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Abstract

The problem addressed in this paper is how to calculate the amount
of personnel required to ensure the activity of a home health care (HHC)
center on a tactical horizon. Design of quantitative approaches for this
question is challenging. The number of caregivers has to be determined
for each profession in order to balance the coverage of patients in a region
and the workforce cost over several months. Unknown demand in care
and spatial dimensions, combination of skills to cover a care and individ-
ual trips visiting patients make the underlaying optimization problem very
hard. Few studies are dedicated to staff dimensioning for HHC compared
to patient to nurses assignment/sequencing and centers location prob-
lems. We propose an original two-stage approach based on integer linear
stochastic programming, that exploits historical medical data. The first
stage calculates (near-)optimal levels of resources for possible demand sce-
narios, while the second stage computes the optimal number of caregiver
for each profession to meet a target coverage indicator. For decision-
makers, our algorithm gives the number of employees for each category
required to satisfy the demand without any recourse (overtime, external
resources) with fixed probability and confidence interval. The approach
has been tested on various instances built from data of the French agency
of hospitalization data (ATIH).

KEYWORDS: homecare, staff dimensioning, stochastic programming, stochas-
tic vehicle routing problem

1 Introduction

Access to health-care services is a critical challenge of the XXIst century in
modern societies. Delivering high quality care at the right moment to the pop-
ulation at the right cost is a priority for all health-care systems. The Institute
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‡Corresponding author. Email: garaix@emse.fr

1



of Medicine (Reid et al., 2005) identified time pertinence, patient-focus and effi-
ciency as most important criteria to ensure high quality care. Since health-care
budgets are limited nowadays, optimization of resources is explored to increase
performance of such systems. The need to better use resources and optimize de-
livery, is challenged by a constant increase of costs (Chahed et al., 2006; Matta
et al., 2012; Rodŕıguez-Verjan et al., 2013).

Home health-care (HHC) is a good alternative to traditional hospitalization
to offer a better access to health-care services and increase patient satisfaction
and quality of care (Rodŕıguez-Verjan et al., 2013). It has been proven that
health-care at home improves access in rural areas and decreases the load of
hospitals. However such structures face important challenges to deliver care in
rural areas while having lower costs than traditional hospitals. Complex and
technical cares (such as chemotherapy) can be delivered at home using such
structures. The challenge is to do it without increasing budget.

In this article, we tackle the problem of staff dimensioning in HHC struc-
tures. In traditional hospitals, all resources are gathered in the same place and
traveling distances from one patient to the next one can be neglected. In HHC
systems, traveling distances between patients must be taken into account to de-
termine resource capacity and usage, especially when freelance resources (such
as city based nurses, pharmacists or doctors) are not available in some regions.
In addition, qualified caregivers can not be easily hired or dismissed according
to the demand variation on a middle term horizon (few months) so the staff
dimensioning problem is a critical tactical decision for health-care suppliers.
Long-term hiring improves employees quality of life and their own skills for reg-
ular tasks. For all these reasons, economic viability of HHC structures is very
sensitive to staff dimensioning and such decisions should be taken carefully by
considering all parameters (demand evolution, availability of freelance resources
on the territory, traveling distances...).

Uncertainties related to short term and long term decision support systems
are a great challenge in many activities as supply chain management (Gupta
and Maranas, 2003; Peidro et al., 2009), transportation and logistics (List et al.,
2003) and production planning (Gatica, Papageorgiou, and Shah, 2003). HHC
context presents a wide variety of uncertainties compared to many industrial
activities. Like in many health-care systems demand parameters are stochastic
in volume, timing, pathology and severity, but also on spatial location. In
addition, postponement or ignorance of patients requests are rarely feasible
options for HHC. In Lanzarone, Matta, and Scaccabarozzi (2010), a stochastic
model of patient’s care pathway in HHC allows to predict estimation of patient’s
requirements. But some authors (Leykum et al., 2014) show that the uncertain
nature of the procedures and the diseases must be taken into account in the
design of the systems. They found that while process-based efforts are efficient in
low-uncertainty context they are insufficient in the high-uncertainty situations.
In order to prevent these drastic changes, some authors (Shishebori and Babadi,
2015) have studied the robust approach to protect the network against changes.
In another research (Argiento et al., 2014), these elements are introduced in the
design of the system.
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Staff dimensioning in traditional hospital is less critical than in HHC struc-
tures for two main reasons related to the close proximity of patients: i) activities
can easily be shared or exchanged in case of employees shortage; ii) working
time can be saved by small reductions in the time spent for each care. Clas-
sical approaches for staff dimensioning are based on calculating requirements
using mean values of historical data of demand, the definition of a global bud-
get (Busby and Carter, 2006) or a given budget and a focus on improvements
in service delivery (De Angelis, 1998). Dimensioning staff is critical for small
HHC structures that represent 57% of French HHC centers where less than
10,000 hospitalization days were performed in 2011 (FNEHAD, 2012). In that
case, the efficiency of the system is sensible to small changes in the number of
available personnel. Detailed operational aspects (routing, mix of pathologies
and mix of skills for pathologies care) are therefore integrated in our approach
dedicated to HHC structures.

The main contribution of this article is an approach to size human resources
of HHC structures taking into account combination of skills for each service and
uncertainties related to demand evolution and location. The decision level is
tactical and allows HHC managers to plan the deployment of a structure in a
territory with a minimal amount of information. A two-phase approach based
on a quasi-exact Monte-Carlo approach is proposed to solve this problem where
the stochastic demand is estimated by a set of scenarios. These scenarios capture
the complex nature of the demand over a territory and constitutes an original
and efficient way to take into account medical parameters of the problem.

In order to classify our contribution, the taxonomy of Hulshof et al. (2012)
can be used. They divided the research fields in a matrix. In the vertical
axis, works are divided following the planning horizon (strategic, tactical and
operational decisions). In the horizontal axis the different health-care services
(Ambulatory, Emergency, Surgical, Inpatient, Home and Residential). Follow-
ing this classification, our contribution is situated in tactical level and the HHC
service. Our approach integrates operational decisions, but restricted to the
evaluation of tactical decisions. More details about the specific place of this
work in the research landscape is given in the next section.

