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Equations are derived that describe the growth and subsequent damped oscillation of a 

cavitation bubble in a liquid-filled cavity surrounded by an elastic solid. It is assumed that the 

nucleation and the growth of the bubble are caused by an initial negative pressure in the cavity. 

The liquid is treated as viscous and compressible. The obtained equations allow one to model, 

by numerical computation, the growth and the oscillation of the bubble in the cavity and the 

oscillation of the cavity surface. It is shown that the equilibrium radius reached by the growing 

bubble decreases when the absolute magnitude of the initial negative pressure decreases. It is 

also found that the natural frequency of the bubble oscillation increases with increasing bubble 

radius. This result is of special interest because in an unbounded liquid, the natural frequency 

of a bubble is known to behave oppositely, namely it decreases with increasing bubble radius.  
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I. INTRODUCTION  

Cavitation is a well-known phenomenon [1,2]. However, most theoretical efforts in this 

area are devoted to cavitation in an unbounded liquid, including those that provide equations 

for modeling the growth and the oscillation of cavitation bubbles [3–9]. It is the assumption of 

an unbounded liquid that underlies the Keller-Miksis equation [10], which is used in most 

modern studies to model finite-amplitude bubble oscillations in a viscous compressible liquid. 

Cavitation in a microscopic confinement has only recently received increased attention. One of 

important problems that inspire this attention is the investigation of cavitation effects that occur 

inside trees [11–14]. In connection with such investigations, it is desirable to have mathematical 

expressions to model the dynamics of a growing and oscillating cavitation bubble in a liquid-

filled cavity enclosed in an elastic medium.  

Evaporation processes lead to great tensile stresses inside water-filled tree conduits. 

Negative pressures inside the conduits can drop down to – 18.8 MPa [12–14]. In in-vitro 

experimental studies that imitate this process, even lower pressures are reported, of the order of 

20 2� r  MPa [15–17]. High negative pressures give rise to the nucleation of cavitation bubbles 

whose growth causes the relaxation of tension in tree conduits. It is worth noting that, unlike 

cavitation bubbles in an unbounded liquid, bubbles confined in a cavity do not collapse quickly 

because their existence is necessary for maintaining the relaxation of negative pressure within 

the cavity.  

In the process of growth, cavitation bubbles undergo transient oscillations and emit 

acoustic waves in the ultrasonic range [18]. This acoustic emission can be used to monitor the 

development of cavitation inside trees [19], which is a very important problem because 

cavitation events have a great influence on tree physiology, which can be both negative and 

positive [20–23].  

Vincent et al. [15,16] have proposed a model, based on semi-qualitative considerations, 

that describes the dynamics of a cavitation bubble in a spherical liquid-filled cavity surrounded 

by an infinite elastic solid. Their model allows one to evaluate the equilibrium radius reached 

by the growing bubble and the frequency of the bubble oscillation but does not consider the 

wave propagation in the liquid and in the solid. The predictions of this model were found to be 

in good agreement with experimental measurements made with synthetic wood [15,16].  

Vincent and Marmottant [17] and Wang [24] have derived Rayleigh-Plesset-like 

equations that describe the finite-amplitude oscillation of a bubble in a liquid-filled cavity 

confined by an elastic solid. Both equations are based on a quasistatic approximation for the 
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compressibility of the liquid and the solid, which assumes that the pressure in the cavity varies 

in time but is uniform in space. Both models do not consider the wave propagation in the solid.  

Drysdale et al. [25] have developed a theory that describes the linear (small-amplitude) 

oscillation of a bubble in a cavity surrounded by an elastic solid. This theory involves acoustic 

waves emitted by the bubble and their propagation in the solid. Drysdale et al. [25] derived a 

dispersion equation that allows one to calculate the natural frequency and the attenuation 

coefficient of the bubble oscillation. Analysis performed by Drysdale et al. [25] predicts that 

the main mechanism of attenuation is related to the wave propagation in the solid.  

The present study is aimed at the development of theory for nonlinear bubble dynamics 

in a confinement. Its specific purpose is to derive equations that describe the entire evolution 

of a cavitation bubble in a liquid-filled cavity enclosed in an elastic solid. The equations are 

intended for modeling the growth of the bubble from its nucleation until the attainment of an 

equilibrium radius corresponding to the relaxation of tension in the cavity, and then modeling 

the damped oscillation of the bubble about the attained radius. The equations of the bubble 

evolution are derived in Sec. II. In Sec. III, the obtained equations are applied to perform 

numerical simulations. To anticipate, the main results of our derivation are given by Eq. (56) in 

Sec. II and Eq. (A12) in Appendix A. Equation (56), like the Keller-Miksis equation [10], is an 

ordinary nonlinear differential equation of second order. It describes the time evolution of the 

bubble radius. Equation (A12) describes the elastic stress at the cavity surface, which is an 

important part of the equation of bubble evolution.  

 

II. MATHEMATICAL MODEL  

The geometry of the system under study is shown in Fig. 1. There is a spherical cavity 

filled with a compressible viscous liquid and surrounded by an elastic solid. A high initial 

negative pressure in the liquid causes the nucleation of a cavitation bubble. The bubble is 

growing, which allows the tension in the cavity to relax. When the bubble approaches an 

equilibrium radius, it undergoes a damped oscillation and emits acoustic waves, which 

propagate through the liquid, penetrate into the solid, and go to infinity.  
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FIG. 1. Geometry of the system under study. (a) Growth of a cavitation bubble due to a negative 

pressure in the liquid. (b) Oscillation of the bubble around its equilibrium radius.  

