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X 1 X 2 0 = ≤ ≤ = 1 Feature space: X = X 1 × • • • × X n
, where X i is a totally ordered set. Each object is represented by a tuple x = (x 1 , . . . , x n ) ∈ X.

Labels: Each object has a label l(x) from a totally ordered set L.

The relation between descriptions and labels is assumed to be orderpreserving

a 1 ≤ b 1 , . . . , a n ≤ b n ⇒ l(a 1 , . . . , a n ) ≤ l(b 1 , . . . , b n ).
Aim: to predict the label of objects from their descriptions, with a nondecreasing function f : X → L.

The function can be specied by decision rules of the form:

∀i ∈ A, x i ≥ α i ⇒ l(x) ≥ δ,
where A ⊆ {1, . . . , n}. Sets of such rules can describe any non-decreasing function from X to L.
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Example:

These rules express the function at the left.

x 1 ≥ 3 /7 ⇒ l(x) ≥ x 1 ≥ 4 /7, x 2 ≥ 3 /7 ⇒ l(x) ≥

Sugeno Utility Functionals (SUF)

A capacity µ : 2 {1,...,n} → L is a set function verifying

• µ(∅) = 0 and µ({1, . . . , n}) = 1

• I ⊆ J ⇒ µ(I) ≤ µ(J).
The Sugeno integral S µ dened by µ is the aggregation function max I⊆{1,...,n} min(µ(I), min

i∈I x i ).
Let ϕ = (ϕ 1 , . . . , ϕ n ), where each mapping ϕ i :

X i → L veries • ϕ i (0) = 0 and ϕ i (1) = 1 • a i ≤ b i ⇒ ϕ i (a i ) ≤ ϕ i (b i ).
A SUF is a combination of a Sugeno integral and mappings ϕ 1 , . . . , ϕ n of the form

S µ (ϕ 1 (x 1 ), . . . , ϕ n (x n )).
A single SUF is less expressive than decision rules. A maximum of several SUFs can represent any set of decision rules.

Application

Maxima of SUFs enable a non-parametric method [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF] for monotonic classication.

Principle: To t the data with a max-SUF using the smallest possible number of SUFs.

The max-SUF can then be translated back into rules.

Result: The method is competitive (in terms of accuracy) with state of the art methods [START_REF] Blaszczynski | Sequential covering rule induction algorithm for variable consistency rough set approaches[END_REF] for learning decision rules.