The article is organized as follows. A literature review on staff dimensioning
and related problems is proposed in Section 2. Problem statement is given in
Section 3. Section 4 presents the two-phase approach to solve the staff dimen-
sioning problem. Section 5 presents a benchmark on results and computational
experiments. Finally, conclusions and perspectives are given in Section 6.

2 Literature Review

A classification of planning problems can be found in the work of Lanzarone,
Matta, and Sahin (2012) where they propose to divide human resources planning
in four different levels: i) dimensioning, ii) districting problem (Benzarti, Sahin,
and Dallery, 2013; Blais, Lapierre, and Laporte, 2003) iii) assignment to visits
or patients (Boldy and Howell, 1980) and iv) scheduling (Borsani et al., 2006)
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and routing (Begur, Miller, and Weaver, 1997). This study can be completed
with the framework proposed by Matta et al. (2012) where authors classify man-
agement decisions from their hierarchical perspective. Dimensioning is a funda-
mental part of the planning system since its decision defines main constraints
of the other three planning systems, the best policies of which are impacted by
staff dimensioning decisions. Moreover, the capacity is almost defined by the
medical or paramedical staff in HHC systems (Lanzarone, Matta, and Sahin,
2012). This problem must be understood as a part of decision systems that are
critical to the survival of the HHC structures. Literature review on staff dimen-
sioning problem will be presented as follows. The first section is dedicated to the
problem applied in health-care services. The research in other application fields
is presented in the second section. This problem has been extensively studied
in structures (traditional hospitals, factories, call centers etc.) where resources
are not moving or where time spent to move can be easily estimated. On the
contrary, literature is rare when staff routing aspects need to be considered.

2.1 Staff planning in HHC

Almost all works of the literature dealing with staff planning in HHC are related
to some already set structures. The objective is to improve operational working.
We state a lack pf studies on staff dimensioning problem for HHC. Some recent
studies on assignment, scheduling and routing problems are presented here in
order to better understand the research context of this paper, as these problems
are strongly related to the staff dimensioning decisions.

The districting problem divides the territory in groups of patients and health-
care professionals following different criteria. The main objective is to reduce
costs or improve the matching of offer and demand. In Benzarti, Sahin, and
Dallery (2013) for example, optimization criteria are the workload balance, the
maximum distance between two units and the indivisibility of assignment (one
unit can only be assigned to one district). In this study, authors assume that
patients have the same profile. They propose two different models and evaluate
them in randomly generated scenarios. Another example can be found in Blais,
Lapierre, and Laporte (2003) where authors apply a multi-criteria Tabu-search
algorithm to divide a real territory in Canada.

Another staff planning problem is nurse-to-patient assignment problem. Here,
the new patients must be assigned to a specific resource while keeping some con-
straints. The most common constraints are, skills of resources, resource capacity
and continuity of care (some patients have to be visited by the same nurse, as far
as possible). In the work of Lanzarone and Matta (2014) the authors propose
a mathematical model to assign patients to nurses for health-care providers.
They take into account a random demand, fixed transportation time (demand
is modeled as the number of visits per week) and the objective is to minimize
the maximum overtime of a resource. They present a structural policy con-
sisting mainly on individual patient assignment (ranked by demand) while the
expected cost is minimized. In Yalçındag̃ et al. (2014), the authors introduce
routing considerations into the assignment. They propose an assignment-first
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routing-second approach on a single district. They compare two structural poli-
cies and a mixed-integer linear program for the assignment and conclude that
the last approach is the best one. For routing considerations they solve a clas-
sical Traveling Salesman Problem for every resource. In the study of Carello
and Lanzarone (2014) authors highlight the uncertain aspect of demand. They
propose a cardinality constrained robust model to solve the nurse-to-patient
assignment problem. One of the important contributions of this study is the
modeling of the continuity of care. This constraint, often considered as a soft
constraint, divides here patients in different subsets: enforced (during all the
treatment or just at the beginning), partial and none.

The scheduling and routing problems have been extensively studied in lit-
erature. For a complete review readers are refereed to Lanzarone, Matta, and
Sahin (2012) and Hulshof et al. (2012). One recent study is Allaoua et al.
(2013) where the authors model the problem of nurse scheduling and rostering
as a vehicle routing problem with time windows. In Liu et al. (2013), the au-
thors present two heuristics to solve the problem of sample pick-up and medicine
delivery (simultaneously) with time windows. Finally, Kergosien, Ruiz, and So-
riano (2014) present a problem dealing with pick-up of blood and urine samples
in HHC. They solve the problem using a Tabu-search algorithm based on a
variable neighborhood search.

In all the studies presented in this section, the number of caregivers is a given
constant number. In the next section, works considering staff dimensioning in
other contexts are presented.

2.2 Staff dimensioning in health-care services and other
industries

A complete literature review on planning in health-care systems can be found
in Hulshof et al. (2012). The authors present a taxonomy to classify planning
problems applied to health-care. Their study is very complete including up to
400 references. Here only some recent studies will be presented regarding staff
dimensioning in HHC.

Several researchers paid attention to staff dimensioning in traditional hospi-
tals, although this problem is not as critical as in HHC. The study of Rohleder
et al. (2011) intends to control and improve patient flow in an outpatient unit.
Their simulation model can be used to adjust the number of required human
resources. They find that adding some key resources, like a X-ray technician,
could reduce waiting times. Another study in an outpatient unit is developed
by Wang et al. (2012) where the authors use Markov chains modeling to im-
prove the work flow of a tomography department in a hospital. They change
the amount of staff to test different policies.

Fanti et al. (2013) propose a three levels approach to design hospital de-
partments. Indeed staff dimensioning takes an important part of their decision
support system. The approach is based on UML (Unified Modeling Language)
and Petri nets modeling, an optimization module consisting in approximating
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the Time Petri net model to the Time Continuous Petri net, and a simulation-
decision module. They present a case study where they minimize the number
of resources required to maintain the flow of patients in a hospital in Italy.