 

A. Basic equations  

1. Liquid  

We assume that the liquid is viscous and compressible. The motion of a viscous and 

compressible liquid obeys the equation of continuity and the Navier-Stokes equation [26],  

 ( ) 0l
lt

U Uw
�  

w
�� v , (1) 

 1( ) ( )
3l l l l lp

t
U U K ] Kw § ·� �  � � ' � �¨ ¸w © ¹

v v v v + v� � � � , (2) 

where v, lU , p, lK , and l]  are the velocity, the density, the pressure, the shear viscosity, and 

the bulk viscosity, respectively.  

In the case under consideration, the liquid flow is spherically symmetric and hence 

irrotational [26]. In an irrotational flow, the vector velocity, v, can be written in terms of a 

velocity potential, M , as  

 ( , ) ( , )r rv r t r t
r
MM w

   
w

v e e� , (3) 
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where re  is the unit vector along the r coordinate. On substitution of Eq. (3), Eqs. (1) and (2) 

take the form: 

 0l l
l t r r

U M UU M w w w
' �  

w w w
� , (4) 

 
21 4

2 3l l lp
r t r r

M MU ] K M
ª ºw w w w ª º§ · § ·�  � � � '« »¨ ¸ ¨ ¸« »w w w w© ¹ © ¹¬ ¼« »¬ ¼

. (5) 

In what follows, we will need the normal stress in the liquid. It is given by [26]  

 
2

2
22
3rr l l lp

r
MV K ] K Mw § · � � � � '¨ ¸w © ¹

. (6) 

 

2. Solid  

The motion of the solid is described by the Navier equation [27],  

 
2

2 ( ) ( )s t
U P O Pw

 ' � � �
w

u u u� � , (7) 

where u is the displacement vector, tw wu  is the velocity in the solid, sU  is the density of the 

solid, and O  and P  are the Lamé coefficients. In view of spherical symmetry, u can be written 

in terms of a potential sM  as  

 ( , ) ( , ) s
r s ru r t r t

r
MM w

   
w

u e e� . (8) 

Substitution of Eq. (8) into Eq. (7) yields  

 
2

2 2

1 0s
s

sc t
MM

§ ·w
' �  ¨ ¸w© ¹

� , (9) 

where sc  is the longitudinal wave speed, given by [27]  

 2
s

s

c O P
U
�

 . (10) 

From Eq. (9), one has  

 
2

2 2

1 s
s

s

a
c t

MM w
' �  

w
, (11) 

where a is, in general, a constant or a time function. In our case, a solution to Eq. (11) is written 

as  

 
2 ( )( , )
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ar s t r cr t

r
M �
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where the first term is the solution of the equation s aM'   and the second term is the solution 

of the wave equation 2 2 2 0s s sc tM M�' � w w  . Note that a must be a constant in order that Eq. 

(12) satisfy Eq. (11).  

It is important to emphasize the difference between Eq. (12) and the solution used in the 

linear analysis of Drysdale et al. [25]; see Eq. (14) in their paper. Drysdale et al. [25] assume 

that the system is under the same ambient pressure all the time and there is no initial strain in 

the solid. Based on this assumption, they consider only wave processes that occur in the system. 

In the present study, we assume that the liquid is initially under a high negative pressure, 

whereas the pressure in the solid at infinity is atmospheric, which causes a strain distribution in 

the solid that compensates the pressure difference prior to bubble nucleation. In the process of 

the bubble growth, the ambient liquid pressure changes and the strain in the solid relaxes. The 

description of the relaxation process requires the inclusion of the first term in Eq. (12), while 

the second term describes an outgoing acoustic wave.  

From Eq. (12), the displacement field is expressed as  

 
/

2
( ) ( )

3
s s s

s

ar s t r c s t r cu
r r c r
Mw � �

  � �
w

, (13) 

where the prime denotes the derivative with respect to the argument in brackets.  

The normal stress in the solid is given by [27]  

 2rr
u
r

W O P w � �
w

� u . (14) 

Substitution of Eq. (13) into Eq. (14) yields  

 
/ //

3 2 2
2 ( ) ( ) ( 2 ) ( )4
3

s s s
rr

s s

s t r c s t r c s t r ca
r c r c r

P O PW O P
ª º� � � �§ · � � � �¨ ¸ « »© ¹ ¬ ¼

. (15) 

We assume that for r of , rr PW fo� , where Pf  is a constant (atmospheric) pressure at 

infinity. From this condition, we find  

 3
3 2

Pa
O P

f �
�

. (16) 

 

3. Boundary conditions  

The boundary conditions assume the continuity of velocity and normal stress at the 

bubble surface and at the liquid-solid interface, which gives  

    at b bR r R
r
Mw
  

w
, (17) 
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 2    at l
b rr b

b

P r R
R
V V �  , (18) 

    at c c
u R r R

r t
Mw w
   

w w
, (19) 

    at rr rr cr RV W  , (20) 

where bR  is the time-varying radius of the bubble, the overdot denotes the time derivative, bP  

is the pressure within the bubble, lV  is the surface tension, and cR  is the time-varying radius of 

the cavity. Equations (17) and (19) are known as the kinematic boundary conditions, and Eqs. 

(18) and (20), as the dynamic boundary conditions.  

 

B. Solutions for an incompressible liquid  

We first find solutions treating the liquid as incompressible. We will lean upon them 

when deriving solutions for a compressible liquid.  

