are computed using the task-specific metrics
of the challenge.

We noticed that in about 2/3 of the cases, abhishek’s learning curves start quite high
but do not improve very much over time, they even sometimes go down, which may be an
indication of overfitting. In about 80% of the cases, aad freiburg’s learning curves start
lower that the learning curves of abhishek. Hence, in spite of their use of meta-learning,
aad freiburg did not come up with as good heuristic startign points. However, their hyper-
parameter search is more efficient: in about 1/2 of the cases, they end up higher at the end
of the learning curve, within the time budget; in about 80% they end up higher if let run
longer (green part of the curve).

These learning curves show that there is still a large margin for improvement in terms
of combining techniques.
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Table 9: Performances (original task metrics) of basic models using auto-sklearn-tuned
HP setting. The time limit has been respected for this tuning. All negative scores
and NaN (due to the fact that algorithm didn’t succeed in generating predictions
within time limit) are brought to zero.

Rnd DATASET KNN NAIVE BAYES RANDOMFOREST SGD(LINEAR)

0 ADULT 0.748±0.009 0.74±0.01 0.808±0.007 0.777±0.009
0 CADATA 0.48±0.03 0.0±0.0 0.48±0.03 0.52±0.02
0 DIGITS 0.0±0.0 0.59±0.009 0.933±0.004 0.802±0.007
0 DOROTHEA 0.4±0.2 0.4±0.2 0.0±0.0 0.5±0.2
0 NEWSGROUPS 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
1 CHRISTINE 0.47±0.05 0.41±0.06 0.49±0.07 0.5±0.05
1 JASMINE 0.6±0.05 0.52±0.05 0.63±0.06 0.58±0.05
1 MADELINE 0.81±0.03 0.22±0.05 0.76±0.03 0.21±0.05
1 PHILIPPINE 0.55±0.04 0.39±0.04 0.58±0.03 0.45±0.04
1 SYLVINE 0.91±0.01 0.81±0.02 0.89±0.01 0.85±0.01
2 ALBERT 0.0±0.0 0.0±0.0 0.0±0.0 0.25±0.02
2 DILBERT 0.34±0.09 0.0±0.0 0.29±0.09 0.0±0.0
2 FABERT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
2 ROBERT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
2 VOLKERT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
3 ALEXIS 0.0±0.0 0.42±0.01 0.11±0.01 0.267±0.008
3 DIONIS 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
3 GRIGORIS 0.0±0.02 0.55±0.03 0.0±0.02 0.0±0.0
3 JANNIS 0.34±0.02 0.24±0.02 0.33±0.01 0.32±0.04
3 WALLIS 0.26±0.02 0.26±0.02 0.34±0.02 0.18±0.01
4 EVITA 0.2±0.05 0.0±0.0 0.27±0.05 0.15±0.05
4 FLORA 0.0±0.002 0.0±0.0 0.0±0.0 0.0±0.001
4 HELENA 0.14±0.01 0.17±0.01 0.0±0.006 0.0±0.0
4 TANIA 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
4 YOLANDA 0.24±0.01 0.0±0.0 0.24±0.01 0.24±0.01
5 ARTURO 0.66±0.03 0.65±0.03 0.75±0.03 0.51±0.03
5 CARLO 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
5 MARCO 0.0±0.0 0.3±0.04 0.0±0.0 0.0±0.0
5 PABLO 0.25±0.01 0.0±0.0 0.25±0.01 0.25±0.01
5 WALDO 0.45±0.03 0.27±0.03 0.55±0.04 0.35±0.03
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Figure 11: Learning Curve of ‘aad freiburg’ (yellow+green) and ‘abhishek’
(blue+red) for Round 0.

We also show in Figures 17-23 all learning curves of a given round ovelaid for the
same two high ranking participants (‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-empty
square)). This representation shows that the two optimization strategies differ in their man-
agement of time. The ‘aad freiburg’ made use of parallelism. Since 4 cores were available on
the computers used for the challenge, they started working on 4 (out of 5) datasets simul-
taneously and started on the fifth one by interrupting working on one of the other datasets,
or interleaving work. In contrast, ‘abhishek’ processed one dataset after the other. For ease
of visualisation, we connect the learning curves of ‘abhishek’ on the various datasets with
a dashed line. The error bars were estimated by bootstrapping.
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Figure 12: Learning Curve of ‘aad freiburg’ (yellow+green) and ‘abhishek’ (blue)
for Round 1.

Figure 13: Learning Curve of ‘aad freiburg’ (yellow+green) and ‘abhishek’ (blue)
for Round 2.
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Figure 14: Learning Curve of ‘aad freiburg’ (yellow+green) and ‘abhishek’ (blue)
for Round 3.

Figure 15: Learning Curve of ‘aad freiburg’ (yellow+green) and ‘abhishek’ (blue)
for Round 4.
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Figure 16: Learning Curve of ‘aad freiburg’ (yellow+green) and ‘abhishek’ (blue)
for Round 5.
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Figure 17: Learning Curve of ‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-
empty square) for Round 0.
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Figure 18: Partial magnification of Figure 17
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Figure 19: Learning Curve of ‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-
empty square) for Round 1.
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Figure 20: Learning Curve of ‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-
empty square) for Round 2.
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Figure 21: Learning Curve of ‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-
empty squares) for Round 3.
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Figure 22: Learning Curve of ‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-
empty square) for Round 4.
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Figure 23: Learning Curve of ‘aad freiburg’ (solid-dots) and ‘abhishek’ (solid-
empty squares) for Round 5.
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Figure 24: Scores of participants’ methods with error bars.
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