Authors seem to have particular interests using queuing and discrete simu-
lation models for staff dimensioning. Alfonso et al. (2012) propose to use Petri
nets modeling linked with Discrete Event Simulation (DES) and a quantitative
approach to design human resources and donor appointment strategies in blood
collection systems including fixed and mobile collection sites, walk-in and sched-
uled donors, stochastic donor’s behavior and random collection times. Another
study in the blood collection system is presented in Blake and Shimla (2014)
where a queuing model is used to minimize staff while maintaining waiting time
requirements. It is applied in the Canadian Blood services including 51 stan-
dard models applied to 220 clinic configurations. Another case is the work
of Green et al. (2006), where DES is used to change the amount of available
staff after demand variations in an emergency department. In Yom-Tov and
Mandelbaum (2014), a modified Erlang distribution is used to introduce the
reentry of patients. A queuing model determines how many physicians/nurses
are needed to maintain service levels. The constraint-programming model in
Ganguly, Lawrence, and Prather (2014) calculates the required staff and sched-
ules them to serve patients in an emergency department.

Dimensioning resources is an important problem in health-care, especially
in HHC structures where special features such as demand distribution impact
the economic pertinence and viability of the structure. A literature review can
be found on approaches intended to flexible and adaptable health-care struc-
tures (Carthey et al., 2010). Bed allocation in a specific clinic is considered
by using queuing theory, particularly the Erlang-loss model (De Bruin et al.,
2010). The authors develop a decision support system and, considering two-
years data, they show that merging units can decrease the number of required
beds. Another work based on DES and Petri Nets to plan the capacity of ma-
ternity HHC structures in Häıti can be found in Germain et al. (2010); authors
simulate a maternity service where an additional resource is added every time
a patient waits more than 50 minutes. Even if the authors identify the dis-
tance between the health-care providers and patients as the main difficulty for
delivering good quality services, they do not make clear how this parameter is
taken into account in their approach. Finally, another example can be found
in Trilling (2006) where the authors design a simulation model in the context of
shared resources in the hospital. In order to calculate resource’s workload, the
simulation with infinite capacity.

An important part of staff dimensioning studies has been realized in call
centers industry, where calls follow probabilistic distributions according to their
type and resources have different skills – but single assignment to calls. In this
case the problem consists in minimizing the number of resources to accomplish
all tasks. Markov chain models have been widely used to deal with such prob-
lems as presented in (Koole and Mandelbaum, 2002). The problem can also
be considered as a scheduling problem and can be solved using deterministic
constraint programming like in Canon, Billaut, and Bouquard (2005). Random
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instances are used to test the algorithm finding that optimal solution can be
reached within two minutes for instances with up to 80 jobs. Shared resources
are involved in the call center problem of Akşin and Harker (2003).

Resource dimensioning considering demand uncertainty has been studied
in the recent literature (Sahinidis, 2004; Peidro et al., 2009; Guillén et al.,
2005). A survey considering the demand uncertainty on the supply chain can
be found (Gupta and Maranas, 2003) where the authors divide the models
in two categories: i) Manufacturing decisions (”here-and-now”) and ii) Logis-
tics decisions (”wait-and-see”). In the pharmaceutical industry a study was
made to plan the investments taking into account the uncertain result of clinical
tests (Gatica, Papageorgiou, and Shah, 2003); the authors propose a multi-stage
optimization problem where decisions are taken when information is revealed.
The probabilities of success of a product evolves after each step of the clinical
trial. Probabilities between steps of the trial are assumed related and not in-
dependent. The model is solved with Branch-&-Bound and is capable to solve
instances with three deterministic products and one stochastic. In List et al.
(2003), the authors present a fleet sizing problem under uncertainties. There
are two sources of uncertainty: (i) demand and (ii) performance of vehicles.

Almost all works cited above model systems where patients (or demands)
arrive to a facility (hospital, blood collection site, outpatient units) where sev-
eral resources can be assigned to each patient. Therefore, traveling times are
neglected in the definition of the capacity of the service. Another specificity of
the staff dimensioning problem in health-care context comes from mix of cares
required for a the pathology. For instance, if a treatment required 1 hour of
nurse and 30 minutes of an oncologist, sizing decisions on both professions have
to be integrated. At the operational level, planning decisions of different profes-
sions are less dependent since the demand to cover is known for each profession.
That combinatorial integration increases the difficulty of the staff dimensioning
problem.

In order to solve this problem we propose innovative methods with the fol-
lowing scientific contributions: i) a quantitative approach to size staff of HHC
with uncertainties, routing aspects and complex coverage function of demands,
ii) an original service level definition to ensure the robustness of the solution,
iii) a complex demand modeling including three sources of uncertainty (geo-
graphical, epidemiological and volume).

In the next section the problem will be defined. In section 4 the two-phase
approach to solve the problem will be presented. In section 5 the computational
experiments will be proposed and the conclusion will be discussed in section 6.

3 Problem definition

The key question in this study is how many human resources are necessary to
attend demand. The objective of the problem is to give the minimum amount
of human resources in order to cover a certain percentage of days, called ’per-
formance level’.
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The mix of demands from different pathologies, (requiring different amounts
of time of different resources like nurses, doctors, specialists, etc.) is not known
in advance. Demands can appear in different locations on the territory assigned
to the HHC structures by the authorities. The amount of demand is also un-
known and routing aspect is critical as about 30% of working time is spent in
traveling. Planning human resources without this information is complicated
and the consequences of bad decisions can be important. However, some in-
formation can be used to estimate demand. In this study three main sources
of information are considered to be the input of the problem: i) geographi-
cal information around the HHC structure, ii) historical data of demand and
iii) information of the resources required to treat the pathologies in the HHC
structure.