In an incompressible liquid, lU  is constant. As a consequence, Eqs. (4) and (5) give  

 ( )A t
r

M  � , (21) 

 
21( )

2lp B t
t r
M MU

ª ºw w§ · � �« »¨ ¸w w© ¹« »¬ ¼
, (22) 

where A and B are unknown functions. Substitution of Eq. (21) into Eq. (17) yields  

 2( ) b bA t R R . (23) 

Substituting Eqs. (21) and (23) into Eq. (22), one obtains the pressure field,  

 
2 2 4 2

4

( 2 )( , ) ( )
2

l b b b b l b bR R R R R Rp r t B t
r r

U U�
 � � . (24) 

Substitution of Eqs. (21), (23), and (24) into Eq. (6) yields the normal stress in the liquid,  

 
2 2 4 2 2

4 3

( 2 ) 4( , ) ( )
2

l b b b b l b b l b b
rr

R R R R R R R Rr t B t
r r r

U U KV �
 � � � � . (25) 

On substitution of Eq. (25) into Eq. (18), one has  

 23 4 2 ( )
2

l b l
l b b l b b

b b

RR R R B t P
R R
K VU U� � � �  . (26) 

( )B t  in this equation serves as a driving pressure that, along with bP , drives the motion of the 

bubble wall. If 0bP  , as in our case actually, then ( )B t  is the only source of the bubble 

evolution.  
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To find ( )B t , we use Eq. (20). Substitution of Eq. (25) into Eq. (20) yields  

 
2 2 4 2 2

4 3

( 2 ) 4( ) ( , )
2

l b b b b l b b l b b
rr c

c c c

R R R R R R R RB t R t
R R R

U U K W�
 � � � � . (27) 

This equation reveals that ( )B t  is a difference between the normal stress in the liquid on the 

inner side of the cavity surface and the normal stress in the solid on the outer side of the cavity 

surface.  

Substitution of Eq. (27) into Eq. (26) yields  

 
4 3

2
4 3

2 4 231 1 ( , )
2 2

b b b l b b l
l b b l b rr c b

c c c b c b

R R R R RR R R R t P
R R R R R R

K VU U W
§ · § · § ·
� � � � � � �  �¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹ © ¹
. (28) 

The left-hand side of this equation is in agreement with the equation derived by Wang [24]; see 

Eq. (2.19) in his paper.  

To complete the derivation, it is necessary to get an expression for ( , )rr cR tW . In order 

not to overburden the text, the expression for ( , )rr cR tW , accurate up to 31 sc , is calculated in 

Appendix A.  

Equation (28) should be supplemented with a relation between bR  and cR . To this end, 

we apply the mass conservation law to the liquid. Since the liquid is assumed incompressible 

in this subsection, we can write  

 3 3 3 3
0 0c b c bR R R R�  � , (29) 

where 0 (0)c cR R  and 0 (0)b bR R . The value of 0cR  can be set arbitrarily. To trigger the 

motion of the bubble wall in numerical simulations, the initial bubble radius should be set from 

the condition  

 0
0

2 l
b

b l

R
P P
V

!
�

, (30) 

where 0lP  denotes the initial (negative) pressure in the liquid.  

To sum up, the evolution of the bubble radius in the case of an incompressible liquid is 

calculated by Eq. (28) using Eqs. (29) and (30) and Eq. (A12) for ( , )rr cR tW .  

 

C. Solutions for a compressible liquid  

The equations for the solid derived above and in Appendix A remain valid and will be 

used in calculations that follow.  

1. Equation for ( )bR t  with compressibility corrections  
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If the liquid is treated as slightly compressible, i.e., the Mach number is much smaller 

than unity, we can apply the approximation proposed by Keller and Miksis [10]. Following 

their approach, we omit the bulk viscosity l]  in Eq. (5) and neglect change in the liquid density 

lU . As a result, the integration of Eq. (5) gives  

 
21 4( , ) ( )

2 3
l

lp r t C t
t r
M M KU M

ª ºw w§ · � � � '« »¨ ¸w w© ¹« »¬ ¼
. (31) 

We can set ( ) 0C t   without the loss of generality. The reason is that M  is defined with accuracy 

up to an arbitrary time function and hence we can include a time function in M  to eliminate 

( )C t  in Eq. (31). 

In Eq. (4), we omit nonlinear terms assuming that relative variations of the liquid density 

due to acoustic waves are small. This leads to the wave equation for M , 

 
2

2 2

1 0
c t

MM w
' �  

w
, (32) 

where c is the speed of sound in the liquid. A solution to Eq. (32) is written as  

 ( ) ( )( , ) f t r c g t r cr t
r r

M � �
 � � , (33) 

where the first term describes the acoustic emission of the bubble and the second term describes 

reflections from the cavity surface. It should be pointed out that solution (33) does not impose 

any restrictions on the number of reflections of acoustic waves between the bubble wall and the 

cavity wall, i.e., it accounts for multiple reflections.  

Substitution of Eq. (33) into Eq. (17) yields  

 
/ /( , ) ( ) ( )

b

b b b
b

R b b b

R t f t R c g t R c R
r R cR cR

MM � �w§ ·  � � �  ¨ ¸w© ¹
. (34) 

Setting 0l]   in Eq. (6) and substituting Eq. (31) into it, one obtains  

 
2 41( , )

2
l

rr lr t
t r r r

KM M MV U
ª ºw w w§ · � �« »¨ ¸w w w© ¹« »¬ ¼

. (35) 

Substituting Eq. (35) into Eq. (18) and using Eq. (34), one gets  

 
2 4 2

2
b

l b l b l
b l

R b b

R RP
t R R
M U K VU w§ · � � � �¨ ¸w© ¹

. (36) 

The next step is the calculation of ( )
bRtMw w . From Eq. (33) it follows that  

 
/ /( ) ( )

b

b b

R b b

f t R c g t R c
t R R
Mw � �§ ·  � �¨ ¸w© ¹

. (37) 
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Eliminating / ( )bf t R c�  from Eq. (37) by Eq. (34), one obtains  

 
/2 ( ) ( , )

b

b b
b

R b b

g t R c c R tcR
t R R

MM �w§ ·  � � �¨ ¸w© ¹
. (38) 

Substitution of Eq. (38) into Eq. (36) yields  

 
2

/4 2 2( , ) ( )
2

b b b b l b l
b b b b

l l l

R P R R RR t R R g t R c
c c c c c

K VM
U U U

 � � � � � � . (39) 

Calculation of the full time derivative of both sides of Eq. (39) gives  

2 //4 21 2 1 ( )
2

b

b l b b b b b b
b b b b

R l b l

R R R P R P RR R R g t R c
t c c R c c c c
M K

U U
§ · § · § ·w �§ ·  � � � � � � � �¨ ¸¨ ¸ ¨ ¸ ¨ ¸w© ¹ © ¹ © ¹© ¹

. (40) 

Substituting Eq. (40) into Eq. (36), one obtains  

 24 4 231
2 2

b l b l b l
l b b l b

l b b b

R R RR R R
c c R c R R

K K VU U
U

§ · § ·
� � � � � �¨ ¸ ¨ ¸

© ¹© ¹
  

 //2 1 ( ) 1l b b b b
b b

R R R Pg t R c P
c c c c
U § · § ·

� � �  � �¨ ¸ ¨ ¸
© ¹ © ¹

. (41) 

Like ( )B t  in Eq. (26), the function //(2 ) ( )l bc g t R cU �  in Eq. (41) plays the role of a 

driving pressure, which is a difference between the pressure inside the bubble and the pressure 

in the liquid at the bubble surface. To find this function, Eqs. (19) and (20) are used.  

From Eq. (19), one has  
/ /( , ) ( ) ( )

c

c c c

R c c c

R t f t R c g t R c
r R cR cR

MM � �w§ ·  � � �¨ ¸w© ¹
  

 
/ //

2

( ) ( )

c

c L c L
c

R c L c

u s t R c s t R c R
t R c R

w � �§ ·  �  ¨ ¸w© ¹
. (42) 

From Eqs. (35) and (42), one gets  

 
2 4( , )

2
c

l c l c
rr c l

R c

R RR t
t R

U KMV U w§ · � �¨ ¸w© ¹
. (43) 

Substitution of Eq. (43) into Eq. (20) yields  

 
2( , ) 4

2
c

rr c c l c

R l l c

R t R R
t R

W KM
U U

w§ ·  � �¨ ¸w© ¹
. (44) 

On the other hand, Eq. (33) gives  

 
/ /( ) ( )

c

c c

R c c

f t R c g t R c
t R R
Mw � �§ ·  � �¨ ¸w© ¹

. (45) 
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Eliminating / ( )cf t R c�  from Eq. (45) by Eq. (42), one obtains  

 
/2 ( ) ( , )

c

c c
c

R c c

g t R c c R tcR
t R R

MM �w§ ·  � � �¨ ¸w© ¹
. (46) 

Substitution of Eq. (46) into Eq. (44) yields  

 
2

/4 ( , ) 2( , ) ( )
2
c c l c c rr c

c c c c
l l

R R R R R tR t R R g t R c
c c c c

K WM
U U

 � � � � � . (47) 

Calculation of the full time derivative of both sides of Eq. (47) gives  

 24 ( , )1 2
2

c

c l c c rr c
c c c

R l c l

R R R R tR R R
t c c R c c

K WM
U U

§ · § ·w§ ·  � � � � �¨ ¸ ¨ ¸¨ ¸w© ¹ © ¹© ¹
  

 / /( , ) 2 1 ( )c rr c c
c

l

R d R t R g t R c
c dt c c

W
U

§ ·
� � � �¨ ¸

© ¹
. (48) 

Substitution of Eq. (48) into Eq. (44) yields  

 / / 22 4 431 ( ) 1
2 2

l c c l c l c
c l c c l c

l c c

R R R Rg t R c R R R
c c c c R c R
U K KU U

U
§ ·§ · § ·

� �  � � � � � �¨ ¸¨ ¸ ¨ ¸
© ¹ © ¹© ¹

  

 ( , )( , ) 1 c c rr c
rr c

R R d R tR t
c c dt

WW
§ ·

� � �¨ ¸
© ¹

. (49) 

In view of the different arguments of the function //g , Eq. (49) cannot be substituted 

immediately into Eq. (41). To resolve this problem, we assume that the effect of the time delays 

,b cR c  on the behavior of the function //g  is small and hence this function can be expanded 

into a Taylor series in terms of ,b cR c . Then, we can represent Eqs. (41) and (49) as follows:  

 / / / / / / /2 2( ) ( ) ( )l l b
b b

Rg t R c g t g t E
c c c
U U § ·� | �  ¨ ¸

© ¹
, (50) 

 / / / / / / /2 2( ) ( ) ( )l l c
c c

Rg t R c g t g t E
c c c
U U § ·� | �  ¨ ¸

© ¹
, (51) 

where  
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K K VU U
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, (52) 
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c l c c l c
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c c R c R c

K KU U
U

§ · § · § ·
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 ( , )( , ) c rr c
rr c

R d R tR t
c dt

WW� � . (53) 

From Eqs. (50) and (51) it follows that 
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 / / /2 ( )c b l
b c

R RE g t E
c c

U�
�  . (54) 

The factor 1 c  in front of the function // /(2 ) ( )l c g tU  allows us to calculate this function 

neglecting compressibility corrections, i.e., in the limit c of . Equation (50) shows that for 

c of , / /(2 ) ( )l c g tU  is approximated by Eq. (52) with c of . Therefore, Eq. (54) can be 

recast to  

 incc b
b b c

R RE E E
c
�

�  , (55) 

where inc
bE  denotes Eq. (52) at c of , i.e., in the limit of an incompressible liquid.  