Decision-makers and HHC planners can use the approach developed in this
paper whenever they have the information previously mentioned about the ter-
ritory to cover and want to know the minimum amount of personnel of each
profession required to meet the target performance level. The following part of
the problem description presents some modeling aspects and explain the funda-
mental hypothesis of the approach.

Consider a HHC structure that operates on a territory T divided into sectors
in the set S. A sector s corresponds to an homogeneous area where intrasectoral
travel times, denoted tss, can be assumed constant for any pair of origin and
destination belonging to sector s. Between sectors s1 and s2, the intersectoral
travel time ts1s2 is constant along the optimization horizon H. Moreover, each
sector is large enough to allow us to obtain statistical data on every pathology
(ATIH 1 is the main source of real-life data used in this paper). This database
offers epidemiology data related to every GHM 2. We assume that patients
who are suffering from the same pathology require the same care with multiple
activities. The cost associated to each required employee depends on his/her
profession p, among P the set of professions. As a permanent member, an
employee generates a constant cost cp for the whole optimization horizon. Each
activity a ∈ A requires wa,p working hours for profession p ∈ P . Note that some
activities can be performed remotely and thus, do not require any move to the
sector of the patient.

The demand matrix d = [dsa] gives the daily demand for each activity at
each sector. The daily demand applied to a territory is called scenario on this
territory. The total number of demand D, for each day is defined as a random
variable. Each demand has probability πs to be in sector s and corresponds
to activity a with probability ρa. Thus, D defines the demand distribution, π
the spatial distribution and ρ the epidemiological distribution. In the following

1ATIH is the French technical agency for hospitalization information,
http://www.atih.sante.fr. From the ATIH database, one can get the amount of pa-
tients of every region in France for every pathology and the treatment associated with. This
data is public and three years of data (from 2010 to 2012) were used in this study.

2GHM: Groupe Homogène des Malade is a classification of treatments used by French
authorities to calculate reimbursements, hospital capacities, resources requirements and so
on.
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sections, these distributions are independent but the generalization is trivial.
In practice several HHC structures use freelance resources usually located

near to patients that are distant. But this approach can imply heavy economical
charges to the structure and the use of these resources should be minimized. In
our model, when HHC structure is capable of serving all patients of a certain day
without using freelance resources (and without extra hours) the day is considered
’covered’ and ’uncovered’ otherwise the day is considered ’uncovered’. Thus, we
define the level of performance α∗ as the number of possible day (called scenario
in the rest of the text) covered for a given staff.

The problem is to determine np, the number of employee for each profession
p, such that the cost

∑
p cpnp is minimized and the level of performance α∗

satisfied onH. A scenario is covered by a solution n when its corresponding daily
demand is completely served by resources described by n. In order to determine
if a scenario can be covered with [np] resources, the resources assignments to
activities have to be decided. Those variables are denoted qsapk(d) and represent
the number of activities a served by the employee k of profession p in the sector
s. Thus, the total working time of k can be calculated by computing the route
visiting each sector where k has to operate. As the daily working time is limited
to L, for any solution [np] the feasibility (covering) problem can be decided for
each day.

4 Two-phases approach

The problem described above can be seen as a two-stage stochastic program-
ming (Birge and Louveaux, 1997; Dantzig, 1955). The first stage only relates
to np decision variables. At the second phase, when demands are known, the
assignment of patients to employees selected at the first phase is solved and
their routing plan can be done. This NP-hard problem (as its deterministic ver-
sion contains the well-known Vehicle Routing Problem) is difficult to address
directly. Therefore, we propose a two-phases approach exploiting the definition
of the performance level α∗. Because of the uncertainty of demand our algo-
rithm is a quasi-exact Monte-Carlo approach where the stochastic demand is
estimated by a set of scenarios.

In order to evaluate the performance of a solution n = [np], an optimization
problem can be solved maximizing the number of demands served. Another
approach minimizes overtimes needed to cover all the demands of each scenario
for each profession. The approach proposed in this paper (see Figure 1) allows
to decompose the problem for each profession, since daily activities done by dif-
ferent professions are assumed independent. But it implies to solve the routing
problem for each solution. Our approach tries to find the minimal number of
resources Npω of profession p required to serve all the demands of each scenario
ω. This daily problem is called the slave problem SP (p, ω) and does not depend
on solutions n.

As Npω values are computed, a scenario is covered by a solution n if and
only if np ≥ Npω for each profession p. Now, the staff dimensioning can be
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modeled by the so-called master problem defined with those constraints.
Our approach to solve the staff dimensioning problem of a territory has three

steps:

1. generate a set Ω of daily scenarios of demands;

2. compute Npω for each scenario ω and each profession p by solving the
slave problems SP (p, ω).

3. solve the master problem and get the optimum n = [np].

The three steps are detailed in the three following sections. Then some
modeling improvements are described in Section 4.4.

Figure 1: The two-phases approach.

4.1 Generation of scenarios

Each scenario corresponds to a possible daily demand, generated from a ter-
ritory. All data that define a territory, are listed in Section 3. They contain
all characteristics of sectors, activities and professions. For each territory, some
demand patterns are generated on three fields: the total number of demands
(=

∑
(s,a)∈S×A dsa), probabilities of any demand on localization (πs,∀s ∈ S)

and on its nature (πa,∀a ∈ A).
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4.2 Slave problem

Before solving the master problem, minimal resource requirements Npω have to
be computed for each scenario ω and each profession p. In the sake of clarity, p
and ω are omitted in this section.

The schedules of each resource have to be optimized in order to decide the
minimal number of resources necessary to serve all. Each required resource has
to visit some patients and also to serve some remote activities.

The slave problem is modeled as an integer linear program described below.
This model is based on route variables, and so comes with a huge number of
variables. In Section 4.4, problem properties are exhibited. They allow to reduce
the number of variables to a tractable size for the generated scenarios.