The differentiation of inc
bE  leads to the appearance of the third derivative, bR . To 

eliminate it, the solution for an incompressible liquid can be used, Eq. (28), which allows one 

to express bR  in terms of derivatives of lower order. As a result of all these operations, after 

cumbersome but straightforward calculations, we obtain the following final equation:  
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R R R R R R R R R R RR R R
cR cR c R cR cR R c R R

K KU U
U U

ª º§ · § · § ·
� � � � � � � � �« »¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹ © ¹¬ ¼
  

 
3

3

4 3 21l b b c b l
b

b c b

R R R R P
R c cR R
K V§ ·

� � � � �¨ ¸
© ¹

  

 22 4 2 431 1 ( , )
2

c l c l c c
l c c l c rr c

l c c

R R R RR R R R t
c c R c R c

K KU U W
U

§ · § · § ·
 � � � � � � �¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹© ¹
. (56) 

For reference, Appendix B provides equations for bR  and inc
bE  which were used for the 

derivation of Eq. (56).  

 

2. Relation between bR  and cR   

Equation (56) should be supplemented with a relation between bR  and cR . To this end, 

we apply Eqs. (34) and (42).  

Expanding the functions f and g in Eq. (34) into a Taylor series, one obtains  

 2
2

1( ) ( ) b bf t g t R R O
c

§ ·�  � ¨ ¸
© ¹

. (57) 

Doing the same with Eq. (42), one has  

 2
2

1( ) ( ) c cf t g t R R O
c

§ ·�  � ¨ ¸
© ¹

. (58) 
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These results reveal that the relation  

 2 2
b b c cR R R R  (59) 

is valid up to the order 1 c . This accuracy corresponds to the accuracy of Eq. (56) with respect 

to the liquid compressibility. Therefore, Eq. (59) can be used along with Eq. (56). It should be 

mentioned that the application of the mass conservation law to the liquid also confirms that a 

deviation from Eq. (59) is only of the order 21 c .  

 

3. Linearized equations  

We will see in Sec. III that the oscillation of the cavity surface is weak. When the 

growing bubble reaches a terminal equilibrium radius, its oscillation becomes weak as well. 

Therefore, implying this stage, we can linearize Eq. (56). We assume 0bP   in this calculation 

because the main purpose of the linearization is a comparison with the results of Drysdale et al. 

[25], where the bubble interior was assumed to be vacuum.  

We assume that  

 ( ) ( ),    | |b be b b beR t R x t x R � �� , (60) 

 ( ) ( ),    | |c ce c c ceR t R x t x R � �� , (61) 

where beR  and ceR  are the final equilibrium radii of the bubble and the cavity. Substituting 

these equations into Eq. (56) and keeping only time-independent terms, one obtains  

 2 0 0 02 (4 ) 1 0l c c l
s s

be ce ce

R R Pac
R R R
V P U

§ ·
� � � �  ¨ ¸

© ¹
. (62) 

This equation should be supplemented with the equation  

 3 3 3 3
0 0ce be c bR R R R�  � , (63) 

which, like Eq. (59), is correct up to the order 1 c . Solving simultaneously Eqs. (62) and (63) 

gives the values of beR  and ceR .  

Keeping only linear time-varying terms in Eq. (56), one obtains  

 2 0
02 2 2

4 4 21 ( 4 )l be l b l b c c
l be b s s l

l ce be be ce

R x x R xR x ac P
c R R R R
K K VU U P
U

§ ·
� � �  � �¨ ¸

© ¹
  

 
3 3

2

4 4 ( )
[ (1 )]

l l s ce be
ce c l s

ce s l ce be ce be s l

R RR x
cR c R R R R
K K UU U

U U U
§ ·�

� � � �¨ ¸� �© ¹
  

 
3

2 0
0 3

4 2( 4 )
[ (1 )]

l c c s be c l ce
s s l

ce s l ce be s l ce be

x x R R Rac P
R c R R R R
K U VU P

U U U
§ ·

� � � � �¨ ¸� � © ¹
. (64) 
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To solve this equation, we assume that  

 ,     i t i t
b b c cx a e x a eZ Z� �  . (65) 

Substituting Eqs. (65) into Eq. (64), using the linearized equation (59) to express ca  in terms of 

ba , and then removing ba , we obtain the following equation:  

 2 2
02 0iZ DZ Z� �  , (66) 

in which Z  is a sought quantity and the other quantities are defined as  

 
2 3 3

2 0
0 2

(4 ) 2
( )

s s l be l ce be

l ce ce be

ac P R R R
R R R

P U VZ
EU

� � �
 

�
, (67) 

 
2 2 2 3 4

0
2 2

4 (4 2 )1 1
2 ( )[ (1 )]

l be be s be s s l l ce be

l be ce ce s l ce ce be ce be s l

R R R ac P R R
R R R c R R R R R
K U P U VD

EU U U U
ª º§ · � � �

 � � �« »¨ ¸ � � �© ¹¬ ¼
, (68) 

 
2 2

2

4 ( )1
( ) [ (1 )]

s be l s ce ce be be

l ce be s l be ce ce be s l

R R R R R
R R c R R R R
U K UE

U U U U
� �

 � �
� � �

. (69) 

In these equations, for simplicity, we have set 0c ceR R  as these values are very close.  

A solution to Eq. (66) is given by  

 2 2
0 01iZ D Z D Z � � � . (70) 

The natural frequency of the bubble oscillation is defined as 0 Re[ ] 2f Z S  and the attenuation 

coefficient is equal to D .  

Figure 2 compares the results given by the linearized equations derived in the present 

paper with the predictions of the linear theory developed by Drysdale et al. [25]; see Sec. II F 

2 in their paper. The calculations were performed at the following values of the physical 

parameters: 998lU   kg/m3, 1484c   m/s, 0.001lK   Pa s, 0.0725lV   N/m, 1233sU   

kg/m3, 0.74P   GPa, 2111sc   m/s, 101.3Pf   kPa, 0 20lP  �  MPa, and 100ceR   µm. The 

parameters of the liquid correspond to water. The parameters of the solid medium were adopted 

from the paper of Drysdale et al. [25]. They correspond to cavitation experiments on transparent 

biomimetic wood [15–17].  

Figures 2(a) and 2(b) show, respectively, the natural frequency and the attenuation 

coefficient as functions of the ratio be ceR R . The solid lines show the results of the present 

paper and the dashed lines represent the results given by the theory of Drysdale et al. [25]. The 

difference between the curves is mainly a consequence of the fact that the models have a 

different precision with respect to the liquid compressibility. The equations derived in the 

present paper are correct up to the order 1 c , while the equations of Drysdale et al. [25] involve 
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terms of the order 21 c . If these terms are omitted, the difference between the curves becomes 

insignificant.  

 

 

FIG. 2. Comparison of the linearized equations derived in the present paper with the linear 

theory developed by Drysdale et al. [25].  

 

III. NUMERICAL SIMULATIONS  

Simulations were carried out at the values of the physical parameters that are indicated 

in Sec. II C 3. It was assumed that there was vacuum inside the bubble ( 0bP  ).  

Figure 3(a) shows the growth and the subsequent damped oscillation of the bubble, Fig. 

3(b) shows the oscillation of the cavity surface, and Fig. 3(c) allows one to visually compare 

the oscillation amplitudes of the bubble and the cavity surface. In this simulation, 0 100cR   

µm and 0 20lP  �  MPa. The initial bubble radius 0bR , which corresponds to this value of 0lP , 

is 7.25 nm. The initial velocities of the bubble and the cavity surfaces were set equal to zero, 

(0) (0) 0b cR R  . 

As expected, the oscillation of the solid surface is much weaker than the bubble 

oscillation, and its amplitude is very small compared to 0cR . The calculations show that the 



17 
 

final equilibrium radii of the bubble and the cavity are 27.37beR   µm and 100.675ceR   µm. 

The same values are given by Eqs. (62) and (63). By fitting experimental data, Vincent et al. 

[16] have come to the conclusion that 0.28be ceR R | . Wang [24] argues that a more accurate 

fitting gives 0.265. As one can see, our result, 0.27be ceR R | , is in good agreement with these 

estimations. The approximation of the bubble attenuation by an exponential dependence, shown 

in Fig. 3(a) by the dashed line, indicates that the attenuation coefficient D  is of the order of 0.5 

MHz.  

Figure 4 shows the normalized Fourier spectrum of the bubble oscillation depicted in 

Fig. 3(a), whence it follows that the natural frequency of the bubble oscillation is 0 1.36f   

MHz. This value is also in agreement with experimental measurements reported by Vincent et 

al. [16]. The quality factor of the bubble oscillation given by the above values of the natural 

frequency and the attenuation coefficient is 0 8.5Q fS D  . The resonance peak shown in 

Fig. 4 is rather wide. Note also the development of the second harmonic. These signs indicate 

that the bubble oscillation is not perfectly harmonic.  

Figure 5 allows one to compare the velocity of the bubble surface with that of the cavity 

surface. As one can see, the former is much higher than the latter, but both of them are much 

smaller than the speeds of sound in the liquid and in the solid, c  and sc . It should be also 

mentioned that the value of bR  is in agreement with evaluations made by Vincent et al . [15]. 

Figure 6 shows the evolution of the normal stress on the cavity surface, calculated by 

Eq. (A12). The calculations show that, when the bubble radius reaches the equilibrium value 

beR , the liquid pressure on the cavity surface tends to about – 5.3 kPa. 

Figure 7 demonstrates the effect of the initial negative liquid pressure on the bubble 

dynamics. As one can see, the equilibrium radius beR  reached by the bubble increases with 

increasing 0| |lP . A very interesting result is that the natural frequency of the bubble oscillation 

increases as well. The calculations show that as 0lP  changes from – 1 to – 20 MPa, beR  increases 

from 9.98 to 27.37 µm, and the natural frequency increases from 0.845 to 1.36 MHz. This effect 

is also predicted by the linearized equations; see Fig. 2(a). In our previous paper [25], where 

linear analysis was carried out, this effect did not receive a proper attention. Therefore, we 

would like to emphasize it now. The prediction that the natural frequency increases with 

increasing bubble radius is in contrast with the bubble behavior in an unbounded liquid, where 

the natural frequency of a bubble is known to decrease with increasing bubble radius [1,2]. 
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However, the agreement of this prediction with the experimental data of Vincent et al. [16] 

indicates the reality of this effect. An explanation is that the dynamics of the system under 

consideration is governed by the solid environment rather than by the bubble. If we look at Eq. 

(67), we will see that it predicts that, first, the resonance properties of the system are governed 

by the elastic properties of the solid environment. Second, the natural frequency should increase 

with increasing beR  and decreasing the thickness of the liquid layer between the bubble and the 

cavity surface. For these reasons, even a vacuum bubble can resonate in the system under 

consideration, whereas in an unbounded liquid, that is impossible.  

Figure 8 illustrates the bubble behavior at different values of the shear modulus P . In 

real solids, a change in P  means changes in other parameters as well. Therefore, to bring our 

analysis closer to reality, when we change P , we keep constant the solid density sU  and 

Poisson’s ratio but change the longitudinal wave speed sc  and the Lamé coefficient O  

according to the known formulas [27]: 

 22 (1 ) ,    2
(1 2 )s s s

s

c cP Q O U P
U Q

�
  �

�
, (71) 

where Q  is Poisson’s ratio. In our previous simulations, 0.4Q  . We keep the same value in 

the simulations with varying P . The value of sU  is also kept as above, 1233sU   kg/m3. Figure 

8 shows that with increasing P , beR  decreases and the natural frequency increases. The 

calculations show that as P  increases from 0.1 to 10 GPa, beR  decreases from 54.01 to 11.43 

µm, while the natural frequency increases from 0.635 to 3.33 MHz. In this case, the behavior 

of the natural frequency is expectable, considering its determining dependence on P  [see Eq. 