An integer linear program ensures the demand covering. In order to limit
the size of the problem, routes represent sequences of sectors and do not con-
sider cares and demands. Then the assignment of the demands to vehicles at
each sector has to be explicitly decided in this model. It differs from the unique
paper we found on split deliveries with discrete quantities (Salani and Vacca,
2011). In their model, the routes also define the quantities delivered at each
position. Because of the large number of such routes, a branch-and-price scheme
is used and takes advantage of other constraints of their problem like the time
window constraints. A covering model with routes as sequences of nodes with-
out undefined quantities has also been used by Archetti et al. (2012) for an
inventory routing problem, where stock level, delivering and routing decisions
are integrated. They select, in that way, routes among a set of routes derived
from solutions obtained by a Tabu Search algorithm. Their problem is easier
since quantities delivered are real numbers.

A dummy sector s = 0 is associated to the HHC structure building. Without
loss of generality, all the demands of remotely served activities for the considered
profession are transferred to sector 0. Set S and the demands d = [das] are
accordingly updated and the intrasector duration t00 is set to 0.

Let consider K the set of resources and R the set of feasible routes that
can be assigned to resources k ∈ K. Schedules associated to resources can be
modeled through binary xkr and integer qask decision variables, that represent
assignments of route r and proportion of activity a in sector s to resource k, re-
spectively. The length of each route r is known and denoted Tr that corresponds
to the sum of the intersector travel durations. Note that the node representing
the HHC structure building is included in all routes. It also gives single node
routes modeling employee who exclusively works remotely. Additional binary
parameters ars indicate whether route r is passing through sector s. Thus, the
slave problem is given by equations (1)-(7).
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minN =
∑

(r,k)∈R×K

xrk (1)

subject to∑
r∈R

xrk ≤ 1, ∀k ∈ K (2)∑
k∈K

qask ≥ dsa, ∀(s, a) ∈ S ×A (3)∑
(s,a)∈S×A

(wa + tss)qask ≤
∑
r∈R

(L− Tr)xrk, ∀k ∈ K (4)

∑
a∈A

(wa + tss)qask ≤
∑
r∈R

(L− Tr)arsxrk, ∀(k, s) ∈ K × (S \ {0}) (5)

xrk ∈ {0, 1}, ∀(r, k) ∈ R×K (6)

qask ∈ N, ∀(a, s, k) ∈ A× S ×K (7)

The objective function (1) gives the number of resources involved in the op-
timal solution by minimization of the number of routes assigned to resources.
We recall that resources can only perform one route, as constraints (2) ensure.
All demands have to be covered as in constraints (3). Individual capacity con-
straints are satisfied with (4) inequalities, where the left member expresses the
workload – in terms of service durations – assigned to the resource k and the
right side gives the available working time minus the total travel duration. Con-
straints (5) enforce resources to pass through all sectors of the territory where
they have at least one demand to serve – if ars is null then qask is null. These
constraints are meaningless for the dummy sector s = 0 that is ’visited’ by all
resources.

4.3 Master problem

Given a set Ω of scenarios ω, the master problem aims to find out the minimal
number of resources for each profession required to cover a ratio α∗ of scenario
among Ω.

The master problem is modeled as the linear integer program (8)-(12). In
addition to np decision variables, intermediate yω binary variables are intro-
duced and express if scenario ω is covered (yω = 1) or not (yω = 0) in the
optimal solution.
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min
∑
p∈P

cpnp (8)

subjet to

Npωyω ≤ np, ∀ω ∈ Ω, p ∈ P (9)∑
ω∈Ω

yω ≥ α|Ω| (10)

yω ∈ {0, 1}, ∀ω ∈ Ω (11)

np ∈ N, ∀p ∈ P (12)

The objective function (8) minimizes the cost of staff involved in the optimal
solution. Constraints (9) enforce to select more resources than each selected
scenario requires, for each profession. The ratio of covered scenarios is ensured
by constraints (10) with parameter α (instead of α∗), the definition of which is
given in the next paragraph. The number of resources selected can take integer
values with constraints (12).

As Ω has a limited size in practice, a solution satisfying the ratio α on a sam-
ple Ω has a small probability to satisfy the performance level α∗ over all possible
scenarios. Let define the average observed coverage ratio ᾱ =

∑
ω∈Ω y

∗
ω ÷ |Ω|,

where y∗ω are optimal values of the model (8)-(12). If we consider the random
selection of a daily scenario as a Bernouilli trial, then the sum of results of such
trials (i.e.,

∑
ω∈Ω y

∗
ω) follows a binomial distribution that we can approximate

by a normal distribution – we assume large enough Ω and ᾱ far enough from
0 and 1. The lower bound on the confidence interval at the 95% confidence
level is computed as α̂ − 1.66

√
α̂(1− α̂) ÷

√
|Ω|, where the observed variance

is under the first square root and the number of samples under the second one.
The parameter 1.66 comes from the Student-t distribution table for the above
confidence interval.

The value α is experimentally set such that the obtained value ᾱ gives a
lower bound equal to (or slightly greater than) α∗.

For instance, with |Ω| = 100 and target α∗ = 0.80, we experiment that
α = 0.86 gives solutions that cover 86% (ᾱ = 0.86) of scenarios of Ω and
therefore gives a lower bound on the confidence interval close to 0.80 ≈ 0.86 −
1.66

√
0.86(1− 0.86)÷

√
100.

The computational complexity of the master problem is let as an open prob-
lem. If the number of professions and the maximal number of resources are
assumed constant, then a full enumeration can be done in polynomial time (in
the number of scenarios). In our case, |P | and np have small enough upper
bounds to guarantee an efficient solution by a linear programming branch-and-
cut algorithm.

4.4 Modeling and algorithm improvements

As the number of variables involved in the model (1)-(7) can be huge, this model
has to be refined by means of filter on variables, tight bounds and cutting rules

13



embedded in an algorithm involving all sub-problems.

4.4.1 Size reduction of the slave problem

The number of variables involved in the model (1)-(7) can be decreased by ex-
ploiting optimal solution properties and filtering sequences of nodes to consider
or limiting the number of possible resources.