(67)], as a result of which the effect of increasing P  on the natural frequency is the deciding 

factor.  

When we change P , we change the specific acoustic impedance of the solid, s s sz cU 

, so we can examine how a change in sz  affects the attenuation coefficient D . The dependence 

of D  on sz  is presented in Fig. 9. As one can see, the damping of the bubble oscillation 

monotonically decreases as the rigidity of the elastic medium increases. In our case, the specific 

acoustic impedance of the liquid (water) is 1.48l lz cU   MPa s/m. It is interesting to note that 

Fig. 9 does not reveal any singularities when sz  passes through the value of lz , i.e., the 

matching of the acoustic impedances of the liquid and the solid appears not to lead to a 

maximization of attenuation.  
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IV. CONCLUSION 

In the present paper, equations have been derived that model the growth and subsequent 

damped oscillation of a cavitation bubble in a liquid-filled cavity surrounded by an elastic solid. 

It was assumed that the nucleation and the growth of the bubble were caused by an initial 

negative pressure in the cavity. The liquid was treated as viscous and compressible. The 

obtained equations generalize the Keller-Miksis theory, which was derived for finite-amplitude 

oscillations of a bubble in an unbounded compressible liquid. Numerical simulations have 

shown that the final equilibrium radius reached by the growing bubble decreases when the 

absolute magnitude of the initial negative pressure decreases. It was also shown that the natural 

frequency of the bubble oscillation decreased with decreasing bubble radius, in contrast to what 

occurs in an unbounded liquid, where the natural frequency of a bubble increases with 

decreasing bubble radius. 
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APPENDIX A: CALCULATION OF ( , )rr cR tW   

Let us first express ( , )rr cR tW , given by Eq. (15), in terms of / ( )c ss t R c�  only. 

Substitution of Eq. (13) into Eq. (19) yields  

 / / / 2( ) ( )c
c s c s c c

s

Rs t R c s t R c R R
c

� � �  . (A1) 

This equation allows one to express // ( )c ss t R c�  in terms of / ( )c ss t R c� ,  

 // 2 /( ) ( )c
c s c c c s

s

R s t R c R R s t R c
c

�  � � . (A2) 

Equation (13) allows one to express ( )c ss t R c�  in terms of / ( )c ss t R c�  as  

 
3

2 /( ) ( , ) ( )
3

c c
c s c c c s

s

aR Rs t R c R u R t s t R c
c

�  � � � . (A3) 

Equations (A2) and (A3) allow one to express ( , )rr cR tW  in terms of / ( )c ss t R c�  only. 

However, before doing so, we need to calculate ( , )cu R t .  
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The displacement of the cavity surface ( , )cu R t  is defined by  

 ( , )c c cu R t R R � , (A4) 

where cR  denotes the unstrained position of the cavity surface. At 0t  , Eq. (A4) becomes  

 0 0( ,0)c c cu R R R � , (A5) 

where 0 (0)c cR R . Eliminating cR  from Eq. (A4) by Eq. (A5), one obtains  

 0 0( , ) ( ,0)c c c cu R t R R u R � � . (A6) 

The value of 0( ,0)cu R  can be calculated by using the results of Task 2 of §7 in the book of 

Landau and Lifshitz [27]. Applying these results to our case, we get  

 0
0 0( ,0) [ ( 2 ) ]

4
c

c l
Ru R P aO P
P

 � � , (A7) 

where 0lP  denotes the initial (negative) pressure in the liquid.  

Setting cr R  in Eq. (15) and substituting Eqs. (A2), (A3), (A6), and (A7) into it, one 

obtains 

 / 20 0 0
2

2( , ) [( 2 ) 4 ] 1 [ ( ) ]c c l
rr c c s c c

c c s c

R R PR t a s t R c R R
R R c R

O PW O P P
§ · �

 � � � � � � �¨ ¸
© ¹

. (A8) 

We have not imposed so far any restrictions on time delays in the elastic solution. 

However, to proceed, we have to assume that the effect of the time delay c sR c  on the behavior 

of the function ( )c ss t R c�  and its derivatives is small and hence all these functions can be 

expanded into a Taylor series in terms of c sR c . With this assumption, we get  

 
2

/ / / / / / /
2 3

1( ) ( ) ( ) ( )
2

c c
c s

s s s

R Rs t R c s t s t s t O
c c c

§ ·
�  � � � ¨ ¸

© ¹
. (A9) 

It follows from expanding Eq. (A1) into a similar Taylor series that  

 
2

/ 2 / / /
2 3

1( ) ( )
2

c
c c

s s

Rs t R R s t O
c c

§ ·
 � � ¨ ¸

© ¹
. (A10) 

Substituting Eq. (A10) into Eq. (A9) and keeping terms up to the order 21 sc , we obtain  

 
2 2

/ 2 2 2
2 2 3

1( ) ( ) ( )c c
c s c c c c c c

s s s

R Rd ds t R c R R R R R R O
c dt c dt c

§ ·
� �  � � � ¨ ¸

© ¹
. (A11) 

Substitution of Eq. (A11) into Eq. (A8) yields  

 0 2 3 4

1( , ) ( ) ( ) ( )rr c
s

R t t t t O
c

W W W W
§ ·

 � � � ¨ ¸
© ¹

, (A12) 
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where the subscript shows the order of the terms in 1 sc , so that  

 0 0 0
0 ( ) [( 2 ) 4 ] 1 c c l

c c

R R Pt a
R R

W O P P
§ ·

 � � � �¨ ¸
© ¹

, (A13) 

 2 2
2 2 2

2 2( ) ( ) ( 2 )c c c c c
s c s

dt R R R R R
c R dt c
O P O PW � �

 �  � � , (A14) 

 
2

2 2 3
3 3 2 3

2 2( ) ( ) ( 6 2 )c c c c c c c c
s s

dt R R R R R R R R
c dt c

O P O PW � �
  � � . (A15) 

The problem is the appearance of the third derivative in Eq. (A15). It can be resolved as follows.  

The factor 31 sc  in Eq. (A15) allows us to use solutions of lower accuracy to eliminate 

cR , namely, Eqs. (28) and (29) for an incompressible liquid. From Eq. (29), cR  can be expressed 

in terms of bR . Then, by differentiating Eq. (28), bR  is expressed in terms of derivatives of 

lower order, keeping in ( , )rr cR tW  on the right-hand side of Eq. (28) only the terms 0W  and 2W . 

The calculation can be simplified considering that the velocity of the elastic oscillation is much 

smaller than the velocity of the bubble oscillation, i.e., c bR R�� . Numerical results presented 

in Sec. III confirm this expected fact. Therefore, without an essential loss in accuracy, cR  can 

be considered as a constant when the left-hand side of Eq. (28) is differentiated. The final result 

of this calculation is  

 
3

2 2 0
0 2 3

2 41 ( 4 ) 1b s b b c c l b l b b b b
c c s s l

c l c l c l b l c l

R R R R R R R R R PR R ac P
R R R R R

U V KU P
U U U U U

§ · § ·
� �  � � � � � �¨ ¸ ¨ ¸

© ¹ © ¹
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R R R R RR R R R R R
R R R R R

U K
U U

§ · § · § ·
� � � � � � �¨ ¸ ¨ ¸ ¨ ¸
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4

3 3
42 1 2 1b b

c b
c c

R RR R
R R

§ · § ·
� � � �¨ ¸ ¨ ¸

© ¹ © ¹
. (A16) 

Here, we have also used Eq. (10).  

Equation (A16) makes it possible to eliminate cR  from Eq. (A15). However, it is very 

cumbersome and in fact superfluous. The point is that the magnitude of the elastic oscillation 

is very small compared to the initial radius of the cavity, 0cR , and its final equilibrium radius, 

ceR . Therefore, Eq. (A16) can be linearized with respect to time derivatives. This yields  

 2 2 0
0 21 ( 4 )b s b b c c

c c s s l
c l c l c

R R R R RR R ac P
R R R

U U P
U U

§ ·
� �  � �¨ ¸

© ¹
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2 3 3

3 2

2 4 ( )l c c l c b c b b

l b l b c l

R R R R R R P
R R R

V K
U U U

�
� � � . (A17) 

Here, we have also used Eq. (29) to replace the derivatives of bR  with those of cR . With Eq. 

(A17), using also Eq. (10), we can recast Eq. (A15) to  

 
3

2 0
3 0 3

2( ) ( 4 )
[ (1 )]

s b c c l c c
s s l

s l c b s l c b

R R R R Rt ac P
c R R R R

U VW U P
U U U

ª
 � � �«� � ¬

  

 
3 3

2
4 ( )l c b c

b c b
b

R R R R R P
R

K º�
� � »

¼
. (A18) 

Since the value of P  is usually of the order of GPa, the behavior of Eq. (A18) is determined by 

the first term in brackets, while the other terms are only small corrections. 

 

APPENDIX B: EQUATIONS USED FOR THE DERIVATION OF EQ. (56)  

For c of , Eq. (52) reduces to  

 2 4 23
2

inc l b l
b b l b b l b

b b

RE P R R R
R R
K VU U � � � � . (B1) 

Differentiating Eq. (B1) gives  
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2 2

2( ) 3 4inc b b l b
b b l b b b b l b b l

b b b

R R RE P R R R R R R
R R R

VU U K
§ ·
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© ¹

. (B2) 

To eliminate bR , Eq. (28) is used. Its differentiation gives  
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. (B3) 

Substitution of Eq. (B3) into Eq. (B2) yields  
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3 3 2

2
3 3 2

2 4 22 1 1 1b c b b l b
l b b

c c c l b c

R R R R RR R
R R R R R

KU
U

½ª º§ · § · § · °� � � � � � ¾« »¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ °¬ ¼¿

. (B4) 

Substitution of Eq. (B4) along with Eqs. (52) and (53) into Eq. (55) results in Eq. (56). 
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FIG. 3. (a) Growth and oscillation of the bubble. The dashed curve shows the exponential 

approximation of the bubble attenuation. (b) Oscillation of the cavity surface. (c) Comparison 

of the oscillations of the bubble and the cavity surface.  
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FIG. 4. Normalized Fourier spectrum of the bubble oscillation shown in Fig. 3(a). 

 

 

 
 

FIG. 5. (a) Velocity of the bubble surface. (b) Velocity of the cavity surface. 
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FIG. 6. Normal stress at the cavity surface.  

 

 

 
 

FIG. 7. Bubble growth and oscillation at different values of the initial negative liquid pressure. 
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FIG. 8. Bubble growth and oscillation at different values of the shear modulus P . 
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FIG. 9. Dependence of the attenuation coefficient D  on the specific acoustic impedance of the 

solid s s sz cU . The physical parameters are as in Fig. 8. The longitudinal wave speed sc  is 

calculated by Eq. (71) varying the value of P . 

 