1. As the set of assignable routes is the same for every resources, variables x
can be replaced by |R| integer variables indicating the number of times that
a route is served (i.e., index k ∈ K can be ignored). But such variables do
not to directly derive feasible assignment of resources to activities because
of integrity of activities. That makes such modeling less efficient than the
proposed one.

However, the number of variables can be reduced because of optimal so-
lutions properties. Let consider that problem (1)-(7) is feasible, then an
optimal solution exists which routes satisfy the following properties.

(a) Routes correspond to lowest cost – as the sum of intersector travel
times – Hamiltonian cycle on the subset of sectors in each route.
Thus the number of routes involved in the model (1)-(7) is less than
2|S|.

(b) An upper bound on the minimal duration of each route can be com-
pared to L, the maximal route duration. This upper bound adds the
inter and intrasectors travel times and the lowest demand duration
that can be served at each visited sector.

The first property is easily implemented in the dynamic programming
algorithm that computes routes. A preprocessing procedure filters routes
according to the second property. Note that these properties are scenario
independent. The upper bound has been lightly weakened for that; all
activities are considered at each sector even if not present for all scenarios.

2. The number of resources |K| has to be large enough to ensure feasibility
but as small as possible for compactness. An upper bound, UBpw ≥ |K|, is
computed by a simple constructive heuristic for each pair of profession and
scenario (p, ω). For each profession, the algorithm starts with an empty
route of a resource k (K(p) = {k}). For each sector and each activity
(selected in an arbitrary order), demands are pushed at the end of the
current route. When no more demand can be assigned to the resource
because of capacity constraints, another empty route is considered for an
additional resource which is added to K(p).

4.4.2 A cutting rule in the solution algorithm over all scenarios

Some slave problem runs can be avoided. Let us suppose that 100 scenarios have
been generated and that α = 0.8. Then, at most 20 scenarios are not covered
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by any optimal solution of the master problem. Let ω′ be ranked at the 21th
position when scenarios are ordered by decreasing resource (p) requirements
(Npω). As covered scenarios ω by a solution satisfy Npω ≤ Npω′ , Npω can be
replaced by Npω′ . Thus, when more than 21 slave problems of resource k have
been solved, ω′ can be determined, and Npω′ used as a lower bound, denoted
LBp in next slave problems. All steps of the sequential solution of slave problems
are detailed in Algorithm 1. This algorithm can easily be parallelized according
to pairs of professions and scenarios.

The lower bound maintained in Algorithm 1, is added to model (1)-(7) with
constraint (13). Actually, solutions involving less than LBp resources can be
replaced by LBp in the master problem. As constraints (3) are inequalities,
solutions with exceeding resources are accepted.

N ≥ LBp (13)

Algorithm 1 How to compute Npw for profession p over Ω

Require: profession p, territory T
LBp := 0
{UBpω}ω∈Ω: the set of upper bounds on NPpω

L: the list of ω ∈ Ω sorted by decreasing UBpω value
while L 6= ∅ do
ω := pop(L)
if LBp ≥ UBpω then
Npω = LBp

else
Npω := best solution of (1)-(7) with |K| = UBpω − 1
if (1)-(7) is infeasible then
Npω := UBpω

end if
end if
if |L| < α|Ω| then
LBp := max{Npω : |{ω′ : Npω′ > Npω}| = (1− α)|Ω|}

end if
end while

4.4.3 A lower bound for the master problem

The replacement of Npw by lower values gives a lower bound to the master
problem. When some slave problems are not solved to optimality, a lower bound
can still be derived for the master problem. This lower bound is obtained by
considering a model similar to (8)-(12), where Npw is replaced by the lower
bound on its value given by the branch-and-cut procedure which solves each
slave problem.
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5 Computational experiments

In this section, we show how our approach can be used to determine the level
of staff required to cover a territory in Section 5.2. In Section 5.3, we show the
benefit of our approach against less sophisticated computational methods. The
benchmark used are described in Section 5.1. The settings, the performance
and the limits of our algorithm are discussed in Section 5.4.

Master and slave problems are solved by the parallel branch-and-cut algo-
rithm of IBM Ilog Cplex 12.5 in a C++ code. All runs have been performed
on a 8 processor Linux machine rated at 2.4 MHz. A running time limit of 300
seconds has been imposed to each call to the slave problem solution.

5.1 Benchmark

An instance is defined by a territory, a demand pattern and a set of scenarios
(daily demands).

This information is built from historical data on pathologies and cares. Only
four different types of care are modeled; they correspond to the three main
cares over 24 plus a dummy care that represents an average of less frequent
ones. The three most representative cares are: palliative cares (πa ≈ 0.26),
complex bandage and ostomy (πa ≈ 0.23), and heavy nursing cares (πa ≈ 0.10).
According to ATIH data (2012) provided by home care services in France, more
than one half of day of hospitalization at home is covered by these three type of
cares. Data recorded by the ATIH in 2012 involve 317 public and private HHC
structures reporting 4 207 177 days of hospitalization and an average length
of stay of 16.21 days. All French HHC structures have to send to ATIH their
activities detailed per type of care (GHM) and type of employee.

The time spent by resources to care patients is reported in Table 1 for nurses,
nurses’ aid and physicians. Durations in the last line result from a weighted sum
of durations of pathologies ; weights are frequencies. All durations are estimated
from ATIH data. Other workers are discarded, since they are parsimoniously
used and certain can operate as subcontractors of the HHC structure. Note that
the impact of the increase of the number of cares, can be reduced by merging
cares with the same service durations for each type of caregiver. This trick has
not been exploited in the experiments described in this section. The increase
in the number of types of caregiver involved in the model linearly increases the
difficulty of the problem, because of the independence of daily covering problems
related to each type of caregiver.

Every demand matrix d = [dsa] is generated following a demand pattern on
a territory, and gives one instance.

The set of 96 instances is built according to parameters listed in Tables 2, 3,
4 and 5. Each territory is defined by sparsity and division attributes. Sparsity
parameters are detailed in Table 3 where intrasector distances are uniformly
generated from intervals, and intersectors distances are computed as euclidean
distances from uniformly generated points in a square. In the case of semi-
urban territories, two squares have the same center and the probability to be in
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cares nurse nurse’s aid physician
palliative 60 35 10
complex bandage 40 15 10
heavy nursing 45 50 10
others 40 25 5
monthly cost (euros) 1200 800 2500

Table 1: Service durations in minutes

attribute values
Sparsity rural; urban; semi-urban
Division 10 sectors; 15 sectors
Demand pattern stable; volume variation; geographical variation; typical days

Table 2: Instances attributes

the smaller one is 0.5. In order to be consistent with the sector-based design,
intrasectors distances are generated smaller than intersectors ones.

For each combination of sparsity and division attributes, in Table 2, two
territories are generated, to a total of 12 territories. Then, instances are gen-
erated for each territory following patterns of Tables 4 and 5. In series S1, the
total amount of demand is fixed and all sectors are similar regarding the volume
and the nature of the demand. In series S2, the total demand can vary. Series
S3, correspond to HHC structures which allocate clusters of close demands to
specific days. Finally, when the demand can not be smoothly spread on the
planning horizon, some typical scenarios with different levels of demands and
spatial distributions are generated, like in series 4.

For each instance, 100 hundred scenarios (|Ω| = 100) are generated. Ac-
cording to the master problem definition, α is set to 0.86 to enforce 0.80 (see
Section 4.3. for calculation details) as covering ratio with a confidence greater
than 95%. Preliminary tests – performed on S4 instances – show that setting α
to 0.86 gives solutions with an average coverage value close to 0.86. We accept
that solutions founds are normally distributed centered at 0.86.

The number of routes (|R|) considered in the slave problem depends on
the territory. Values in Table 6, show the efficiency of the filtering procedures
applied to variables of model (1)-(13), as 921.0 has to be compared to 210 (the
maximal number of routes with 10 sectors) and 12295.0 to 215.

sparsity inter-sector distances sectors location
rural [5, 15] 90× 90 square
urban [5, 10] 60× 60 square
semi-urban [5, 10] 90× 90 and 60× 60 squares

Table 3: Spatial design of territories
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demand pattern description
stable the daily total demand is fixed
volume variation the daily total demand is uniformly ranged in an interval
geographical variation the daily total demand is uniformly ranged in an interval
typical days 4 typical patterns of total demand and demand distribution are defined

Table 4: Demand patterns

name demand pattern total demand distribution (πs) # instances
S1.1 stable 40 common function 12
S1.2 stable 50 common function 12
S2.1 volume variation unif(45,60) common function 12
S2.2 volume variation unif(30,60) common function 12
S3 geographical variation unif(40,50) 1 out of 5 subregion represents 24

80% of one daily demand
S4 typical days {45,55,65,75} 4 patterns 24

Table 5: Instances

name sparsity divisions |R|
RU10 rural 10 509.0
SU10 semi-urban 10 633.0
UR10 urban 10 921.0
RU15 rural 15 3771.5
SU15 semi-urban 15 6235.0
UR15 urban 15 12295.0

Table 6: Number of possible routes
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5.2 Qualitative analysis

For each covered scenario we consider as a day off, any resource assigned to
the solution but not required by the scenario. For each covered scenario and
profession, the total travel and idle times have been computed. Idle time only
involves resources used in the scenario. Average values of these indicators are
reported in Table 7 for all series. Travel and idle times give realistic values
compared to the activity of the HHC service of Sallanches. Column ’% day off’
shows that the stability of the volume of demand strongly impacts the stability
of the number of resources required each day.

series % day off % travel % idle staff cost
S1.1 5.8 35.7 3.1 26.1 29591.6
S1.2 5.9 35.2 2.9 31.8 35958.3
S2.1 10.9 34.5 3.0 35.2 39699.9
S2.2 19.5 33.6 3.0 33.3 37666.4
S3 11.2 36.5 2.3 30.5 34683.2
S4 20.7 33.7 3.0 43.6 49295.7
average 13.3 34.9 2.8 34.3 38859.2

Table 7: Percentage of workload activities

5.3 Comparison to straightforward solutions

With the results reported in Tables 8 and 9, we aim to show the interest of our
approach compared to trivial computations. Let us denote infp (resp. supp) the
minimum (resp. maximum) quantity of resources with profession p required to
serve at least one scenario of Ω. From the second and third columns of Table 8,
we know the average gaps between trivial bounds and the best solution (n∗p)
found with α = 0.8. Detailed results by instances also show that such gaps
vary a lot depending on instances. On the other hand, the lower bound (LBp)
computed for each profession in Algorithm 1 is a better approximation of the
optimal solution as we can see in the last column of Table 8.

Let n∗ denote the best solution found of the master problem. In Table 9, the
three last columns correspond respectively: the average percentage of scenarios
covered by n∗; the average percentage of scenarios covered by n but not by
n1 defined by formula (14); the average percentage of scenarios covered by the
solution n2 defined by formula (15) and not by n∗. Solution n1 is directly defined
by the values of LBp, the lower bound obtained by Algorithm 1. In Solution
n2, each scenario covered by LBp for at least one profession is covered.

n1 = {np : p ∈ P, np = LBp} (14)

n2 = {np : p ∈ P, np = max
w∈Ω
{Npw : ∃p′ ∈ P such that Np′w ≥ LB′p}} (15)
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series
∑

p n
∗
p − infp

∑
p supp − n∗p

∑
p n
∗
p − LBp

S1.1 5.3 1.9 0.3
S1.2 6.6 2.7 0.5
S2.1 10.2 3.3 0.9
S2.2 15.3 3.9 0.5
S3 9.0 3.5 0.4
S4 19.2 4.1 0.8
average 11.7 3.4 0.6
maximum 23 8 2

Table 8: Variance of the number of resources required

series n∗ n∗ \ n1 n2 \ n∗
S1.1 92.4 2.3 7.6
S1.2 89.8 4.3 10.2
S2.1 89.3 5.8 9.9
S2.2 89.3 3.3 9.0
S3 89.8 2.0 9.6
S4 87.8 3.4 11.1
average 89.5 3.3 9.8

Table 9: Scenario coverage (%) of trivial and optimized solutions

Results reported in Table 9 show that the solution of the master problem
is not trivial. In order to satisfy the coverage constraint, the set of scenario to
cover can not be easily determined.

We also compute a Pareto pseudo-optimal set on both criteria the objective
cost of resources and the percentage of coverage. As we know lower an upper
bounds on the number of resources required to cover each scenario with each
resource, it is easy to get all not-dominated solutions the corresponding bi-
criteria master problem from solutions of all the slave problems. In order to get
more accurate resources levels for each scenario we ran the program with alpha
set to 1. But, we did not solve all slave problems to optimality and we therefore
an approximation of the Pareto set.

For each instance, we find a quite small (12 solutions in average) set of not-
dominated solutions. Thus, obtained solutions for a fixed parameter α may
exceed the α level of coverage. One can verify this statement by checking Col-
umn “n∗” in Table 9.

5.4 Algorithm performance

General performances of our approach are given in Table 10. Note that average
values in the last row of tables are weighted by the number of instances per
series. As Column ’% call slave’ shows, about only 20.3% require a call to the
branch-and-cut solver. It highlights the interest to sort scenarios according to
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Algorithm 1 Slave problem
series % gap cpu (h.) % call slave % opt. avg gap max gap
S1.1 2.3 2.5 23.5 66.3 1.1 2
S1.2 2.7 3.8 23.8 44.4 1.2 4
S2.1 3.4 3.7 19.4 30.0 1.3 3
S2.2 3.1 3.2 17.8 36.0 1.2 3
S3 2.5 1.9 21.3 72.4 1.1 3
S4 4.1 3.9 17.7 17.7 1.6 4
average 3.1 3.1 20.3 44.6 1.2 3.1

Table 10: Computational performances

a quickly computed upper bound in Algorithm 1, in order to skip some slave
problem solutions. But, according to Column ’% opt’, optimality is not reached
for more than one half of these calls within the 300 seconds limit. It means that
for about 11% (55.4% over 20.3%) of the scenarios, the upper bounds used on
Npw can provide not optimal values. As 33 slave problems are not solved to
optimality in average – each scenario is evaluated for each resource –, those runs
of 300 seconds represent almost all the total computing time given in Column
’cpu (h.)’.

Average and maximal gaps (restricted to the 11% runs that do not reach
optimality and computed on the staff size) indicate that the minimal number
of resources required for some scenarios is difficult to evaluate, as for S1.2 and
S4 the maximal gap reaches 4 resources. However, the relative average gap –
also restricted to runs that do not reach optimality – is less than 1.2% on all
series. As described in Section 4.4.3, the lower bound computed at each run
stopped early, allows to compute a lower bound on the master problem. The
average relative gap is given for every series in Column ’% gap’ with an overall
average value of 3.1%. It seems that this gap can be reduced by controlling the
gap obtained on each run of the slave problem.

Series S2 seem to provide more difficult slave problems than series S1. In
series S2, the demand vary and can reach high values (60 demands), that gen-
erally makes the daily scenarios harder to solve. When 80% of the demand is
allocated to 20% of the sectors, as in series S3, more than 70% of the call to the
slave problem reach optimal solutions. Series S4, where the daily scenarios are
the most heterogeneous, our approach fails to find optimum solutions to many
slave problems.

6 Conclusion

In this paper we propose an original approach to estimate the staff in a HHC
service. Our approach deals with a coverage constraints on demand forecast.
It is useful to remind that staff dimensioning is a critical challenge for HHC
structures since a small change in the number of resources will have an important
impact on the economic performance (and survival) of them. Our approach
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allows to determine the necessary amount of caregivers using some given some
data: historical demand (geographical and pathological), territory model (to
estimate traveling time between sectors and inside them) and amount of time
of each profession required to treat each pathology. This information can be
obtained in public health-care data bases such as the ATIH.

Time spent in traveling (until one third of the working time) is taken into
account. Combinations of required skills involved to cover the demand are en-
forced. The robustness of the approach is obtained by a scenario-based model.
This potentially very large problem is solved through an original decomposition
framework. Contrary to the set of specific constraints to HHC structure, our
solution framework could be applied to other combinatorial optimization prob-
lems and can be an alternative to classical stochastic programming or chance-
constrained methods. The analysis of our numerical experiments shows that
routing evaluation can help to get more precise working time, especially in ge-
ographical areas assuming rural or semi-urban patterns.

Comparison to straightforward solutions and the Pareto optimal sets com-
puted, indicate that our approach can help decision-maker before opening a
HHC service or before hiring (dismissing) an employee.
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Rodŕıguez-Verjan, C., V. Augusto, X. Xie, and V. Buthion. 2013. “Economic
comparison between Hospital at Home and traditional hospitalization using a
simulation-based approach.” Journal of Enterprise Information Management
26 (1/2): 135–153.

Rohleder, T. R., P. Lewkonia, D. P. Bischak, P. Duffy, and R. Hendijani. 2011.
“Using simulation modeling to improve patient flow at an outpatient ortho-
pedic clinic.” Health Care Management Science 14 (2): 135–145.

25



Sahinidis, N. V. 2004. “Optimization under uncertainty: state-of-the-art and
opportunities.” Computers & Chemical Engineering 28 (6): 971–983.

Salani, M., and I. Vacca. 2011. “Branch and price for the vehicle routing prob-
lem with discrete split deliveries and time windows.” European Journal of
Operational Research 213 (3): 470–477.

Shishebori, Davood, and Abolghasem Yousefi Babadi. 2015. “Robust and reli-
able medical services network design under uncertain environment and system
disruptions.” Transportation Research Part E: Logistics and Transportation
Review 77: 268–288.
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